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We describe a way to parameterize power spectra extracted from fixed-frequency

reflectometry data, with a view to systematic studies of turbulence properties in

tokamak plasmas. Analysis of typical frequency spectra obtained from a new database

suggests a decomposition in a set of four key components: the direct current (DC)

component, low-frequency (LF) fluctuations, broadband (BB) turbulence and the

noise (N) level. For the decomposition in the identified components, different kinds

of functions are tested and their fitting performance is analysed to determine the

optimal spectrum parametrization. In particular, for the BB turbulence three models

are compared qualitatively based on a number of representative spectrum test cases,

notably the generalized Gaussian, the Voigt and the Taylor model. In addition,

quantitative performance testing is accomplished using the weighted residual sum

of squares (RSS) and the Bayesian information criterion (BIC) in a large database

including 350, 000 spectra obtained in Tore Supra. Next, parametrization by the

Taylor model is applied to Ohmically heated plasmas, and a BB energy basin is

systematically observed in the core plasma region, which shrinks with decreasing

radial position of the q = 1 surface. This basin might be explained by a drop of the

density fluctuation level inside the q = 1 surface.
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I. INTRODUCTION

Turbulence is the cause of anomalous transport, degrading plasma confinement in toka-

maks, of which turbulent density fluctuations form an important aspect. Among many

turbulence diagnostics1, reflectometry2 is an extensively used method due to its convenient

implementation and high spatial resolution. The properties of density fluctuations have

been studied by reflectometry experimentally3 in tokamaks for decades and, following im-

provements of interpretative models deduced from reflectometry simulations4, significant

knowledge of turbulence properties in tokamak plasmas has been obtained.5 Specifically,

great efforts have been made to measure the turbulence level, owing to its direct link to

the transport coefficients. It was found that the turbulence level reaches a maximum in the

plasma edge, becoming lower in the core region.6,7 The power spectrum from density fluctu-

ations contains abundant information about different kinds of plasma instabilities, making

it a powerful tool to study transport and confinement in fusion plasmas. For instance,

zonal flows (ZF) and geodesic acoustic modes (GAM) can be observed in power spectra,

reflecting the complicated impact of turbulence on the transport properties.8 Furthermore,

MHD modes, including many kinds of Alfvén modes9, are important for steady-state op-

eration as well as advanced tokamak configurations. Moreover, low-frequency and high-

frequency quasi-coherent (QC) oscillations have been identified and linked to different drift

wave instabilities.10–13

In the past, however, experimental analyses have concentrated on limited numbers of dis-

charges with selected parameters. In this traditional approach, only one or a few parameters

are allowed to change, while others are kept constant. This way, analyzing trends occurring

over a large range of the operational space, with multiple variables changing at the same

time, is difficult. As a complementary approach to more common studies based on a limited,

well-controlled data set, we propose a systematic analysis using a large database obtained

under a wide variety of plasma conditions. The possibility to detect important structure

in the database (trends and clusters) depends crucially on an efficient parametrization of

the turbulence properties extracted from the data. The parametrization method relies on

a decomposition of the turbulence spectrum. This decomposition method is based on the

pioneering works of Vershkov et al.14 and Krämer-Flecken et al.15 Through radial, poloidal

and long-range correlation, they have investigated different components of the turbulence
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spectrum and their properties. Our work is based on such an approach, using an extensive

database of Tore Supra plasmas and a parametrization of frequency spectra obtained from

reflectometry measurements. This paper focuses on the methodology leading towards that

parametrization.

In order to link the properties of the fluctuation spectrum to the underlying physics in a

large set of discharges under widely varying plasma conditions, it is very important to extract

in a robust way the salient features from the data and describe them using a minimal set of

parameters. In this work, three different parametric models were used and their performance

over the entire database was compared quantitatively. Great care was taken to obtain the

optimal solution of the parametrization, taking into account the physical interpretation of

the various spectrum components, with satisfactory results. The parametrization method is

then applied to investigate the evolution of turbulence w.r.t the edge safety factor (qψ), one

of the dimensionless parameters. A reduction of the broadband component of turbulence

spectrum was observed in the core and the localization of the reduction seems to be linked

to the sawteeth instabilities.

The rest of this paper is organized as follows. In Sec. II, first the fixed-frequency re-

flectometry diagnostic setup is briefly introduced. Next, we discuss decomposition and

parametrization of the frequency spectra. Section III is dedicated to the parametrization

results and comparison of the three models. The application to Ohmically heated plasmas

is shown and discussed in Sec. IV. Finally, conclusions and perspectives of future work are

given in Sec. V.

II. SYSTEMATIC STUDY OF TURBULENCE PROPERTIES

A. Core reflectometry diagnostic

A D-band heterodyne reflectometry diagnostic was operated on Tore Supra from 2002

to the last discharge in 2011. It covered the frequency range from 100 to 155 GHz in X-

mode and was designed to probe the core from mid-radius on the low-field side (LFS) to

the high-field side (HFS) at high magnetic field (3.5 ∼ 3.8 T). The lower-field (3 ∼ 3.5 T)

measurements were strongly restricted in their radial positions, with limited accessibility to

the LFS. The reflectometer was located on the equatorial plane. Low-divergence (HPHW
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∼ 1◦) antennas (bistatic setup) produced an almost parallel beam spot about 3.5 cm in

radius.16 Heterodyne detection was provided by a single sideband modulator setup.17 A

second independent hopping channel (fixed frequency steps) was added in 2005 to probe

two radial positions simultaneously and to perform radial correlation measurements. The

reflectometer usually probed 2 × 20 fixed frequency steps of 10 milliseconds several times

per shot. The overall measurement usually lasted less than 300 ms during stable phases of

the discharge. Long acquisitions (500 ms) with > 100 ms plateaus could also be performed

for MHD studies.18 The hopping acquisition sampling frequency was 1 MHz, with typically

10,000 data points in 10 ms. A heterodyne I/Q detection allowed to get the complex signal:

s(t) = A · (cosϕ+ i · sinϕ),

where A = A(t) and ϕ = ϕ(t).

