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There is a CW complex T(X), which gives a rational homotopical classification of almost free toral
actions on spaces in the rational homotopy type of X associated with rational toral ranks and also
presents certain relations in them. We call it the rational toral rank complex of X. It represents a
variety of toral actions. In this note, we will give effective 2-dimensional examples of it when X is
a finite product of odd spheres. This is a combinatorial approach in rational homotopy theory.

1. Introduction

Let X be a simply connected CW complex with dimH∗(X;Q) < ∞ and r0(X) be the rational
toral rank of X, which is the largest integer r such that an r-torus Tr = S1 × · · · × S1 (r-factors)
can act continuously on a CW-complex Y in the rational homotopy type of X with all its
isotropy subgroups finite (such an action is called almost free) [1]. It is a very interesting
rational invariant. For example, the inequality

r0(X) = r0(X) + r0
(
S2n

)
< r0

(
X × S2n

)
(∗)

can hold for a formal space X and an integer n > 1 [2]. It must appear as one phenomenon
in a variety of almost free toral actions. The example (∗) is given due to Halperin by using
Sullivan minimal model [3].

Put the Sullivan minimal model M(X) = (ΛV, d) of X. If an r-torus Tr acts on X by
μ : Tr ×X → X, there is a minimal KS extension with |ti| = 2 for i = 1, . . . , r

(Q[t1, . . . , tr], 0) −→ (Q[t1, . . . , tr] ⊗ ∧V,D) −→ (∧V, d) (1.1)
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with Dti = 0 and Dv ≡ dv modulo the ideal (t1, . . . , tr) for v ∈ V which is induced from the
Borel fibration [4]

X −→ ETr ×μ

Tr X −→ BTr. (1.2)

According to [1, Proposition 4.2], r0(X) ≥ r if and only if there is a KS extension of above
satisfying dimH∗(Q[t1, . . . , tr]⊗∧V,D) < ∞. Moreover, then Tr acts freely on a finite complex
that has the same rational homotopy type as X. So we will discuss this note by Sullivan
models.

We want to give a classification of rationally almost free toral actions on X associated
with rational toral ranks and also present certain relations in them. Recall a finite-based CW
complex T(X) in [5, Section 5]. Put Xr = {(Q[t1, . . . , tr] ⊗ ∧V,D)} the set of isomorphism
classes of KS extensions ofM(X) = (ΛV, d) such that dimH∗(Q[t1, . . . , tr]⊗∧V,D) < ∞. First,
the set of 0-cells T0(X) is the finite sets {(s, r) ∈ Z≥0 × Z≥0} where the point Ps,r of the
coordinate (s, r) exists if there is a model (ΛW,dW) ∈ Xr and r0(ΛW,dW) = r0(X) − s − r. Of
course, the model may not be uniquely determined. Note that the base point P0,0 = (0, 0)
always exists by X itself.

Next, 1-skeltons (vertexes) of the 1-skelton T1(X) are represented by a KS-extension
(Q[t], 0) → (Q[t]⊗ΛW,D) → (ΛW,dW)with dimH∗(Q[t]⊗∧W,D) < ∞ for (ΛW,dW) ∈ Xr ,
where W = Q(t1, . . . , tr) ⊕ V and dW |V = d. It is given as

or orQ Q Q
or · · · ,

PPP

where P exists by (ΛW,dW), and Q exists by (Q[t] ⊗ ΛW,D). The 2 cell is given if there is a
(homotopy) commutative diagram of restrictions

( W,dW )

(Q[tr+1]
⊗

W,Dr+1)

Λ

Λ

(Q[tr+2]
⊗

ΛW,Dr+2)

(Q[tr+1, tr+2]
⊗

ΛW,D)

which represents (a horizontal deformation of)

.

Pc

Pb

Pa

Pd

Here Pa exists by (ΛW,dW), Pb(or Pd) by (Q[tr+1] ⊗ ΛW,Dr+1), Pc by (Q[tr+1, tr+2] ⊗ ΛW,D),
and Pd(or Pb) by (Q[tr+2] ⊗ ΛW,Dr+2). Then we say that a 2 cell attaches to (the tetragon)
PaPbPcPd. Thus, we can construct the 2-skelton T2(X).
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Generally, an n-cell is given by an n-cubewhere a vertex of (Q[tr+1, . . . , tr+n]⊗ΛW,D) of

height r + n, n-vertexes {(Q[tr+1, . . . ,
∨
tr+i, . . . , tr+n] ⊗ ΛW,D(i))}1≤i≤n of height r + n − 1, . . ., a

vertex (ΛW,dW) of height r. Here ∨ is the symbol which removes the below element, and the
differential D(i) is the restriction of D.

