
A TRANSLATION GENERALIZED QUADRANGLE IN CHARACTERISTIC 6= 0 IS LINEAR
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ABSTRACT. It is a long-standing conjecture from the 1970s that every translation generalized quad-
rangle is linear, that is, has an endomorphism ring which is a division ring (or, in geometric terms,
that has a projective representation). We show that any translation generalized quadrangle Γ is ideally
embedded in a translation quadrangle which is linear. This allows us to weakly represent any such Γ

in projective space, and moreover, to have a well-defined notion of “characteristic” for these objects.
We then show that each translation quadrangle in positive characteristic indeed is linear.
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1. INTRODUCTION

If ρ is a hyperplane of a projective space Pm(`) defined over the field `, with m ≥ 2, then the group
of translations fixes ρ pointwise, and acts sharply transitively on the set of points not in ρ. If Γ
is an axiomatic projective plane, and ρ is a line for which such a translation group A exists, it is
necessarily unique, and abelian. A plane with such a group is by definition a translation plane [3].
Fix any point u ∈ Γ \ ρ, and for any line Y incident with u, let AU be the stabilizer of U in A.
Define endt(A,A) to be the set of endomorphisms γ : A 7→ A such that γ(AX) ≤ AX for every
line X on u; then an old and basic result says that endt(A,A) is a division ring (where addition
and multiplication are inherited from the endomorphism ring of A). This leads to the fact that one
can represent Γ in a projective space over endt(A,A), since the groups A, AX naturally are vector
spaces over endt(A,A). This representation is the so-called “projective” or “Bruck-Bose” represen-
tation, and is arguably the most fundamental tool to study and construct translation planes. It was
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founded in Bruck and Bose their 1964 paper [4].

Projective planes are examples of Tits buildings of rank 2 — also called “generalized polygons”
or “generalized n-gons,” when the gonality of the geometry is specified. Here n ≥ 3, and the
case n = 3 corresponds to projective planes. The notion of translation plane naturally generalizes
to that of translation generalized n-gons — see [19, 4.9.8], but it is easily shown that the very
definition forces the gonality n to be in the set {3, 4}, see [19, 4.9.8]. For generalized 4-gons, or
generalized quadrangles, a very rich theory exists, similar to the case of translation planes. There
also, in the same way as for translation planes, one defines an endomorphism ring endt(A,A) =: k
— called “kernel,” and the main conjecture is whether it is a division ring so as to have projective
representations at hand. (Precise definitions will be given in §3.1.) It is known that k is a (not
necessarily commutative) integral domain [6].

So the question is, very roughly, whether all translation generalized quadrangles (TGQs) can be
appropriately embedded in projective space over a division ring. This question is the main obstacle
in the current theory of general translation quadrangles. The origins of the problem can be traced
back to the 1970s, when the conjecture was established for finite TGQs — see [11], and the
monographs [10, chapter 8] and [12].

Conjecture 1.1 (Linearity for TGQs). Any translation generalized quadrangle has a projective rep-
resentation, that is, the kernel k is a division ring.

Throughout this paper, we will call TGQs for which the kernel is a division ring linear, as in [6].

1.1. The present paper. We say that a TGQ (S, A) has a weak projective representation if there
exists a linear TGQ (S, A) which ideally contains (S, A). In that case, since (S, A) has a projective
representation, (S, A) can also be represented in projective space.

Assuming by way of contradiction that the kernel k of Γ is not a division ring, we will build
inductively an “ambient translation generalized quadrangle” Γ̃ for which the kernel k̃ is a division
ring, and which contains Γ as an ideal subquadrangle. Our first main result then reads as follows.

Theorem 1.2 (Weak projective representation of TGQs). Any translation generalized quadrangle
has a weak projective representation.

Remark 1.3. Theorem 1.2 is a direct corollary of Conjecture 1.1 if the latter were true.

The reason that Γ̃ exists rests, essentially, upon the following simple fact: if G is a group and
ζ : G→ G is an injective endomorphism, then the direct limit of the directed system

(1) · · · ζ−→ G
ζ−→ G

ζ−→ · · ·

is again a group for which ζ is stable (that is, becomes an automorphism). [The direct limit can
be naturally seen as a union of isomorphic copies of G which form a flag, and ζ acts on this limit,
by the action on each of the copies.] We will introduce a similar localization process for TGQs in
order to eventually produce ambient TGQs after at most a countable number of repetitions of this
procedure.

For TGQs that have a weak projective representation, we can define a characteristic, namely the
characteristic of the kernel of any ambient TGQ (it is independent of the choice of ambient TGQ).
Our second main result then is:

Theorem 1.4. A TGQ of positive characteristic is linear.