In carrying out the fast Fourier transform (FFT), the number of frequency bins was set

to 1024 in order to obtain good resolution at low frequency. The Welch’s method19 was used

to calculate the spectra with Hamming window and 50% overlap to reduce sidelobes. Each

frequency spectrum was thus given by the typically averaging over about 20 spectra.

One of the two reflectometry channels is also equipped with a voltage controlled source16

much faster than the frequency synthesiser employed for fluctuation measurements. This

source was used for measuring typically 1000 density profiles per discharge. Each profile was

acquired within brief time windows of 40 to 100 µs. As the profile and frequency sources

are coupled to the same millimeter hardware, profiles and fluctuations cannot be measured

at the same time.

B. Decomposition of fluctuation frequency spectra

Figure 1 shows some typical frequency spectra obtained from fluctuation measurements

using this reflectometry setup under different conditions and at varying radial positions.

The spectra S(f) (f is frequency) are plotted on a logarithmic scale (10× log10(S) in units

of decibel (dB)). Although not all possible shapes of the complicated and varying frequency

spectra in Tore Supra plasmas are shown, the examples in Fig. 1 do represent the typical

spectral shape features encountered throughout the database. Positive and negative fre-

quencies correspond to positive and negative directions, respectively. The spectrum can be
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Figure 1. Some typical frequency spectra obtained from the core reflectometer database, with 1024

frequency bins. The Welch method was used with Hamming window width 1024 and an overlap of

50%. The normalized radial position (ρ) of the cutoff layer was calculated from a density profile

obtained by the interferometry diagnostic. Negative ρ indicates HFS radial position.

almost symmetrical, but sometimes the asymmetry is strong. This can be due to various

reasons, like the Doppler shift, small displacements of the plasma with respect to the equa-

torial plane, or asymmetries of the turbulent structures or in the wave propagation. As

shown in Fig. 1, the fluctuation frequency spectra can be Gaussian-like (spectra (e) and (g))

or much more Lorentzian-like (spectrum (h)), i.e. strongly peaked with heavy tails. Other

spectrum shapes are in between these typical spectra. The low-frequency component can

be intense (spectra (a) and (b)), invisible (spectra (e) and (g)), or mixed with other parts

of the spectrum (spectra (d) and (h)).

Although manually investigating individual spectra by quantifying their properties (e.g.

energy and width) on a case-by-case basis is possible, systematic and standardized inves-

tigation of numerous spectra with complicated shapes requires automated methods. Due

to the often complex spectrum shape and in order to link various aspects of the shape to

the underlying physical mechanisms, we decided on an approach wherein the spectrum is

decomposed in several components. Every component is characterized by only a few param-
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eters, hence the important features of all spectra in the database are described by a limited

number of parameters, facilitating systematic studies.

In previous works11,12,14,15,20 several components were distinguished in fluctuation spec-

tra associated to specific physical phenomena: the direct current (DC) component15, low-

frequency (LF) fluctuations14, broadband (BB) fluctuations and in some cases quasi-coherent

(QC) oscillations20. The BB fluctuations, which cover the whole frequency range, have

a short correlation length14,15 and have been attributed to turbulence, to be called BB

turbulence12 hereafter. Both the LF and QC components are superimposed on the BB tur-

bulence. The (LF) component represents the more intense fluctuations at low frequencies.

Zonal flows and certain MHD modes like sawteeth could contribute to this component, but

this is beyond the scope of this study. In addition, a very narrow central spike at zero fre-

quency was identified as the reflectometer carrier wave, named the DC component in Ref. 15.

The QC oscillations can be observed in the LFS and are linked to drift wave instabilities.13,14

In addition, the noise (N) level should be considered as another component for completeness.

The central idea of our work is that, under the condition that the decomposition provides

a faithful representation of the various spectrum components, and assuming that the main

contribution to the density fluctuations originates from the vicinity of the cut-off layer,

systematic studies of the underlying physical phenomena and their coupling should become

feasible.

C. Parameter reduction and criteria

As mentioned before, to enable systematic studies of trends or evolution of turbulence

properties, it is important to describe the spectrum components using a limited number of

parameters. This is accomplished by modeling each component by a simple parameterized

function, which is able to represent the shape of the component under different physical

conditions. Thus, the objective is to fit the frequency spectrum by a model Sfit(f), written

as a sum of m components Ci(f) (i = 1, . . . ,m).

While the total number K of parameters describing the spectra should be limited for

systematic studies and also to avoid overfitting, we still wish to cover all spectrum shapes

observed in the database. Hence a moderate K should be aimed for. Further criteria for

evaluating the fit quality are flexibility, discrimination and robustness. Flexibility refers
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Figure 2. Typical spectrum (Fig. 1 (a)) with the various components to be fitted. The spectrum

has been normalized to its total power.

to the ability of the model to represent many different spectral shapes, as seen in Fig 1.