We will call this connected regular complex T(X) = ∪n≥0Tn(X) the rational toral rank
complex (r.t.r.c.) of X. Since r0(X) < ∞ in our case, it is a finite complex. For example, when
X = S3 × S3 and Y = S5, we have

T(X) ∨ T(Y ) = T1(X) ∨ T1(Y ) = T1(X × Y ) = T(X × Y ), (1.3)

which is an unusual case. Then, of course, r0(X) + r0(Y ) = r0(X × Y ). Recall that r0(S3 × S3) +
r0(S7) = r0(S3×S3×S7) butT1(S3×S3)∨T1(S7) � T1(S3×S3×S7) [5, Example 3.5]. In Section 2,
we see that r.t.r.c. is not complicated as a CW complex but delicate. We see in Theorems 2.2
and 2.3 that the differences between X = Z × S7 and Y = Z × S9 for some products Z of odd
spheres make certain different homotopy types of r.t.r.c., respectively. Remark that the above
inequality (∗) is a property on T0(X) or T1(X) as the example of Theorem 2.4(1). We see in
Theorem 2.4(2) an example that T1(X) = T1(X × CPn) but T2(X) � T2(X × CPn), which is a
higher-dimensional phenomenon of (∗).

2. Examples

In this section, the symbol PiPjPkPl means the tetragon, which is the cycle with vertexes Pi, Pj ,
Pk, Pl, and edges PiPj , PjPk, PkPl, PlPi.

In general, it is difficult to show that a point of T0(X) does not exist on a certain coor-
dinate. So the following lemma is useful for our purpose.

Lemma 2.1. IfX has the rational homotopy type of the product of finite odd spheres and finite complex
projective spaces, then (1, r) /∈ T0(X) for any r.

Proof. Suppose that X has the rational homotopy type of the product of n odd spheres
and m complex projective spaces. Put a minimal model A = (Q[t1, . . . , tn−1, x1, . . . , xm] ⊗
Λ(v1, . . . , vn, y1, . . . , ym), D) with |t1| = · · · = |tn−1| = |x1| = · · · = |xm| = 2 and |vi|, |yi| odd. If
dimH∗(A) < ∞, then A is pure; that is, Dvi,Dyi ∈ Q[t1, . . . , tn−1, x1, . . . , xm] for all i.
Therefore, from [2, Lemma 2.12], r0(A) = 1. Thus, we have (1, r0(X) − 1) = (1, n − 1) /∈
T0(X).

Theorem 2.2. PutX = S3 ×S3 ×S3 ×S7 ×S7 and Y = S3 ×S3 ×S3 ×S7 ×S9. Then T1(X) = T1(Y ).
But T(X) is contractible and T(Y ) � S2.

Proof. Let M(X) = (ΛV, 0) = (Λ(v1, v2, v3, v4, v5), 0) with |v1| = |v2| = |v3| = 3 and |v4| = |v5| =
7. Then

T0(X) = {P0,0, P0,1, P0,2, P0,3, P0,4, P0,5, P2,1, P2,2, P2,3, P3,1, P3,2}. (2.1)

For example, they are given as follows.

(0) P0,0 is given by (ΛV, 0).

(1) P0,1 is given by (Q[t1] ⊗ΛV,D) with Dv1 = t21 and Dv2 = Dv3 = Dv4 = Dv5 = 0.
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(2) P0,2 is given by (Q[t1, t2] ⊗ ΛV,D) with Dv1 = t21, Dv2 = t22, and Dv3 = Dv4 =
Dv5 = 0.

(3) P0,3 is given by (Q[t1, t2, t3] ⊗ ΛV,D) with Dv1 = t21, Dv2 = t22, Dv3 = t23, and
Dv4 = Dv5 = 0.