We will also severely restrict the possibilities for counter examples in characteristic 0. In particular,
we will show that compact connected TGQs are linear.
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1.2. The known cases. For some special cases Conjecture 1.1 has been proved to be true; planar
TGQs [7], TGQs with a strongly regular translation center [7] and of course finite TGQs [10] all
satisfy the conjecture. Also, it has been shown in [8] that the more restricted “topological kernel”
of a compact connected topological TGQ is a division ring. Due to these rather restricted partial
results, it is usually assumed that the kernel of a TGQ be a division ring.

Remark 1.5. In [6] it is claimed (in Corollary 3.11) that the kernel of a TGQ always is a division
ring, the result which is the main purpose of the present paper. In the proof however, the author
uses Proposition 3.10 which states that any three distinct lines on the translation point, together
with any affine point, generate a “plane-like” subGQ. This result is not true (even not in the finite
case) — in fact, only a very restricted class of TGQs has this property. (Still, Theorem 3.11 of loc.
cit. shows that if a TGQ does satisfy this property, it indeed is linear.) The paper [6] contains many
other interesting results on infinite TGQs.

Acknowledgment. The author likes to acknowledge an anonymous referee for suggesting the
result mentioned in section 7.

2. SOME DEFINITIONS

We introduce some frequently used notions in the following paragraphs.

2.1. Generalized quadrangles and subquadrangles. A generalized 4-gon or generalized quadran-
gle (GQ) [10] is a point-line incidence geometry Γ = (P,B, I) for which the following axioms are
satisfied:

(i) Γ contains no ordinary k-gon (as an induced subgeometry), for 2 ≤ k < 4;
(ii) any two elements x, y ∈ P ∪B are contained in some ordinary 4-gon in Γ;

(iii) there exists an ordinary 5-gon in Γ.

Note that points and lines play the same role in this definition. This is the principle of “duality.”

Incidence geometries which satisfy (i) and (ii) but not (iii) are thin GQs.

If x and y are collinear points in Γ, we write x ∼ y; in particular, x ∼ x. We use the same notation
for lines.

Generalized quadrangles were introduced by Tits in his triality paper [15] in order to better un-
derstand the Chevalley groups of rank 2.

2.2. Order. Each thick GQ has the property that there exist values u > 1 and v > 1 such that each
line is incident with u+1 points and each point is incident with v+1 lines; see [19, §1.5.3]. We say
that (u, v) is the order of the quadrangle, and u, v are its parameters. In this paper, almost without
exception the parameters will be infinite.

2.3. Subquadrangles. A subquadrangle (subGQ) of a generalized quadrangle Γ = (P,B, I) is a

generalized quadrangle Γ′ = (P′,B′, I′) such that P′ ⊆ P, B′ ⊆ B, and I′ = I ∩
(

(P′ ×B′) ∪ (B′ ×

P′)
)

. We write Γ′ � Γ to express that Γ′ is a subGQ of Γ. If Γ′ � Γ and if Γ′ has the property that

for every point x of Γ′, UIx in Γ implies that U is also a line of Γ′, then Γ′ is an ideal subquadrangle.

2.4. Regularity. Let x, y be distinct noncollinear points in a thick generalized quadrangle. Then
we say that the pair {x, y} is regular if there exists a (necessarily unique) thin ideal subGQ contain-
ing x and y. A point x is regular provided {x, y} is regular for every point y which is not collinear
with x.

Regularity for lines is obtained by interchanging the role of points and lines.

It is easy to show that if a thick generalized quadrangle of order (u, v) has a regular pair of points
(lines), then v ≤ u (u ≤ v).
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2.5. Group notation. If Γ = (P,B, I) is a generalized quadrangle, an automorphism is a permu-
tation of P∪B which preserves P and B, and incidence. The set of all automorphisms of Γ forms a
group under composition of maps, which we denote by Aut(Γ). Each subgroup of Aut(Γ) is called
an automorphism group.

In general, if H ≤ Sym(Ω) is a group acting on a set Ω, and if ω ∈ Ω, then Hω denotes the stabilizer
of ω in H.

3. TRANSLATION GENERALIZED QUADRANGLES

3.1. Translation generalized quadrangles. A translation generalized quadrangle (TGQ) is a gen-
eralized quadrangle Γ for which there is an abelian automorphism group A that fixes each line
incident with some point x, while acting sharply transitively on the points not collinear with x. We
call the latter points the affine points (with respect to, or relative to, x), and x is called translation
point. The group A is the translation group. For the sake of convenience, one should also bear a
similar notion in mind for thin quadrangles.