Discrimination is related to the distinguishing power of the model parameters w.r.t. the

different spectral shapes, in the sense that the parameters should have moderate sensitivity

to the spectral shape. Concretely, low sensitivity generates the same parameter results for

all the cases, while high sensitivity leads to unstable parameters. Finally, robustness means

that the parameters should have minimal dependence on small model deviations that are of

little interest to the analysis, like noise.

D. Fitting methodology

From Fig. 1 it is clear that the power of the reflected signal can vary significantly (several

dB or even more) from one spectrum to another, which can be attributed to multiple reasons.

Specifically, the launched microwave power changes with wave frequency and the reflected

microwave power decreases with deeper penetration. However, the absolute value of each

parametric spectrum component should be comparable across spectra to allow systematic

investigations. Therefore, normalization of the power spectrum is required and here the

spectrum S(f) is normalized to the integrated power:

Ŝ(f) =
S(f)∫ fmax

fmin
S(f) df

. (1)
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Here, fmin and fmax denote the minimum and maximum frequency in the spectrum, which

here we fix at fmin = −500 kHz and fmax = 500 kHz. As a result, the normalized spectrum

integrates to unity, allowing spectra to be compared conveniently. For simplicity, in the

remainder the normalized spectrum is also denoted by S(f). All spectra used in this study

were normalized in this way before parametrization in Sec. III as well as the turbulence

analysis thereafter.

Figure 2 shows a typical normalized spectrum (corresponding to Fig. 1 (a)), with the

various components indicated. When fitting a spectrum by minimization of the residual sum

of squares (RSS), it is important to consider the scale at which to perform the fit. If the

logarithmic scale is used, the results will be more representative for the highest frequencies,

while on a linear scale the fit will tend to match primarily the low-frequency parts. For this

reason a combination of fitting on both the logarithmic and linear scales is performed, by

minimizing the following cost function:

Fcost = (1− w)× | lg(Sfit)− lg(S)|2

Alg

+ w × |Sfit − S|2. (2)

Here, Sfit = Sfit(f) and S = S(f) denote the fitting model and the normalized frequency

spectrum, respectively. In addition, Alg =
∫ Fmax
Fmin

(lg(S))2 df , where lg = 10 × log10, is the

integral of the spectrum on the logarithmic scale, ensuring normalization of the logarithmic

part of the cost function. As a result, it is possible to weigh the two parts of the cost

function using a weight factor w, allowing a more proper fit of both the high-frequency

and low-frequency parts of S(f). We have chosen to give equal weight to the linear and

logarithmic parts (w = 0.5). Experimentation with other values (0.25 and 0.75) has pointed

out that the results are not very sensitive to the weight factor. This does not exclude a more

optimal weight factor for different spectrum decompositions or different databases.

Apart from the components mentioned above, various low-frequency MHD modes (e.g.

sawteeth, fishbones, tearing modes) and other high-frequency fluctuations (e.g. GAMs,

beta Alfvén eigenmodes, toroidal Alfvén eigenmodes) could appear under certain conditions.

Since the bandwidth of these fluctuations is relatively narrow, the contribution to the total

power can safely be neglected, even though their amplitudes can be large in some cases. The

fitting results are therefore not expected to be substantially influenced in the presence of

such modes. On the other hand, QC oscillations can attain significant bandwidths (tens of

kHz). Low-frequency and high-frequency QC modes have been observed and examples can
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be found in Refs. 11–14, and 20. However, we did not consider QC modes in the present

stage, as their contribution to the power on the logarithmic scale is limited anyway.

In summary, every spectrum is decomposed into four basic components: the direct current

(DC) component, the low-frequency (LF) fluctuations, the broadband (BB) turbulence and

the noise (N) level, as shown in Fig. 2. Therefore the number of components m is 4:

Sfit = CDC + CLF + CBB + CN . (3)

E. Fitting functions

The next step in the spectrum decomposition is to select the appropriate fitting functions

for each component.

1. The noise level

The level of noise, assumed to be frequency-independent white noise, can be described

by a single constant, therefore

CN = ϵN(f). (4)

The noise level is also helpful to identify trivial spectra with low signal-to-noise ratio (SNR).

2. The low-frequency parts

The low-frequency parts of the spectrum include the DC and LF components. For each

component, we need at least three parameters to describe the intensity, the central position

and the spectral shape. Inspired by the normalization to unity of the total spectrum, we

choose various probability density functions (PDFs) to model each of the components. The

Gaussian (normal) PDF is the most straightforward choice, which has been used before as

a model to describe the DC and LF components of coherence spectra.15 In this case, the

fitting functions for the DC and the LF components are

Ci = Ai exp

[
−1

2

(
f − µi
σi

)2]
, (5)

where i is DC or LF . The amplitude Ai, the mean value µi and the standard deviation

σi describe the intensity, central position and width of the components, respectively. For
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more accurate fitting of the DC component, the zero frequency is placed at the center of the

spectrum by using 1025 rather than 1024 frequency bins.

3. The BB turbulence

The Gaussian function was also considered for the BB turbulence, but was found insuf-

ficiently flexible to model all shapes. Indeed, the shape of the broadband can be distinctly

non-Gaussian, more specifically Lorentzian (also known as Cauchy distribution) or Lapla-

cian, with a strong peak and heavy tails, especially at the HFS. A combination of several

Gaussian functions was tried as well, but that often caused the LF component to fit the

BB instead. A more flexible function is therefore required and the following three options

were explored: the generalized Gaussian function (GG), the Voigt function and the Taylor

function, described below.

