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Abstract In this paper we use the topological vertex for-
malism to calculate a generalization of the “domain wall”
partition function of M-strings. This generalization allows
calculation of partition function of certain compactified webs
using a simple gluing algorithm similar to M-strings case.
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1 Introduction

In this paper we introduce higher rank M-string domain wall
partition function using the topological vertex formalism [1].
Just like the domain wall partition function calculated in [2]
these higher rank generalizations allow the calculation of
partition functions of certain compactified webs as well as
the M-string in the orbifold background [3,4] using simple
gluing rules.

The M-string partition functions discussed in [2] were
generalized to the case when the space transverse to the
M5-branes was an AN−1 orbifold [3–5]. It was shown that
these brane configurations were dual to a configuration of
type IIB (p, q) 5-branes in which there were M D5-branes
and N NS-5branes where M was the number of M5-branes.
The partition function of these (N , M) D5/NS5-branes were
studied in detail in [4–7]. It was shown in [4] that these par-
tition functions can be calculated using the refined topologi-
cal vertex formalism as well as using equivariant integration
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over the product of instanton moduli spaces. The instanton
contribution to the gauge theory partition function is engi-
neered in topological string by the contribution of holomor-
phic curves in certain homology classes of the Calabi–Yau
threefold, depending on the instanton number. The topolog-
ical vertex [1] and refined topological vertex [8] formalism
allow exact computation of the gauge theory partition func-
tion if the corresponding Calabi–Yau threefold is toric. In the
topological vertex formalism the topological string partition
function is given by sums over functions of Young diagrams
and a direct connection with Nekrasov’s instanton calculus
[9] arises since these Young diagram label the fixed points on
the instanton moduli spaces. The topological string partition
function can then by understood as representing equivariant
integral over the instanton moduli space.

We will show that there are certain interesting compacti-
fied webs which are direct generalization of M-string webs
and are dual resolved ZN orbifold of the M-string Calabi–
Yau threefold. We calculate these higher rank domain wall
partition functions, denoted by G(N )

λμ using the topological
vertex.

The paper is organized as follows. In Sect. 2, we discuss
the compactified brane configurations which generalize the
M-strings case and show that these can be obtained from gen-
eralized domain walls which can be considered as orbifold
of the domain walls of the M-strings case. In Sect. 3, we
calculate the partition function of these higher rank domain
walls using the topological vertex. In Sect. 4, we summarize
our conclusions and discuss some open questions.

2 Compactified webs and domain walls

The duality between (p, q) 5-brane webs and toric Calabi–
Yau geometries [10] has led to geometric engineering of var-
ious different gauge theories and little string theories. Much
has been understood about different aspects of the gauge the-

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/186560719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4809-6&domain=pdf
mailto:dr.khurramshabbir@gcu.edu.pk


223 Page 2 of 6 Eur. Phys. J. C (2017) 77 :223

ories from these two different yet dual ways of realizing the
gauge theories in string theory.

In this section we discuss the compactification of web
diagrams which will lead to webs generalizing the 5-branes
dual to the M-strings brane configuration. Recall that the
N = 1 5D SU (N ) theory with Chern–Simons coeffiient
k can be engineered using M-theory compactification on a
Calabi–Yau threefolds, which we will denote by XN ,k [11].
XN ,k are toric Calabi–Yau threefolds given by a resolved
C

2/ZN fibered over P
1,

XN ,k ∼ C̃2/ZN × f P
1. (1)

The integer k determines the details of the fibration since
there are N distinct fibrations. The compact divisors in XN ,k

are P
1 bundles over P

1 known as the Hirzebruch surfaces
Fm . The area of the base, which we will denote by tb, gives
the gauge coupling of the theory and area of the various P

1’s
in the fiber (coming from the resolution of the ZN orbifold)
are related to the Coulomb branch parameters (vev of the
scalars) in the theory. If 〈�〉 = diag(a1, a2, . . . , aN ) is the
vev of the scalar with Coulomb branch parameters ai (with∑

i ai = 0) then the area of (N − 1) curves in the fiber are
given by t fi = ai − ai+1, i = 1, 2, . . . , N − 1.