It is possible to show that, as in the case of translation planes, the group A is the unique translation
group for the point x. There might be more than one translation point, however, but this is not
essential for this paper. To make explicit the translation point and/or translation group, we also
write Γx or (Γ, A) or (Γx, A), or even (Γ, x, A), for Γ. So the reader should understand that a
morphism

(2) ρ : (Γ, x, A) 7→ (Γ′, x′, A′)

maps Γ to Γ′ and x to x′, and necessarily A to A′.

We refer the reader to [10, chapter 8] and the monograph [12] for the basics on TGQs.

3.2. Kantor families. Keep using the notation of the previous subsection.

Suppose z is an affine point. Let

(3)

{
F = {AM |MIz};
F∗ = {Am | x ∼ m ∼ z}.

Denote Am also by A∗M . Then for all LIz we have the following properties:

–(KF1)– AL ≤ A∗L 6= AL;
–(KF2)– ALA

∗
M = A for M 6= L;

–(KF3)– AUAV ∩AW = {id} for distinct lines U, V,W ;
–(KF4)– {A∗L/AL} ∪ {ALAM/AL |M 6= L} is a partition of A/AL.

Conversely, if families of subgroups F and F∗ have the properties (KF1)–(KF4) in an abelian group
A which a priori need not be related to a TGQ, one says that (F,F∗) or (A,F,F∗) is a Kantor
family (in A). Starting from a Kantor family, one can construct a TGQ, using a natural group
coset geometry respresentation [10, 12]. If one starts from a TGQ as above, it is isomorphic to
the reconstructed coset geometry (the isomorphism class of the geometry is independent of the
chosen affine point z), and the elements of F and F∗ play the expected role. This representation
method was noted for a more general class of generalized quadrangles (namely, for so-called
elation generalized quadrangles) by Kantor [9] in the finite case, and carries over without much
change to the infinite case [1].

3.3. Symmetry and regularity. It is easy to see that if LIx, and M ∼ L, M not incident with x,
then AM fixes each line of L⊥, while acting sharply transitively on the points of M which are not
on L. One notes that AM is independent of the choice of M ∼ L. Call a line L allowing such a
group, in general, an axis of symmetry. Dually, one defines center of symmetry. Note that an axis of
symmetry is regular, and so is a center of symmetry.
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3.4. Kernel. The kernel of the TGQ (Γ, A) is the set of endomorphisms ξ : A 7→ A for which
AξU ≤ AU for all UIx, foreseen with natural addition and multiplication (inherited from the endo-
morphism ring of A). We denote the kernel by endt(A,A).

It can be shown that endt(A,A) is an integral domain [6]. For the finite case, one can show more.

Theorem 3.1 ([10], chapter 8). If (Γ, A) is a finite TGQ, its kernel is a commutative field.

Remark 3.2. In [10], a short geometric proof is given of Theorem 3.1. One could also apply Wed-
derburn’s Little Theorem to conclude that the finite integral domain endt(A,A) is a commutative
field.

Suppose now that (Γ, A) is a TGQ for which endt(A,A) contains a division ring k. Then A, and any
element of F ∪ F∗, can be seen as vector spaces over k. Passing to projective space P, we obtain a
projective representation of (Γ, A), and the affine points of Γ coincide with the points in an affine
space A of the same dimension as P. Denote the hyperplane at infinity by P′; the group A acts
as the group of translations of P with axis P′. The elements of F define subspaces of P, and their
intersections with P′ define a set of subspaces of P′ which one usually calls “egg.”

For more details we refer to [12].

4. BASIC STRUCTURAL LEMMAS

4.1. Setting. In this setting, S = Sx = (Sx, A) is a TGQ with translation point x and translation
group A. We suppose that the number of points (and so also the number of lines) is not finite. Let
z be a fixed affine point, and let (A,F,F∗) be the Kantor family in A defined by z.

The kernel ` is defined as above, and we suppose, by way of contradiction, that k is not a division
ring.

4.2. Injectivity. The proof of the next lemma is essentially the same as in the finite case (which
can be found in [10, chapter 8]). We include its proof for the sake of convenience. We will use the
representation by coset geometries as in [10, chapter 8]. (It is the only place in the paper where
this method is used.) Below, `× := ` \ {0}.

Lemma 4.1. Each element of `× is injective.

Proof. Suppose that β ∈ ` is such that aβ0 = id for some a0 ∈ A0 \ {id}, A0 ∈ F; then we must
show that β = 0. (The choice of A0 is arbitrary. If β has a fixed point not in

⋃
V ∈F V , then it has

a fixed point in each V \ {id} as well.) Assume the contrary. Choose any element ai ∈ Ai \ {id},
with Ai ∈ F \ {A0}. Then the point a0ai is at distance two from id in the collinearity graph of
Sx. Since Sx is thick there exist elements al ∈ Al \ {id} and ak ∈ Ak \ {id}, where Ak, Al ∈ F,
{Al, Ak} ∩ {A0, A1} = ∅ and Al 6= Ak, such that

(4) a0ai = alak.