The BB turbulence using the generalized Gaussian function becomes

CGG
BB = ABB exp

[
−
(
|f − µBB|

αBB

)βBB
]
, (6)

where the fixed exponent in the Gaussian is replaced by a shape parameter βBB, and the

standard deviation σBB =
√

α2
BBΓ(3/βBB)/Γ(1/βBB), describing the spectral width. This

function can fit multiple shapes, like Gaussian (βBB = 2) and Laplacian (βBB = 1).

The Voigt function is a convolution of a Gaussian and a Lorentzian function:

CVoigt
BB = ABB

∫ +∞

−∞
G(f ; σBBG)L(µBB − f ; γBBL) df, (7)

where G(x; σ) and L(x; γ) are the centered (zero-mean) Gaussian and Lorentzian function,

respectively, while µBB encodes the central position of the BB component. The Voigt func-

tion has been widely used for fitting spectral lines.21

A third alternative model for the BB component is the Taylor function. It was used in

Ref. 22 to express the correlation function of a turbulence signal in plasma physics:

Fcorr(k, u, τ) = exp

[
−k2u2τ 2

(
t

τ
− 1 + e−t/τ

)]
.

Here, k, u and τ represent the wavenumber, velocity and correlation time of the turbulence,

respectively, while t is the sampling sequence, based on the theory of collective wave scat-

tering by a non-uniform plasma.23 Since the velocity correlation Cv = e−t/τ was used, the
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correlation function above is referred to as the Taylor function. The corresponding frequency

spectrum is calculated through the Fourier transform of Fcorr.

In scattering theory, long correlation lengths correspond to a convective Gaussian spec-

trum, while short correlation lengths have a diffusive Lorentzian spectrum. Accordingly, in

Fcorr, kuτ ≫ 1 and kuτ ≤ 1 lead to the convective and diffusive limit, respectively. Defining

∆ = k2D = k2u2τ , where D = u2τ is the diffusion coefficient, and introducing the averaged

shift parameter δφ = exp(i2πµBBt), the Taylor model of the BB turbulence has the following

form:

CTaylor
BB = ABB

× FFT
{
exp

[
−∆BB(t− τBB + e−t/τBB)

]
× δφ

}
.

(8)

The connection to the transport coefficients can then be established by analysis of the fitting

parameters.

The number of parameters for the BB turbulence component is four, no matter which

function is used. Together with the other three components, the complete fitting model Sfit

has K = 11 parameters. Compared with the original 1024 frequency bins in the spectrum,

the number of parameters has been reduced by two orders of magnitude. This opens the

way to systematic investigations of the spectrum properties, which would have been very

cumbersome with a large number of parameters.

F. Database

The database used for systematic studies in this work contains diagnostic characteristics,

global operating parameters, local plasma parameters and the spectrum fitting parameters.

The diagnostic characteristics include reflectometry acquisition parameters, as well as

the probing frequencies (100 ∼ 155 GHz) and the radius of the cutoff layer. The radius

of the cutoff layer is recovered from the density profile obtained from an interferometry

diagnostic24, as the density profile from the reflectometer is not available during fluctuation

measurements. The normalized radius ρ of the cutoff layer ranges from −1 to 1, covering

the entire plasma region. Here, ρ = 0 corresponds to the magnetic axis and negative values

are used forthe HFS.

The global and local plasma parameters are obtained or calculated from various diagnostic

data available in the Tore Supra database. Global operating parameters include the on-axis
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toroidal magnetic field Bt,0, plasma current Ip, line-integrated electron density, major radius

R, minor radius a, plasma heating power, elongation, edge safety factor (qψ) and more. Local

plasma parameters include electron density ne, electron temperature Te, magnetic field Bt

and scale length of the plasma permittivity (Lϵ) at the cutoff positions.

The 11 fitting parameters from the fitting model Sfit reflect the turbulence properties.

Among these, the two shape parameters of the BB turbulence are the most important.

So far only short time measurements (< 32 ms) are included in the study, under the

assumption that the plasma parameters remain unchanged during the measurement period.

Longer time measurements will be included in the future. Currently, the database contains

more than 350,000 entries from about 6,000 discharges, mainly with Ohmic heating (OH),

lower hybrid (LH) heating or ion cyclotron resonance heating (ICRH), and a limited number

with electron cyclotron resonance heating (ECRH).

III. PARAMETRIZATION OF FREQUENCY SPECTRA

A. Constraints on component parameters

In order to maintain correspondence between each of the functional forms presented before

and the spectrum components that they are intended to fit, additional constraints on the

component parameters are necessary. To force the DC component to fit the narrow carrier

wave at zero frequency, we impose the constraints |µDC | < 1 kHz and σDC < 2.5 kHz, as 1

kHz is the frequency resolution of the spectrum. For the LF fluctuations, which sometimes

include high- amplitude, low-frequency MHD modes up to a few kHz, the constraints are

|µLF | < 10 kHz and σLF < 20 kHz. Furthermore, to avoid overlap between the DC and

LF components, we require σLF > 1.5 σDC and σLF > 1 kHz, where the factor 1.5 was

determined empirically. To summarize, the constraints on the low-frequency part are:

|µDC | < 1 kHz, |µLF | < 10 kHz,

σDC < 2.5 kHz, 1 kHz < σLF < 20 kHz,

σLF > 1.5σCS.