Recall that there is a duality between the toric Calabi–
Yau threefolds and certain (p, q) 5-brane configurations in
type IIB [10,12]. The 5D theory one obtains via M-theory
compactification on a toric Calabi–Yau threefold can also be
obtained on the worldvolume of a set of intersecting (p, q) 5-
branes in type IIB. Let us denote by xa, a = 0, 1, 2, . . . , 9 the
spacetime coordinates in type IIB. We consider a set of (p, q)

5-branes which have x0, x1, x2, x3, x4 as common directions
in their worldvolume and are oriented in various directions
(are straight lines) in the x5–x6 plane. The requirement of
supersymmetry forces the (p, q) brane to be oriented in the
(p, q) direction in the x5–x6 plane. If all the branes are of
the same charge then the worldvolume theory has 16 super-
charges (the brane configuration breaks half of the 32 super-
charges). However, if there are branes of different charges
then there is a further breaking leaving 8 preserved super-
charges giving an N = 1 theory on the worldvolume. (p, q)

strings ending on this web of 5-branes are then identified
with the cycles of the dual Calabi–Yau threefold. Given a
toric Calabi–Yau threefold the toric data is encoded in the
Newton polygon and the graph dual of the Newton polygon
in the web diagram of the 5-branes [10,12]. The web diagram
can be understood directly from the Calabi–Yau perspective
as the degeneration loci of the T 3 fibration over the base in
the sense of SYZ fibration [13]. We will see later that cer-
tain brane configurations in the x5–x6 plane are symmetric
in such a way that they allow the x5–x6 plane to be rolled
into a cylinder or a torus.

Fig. 1 a Newton polygon and web of canonical bundle on P
1 × P

1

which gives rise to SU (2) gauge theory with zero theta angle. bNewton
polygon and web of canonical bundle on F1 which gives rise to SU (2)

gauge theory with theta angle π

For the case of N = 2 the integer k ∈ {0, 1} and the
corresponding Calabi–Yau threefolds are the total space of
the canonical bundle over the Hirzebruch surfaces Fk which
are P

1 bundles over P
1 with F0 = P

1×P
1. The web diagrams

and the Newton polygons corresponding to these are shown
in Fig. 1.

Note here that for the case of N = 2 the gauge group
is SU (2) and there is no Chern–Simons term. What distin-
guishes the field theory coming from these Calabi–Yau three-
folds with different k is the Z2 valued theta angle [14]. Notice
that in both cases the compact divisor can be shrunk to zero
size (the compact 4-cycle is the polygon in the web diagram
and BPS states coming from M5-brane wrapping the 4-cycle
are dual in the web to BPS states coming from D3-branes
suspended between the 5-branes “filling” the polygon in the
web), however, in the case of X2,0 (the canonical bundle on
P

1 × P
1) the singularity generated by the shrunken compact

divisor can be deformed to get a three cycle. This transition
from compact 4-cycle to singularity and resolution giving a
three cycle is known as geometric transition. The three cycle
in this case is S

3/Z2. This is the case of Z2 action on the
conifold. Recall that the deformed conifold is given by

z1z2 − z3z4 = μ, (2)

with base S3 given by the real locus z1 = z2, z3 = −z4,

|z1|2 + |z3|2 = μ, (3)

with μ determining the size of the S3. The ZN action (we
consider the arbitrary N case, the Calabi–Yau threefold X2,0

corresponds to N = 2) is given by,

(z1, z2, z3, z4) �→ (e
2π i
N z1, e

− 2π i
N z2, e

2π i
N z3, e

− 2π i
N z4). (4)

In terms of the brane webs we can see that when the com-
pact cycle represented by the rectangle in Fig. 1a shrinks to
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(a) (b)

S3/Z2

Fig. 2 a Intersecting 5-branes representing a singularity in the corre-
sponding Calabi–Yau threefold. b Separating the 5-branes in the trans-
verse space corresponds to geometric transition

Fig. 3 The web dual to the Calabi–Yau threefold XN ,a . The Kähler
parameters tb and t fi are also indicated

zero size we have a (1, 1) 5-brane intersecting a (−1, 1) 5-
brane. The intersection can be smoothed out by separating
the branes in the transverse space as shown in Fig. 2.

We can generalize the above to the case of N > 2. The 5D
SU (N ) gauge theory (with N > 2) can be engineered using
N + 1 topologically distinct Calabi–Yau threefolds XN ,k

(with k = 0, 1, . . . , N ). In the field theory these Calabi–
Yau threefolds are distinguished by the Chern–Simons term
[11,15]. These distinct Calabi–Yau threefolds have web dia-
grams [12] which are also distinct from each other and are
shown in Fig. 3.

Notice that this web does not have parallel external legs
except for a = 0. Thus only in this, Chern–Simons term
equal to zero, case can we compactify the external legs to
obtain partially or fully compact web. If we compactify two
of the external legs so that the web lives on a cylinder then
the total space is given by

C̃2/ZN × f T
2. (5)

The Kähler parameter associated with the base elliptic curve
will be denoted by τ and the partition function will have
modular properties with respect to this parameter.