Letting β act yields aβi = aβl a
β
k . First suppose that aβl = id; then aβi = aβk . Since Ai ∩ Ak = {id}

we obtain that aβi = id. Analogously aβk = id implies that aβi = id. Next suppose that neither aβl
nor aβk equals id. In this case the line Ala

β
k of Sx intersects the line Ak in aβk 6= id and intersects

the line Ai in aβi 6= id. Hence we have found a triangle in Sx, a contradiction. We conclude that
aβi = id, and henceforth that V β = id, for all V ∈ F. By the connectedness of Sx we know that

A =
〈
V | V ∈ F

〉
, and hence it follows that Aβ = id, that is,

(5) β = 0.

�
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4.3. The GQs S(α, z). Let α ∈ `×, and z an affine point. To avoid trivialities, suppose that α is not
a unit.

It is easy to see that (Aα,Fα, (F∗)
α

) (obvious notation) defines a Kantor family in Aα. Moreover,
the GQ S(α, z) defined by this Kantor family is thick, and it is ideal. One can derive these properties
easily from Lemma 4.1:

Corollary 4.2. For each α ∈ `×, S(α, z) ∼= S, and S(α, z) is an ideal subquadrangle of S.

Proof. Immediate. �

Throughout this paper, we will fix z, so that for instance we write S(α) instead of S(α, z).

5. ADJOINING AUTOMORPHISMS

We keep using the notation of the previous section.

Now for any n ∈ N, we have that S(αn) ∼= S, and S(αn) � S. Of course, we can also see S as the
image under α of a GQ S(α−1) containing S. So we have a chain C of (embeddings of) isomorphic
generalized quadrangles

(6) · · · � S(α−1) � S � S(α) � S(α2) � · · ·

indexed by the integers. Each of these quadrangles contains x and z, and each S(αu) contains
S(αv) as an ideal subGQ if v ≥ u. Moreover, if A(i) denotes the translation group of (S(αi), x),
then A(i) = Aα

i

, and we have a chain of isomorphic groups

(7) · · · ≥ A(−1) ≥ A ≥ A(1) ≥ A(2) ≥ · · ·

It is clear that

(8)
(⋃
i∈Z

S(αi),
⋃
i∈Z

A(i)
)

=:
(
S̃(α), Ã(α)

)
is a translation generalized quadrangle with translation point x, and since α stabilizes the chain C,
the limit of α is an automorphism of S̃(α), which we denote by α̃, that fixes x and z linewise. As
such, we have “adjoined α to S” to obtain a new quadrangle for which α has become an automor-
phism. Note that α̃ induces a unit in the kernel of S̃(α) (relative to z), and so α̃ ∈ Aut(Ã(α)).

Finally, observe the following.

Observation 5.1. For j ∈ Z, α̃ induces α : S(αj) 7→ S(αj+1) � S(αj). Similarly, it induces an
element of endt(A(αj), A(αj)). �

Remark 5.2. As in the introduction, it is clear that ∪i∈ZS(αi) is isomorphic to the direct limit of
the directed system

(9) · · · α−→ S
α−→ S

α−→ · · · ,
and the similar remark is true for ∪i∈ZA(i).

6. PROOF OF THEOREM 1.2

Now let β be a nontrivial element of the kernel of S̃(α), and suppose it is not a unit. Applying the

same construction as above to the pair (S̃(α), β), we obtain a TGQ
˜̃

S(α)(β) by adjoining β which

we denote by S̃(α, β). It is important to note that the limit of α through this chain still makes sense,

and so α “remains” an automorphism of S̃(α, β) (see Observation 6.1). In general, we also use the

notation ˜S(α1, α2, . . .), or also S̃(S) if S is an ordered set.
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In the next observation, we will use exponential notation for endomorphisms acting on groups and
group elements. However if we switch to affine spaces further on, then usually we use additive
notation, so that both bm and m · b will be used in different contexts (m ∈ Z \ {0}) for the same
action — this is particularly useful when the endomorphism “to the power m” can be interpreted
as a homothecy (such as in Theorem 6.7).

Consider the next observation.

Observation 6.1. (a) If α 6= β in S̃(α, β), then they also do not agree on S̃(α).
(b) Let (Γ, B) be a TGQ with kernel ℘, and consider the endomorphism m̂ : B 7→ B : b 7→ bm,

with m ∈ N. Then m̂ ∈ ℘. Now let `m be the kernel of (S̃(m̂), Ã(m̂)), and let ε ∈ `m be a
non-unit. Then

(10) m̂ : Ã(m̂, ε) 7→ Ã(m̂, ε) : b 7→ bm

is an element of the kernel `m,ε of
(
S̃(m̂, ε), Ã(m̂, ε)

)
. Moreover, it is a unit, and it induces m̂

on any group Ã(m̂)(εj), j ∈ Z. In particular, it induces m̂ on Ã(m̂)(ε0) = Ã(m̂).
(c) The same property as in (b) holds if one replaces {ε} by any finite or countable set {ε1, ε2, . . .}.

