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Motivated by generalized derivative operator defined by the authors (El-Yagubi and Darus, 2013) and the technique of differential
subordination, several interesting properties of the operator 9;”1’{’/\2) 5 are given.

1. Introduction

Let &/ denote the class of functions of the form
(o)
f)=z+ Zanz", (1)
n=2

which are analytic in the open unit disk U = {z : z € C, |z| <
1}.

Also let & be the the subclass of &/ consisting of all
functions which are univalent in U. We denote by §*(«) and
G(x)(0 < o < 1) the familiar subclasses of & consisting
of functions which are, respectively, starlike of order « and
convex of order « in U:.

S (@) = {feﬂ:m{zjj:(z)}>a,zeU},

G (o) = {fegfzi)‘{{l+zj:,((zz))}>oc,ze[U}.

2)

Let % (U) be the class of holomorphic function in unit
diskU={z:z€C,|z| <1}. Fora € Cand n € N we let

% lan) = {feH V), f(2)=a+a;"
3)

+a,,2"" 4}, (zeU).

Let two functions given by f(z) = Y, a,z" and g(z) =
Y2, b,z" be analytic in U. Then the Hadamard product (or
convolution) f * g of the two functions f, g is defined by

f@#g@) =2+ abz" (4)

n=2

Recall that the function f is subordinate to g if there exists
the Schwarz function w, analytic in U, with w(0) = 0 and
lw(z)| < 1 such that f(z) = g(w(z)), z € U. We denote
this subordination by f(z) < g(z). If g(z) is univalent in
U, then the subordination is equivalent to f(0) = g(0) and
fU) c g).

Lety : C* xU — C and h be univalent in U. If p
is analytic in U and satisfies the (second order) differential
subordination

v(p@,2p (2),2°p" (2);2) < h(z), (zel), (5)

then p is called a solution of the differential subordination.

The univalent function g is called a dominant of the
solutions of the differential subordination, or more simply a
dominant, if p < g for all p satisfying (5).

A dominant g that satisfies § < g for all dominants q of
(5) is said to be the best dominant of (5) (note that the best
dominant is unique up to a rotation of U).

In order to prove the original results we need the
following lemmas.
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Lemma 1 (see [1]). Let h be a convex function with h(0) = a
and let y € C — {0} be a complex number with R{y} > 0. If
p € Hla;n] and

p2)+ ZPY(Z) <h@), (zeU), (6)
then
p(2)<q(z)<h(z), (zel), (7)
where
q(2) = % Lzh(t) Y g (zeuy.  (8)

The function q is convex and is the best dominant.

Lemma 2 (see [2]). Let g be a convex function in U and let

h(z) = g(2) + nazg (2), 9)
where a > 0 and n is a positive integer. If
p)=g0) +p2" + 2™+, (zel) (10)
is analytic in U and
p(2)+azp (2) <h(z), (zel), (11)
then
pz) < g(2), (12)
and this result is sharp.
Lemma 3 (see [3]). Let f € o; if
zf” (2) 1
- 1
91{1+ e > > (13)
then
2 J Fd, (zel,z+0) (14)
0

belongs to the class of convex functions.

We now state the following generalized derivative opera-
tor [4]:

D0l @
1+(A+A,)(m-1)+b]" "
+Z[ 1+A,(n-1)+b Eo.maz,
(15)
where A, > A, > 0, €(6,n) = (6 + 1),.,/(n - 1)}, for

o,mb e Ny = {0,1,2,...}, and (x), is the Pochhammer

symbol defined by
_TI'(x+n)
“h T
L n=0,
Tlx(x+ D) (x+n-1), n={1,2,3,...}.

(16)
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Here 9"’ A f(2z) can also be written in terms of convo-
lution as

92’3”;32,5 f(z) = gzg'j’f’w (z) * gzg“j’ (2). 7)

To prove our results, we need the following inclusion
relation:

(1+0b) SZf{ﬁfaf (2)
=(1-(A, + 1) +b) (274 5@ g (2)  (18)

!
4+ 0) (D f (@) 8l ()

where goﬁz (z) is analytic function given by goiz (2) = z +

Yoo, (Z"[(1+ Ay(n—1) + b))

2. Main Results

In the present paper, we will use the method of differential
subordination to der1ve certain properties of generalised

derivative operator 9 /\ o f(z). Note that differential sub-

ordination has been studled by various authors, and here we
follow similar works done by Oros [5] and G. Oros and G. I.
Oros [6].