Thus the dual Calabi–Yau threefold is elliptically fibered
and can be used to engineer six dimensional theories using
F-theory compactification. The partition function of this six

Fig. 4 a The compactification of web corresponding to product SU (2)

gauge theory. bThe building block Gλμ of the product SU (2) web. The
dashed lines indicate the Lagrangian branes with holonomy TrλV1 and
TrμV2

dimensional theory on R
4 ×T 2 is given by the elliptic genus

of the SU (N ) instanton moduli space [2].
We can obtain a gauge theory with product gauge group

∏
i SU (2)i by gluing a chain of such local Calabi–Yau three-

folds with dual web diagram as shown in Fig. 4a. The building
block of this chain is the local Calabi–Yau threefold with two
Lagrangian branes as shown in Fig. 4b.

3 The partition function from topological vertex

We can determine the partition function of the gauge theory
engineered by the web in Fig. 4a by gluing together the open
string amplitudes corresponding to the Lagrangian branes
shown in Fig. 4b. If we denote this open strings amplitude by
G(2)

λμ then the partition function of the chain Fig. 4 is given
by,

Z2 =
∑

λ

(−Q1)
|λ1| · · · (−QK−1)

|λK−1|

×G∅λ1Gλt1λ2
· · ·GλtK−1∅,

where K is the number of 4-cycles glued together and Qi =
e−Ti . The open string amplitude G(2)

λμ is the building block
of such partition functions and is a direct generalization of
the building block or the “domain wall” partition function
studied in [2] and depends on the parameters tb, t f , m and ε,
where ε is the Omega deformation parameter.

The partition function G(2)
λμ can be calculated using the

topological vertex formalism in the unrefined limit. However,
the refined case is more subtle since the refined topological
vertex formalism [8] requires the choice of a preferred direc-
tion for each of the vertices such that for all vertices in the
web this direction should be the same (preferred directions
for all vertices should be parallel). This may or may not be
possible for a given web and therefore the refined vertex for-
malism only applies to a certain class of web diagrams. A
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well known example to which the refined vertex formalism
can not be applied is the web corresponding to local P

2 which
was discussed in detail in [16]. We should note that this does
not imply that refinement can not be done for the webs for
which we can not find a set of parallel preferred directions for
all the vertices, this is simply an issue with the formalism.
For example, the refined partition function of the local P

2

can be calculated using other methods including the refine-
ment of the B-model [17]. Hence, for the refined case if the
Lagrangian branes are on the preferred direction then there
is no choice of the preferred direction for the upper right and
lower left vertex (Fig. 4b). Hence, refined vertex formalism
can not be used. In this case the new topological vertex dis-
cussed in [16] has to be used. Fortunately, for the product
gauge group we are interested in the preferred direction can
be the two horizontal lines which cover all four vertices. But
we restrict ourselves to the unrefined case so that the building
block partition function is given by,

G(2)
λμ(tb, t f ,m, ε) =

∑

ν1,2σδ1,2

(−Qb)
|ν1|+|ν2|(−Qm)|σ |

×(−Q f )
|δ1|+|δ2|Cδ1ν1λ(q)Cνt1δ2σ

(q)

×Cδt2ν2μ
(q)Cνt2δ

t
1σ

t (q),

where Qb = e−tb , Q f = e−t f , Qm = e−m . The topological
vertex is given by (q = e2π iε),

Cλμ ν(q) = q
κ(μ)

2 sνt (q
−ρ)

∑

η

sλt/η(q
−ρ−ν) sμ/η(q

−νt−ρ)

where sλ/η(x) is the skew-Schur function, q−ν−ρ =
{q−ν1+ 1

2 , q−ν2+ 3
2 , . . .} and κ(ν) = ∑

(i, j)∈ν( j − i) defines
the framing factor. Using the above definition of the vertex
and the standard Schur function identities we get,

Gλμ

G∅∅
=

∞∑

σ

Q|σ |
m Zλμσ (tb, t f ,m, ε)

Zλσμ =
∏

(i, j)∈λ

θ1(tb + t f − 2m; ai j )
θ1(tb + t f − 2m; bi j )

×
∏

(i, j)∈σ

θ1(tb + t f − 2m; ci j )
θ1(tb + t f − 2m; di j ) (6)

× θ1(tb + t f − 2m; ei j )
θ1(tb + t f − 2m; fi j )