Proof. Part (a) is obvious.

For part (b), first observe that as B is abelian, m̂ indeed is an endomorphism of B. Moreover, it
maps any subgroup into itself, so it is an element of endt(B,B). Now consider

(11) m̂ : Ã(m̂, ε) 7→ Ã(m̂, ε) : b 7→ bm.

We already know it is part of `m,ε. As each Ã(m̂)(εj) is a subgroup of Ã(m̂, ε), m̂ induces a kernel

element of the TGQ
(
S̃(m̂)(εj), Ã(m̂)(εj)

)
for any j ∈ Z. For each such j, we have an isomorphism

of TGQs

(12)
(
S̃(m̂), Ã(m̂)

)
εj−→∼=

(
S̃(m̂)(εj), Ã(m̂)(εj)

)
,

and it maps Ã(m̂) to Ã(m̂)(εj) = ε−jÃ(m̂)εj . For any element bε
j

of the latter, we have

(13) (bε
j

)m = (bm)
εj
,

that is, the following diagram commutes:

Ã(m̂) Ã(m̂)(εj)

Ã(m̂) Ã(m̂)(εj)

m̂ m̂

εj

εj

as εj is a group morphism.

It now follows indeed that m̂ is also a unit in `m,ε.

Part (c) follows immediately from part (b). �

Corollary 6.2. Once a non-unit of type m̂, m ∈ N, in the kernel ` of (S, A) has been adjoined to
(S, A), the obtained unit m̂ is stable under adjoints. �
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Observation 6.3 (The quadrangles S̃(N)). For any TGQ (S, A), the TGQ (S̃(N), Ã(N)) has a kernel
which contains the prime field k := 〈0, 1〉 (which is by definition generated by 0 and 1 in the kernel of
(S, A)).

Proof. Each endomorphism m̂ with 0 6= m ∈ N is a unit in endt(A(N), A(N)). �

The field k either is a finite field of prime order, or the field of rationals Q.

Remark 6.4. Note that S̃(N) = S̃(Z) = S̃(Q) = S̃(P ), with P the set of primes in N.

We will only need the first part of the statement of the next observation.

Observation 6.5 (Transfer of automorphisms). Let (Γ, u, C) and (Γ′, u′, C ′) be TGQs, and suppose
γ : (Γ, u, C) 7→ (Γ′, u′, C ′) is an isomorphism (which maps u to u′). Suppose moreover that the kernel
of (Γ, u, C) contains a prime field ℘. Then γ induces a semilinear isomorphism between the projective
spaces P and P′ which arise from interpreting C, respectively C ′, as a vector space over ℘, respectively
℘γ . Moreover, this isomorphism maps the egg of Γ in P to the egg of Γ′ in P′.

Proof. The proof is essentially the same as the proof of [12, Theorem 3.7.2] (which is stated for
the case (Γ, u, C) = (Γ′, u′, C ′), and where the finiteness assumption is not used), or as the (con-
cise) proof of [2, Lemma 1]. �

Let η be the map — by Observation 6.5, it is in fact a covariant functor — which associates with a
TGQ (Γ, C) such as in Observation 6.5 the projective space P over ℘. Using Observation 6.5 and
assuming that some TGQ (S̃(N), Ã(N)) is not linear, then with γ a non-unit in its kernel, we will
show that the commutativity of the diagram

(S̃(N), Ã(N)) P

(S̃(N)(γ), Ã(N)(γ)) Pγ

γ γ

η

η

(eventually) leads to the desired contradiction in the proof of the next theorem. We first state a
lemma which is a variation on Lemma 6.1(b).

Lemma 6.6. Let (S, A) be a TGQ, and suppose its kernel ` is not a division ring. Consider (S̃(N), Ã(N)),
and let ˜̀be the kernel of the latter quadrangle. Let β be in ˜̀×, and suppose it is not a unit. Let r(β) 6= 0

and h(β) 6= 0 be elements in Z[β]; then both are also elements of ˜̀× as β ∈ ˜̀.
(a) For each i ∈ Z, h(β) can be naturally seen as an element in the kernel of S̃(N)(r(β)i).
(b) If S̃(N)(r(β)u) � S̃(N)(r(β)v), then h(β) for the latter quadrangle induces h(β) for the

former. In particular, this is true when u = 1.
(c) In (a) and (b), S̃(N) can be replaced by S̃(N, S), with S any subset of Z[β]\{0}. In particular,

(a) also holds when S̃(N)(r(β)i) is replaced by ˜S(N)(r(β)).