(4) P0,4 is given by (Q[t1, t2, t3, t4] ⊗ ΛV,D) with Dv1 = t21, Dv2 = t22, Dv3 = t23,
Dv4 = t44, and Dv5 = 0.

(5) P0,5 is given by (Q[t1, t2, t3, t4, t5] ⊗ ΛV,D) with Dv1 = t21, Dv2 = t22, Dv3 = t23,
Dv4 = t44, and Dv5 = t45.

(6) P2,1 is given by (Q[t1] ⊗ ΛV,D) with Dv1 = Dv2 = Dv3 = Dv5 = 0 and Dv4 =
v1v2t1 + t41

(7) P2,2 is given by (Q[t1, t2]⊗ΛV,D)withDv1 = Dv2 = 0,Dv3 = t22,Dv4 = v1v2t1+t21,
and Dv5 = 0.

(8) P2,3 is given by (Q[t1, t2, t3] ⊗ ΛV,D) with Dv1 = Dv2 = 0, Dv3 = t22, Dv4 =
t21 + v1v2t1, and Dv5 = t43.

(9) P3,1 is given by (Q[t1] ⊗ ΛV,D) with Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2t1 + t41,
and Dv5 = v1v3t1.

(10) P3,2 is given by (Q[t1, t2] ⊗ΛV,D)withDv4 = v1v2t1 + t41 andDv5 = v1v3t1 + t42.

(11) P4,1, that is, a point of the coordinate (4, 1) does not exist. Indeed, if it exists, it
must be given by amodel (Q[t1]⊗ΛV,D)whose differential isDv1 = Dv2 = Dv3 = 0
andDv4, Dv5 ∈ Q[t1]⊗Λ(v1, v2, v3) by degree reason. But, for anyD satisfying such
conditions, we have dimH∗(Q[t1, t2] ⊗ΛV, D̃) < ∞ for a KS extension

(Q[t2], 0) −→
(
Q[t1, t2] ⊗ΛV, D̃

)
−→ (Q[t1] ⊗ΛV,D), (2.2)

that is, r0(Q[t1] ⊗ΛV,D) > 0. It contradicts the definition of P4,1.

T1(X) is given as

.

P0,0

P0,4

P0,2

P0,1

P2,3

P2,2

P2,1 P3,1

P3,2

P0,3

P0,4
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For example, the edges (1 simplexes)

{P0,0P0,1, P0,1P0,2, P0,2P0,3, P0,3P0,4, . . . , P0,0P3,1, P3,1P3,2} (2.3)

are given as follows.

(1) P0,1P3,2 is given by the projection (Q[t1, t2] ⊗ ΛV,D) → (Q[t1] ⊗ ΛV,D1) where
Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2t2 + t41, Dv5 = v1v3t2 + t42, and D1v1 = D1v2 =
D1v3 = D1v5 = 0 and D1v4 = t41.

(2) P2,1P3,2 is given by Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2t1 + t41, and Dv5 = v1v3t2 + t42.

(3) P3,1P3,2 is given by Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2t1 + t41, and Dv5 = v1v3t1 + t42.

T2(X) is given as follows.

(1) P0,0P2,1P3,2P3,1 is attached by a 2 cell from Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2(t1 +
t2)+ t41 andDv5 = v1v3t2 + t42. (Then P2,1 is given byD1v4 = v1v2t1 + t41,D1v5 = 0, and
P3,1 is given by D2v4 = v1v2t2, D2v5 = v1v3t2 + t42.)

(2) P0,0P0,1P3,2P3,1 is attached by a 2 cell from Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2t2 + t41,
and Dv5 = v1v3t2 + t42.

(3) P0,0P0,1P2,2P2,1 is attached by a 2 cell from Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2t2 + t42,
and Dv5 = t41.

(4) P0,1P0,2P2,3P2,2 is attached by a 2 cell fromDv1 = Dv2 = 0,Dv3 = t23,Dv4 = v1v2t2+t42,
and Dv5 = t41.