(9)

Constraints on the amplitudes and noise are not necessary.

For the BB turbulence, the constraints depend on the fitting functions. With the general-

ized Gaussian model, to separate the BB and LF components the constraints σBB > 1.5 σLF
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and σBB > 10 kHz are applied, where σBB is the standard deviation of the BB turbulence.

In addition, to avoid an overly peaked BB fit, βBB is assumed to be larger than 0.5, the gen-

eralized Gaussian function approximating a uniform distribution for large βBB (in practice

βBB > 8).

For the Voigt model, no limits have been put on the Lorentzian part. As for the Gaussian

part, we use the same constraints as in the generalized Gaussian model for the standard

deviation σBB.

The parameters of the Taylor model are more difficult to constrain, as the two parameters

∆BB and τBB jointly affect the spectral shape. Here, we set ∆ > 0.01 and τBB > 0.01, to

avoid unrealistically peaked shapes.

The constraints for the three models are summarized as follows:

• Generalized Gaussian model:

σBB > 10 kHz, σBB > 1.5σLF , 0.5 < βBB < 8;

• Voigt model:

σBBG > 10 kHz, σBBG > 1.5 σLF ;

• Taylor model: ∆BB > 0.01, τBB > 0.01.

B. Optimization initial conditions

An interior-point algorithm was used for minimizing the cost function in (2). A more

powerful global optimizer could be employed, but this turns out to be too time-consuming

in practice for a database including 350,000 spectra. Therefore, multiple starting points

were chosen based on various simple criteria, where the chance of converging to the global

minimum increases with increasing number of initial guesses Niv, striking a balance between

computational load and goodness-of-fit.

For the DC component, ADC , µDC , and σDC were estimated by the maximum value of

the spectrum, and its first and second central moments in the frequency range |f | < 3 kHz,

respectively. A similar approach was taken for the LF component, but within the frequency

range 3 kHz < |f | < 20 kHz to avoid influence by the strong DC component.

Likewise, for the BB component the parameters ABB and µBB were estimated from the

maximum and the first moment of the spectrum in the frequency range 20 kHz < |f | <
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300 kHz, to avoid influence of the low-frequency components. The initialization of the other

parameters depends on the model.

For the generalized Gaussian function, σBB and βBB were estimated from the second

central moment and standardized fourth moment (kurtosis), respectively. Multiple initial

guesses were achieved by changing the starting βBB (see below).

When fitting the BB turbulence by the Voigt function, calculation of the error function is

time-consuming. The pseudo-Voigt function provides an approximation of the Voigt by using

a linear combination rather than a convolution of the Gaussian and Lorentzian functions:

Vp(x) = η · L(x, F ) + (1− η) ·G(x, F ), 0 ≤ η ≤ 1. (10)

Here, F is the full width at half maximum (FWHM) and η is the weight coefficient between

the two functions. The formula of F and η used is described in Ref. 25, where F and η are

functions of σBBG and σBBL. The same constraints as for the Voigt function were used. The

second moment of the spectrum gives the initial value of σBBG and multiple initial guesses

of σBBL were obtained by varying η.

In the Taylor function, ∆BB and τBB are slightly more difficult to estimate since they are

not directly linked to the spectral shape. A tabulation of the standard deviation of CTaylor
BB

in (8) in terms of ∆BB was made for τBB = 0.1, allowing to derive initial estimates of ∆BB

from the second moment of the spectrum. Multiple initial guesses were realized by varying

τBB. To determine the number of starting points Niv, the generalized Gaussian model is

taken as an example. The initial value of βBB estimated from the kurtosis is denoted by

βBB0 and was used as a first initial guess. Since 0.5 < βBB < 8 and in the database βBB is

typically between 1 and 2, the following initial values can cover the possible spectral shapes:

βBB0/4, βBB0/2, 2βBB0, 4βBB0. For the second initial guess, the value of βBB0/4 was used,

because of all other initial values it corresponds to the shape differing the most from the

shape associated with the first guess βBB0 of βBB. This principle was also used to choose

the third, fourth and fifth initial guess, i.e. 4βBB0, βBB0/2 and 2βBB0, respectively. The

convergence performance was evaluated through the averaged relative error of the overall

fit for 1000 random spectra from the database, for different Niv. From Fig. 3, the relative

error is near 10% for a single initial value and decreases rapidly when increasing Niv before

saturation at Niv = 3. At this point the relative error drops to ∼ 1.8%, meaning that the

results are very close to the global minimum.
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Figure 3. Relative error for the total fit, averaged over 1000 random spectra from the database, as

a function of the number of initial values Niv for βBB in the GG model.

For the Voigt model, η = 0 and η = 1 denote the Gaussian and Lorentzian shape,

respectively. Therefore the first and second initial guesses were obtained by setting η = 0

and η = 1, followed by three more initial values in between these extremes: η = 0.5, 0.25,

0.75. The relative fitting error saturates at around 7% beyond Niv = 5. As for the Taylor

model, empirical evaluation revealed a typical value of τBB = 0.1. Therefore, we start from

τBB = 0.1 and then alternately increase and decrease according to the sequence τBB = 1,

0.01, 0.5, 0.02. Again, the results remain almost the same for Niv > 5, resulting in a fitting

error of about 2%.