Definition 4. For A, > A, >0, §,m,b € Nj,and 0 < « < 1,
let {%Tb/\ B(a) denote the class of functions f € & which
satisfy the condition

m(‘@?[?xz,af (Z))’ >a, (zel). (19)

Also, let & T;i\z,ﬁ(ﬂ) denote the class of functions f € o
which satisfy the condition

9‘(93”32 of (2) * (P)L

Remark 5. It is clear that (%ioo o)
of functions f € o/ satisfy

)>ﬁ (z € V). (20)

= R(A, a), and the class

RAzf"@+f @)>a (zel), (21)
studied by Ponnusamy [7] and others.
Theorem 6. Let
h(z) = %, (zel), (22)

be convex in U, with h(0) = 1and 0 < a < 1.
IfA, 21, 20, §,mb e Ny, and f € o and satisfies the
differential subordination

(2 ﬂ baf (Z)) <h(z), (z€l), (23)
then
(217%,0f () % 93, (Z)),
<q(2) 24
g 2(1-a)(1+b) 1+b
=Za-ly (A, +1,) z(1+b)/(/\1+/\2)0</\1 A, )
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where o is given by

z tx—l
o (x) = L i, (zeU). (25)

The function q is convex and is the best dominant.

Proof. By differentiating (18), with respect to z, we obtain
!
(1+b) (27005 f (2))
!
=(1+) (27 5f @) * 95 (2)) (26)

+(A1 +A2) Z( )\ ,\ 5f (z) * (P,\ (Z))

Using (26) in (23), the differential subordination (23)
becomes

( A )L 5f(z) *‘PA (Z)>

" % (27,5 @ * 95 (z)) (27)
<h(z) = M_
1+z
Let
r (@

= (20 o f @ * gl (@)

S (L +As) (- 1)+b)m> n)’
= o
<Z+rlz—;< (1+A2(n_1)+b)m+1 6,n)a,z

(peZ[1,1],z € U).

=1+p1z+p222+---,
(28)

Using (28) in (27), the differential subordination becomes

(A +1,)
1+b

1+Q2a-1)z
l+z

p(z)+ zp' (2) < h(z) = (29)

By using Lemma 1, we have

P(Z) < q(z)
1+b
T (A, +A,) 20D J h (£) (/A d-1 gy
1+b

T (A, +A,) 20D

o Jz ( 1+ (20— l)t)t((1+b)/(/\1+/\2))—1dt
0 1+t

=20—-1+

2(1-a)(1+D) a( 1+b >
(A +A,) 20/ "\ ) 44, )0
(30)

where o is given by (25); that is,

( A, /\2 sf (2) * % (Z))

<q(z) (31)
2(1-a)(1+D)

w14 1+b

T T Ay 2 T\ e, )
The function g is convex and is the best dominant. The proof
is complete. O

Theorem 7. IfA, > A, >0, §,m,b € Ny, and0 < a < 1,
then one has

Rt (@) A 5 (B) (32)
where
2(1-a)(1+D) ( 1+b >
=2a-1 ,
Frlv =m0 “Uhen ) &
and o is given by (25).
Proof. Let f € @m+l ”s(@), and then from (19) we have
( Tj bgf (Z)) >a, (zel), (34)
which is equivalent to
m ! 1+ 2a—-1)z
(P @) <h@ =2 DE )

Using Theorem 6, we have

(24 of @ = ¢}, (@)
<q(z2) 36)

2(1-a)(1+Db) < 1+b )

=2a0-1+
(/11 + /\2) Z(1+0)/(A1+2,) AL+ A,

Since g is convex and q(U) is symmetric with respect to
the real axis, we deduce that

R(27 o f (@) * gl (@)

> Rq(1)

= B(a A1, A,5,b) (37)
e 1, 2(0-a)(1+b) 1+b
=20—1+ (/\1_”\2) G<AI+AZ>

for which we deduce 52’"’” ba( ) C .%’ (ﬁ) The proof is
complete. O



Theorem 8. Let q be a convex function in U, with q(0) = 1,

and let
(A1 +1,)
-—=z
1+b

IfA, 2 A, 20, 8§,mb € Ny, and f € o satisfies the
differential subordination

h(z)=q(z)+ q (), (zel). (38)

(9Tﬁﬂf@ﬂl<h&% (39)
then
(gﬁi@ﬂ@*ﬁng<qwx (zel),  (40)

and the result is sharp.