×
∏

(i, j)∈μ

θ1(tb + t f − 2m; gi j )
θ1(tb + t f − 2m; hi j ) (7)

where

ai j = −t f + m − ε(λi − j + σ t
j − i + 1)

bi j = λi − j + λtj − i + 1

ci j = −t f + m + ε(σi − j + λtj − i + 1)

di j = σi − j + σ t
j − i + 1

ei j = −t f + m − ε(σi + μt
j − i + 1)

fi j = ε(σ t
j − i + σi − j + 1)

gi j = −t f + m + ε(μi − j + σ t
j − i + 1)

hi j = ε(μt
j − i + μi − j + 1) (8)

and (Qτ = e2π iτ )

θ1(τ ; z) = −i Q1/8
τ y1/2

∞∏

k=1

(1−Qk
τ )(1−y Qk

τ )(1 − y−1 Qk
τ )

is the Jacobi theta function satisfying,

θ1(τ + 1; z) = θ1(τ ; z),
θ1

(
− 1

τ
; z

τ

)
= −i(−iτ)

1
2 e

iπ z2
τ θ1(τ ; z).

It is clear from Eq. (6) that the modular parameter in this case
is tb + t f − 2m. The partition function Zλσμ is not modular
invariant but transforms in the following way,

Zλσμ

(
− 1

τ
,
t f
τ

, m
τ
, ε

τ

)
= e

iπr
τ Zλσμ(τ, t f ,m, ε) (9)

where r is a quadratic function of the parameters given in Eq.
(8). Note that we traded tb for τ and have taken (τ, t f ,m) as
the independent set of parameters. Recall that the web shown
in Fig. 1a gives rise to SU (2) gauge theory with tb being the
gauge coupling and t f the Coulomb branch parameter (vev
of the scalar breaking the SU (2)). Additional compactifica-
tion of the two external legs gives a web which is related to
the N = 2∗ gauge theory with coupling constant τ as dis-
cussed in detail in [2]. Thus in choosing the independent set
of parameters we simply choice the parameters preferred in
the gauge theory: the coupling constant, the Coulomb branch
parameter and the mass of the adjoint.

We can make Zλσμ invariant under the modular trans-
formation at the expense of introducing the holomorphic
anomaly [18–21]. Recall that the Jacobi theta function
θ1(τ, z) has the following representation in terms of the
Eisenstein series E2k(τ ),

θ1(τ ; z)=η3(τ )(2π i z)exp
( ∑

k≥1

B2k

(2k)(2k)! E2k(τ )(2π i z)2k
)
.

The exponential factor in Eq. (9) is due to the presence of
E2(τ ) in the above expression of θ1(τ ; z) since E2(τ ) is
transforms in the following way under the modular transfor-
mation,

E2

(
− 1

τ

)
= τ 2E2(τ ) − iπτ. (10)

We can replace E2(τ ) with E2(τ, τ ) = E2(τ )− 3
Im(τ )

which
transforms as a weight two modular form but is not holo-
morphic. This replacement leads to a holomorphic anomaly
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Fig. 5 The compactification of the XN ,0 web

which gives:

Zλσμ

(
− 1

τ
,
t f
τ

, m
τ
, ε

τ

)
Zλσμ(τ, t f ,m, ε),

∂Zλσμ(τ, t f ,m, ε)

∂E2(τ, τ )
= 1

24
r Zλσμ(τ, t f ,m, ε). (11)

Similarly we can generalize this result to the case of a web
made of pieces which are ZN orbifold of the N = 1 case.
This is shown in Fig. 5 below.

The partition function of this chain of SU (N ) webs is
given by

ZN =
∑

λ

(−Q̃1)
λ1 · · · Q̃|λK−1|

K−1 G∅λ1 · · ·GλtK−1∅ (12)

where Q̃s = e−T̃s , s = 1, . . . , K − 1 and Gλμ can again
be expressed in terms of Jacobi theta function with modular
parameter tb − ∑N−1

i=1 t fi − N m where as discussed before
t fi are the Kähler parameters of the fiber P

1’s.

4 Conclusions

In this paper we have studied some new compactified webs
which lead to gauge theories with product gauge group of
type

∏
a SU (N )a . We worked out the partition function of

this web for the case N = 2 explicitly and showed that it
can be written in terms of building blocks which are gen-
eralization of the M-string domain wall partition functions
(which correspond to N = 1). This building block for the
case N = 2 has interesting modular properties and satisfy a
holomorphic anomaly equation similar to the case of N = 1
partition function have

It will be interesting to see if this partition function can be
determined using index calculus on some instanton moduli
spaces [9,22,23]. This kind of description can allow one to
see if the partition function can be expressed as the (2, 2) or
(0, 2) elliptic genus of some target space.
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