C. Comparison of models

1. Statistical comparison

To compare the fitting performance of the three models for the BB turbulence, the quality

of the total fit was assessed for 10,000 spectra (about 3% of the full database). Spectra with

low signal-to-noise ratio (SNR) were not considered for the analysis even though the fitting

results are good. The performance was evaluated by means of the minimal value of the cost

function (Fcost,min) and the Bayesian information criterion (BIC). Assuming a Gaussian
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Figure 4. Comparison of (a) the minimal value of the cost function (Fcost,min) and (b) the Bayesian

information criterion (BIC) for the generalized Gaussian (GG) function, the pseudo-Voigt function,

and the Taylor function fitted to the BB turbulence component. The more a histogram contains

low values of RSS and BIC, the better the performance of the corresponding model.

distribution of the measured spectrum around the fit, the BIC is given by26

BIC = 2n× ln(s) +K × ln(n).

Here, n is the number of data points, s is the standard deviation of the residuals, and K is

the number of parameters of the overall model. The BIC includes a penalty term for overly

complex models, hence avoiding a preference for models that overfit the data. Fig. 4 shows

the distribution of Fcost,min and the BIC for all fits over the 10,000 spectra in the database.

It can be seen that the generalized Gaussian and the Taylor model generally perform better

than the pseudo-Voigt model. The generalized Gaussian model might still perform slightly

better than the Taylor model.

2. Representative spectral shapes

The statistical criteria studied above are only one aspect in assessing the fitted model. The

fitting model should also conform to the criteria of flexibility, discrimination and robustness,

and should be able to capture the salient physics reflected in the spectrum, especially the

BB turbulence. In order to validate the better performance of the generalized Gaussian
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Figure 5. Fit of a Lorentzian spectrum (S), with the individual components also displayed. The

BB component was fitted by a generalized Gaussian (GG) function ((a) and (b)), the pseudo-Voigt

function ((c) and (d)), and the Taylor function ((e) and (f)). The results are shown on the linear

scale ((a), (c), (e)) and logarithmic (dB) scale ((b), (d), (f)). The residual sum of squares (RSS) and

the Bayesian information criterion (BIC) at the optimal solution by each model are also displayed.

and Taylor models, as suggested by the statistical analysis, some typical examples were

investigated in detail. When the BB component has a Gaussian-like shape, the three models

all show an equivalent, excellent fitting performance. In contrast, in case of a more difficult to

fit Lorentzian or Laplacian (i.e. double exponential, or triangular on the logarithmic scale),

the fitting results can be very different between the three models. This is shown on both

the linear and logarithmic scales in Figs. 5 and 6, which correspond to the Lorentzian and

Laplacian shape, respectively. On the linear scale, the fit is dominated by the low-frequency

part (f < 25 kHz), while on the logarithmic scale validation of the fitting performance

should concentrate on the larger frequencies (up to 450 kHz).

For the Lorentzian shape in Fig. 5, visual inspection reveals a good fit by all three models,

although the fit including the pseudo-Voigt model underpredicts the spectrum between 5 and
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Figure 6. Same as Fig. 5 for a Laplacian shape.

10 kHz (Fig. 5 (c)) and around 100 kHz (Fig. 5 (d)). This is reflected by its slightly worse

RSS and BIC compared to the other two models. Another shortcoming of the pseudo-Voigt

model is that it tends to fit also the noise, as can be seen in Fig. 5 (d). Similar weaknesses

of the pseudo-Voigt function can be seen in Fig. 6. For these reasons, we reject the Voigt

function for fitting the BB turbulence.

When comparing the generalized Gaussian (GG) model with the Taylor model, it can be

noted in Figs. 5 and 6 that the crucial difference is the peaked shape of the BB component

in the GG model, whereas the Taylor model has a much smoother shape. From poloidal

correlation in Ref. 15, the BB component disappears when the LF component remains the

same, meaning that the BB component does not have an intense low-frequency part. Hence,

the fitting results in terms of the BB and LF components can be very different. In Figs. 5

(a) and (e), the average frequencies w.r.t. the central frequency (0 KHz) for the BB and

LF components are opposite sign for the two models. Specifically, in Fig. 5 (a), the peaked

shape of the GG seems to fit the knee in the spectrum around 3 kHz, whereas this shape

is not expected for the BB turbulence. In the case of the Lorentzian or Laplacian spectra,
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we observe that the estimated GG shape parameter often saturates at the lower bound

βBB = 0.5, causing a peaked shape that tries to fit small-scale features in the spectrum.

In summary, due to both excellent quantitative and qualitative performance, we choose

the Taylor model as the optimal fit to the BB component. Following this choice, various BB

turbulence properties, like its energy EBB and spectral shape, can be determined systemat-

ically from the parameters of the Taylor model. Nevertheless, the GG model remains useful

as a complementary tool for studying the spectral shape, as its parameter βBB has a more

straightforward shape interpretation than the parameters of the Taylor model.

IV. APPLICATION TO OHMICALLY HEATED PLASMAS

We now apply our spectrum fitting technique, using the Taylor model for the BB tur-

bulence component, to study Ohmically heated plasmas in Tore Supra. We focused on

stationary plasma conditions, removing spectra with low SNR (<25 dB) or large Doppler

shift (µBB > 50 kHz). This resulted in a data set consisting of 180,000 spectra from 3,000

discharges, covering the complete radial extent from the LFS to the HFS. This allowed

systematic exploration of the BB energy EBB, obtained from the Taylor fit:

EBB =

∫ 500

−500

CTaylor
BB (f) df, (11)

where the integration is performed over the full frequency range for the BB turbulence. This

value lies between 0 and 1, owing to the normalization of the total spectrum.