Proof. Using (28) in (26), the differential subordination (39)
becomes

p@)+——* ( 2) zp' (2)
(41)
h@=q@+ 8 e
1 1+b 1 ’
Using Lemma 2, we have
p()<q(2), (zel); (42)
that is,

(20 @ xgh @) <q@. (el), @)

and the result is sharp. The proof of Theorem 8 is complete.
O

Example 9. Form=1, § =0, A, 21, 20, beN,, gq(z) =
(1+2)/(1-2), f € d,and z € U, by applying Theorem 8,
we have

_1+Z (A1+A2) 1+z !
h&)_l— 1+b Z(l— )
(44)
(1+b)+2()» +/\2)z—(1+b)z

1+b)(1- z)
By using equality (18) we find that

b
(1+b) 9;1%0
=(1-(A +1,)+b)

<(f) * gl @)+ (M +1,)2(f @) * ¢}, (2))
(45)

Now,

(1+b)( " A 0*% (z))

=(1-(A,+A,)+Db
1=+ ds)+b) Z+,,Zé(1+/\ (n—1)+b)>

() n
Z na,z
5 |-

= (1+A,(n—1)+b)

+ (A, +1,) (z+

(46)
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A straightforward calculation gives the following:

(2),0f @ * b, ()

:1+§(1+(A1+A2)(n—1);tb>nanzn_1

= (1+A,(n-1)+b)

_ (Z +§ <(n(1 + (A +A,) (n - 1)2+ b)) ) anz">

(1+A,(n-1)+b)

n=2
x (z)7
= ( (f @ =4}, @)
+(A,+4,)(n-1)+b) ,
(“Z( (144, (n-1)+0) )“”Z ))
X (z)_1
(47)
Similarly, using (18), we see that
1+b) 23", f (@)
=(1-(A, +1,)+b)
(48)
(23,0 (@) % 95, (2))
+(A +1,) Z(g)lfiaz,of () * (Piz (Z)>,,
and then
1+0) (22", of @)
= (1+6) (2,0 @) * ¢}, (@) (49)

"
+ (A, + 1) z(.@i’i,\z)of (2) * (Piz (Z)) .
By using (47) we have

(24", of @+ ¢l ()"

=§<1+ (A +2y) (n - 1)+b>n(n—1)anzn_2;
= 1+A, (n—1)+b)

(50)

we deduce

(1+0) (22", of @)
Qf[1+(A +A)(n—-1)+b -
=(1+b)| 1
4 )( +Z( (Lt Ay (n-1)+b) )W )
+(A1+A2)

Q1+ +A,)(n-1)+b 1
Xn=2< (1+A2(Yl—l)+b)2 )n(n )anz

(51)
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that is,
(23,0 @)
R T M ) -+
—“,ZZ( 1+ A,(n-1)+b )”“”Z
:<(ﬂw*¢iwn
® (n(1+ (A, +4,) (n—1) +b)’ "
( Z( (1+A,(n-1)+Dd) >anz >>
><(z)_1
(52)

From Theorem 8 we get

<Uw*%wn

® n(1+(/\1+/\2)(n—1)+b)2 " .
*<Z+Z< (1+A2(n—1)+b) )anz>>><(z)

n=2

(1+b)+2(A +A,)z-(1+b)2*
(1+b)(1-2)* ’

(53)

which implies that

(U@*ﬁu»

X/n(l+(A +A)(n-1)+b) " o
*(ZJZ< L+ A, (1) +b) )“"Z>>X(Z)

n=2

1
T2 (zeu).
-z

(54)

Theorem 10. Let g be a convex function in U, with q(0) = 1,
and let

h(z)=q(z)+ zq' (z), (zel). (55)

IfA, =2 Ay =20, §,mb € Ny, and f € o satisfies the
differential subordination

(204 6f (Z))’ <h(z), (56)
then

_Luiﬂ 4@, @eU), (57)

and the result is sharp.