Proof. Part (a) follows from the fact that for each i ∈ Z, the following diagram (where the
horizontal arrows are isomorphisms) commmutes:
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Ã(N) Ã(N)(r(β)i)

Ã(N) Ã(N)(r(β)i)

h(β) h(β)

r(β)i

r(β)i

as Z[β] is a commutative ring. That is, h(β), as an element in the kernel of S̃(N)(r(β)i), is defined
as r(β)−ih(β)r(β)i.

Part (b) follows from the proof of (a).

Part (c) readily follows from the proofs of (a) and (b). �

Theorem 6.7. Let (S, A) be a TGQ, and suppose its kernel ` is not a division ring. Consider
(S̃(N), Ã(N)). Then its kernel is a division ring.

Proof. Let ˜̀be the kernel of (S̃(N), Ã(N)). Suppose α ∈ ˜̀× is not a unit for S̃(N), and consider the
sequence

(14) S ↪→ S̃(N) ↪→ S̃(Z[α]).

The kernel of (S̃(N), Ã(N)) contains a prime field k := 〈0, 1〉. We can projectively represent the
latter quadrangle in a projective space P over k. The affine points of the quadrangle correspond to
the points of A := P \ P′, where P′ is a hyperplane in P, and z ∈ A.

For any g(α) ∈ Z[α] \ {0} (noting as before that g(α) ∈ ˜̀×, as α is), consider the isomorphism

(15) g(α) : (S̃(N), Ã(N)) −→ (S̃(N)(g(α)), Ã(N)(g(α)));

then we can see the affine points of the latter quadrangle as a subset of A which is also an affine
space over k; also, the stabilizers in Ã(N)(g(α)) of the S̃(N)(g(α))-quadrangle lines incident with
the point z define projective k-spaces which determine the same egg elements in P′ as the (same)
line stabilizers in Ã(N). One observes now (by Observation 6.5) that g(α) induces a semilinear
isomorphism between the projective space P and the projective space Pg(α) = P̃(N)(g(α)) which

corresponds to S̃(N)(g(α)). Considering again S̃(Z[α]), one notes that its kernel contains the com-
mutative field k(α). It has a projective interpretation in a projective space P̂ over a field k̂ that
contains k(α) and we can see P̂ naturally as the union

(16)
⋃

f(α)∈Z[α]

˜P(α, f(α)),

where ˜P(α, f(α)) is the space corresponding to ˜S(N, α, f(α)) and similar notation will be used
for more general sets. (If one orders Z[α] as f0(α), f1(α), . . ., and for each i ∈ N we put Fi :=

{f0(α), . . . , fi(α)}, then P̂ = ∪i∈NP̃(Fi), but this amounts to the same thing.) The “limit” α̂ of α is

an automorphism of S̃(Z[α]) which fixes all TGQ-lines incident with z (and also all the TGQ-lines
incident with x). One observes that it is induced by a homology of P̂ with axis P̂′ (the hyperplane
containing P′) and center z (this is a general property — see [6] — but can readily be deduced

from the current proof as well); in the affine space Â corresponding to the affine points of S̃(Z[α]),
it induces a homothecy with center z and factor α (considered as an element of k̂) by Lemma 6.6.

Now fix a k-base B of A such that the coordinates of z are (0, . . . , 0). (Here, a point has coordinates
(xi)i∈I for some index set I that contains 1, and (0, . . . , 0) denotes the point with all entries 0.) By

construction, the affine point set of S̃(N) consists precisely of all points with coordinates in k. The

base B also is a k̂-base of Â. This follows from the equality P̂ = ∪f(α)∈Z[α]
˜P(α, f(α)); the affine
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part of each component ˜P(α, h(α)) in the right-hand side can be expressed relative to any fixed
chosen base of A. In fact, the same equality leads to much stronger consequences, most notably

a number of obstructions, since P̂ and each ˜P(α, f(α)) share the same lines on z by construction.
For example, consider a point z′ = (yi)I with y1 = 1 and the other entries 0. Then 〈z, z′〉P̂ ∩ A is
a group isomorphic to (k,+), and α̂ induces an endomorphism of the latter (since Aα̂ = Aα ⊆ A
by assumption and 〈z, z′〉P̂ is fixed by α̂). Since k is a prime field, it follows that α̂ corresponds to

multiplying with a factor from k×, that is, α already was a unit in the kernel of (S̃(N), Ã(N)) (and
even contained in k), contradiction.

The theorem is proved. �

Corollary 6.8. If the kernel of a TGQ (S, A) contains a division ring, it is a division ring.