We have investigated the relation between the turbulence properties obtained from the

parametrization and various dimensionless quantities determining the confinement perfor-

mance. The study was first focused on the radial evolution of the characteristics of the

different components of the spectra, with varying edge safety factor. Note that the present

study was restricted to the core region and the HFS region (−1 < ρ < 0.6), for two reasons.

First, when the cut-off layer moves toward the outer plasma edge, most of the spectra are

affected by the Doppler effect. This effect can be attributed to the large magnetic field ripple

in Tore Supra (> 6% at the edge in standard geometry), distorting the cut-off layers. Second,

density fluctuations increase rapidly toward the edge. Indeed, previous studies in Ohmic

plasmas have shown that when ρ ∼ 0.6, the fluctuation level reaches the limit δn/n = 1%,7

a threshold above which non-linear effects can not be neglected. However, it should be
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Figure 7. Radial profiles of EBB for different qψ as a function of normalized radius ρ = r/a, where

a is the minor radius of the tokamak (a ∼ 0.72 m for Tore Supra) and negative values refer to

the HFS. The cyan points are obtained from the individual fitted spectra. The deep blue square

points denote median values calculated within small radial intervals (δρ ∼ 0.1), with red error bars

around the median given by the mean absolute deviation. The q = 1 positions are indicated by

the black dashed lines.

noted that the effect of the high-level edge turbulence on the core measurements is limited,

as the waves that are multiply scattered by the edge fluctuations, potentially blurring the

information on the core turbulence, are spread out and are often not detected.27,28

A. Dependence of EBB profile on qψ

Figure 7 shows the radial profiles of the broadband energy EBB content of the normalized

spectra for different ranges of the edge safety factor qψ. The most remarkable feature is a

clear reduction of EBB, named the energy basin, in the core region for all ranges of qψ.

Furthermore, there is a clear asymmetry between the HFS and LFS: EBB tends to slowly

increase from the inner edge towards the center up to the cliff before the energy basin on the

HFS, whereas on the LFS EBB is much higher and reaches saturation level above EBB > 0.5,

indicating that the BB component prevails in the reflected spectra.
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Figure 8. Different distributions of EBB at fixed radial positions: (a) ρ = −0.4, (b) ρ = 0, (c)

ρ = 0.4, under the condition 5 < qψ < 6.

Specifically, the radial evolution is not due to the distinct averaging of the different

components of the reflectometry spectra caused by the beam size effect. The beam size

is expected to be larger than the BB turbulence wavelength. For the LF component, its

wavelength could be longer than the beam size at the edge, while it can become comparable

to the beam size due to the decreasing minor radius close to the center. Unfortunately,

Doppler reflectometry, which can evaluate the poloidal correlation length, is not available

for core and HFS measurements. However, if such a beam size effect were predominant, one

would neither observe a modification of the position of the energy basin with varying edge

q profile, nor the rise of EBB on the HFS from the edge up to the basin cliff.

The drop of the density fluctuation levels inside the q=1 surface was already reported7

but for a limited number of discharges and plasma parameters. The database analysis shows

that this drop is a generic observation in Ohmic cases. To go further, a link between the BB

energy content and the density fluctuation level should be established. Correction factors

like the wavelength of the probing wave, the scale length of permittivity and the radial

correlation length of the turbulent structures should be taken into account3,20. To establish

a link between the normalized BB component and the fluctuations level, the differences

between the LF and BB radial correlation lengths should also be considered.

21



4 6 8 10
q

0.1

0.15

0.2

0.25

0.3

0.35

q=
1

B
0
  3.4 [T]

B
0
  3.86 [T]

Empirical relation: 
q=1

 = 1/q

I
p
 scan #47460 (B = 3.88 [T])

Figure 9. Verification of the empirical relation ρq=1 = 1/qψ by some typical discharges from the

Tore Supra database.

On the other hand, Fig. 7 shows that, at fixed radial position, EBB still varies considerably

across the database, for all values of qψ. This can be attributed to fitting errors and varying

global operating conditions. In Fig. 8, the distributions of EBB are shown at three radial

positions (ρ = −0.4, 0, 0.4), in the range 5 < qψ < 6, where the variance of EBB is the lowest.

Apart from the large scatter of EBB at fixed radial position, differences in the mean and

shape of the distributions are apparent. Because of the non-zero skewness and outliers in

the distributions, we use the median of the distribution rather than the mean for systematic

studies of the typical broadband energy. When calculating this within small radial intervals

of width ∼ 0.1, we obtain the deep blue squares in Fig. 7. The red error bars are given by

the mean absolute deviation around the median values within each interval.

B. Relationship between EBB basin and q = 1 surface

In Fig. 7 it can also be seen that, as qψ increases, the energy basis shrinks. This suggests a

relation between the EBB basin and the q = 1 surface. However, at Tore Supra reconstruction

of the q = 1 surface from the routine equilibrium reconstruction is affected by considerable

uncertainties. Therefore, the position was estimated through the approximate empirical

relation ρq=1 = 1/qψ, established earlier for TFTR and TFR.29. To verify this relation for

our database, we employed several typical discharges in different toroidal magnetic field B0
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Figure 10. Half-width of EBB basin as a function of the q=1 position, both values normalized to

the minor radius.