Proof. Let

,\ ,\zaf z)

plR)=——, (zeU). (58)

Differentiating (58), with respect to z, we obtain

(20 @) =p@+2p (@), (zeU). (59
Using (58), the differential subordination (56) becomes
P +2p' (2)<h(z)=q(2) +2q (z), (z€U). (60)
Using Lemma 2, we deduce that
pz)<q(z), (z€l). (61)
By using (58), we have
mb
M <4, (zeU). (62)
The proof of Theorem 10 is complete. O

Examplell. For§ =0, m=1, A, 21, 20, b e N, g(z) =
1/(1-2), f € o,and z € U, from Theorem 10 we obtain

1 1y 1
h) = - +Z<1—z>:(1_z)2' (63)

From Example 9, we have
1+b0) 2},  f @)
=(1-+ ) +0) (fD *9},)  (64)

+ (A + /\z)z(f (2) = ¢i2)’>

and then
1+5) (DY of @) = W+b)(F@ *g).)
) z(f @ xgl)".

(65)
From Theorem 10 we deduce that
b\ ()t ) b \"
(f2) *%2) a+D) 2(f (2) * %z) -2
(66)
implies that

(1= (4 +0) +0) (@ * 98 ) + (4 + A) 2(f (2) = )

z(1+b)

(67)



Theorem 12. Let h be a convex function in U, with h(0) =
1, 0 <a<1,andlet
1+QR2a-1)z

h@=—"7

IfA, 2 A, 20, 8,mb € Ny, and f € o satisfies the
differential subordination

(zel). (68)

(2% “5 (Z)) <h(z), (69)
then
M (@) = 20— 1
+2(1—oc)zln(1+z)) e
(70)

The function q is convex and is the best dominant.

Proof. Let

p(2) =
~ © (1+(A1+/\2)(n—1)+b)m>
_<Z+,1Zz< 1+, (n-1)+b)"

x € (8,n) anz") x ()"

m,b
9A1,/\2,6f (z)
z

(peZ[1,1], z€U).
(71)

2
=14 pztp+oe,

Differentiating (71), with respect to z, we obtain

mb ! li
(9,\;,){2,8]( (Z)) =p@)+zp (2), (z€l). (72)
Using (72), the differential subordination (69) becomes
p@+2p () <h(z) = FE=DZ oy o3)
1+z
Using Lemma 1, we deduce that
1 z
p@<a@ == [ hwd
z Jo
_ lJ <1+(2(x—1)t>dt
z Jo 1+t
(74)

s

=2a-1+

j Ldu(za—nj Ldt)
o 1+t o 1+t

2(1-a)In(1 +z)
. .

By using (71), we have

/\Azaf() 2(1-a)In(l +2)

=2a-1
<q(z)=20-1+ "

(75)

The proof of Theorem 12 is complete. O
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Corollary 13. If f € "

)iz’,)tz,a(“)’ then
DT Sf (2)
m<&> >Qa-1)+2(1—a)ln2, (zeU).
z
(76)

Proof. Since f € % 6(oc) from Definition 4 we have

R(27, s@) > (zeu), 77)
which is equivalent to

1+Qa-1)z

1+z 78)

(24 (@) <h(2) =
Using Theorem 12, we obtain

) 5f() 2(1-a)In(1 +2)

<q(z)=2a-1+

(79)

Since g is convex and q(U) is symmetric with respect to
the real axis, we have that

9"117
m<%> >Rq (1) = 2a—1)

+2(1-a)ln2,

(80)
(z el).
O

Theorem 14. Let h € (U), with h(0) = 1, h'(0) # 0, which
satisfies the inequality

m(1 v Z:l’, (S)) >-L zeu). (81)

2
IfA, 2 Ay 20, §,mb € Ny, and f € o satisfies the
differential subordination

(971’32,5f (Z))’ <h(z), (82)
then
gmb ;
M <q(z) = lj h(t) dt. (83)
z z )
Proof. Let
A /\2 5f (2)
p(z) f

o (1+()L1+)LZ)(n—1)+b)m>
<Z+r§i( (1+2,(n-1)+b)"

x € (8,n) anz") x (z)”"

(peZ[1,1], z€U).
(84)

2
1+ piz+pz-+---,
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Differentiating (84), with respect to z, we obtain

(P05 ] (Z))’ =p@)+2zp' (z), (zel).  (85)

Using (85), the differential subordination (82) becomes

p(2)+zp' (2) <h(z), (z€U). (86)
Using Lemma 1, we deduce that
1 z
P@<a) == L h () dt; (87)
by using (84), we have

gm,b (Z) z
sl @ 9 =2 J h(t) dt. (88)

z <z Jo

From Lemma 3, we see that the function g is convex, and from
Lemma 1, g is the best dominant for subordination (82). The
proof of Theorem 14 is complete. O

Note that other work related to differential operators and
differential subordination can be seen in [8-13].
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