(5) P0,0P0,1P3,2P2,1 is not attached by a 2 cell. Indeed, assume that a 2 cell attaches on it.
Notice that P3,2 is given by (Q[t1, t2] ⊗ΛV,D) with Dv1 = Dv2 = Dv3 = 0 and

Dv4 = α(v1, v2, v3) + f, Dv5 = β(v1, v2, v3) + g, (2.4)

where α, β ∈ (v1, v2, v3) and {f, g} is a regular sequence in Q[t1, t2]. Since P0,1P3,2 ∈
T1(X), both α and β must be contained in the ideal (ti) for some i. Also they are not
in (t1t2) by degree reason. Furthermore, since P2,1P3,2 ∈ T1(X), we can put that both
α and β are contained in the monogenetic ideal (vivj) for some 1 ≤ i < j ≤ 3 without
losing generality. Then, dimH∗(Q[t1, t2, t3] ⊗ΛV, D̃) < ∞ for a KS extension

(Q[t3], 0) −→
(
Q[t1, t2, t3] ⊗ΛV, D̃

)
−→ (Q[t1, t2] ⊗ΛV,D), (2.5)

by putting D̃vk = t23 for k ∈ {1, 2, 3} with k /= i, j and D̃vn = Dvn for n/= k. Thus, we
have r0(Q[t1, t2] ⊗ΛV,D) > 0. It contradicts to the definition of P3,2.

Notice there is no 3 cell since it must attach to a 3 cube (in graphs) in general. Thus,
we see that T(X) = T2(X) is contractible.

On the other hand, let M(Y ) = (ΛW, 0) = (Λ(w1, w2, w3, w4, w5), 0) with |w1| = |w2| =
|w3| = 3, |w4| = 7 and |w5| = 9. Then we see that T1(X) = T1(Y ) from same arguments. But, in
T2(Y ), P0,0P0,1P3,2P2,1 is attached by a 2 cell since we can put Dw1 = Dw2 = Dw3 = 0 and

Dw4 = w1w2t2 + t42, Dw5 = w1w3t1t2 + t51, (2.6)
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by degree reason. Here P0,1 is given by D1w4 = 0, D1w5 = t51, and P2,1 is given by D2w4 =
w1w2t2 + t42, D2w5 = 0. Others are same as T2(X). Then three 2 cells on P0,0P0,1P3,2P2,1,
P0,0P2,1P3,2P3,1, and P0,0P0,1P3,2P3,1 in T2(Y ) make the following:

P0,1

P0,0

P2,1 P3,1

P3,2

to be homeomorphic to S2. Thus T(Y ) = T2(Y ) � S2.

Theorem 2.3. Put X = S3 × S3 × S3 × S3 × S7 × S7 and Y = S3 × S3 × S3 × S3 × S7 × S9. Then
T1(X) = T1(Y ). But T(X) � S2 and T(Y ) � ∨6

i=1S
2
i .

Proof. We see as the proof of Theorem 2.2 that

T0(X) = {P0,0, P0,1, P0,2, P0,3, P0,4, P0,5, P0,6, P2,1, P2,2, P2,3, P2,4, P3,1, P3,2, P3,3, P4,1, P4,2} (2.7)

and both T1(X) and T1(Y ) are given as

.

P0,5

P0,6

P0,3

P0,2

P0,1

P2,3

P2,2

P2,1 P4,1P3,1

P3,2 P4,2

P0,4 P2,4

P3,3

P0,0

For all tetragons in T1(X) except the following 4 tetragons:
(1) P0,0P0,1P3,2P2,1, (2) P0,1P0,2P3,3P2,2, (3) P0,0P0,1P4,2P2,1, and (4) P0,0P0,1P4,2P3,1, 2 cells attach
in T2(X). The proof is similar to it of Theorem 2.2. Thus we see that T2(X) is homotopy
equivalent to
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P2,1 P4,1P3,1

P0,0

P4,2

which is homeomorphic to S2. For example, when M(X) = (ΛV, 0) = (Λ(v1, v2, v3, v4, v5,
v6), 0) with |v1| = |v2| = |v3| = |v4| = 3 and |v5| = |v6| = 7, 2 cells attach P0,0P2,1P4,2P3,1,
P0,0P3,1P4,2P4,1 and P0,0P2,1P4,2P4,1 from Dv1 = · · · = Dv4 = 0,