(3.4 T and 3.86 T), as well as a pulse with an Ip scan. The result is shown in Fig. 9,

confirming the validity of this empirical relation and providing a practical means to derive

the position of the q = 1 surface. In each qψ range, the median value using ρ = 1/qψ gives

an approximation to the position of the q = 1 surface, shown as the two vertical dashed

lines in Fig. 7.

For a quantitative definition of the width of the EBB, we employ the criterion EBB < 0.1

(value of the median). The radial region of the basin and its width (w) are indicated by the

shaded area and the double arrow shown in Fig. 7. In addition, the half-width of the basin

(w/2) is shown as a function of the normalized q=1 position (ρq=1) in Fig. 10. There is a

clear one-to-one correspondence, supporting our hypothesis that the occurrence of the EBB

basin is related to the q = 1 surface. The error bars on the half-width originate from the

limitation on the spatial resolution due to the finite number of points in each radial interval.

The transition of broadband energy level across the q = 1 surface requires further study.
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Figure 11. (a) Density profiles and (b) upper cutoff frequencies (Fxh) near the turbulence signal

obtained by core reflectometry and interferometry. (c) Difference of the cutoff positions from

interferometry w.r.t. reflectometry at different radial positions.

C. Shift of the cutoff layers

Although the half-width of the EBB basin correlates well with ρq=1, Fig. 7 reveals that

the actual position of the boundaries of the basin do not coincide with the location of the

q = 1 surface, indicated by the shaded basin region. A systematic shift towards the HFS of

the radial positions is observed in Fig. 7. To understand the origin of this shift, it is impor-

tant to recall that the radial positions are the cutoff positions calculated using the density

profile from the interferometry diagnostic. Hence, the shift might be due to uncertainties

on the density profiles from interferometry. To resolve the matter, we investigated several

tens of Ohmic discharges with available core reflectometry profiles. Usually, interferometry

underestimated the core density compared to the reflectometry. This might be due to the

density plateau and complex profile structures near the magnetic axis.7 To illustrate this

difference Fig. 11 (a) shows the density profiles from core reflectometry and interferometry,

acquired at the same time in one typical discharge. It can be seen that the core density from

interferometry is lower than the reflectometry one. We next calculated the cutoff positions
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using each of the two density profiles, confirming a shift towards the HFS of the cutoff layers

from interferometry w.r.t. reflectometry, as plotted in Fig. 11(c). There is a clear asymme-

try, with a much larger shift in the region −0.3 . ρ . −0.1 compared to 0.1 . ρ . 0.3, i.e.

in the vicinity of the q = 1 surface. This is consistent with the observation in Fig. 7, where

the q = 1 surface is outside the EBB basin on the LFS, but inside the basin on the HFS,

with an asymmetry due to the larger shift. The strong shift in the HFS region is caused by

the slower increase of the cutoff frequencies (Fig. 11 (b)) in the HFS than in the LFS.3 The

change of shift is relatively large even with only a small change of the probing frequencies,

since the evolution of X-mode upper cutoff frequency with ρ becomes flatter in the HFS, due

to the fact that the magnetic field intensity continues to increase, while the density gradient

changes sign across the magnetic axis. Thus, the peak of the shift in Fig. 11 (c) corresponds

to the flattest part of the cutoff frequency profile deduced from the reflectometry density

profile, as indicated by the vertical dashed line in Fig. 11 (b) and (c).

V. CONCLUSIONS AND OUTLOOK

A robust spectrum parametrization method for systematic studies of turbulence prop-

erties in fusion plasmas has been developed, as a complementary tool to the traditional

analysis method on the basis of a limited number of key discharges. This is intended to

open the way to a new, standardized method for studying plasma density fluctuations (δn)

from a systematic viewpoint, in order to reveal global patterns or trends that are difficult

to find by studying only a limited set of plasma conditions. We have described a number of

steps to derive the parametrization in a comprehensive database of fluctuation reflectometry

data from Tore Supra plasmas. The method is also useful for quantifying the power spec-

trum in individual discharges, and can be easily adapted to other fusion devices or other

research domains relying on quantitative comparison of spectra.

The generalized Gaussian, Voigt, and Taylor models have been used to parameterize

the fluctuation power spectrum. The Taylor model gives the best performance in terms of

goodness-of-fit and BIC, while meeting the requirements of flexibility, discrimination, and

robustness. In implementing the fitting routine, the cost function, the constraints and the

initial guesses have been identified as critical points. The cost function has the same weight

for the linear and logarithmic scale, while the constraints are used for separating the differ-
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ent components in the spectrum and multiple initial guesses guarantee global convergence.

However, in this work some typical values were chosen empirically, which could be differ-

ent when adding more components in the model or when applying the method to another

database.

In this paper a first demonstration of a systematic study of a particular feature of the

fluctuation power spectrum has been given in Ohmically heated Tore Supra plasmas under

stationary plasma conditions. The complete radial profile of the broadband energy EBB has

been investigated for different edge safety factors qψ. An EBB basin in the core region was

shown to reflect the position of the q = 1 surface, and its in-depth study is underway. The

systematic shift of the cutoff layers to the HFS is probably caused by underestimation of

the electron density in the core region by the interferometry diagnostic.

In future work, we will use the database we have built with this method to investigate the

origin of the difference of spectral shape in the LFS and HFS. We want also to establish a

link between the BB component and the density fluctuation level for more in-depth studies of

plasma turbulence properties, comparing the linear Ohmic confinement (LOC) and saturated

Ohmic confinement (SOC) regimes, investigating the effect of additional heating schemes,

etc.
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