Proof. Let (S, A) be as in the statement, and let ` be its kernel. If ℘ is a division ring contained in
`, it follows that (S, A) = (S̃(N), Ã(N)) (since 〈0, 1〉 ≤ ℘ is a field), so it suffices to apply Theorem
6.7. �

This ends the proof of Theorem 1.2.

Remark 6.9 (Other proofs). Note that one can find a contradiction in a different but similar
fashion, by observing that if g(α) (and in particular α) is not a unit, Pg(α) is a projective space
inside P which is isomorphic to P. Now we can use the fact again that k is a prime field. (This proof
is essentially the same as the one we presented above, but does not use the explicit construction of
k(α), and the interpretation of α as homothecy, which might be instructive for some readers.)
Theorem 6.7 can also be obtained in an entirely different fashion, still assuming the existence of α
by way of contradiction, by using §10.1 (the paragraph after Observation 10.1).

If (S, A) is a TGQ, call a TGQ (S̃, Ã) an ambient TGQ (of (S, A)) if S̃ � S ideally while sharing
translation points, Ã ≥ A, and if the kernel of (S̃, Ã) is a division ring (that is, (S̃, Ã) has a
projective representation). Then Theorem 6.7 says that any TGQ (S, A) has ambient TGQs.

7. COMPACT CONNECTED TGQS ARE LINEAR

The main result in this section was suggested to me by an anonymous referee, who I gratefully
acknowledge.

Let (S, A) be a compact connected TGQ (for precise definitions, we refer the reader to Joswig [8]).
Then Joswig has showed in [8, Theorem 5.4] that its topological kernel `# (which by definition
consists of the continuous elements of the kernel `) either is isomorphic to R or C. Let (S̃, Ã) be
the ambient TGQ defined in Theorem 6.7, and let `∗ be its kernel. By [8, Corollary 3.3], the (real)
dimension 2s + t of (S̃, Ã) is finite, so that the `∗-parameters are finite, and the dimension of `∗

as a division algebra over R also is finite. Then by Frobenius’s classification of finite-dimensional
division algebras over the reals [5], `∗ is isomorphic to one of R, C or H. By the same proof as in
[8, Theorem 5.4], the case H can be excluded. If `∗ is isomorphic to R, it follows that `# ∼= `, and
then (S, A) is linear, so suppose that `∗ is isomorphic to C. By way of contradiction, suppose that
`# is isomorphic to R. If (s′, t′) are the C-parameters of (S̃, Ã), then it follows that the topological
parameters of (S̃, Ã) are (2s′, 2t′). But this contradicts the fact that the sum of the topological
parameters must be odd, as in [8, Corollary 5.7(d)] (note that in [8, Corollary 5.7], the first three
cases (a)-(b)-(c) describe linear TGQs). So

(17) `# = `∗ = `,

and (S, A) is linear.
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Theorem 7.1. If (S, A) is a compact connected topological TGQ, then it is linear, and its topological
kernel coincides with the kernel. �

8. THE CHARACTERISTIC OF A TGQ

Let (S, A) be a TGQ, and let (S̃, Ã) be an ambient TGQ. Then we call the characteristic of the prime
field of its kernel k the characteristic of (S, A). We need to show that this notion is independent of
the choice of ambient TGQ.

Let the characteristic be 0; then the endomorphism 1 group theoretically generates (Z,+) in
endt(A,A). If m ∈ Z is not a unit in endt(A,A), then we have a chain of strict embeddings

(18) · · · � S(1/m̂) � S � S(m̂) � S(m̂2) � · · ·

We will see in the next section that this implies that any other ambient TGQ also yields character-
istic 0. And we will observe that if the characteristic is p > 0 for some ambient TGQ, it is so for
every ambient TGQ.

9. TGQS IN POSITIVE CHARACTERISTIC

Now let (S, A) be a TGQ with kernel `, and suppose that 0 and 1 generate 〈0, 1〉 ∼= Fp, p a prime, in
the kernel k of (S̃(N), Ã(N)). Represent the latter quadrangle in a projective space P over Fp, with
affine point set A = P \ P′, with P′ a hyperplane in P. Suppose λ ∈ Z \ {0}, and interpret λ ∈ F×p
through the ring morphism Z 7→ Fp; suppose it is not a unit in ` (and note that it is contained in
endt(A,A)). Then Sλ

k 6= Sλ
j � Sλ

k

for all positive j, k 6= 0 with k < j. This contradicts the fact
that λp−1 = id.

It follows that S = S̃(N), and by Corollary 6.8 we conclude that the kernel of (S, A) is a division
ring.

This solves Conjecture 1.1 in positive characteristic.