Dv5 = v1v2t1 + t41, Dv6 = v1v3t1 + v2v4t2 + t42,

Dv5 = v1v2t1 + t41, Dv6 = v1v3(t1 + t2) + v2v4t2 + t42,

Dv5 = v1v2t1 + t41, Dv6 = v1v3t2 + v2v4t2 + t42,

(2.8)

respectively.
In T2(Y ), 2 cells attach all tetragons in T1(Y ) by degree reason. For example, when

M(Y ) = (ΛW, 0) = (Λ(w1, w2, w3, w4, w5, w6), 0) with |w1| = |w2| = |w3| = |w4| = 3, |w5| = 7
and |w6| = 9, put Dw1 = Dw2 = Dw3 = 0 and

(1) Dw4 = 0, Dw5 = w1w3t2 + t42, Dw6 = w2w3t1t2 + t51,

(2) Dw4 = t23, Dw5 = w1w3t2 + t42, Dw6 = w2w3t1t2 + t51,

(3) Dw4 = 0, Dw5 = w1w2t2 + t42, Dw6 = w3w4t1t2 + t51,

(4) Dw4 = 0, Dw5 = w1w3t2 + t42, Dw6 = w1w4t
2
2 +w2w3t1t2 + t51,

for (1)∼(4) of above. Then we can check that T(Y ) � ∨6
i=1S

2
i (T(Y ) cannot be embedded in

R3).

Theorem 2.4. Even when r0(X) = r0(X×CPn) for the n-dimensional complex projective space CPn,
it does not fold that T(X) = T(X × CPn) in general. For example,

(1) When X = S3 × S3 × S3 × S3 × S7 and n = 4, then T1(X) � T1(X × CP 4).

(2) When X = S3 × S3 × S3 × S7 × S7 and n = 4, then T1(X) = T1(X × CP 4) but T2(X) �

T2(X × CP 4).

Proof. Put M(CPn) = (Λ(x, y), d) with dx = 0 and dy = xn+1 for |x| = 2 and |y| = 2n + 1. Put
(Q[t1, . . . , tr] ⊗ΛV ⊗Λ(x, y), D) the model of a Borel space ETr×Tr (X × CPn) of X × CPn.

(1) T1(X) and T1(X × CP 4) are given as
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P0,5

P0,4

P0,3

P0,2

P0,1

P0,0

P2,3

P2,2

P2,1 P4,1

P0,5

P0,4

P0,3

P0,2

P0,1

P0,0

P2,3

P2,2

P2,1
P4,1P3,1

P3,2

and

respectively. For M(X) = (ΛV, 0) = (Λ(v1, v2, v3, v4, v5), 0) with |v1| = |v2| = |v3| = |v4| = 3
and |v5| = 7. Here P4,1 is given by Dvi = 0 for i = 1, 2, 3, 4 and Dv5 = v1v2t1 + v3v4t1 + t41. It
is contained in both T0(X) and T0(X × CP 4). On the other hand, P3,2 is given by Dvi = 0 for
i = 1, 2, 3, Dv4 = t22, Dv5 = v1v2t1 + t41, Dx = 0, and Dy = x5 + v1v3t

2
1. Then P3,1 is given by

Dvi = 0 for i = 1, 2, 3, 4, Dv5 = v1v2t1 + t41, Dx = 0, and Dy = x5 + v1v3t
2
1. They are contained

only in T0(X × CP 4).
(2) Both T1(X) and T1(X × CP 4) are same as one in Theorem 2.2. Notice that

P0,0P0,1P3,2P2,1 is attached by a 2 cell inT2(X×CP 4) fromDvi = 0 for i = 1, 2, 3,Dv4 = v1v2t1+t41,
Dv5 = t42,Dx = 0, andDy = x5+v1v3t1t2. SoT(X×CP 4) = T(Y ) for Y = S3×S3×S3×S7×S9.

Remark 2.5. The author must mention about the spacesX1 andX2 in [5, Examples 3.8 and 3.9]
such that T1(X1) = T1(X2). We can check that 2 cells attach on both P0P5P9P8 of them (com-
pare [5, page 506]).

Remark 2.6. In [5, Question 1.6], a rigidity problem is proposed. It says that does T0(X) with
coordinates determine T1(X)? For T(X), it is false as we see in above examples. But it seems
that there are certain restrictions. For example, is T2(X) simply connected?
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