Note that it follows that any ambient TGQ of (S, A) has characteristic p if (S̃(N), Ã(N)) has. It is
now straightforward to conclude that if (S̃(N), Ã(N)) would have characteristic 0, then any other
ambient TGQ also lives in characteristic 0.

10. REMARKS ON CHARACTERISTIC 0

We now suppose that (Sx, A) is a TGQ in characteristic 0. As before, z is a fixed affine point.

10.1. The core of (Sx, A). Define the core ∆ of (Sx, A) to be the intersection of all ideal subGQs
(both thick and thin) of S, which contain x and z.

Observation 10.1. Suppose ∆ is thick. Then ∆ is a TGQ with translation point x which is linear.

Proof. Let κ 6= 0 be an element of the kernel of ∆. Then if ∆κ 6= ∆, we have that ∆κ is a proper
ideal subGQ of ∆ that contains x and z, contradiction. �

Now ∆ also is an ideal subquadrangle of (S̃, Ã) := (S̃(N), Ã(N)) containing x and z. Represent the
latter in a projective space P over the prime field Q ∼= 〈0, 1〉 ≤ k. If ∆ is thick, then all projective
lines on z which contain at least one other affine point of ∆ must be completely contained in ∆, by
the action of 〈0, 1〉 by homothecies. In fact, the core precisely singles out all projective lines over
〈0, 1〉 which are incident with z and completely contained in S (and such lines always exist).

Let A∆ ≤ A be the translation group of ∆ relative to the translation point x. Then A forms a vector
space over 〈0, 1〉. Denote the corresponding affine space by A∆.
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Conjecture 10.2. dimA∆ = dimA.

If Conjecture 10.2 is true, it immediately follows that

(19) ∆ = S = S̃.

So if Conjecture 10.2 is true, ∆ must be a thin ideal subGQ, implying that x is a regular point in S.
Since Sx is a TGQ, x is a center of symmetry and its symmetries are contained in A.

10.2. The finite case. In the finite case, this combinatorial situation — a center of symmetry
which is incident only with axes of symmetry — already would lead to the desired contradiction:
if a finite thick generalized quadrangle of order (u, v) has a regular point which is incident with
only regular lines, then u = v and u is even — see [10, 1.5.2]. For (infinite) Moufang quadrangles,
the existence of a regular point and a regular line also is sufficient to conclude that one is working
in characteristic 2, see Tits [17] and also [18]. But with only local Moufang conditions, this is no
longer true. For, consider any infinite field k; then in P2(k) there exists a set S of points such that
any line meets S in precisely two distinct elements. Embed P2(k) as a hyperplane in P3(k), choose
a point z ∈ P3(k) \ P2(k), and choose a point c ∈ S. For any s ∈ S, define the group Ts := Tzs,
where T is the translation group of the affine space P3(k) \ P2(k). Then FS = {Ts | s ∈ S \ {s}}
defines a Kantor family in T , where F∗ = {T ∗s | T ∗s = Ts ⊕ Tc, s 6= c}. The reader notices that from
this Kantor family a TGQ arises with kernel k, and regular translation point.

10.3. Restricting non-linear TGQs in characteristic 0. Finally, we observe the following result.

Observation 10.3. If (Sx, A) is a TGQ which is not linear, then we have the following properties.

(CH) It lives in characteristic 0.
(CO) It properly and ideally contains a linear TGQ (∆, A) (the core).
(AM) It is properly and ideally contained in a linear TGQ (S̃, Ã) (the ambient TGQ).
(DI) [Ã : A] = |N|.

If (u, v) is the order of S, then u = v 6∈ N; this is also the order of the ambient TGQ S̃.

Proof. We only need to prove the last statement. Since Sx is a TGQ, it contains regular lines, and
so v ≥ u (see §2.4). If ∆ is not thick, we know x is a regular point of S, so that v ≤ u. Next,
suppose that ∆ is thick. Now let X be a line of S̃ which is not contained in S. (Note that S̃ 6= S

since S is not linear.) Project every point of S on X; we obtain a set S of lines of S which partitions
the point set of S, and which all meet X. Since the number of points of S is (u+1)(uv+1) = v, the
order of S is v. Now observe that by construction of S̃, lines of S and S̃ have the same number u of
points (since each line of S̃ is a countable union of lines of GQs isomorphic to S). It follows that

(20) u = |X| ≥ |S| = v.

We conclude that u = v. �

10.4. Final remarks. If ∆ is thick, it is not hard to prove that ∆ and S̃ have the same kernel.

Also, note that by Corollary 6.8, we have that a TGQ S with kernel ` is nonlinear if and only if
some m̂ in `× (m ∈ Z) is not a unit. Since we know that ` has to have characteristic 0, we conclude
that for solving Conjecture 1.1, it is sufficient to handle the cases where ` is a subring of Q.
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