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Abstract

Background: Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development
by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-
natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal
concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and
scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity
in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target
genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys.

Methodology/Principal Findings: RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic
acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, b-galactosidase. Double
immunostaining was performed for b-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct
pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in
5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting
duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle’s loop and distal
tubules.

Conclusions/Significance: Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse
collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles
for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions
of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.
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Introduction

Retinoic acid (RA) is a bioactive molecule derived from dietary

vitamin A, which plays an essential role in many basic biological

processes such as cell proliferation, differentiation and apoptosis

[1]. Acting as a ligand, RA binds and activates heterodimers of

retinoic acid receptors (RARs) and rexinoid receptors (RXRs),

which are ligand-dependent transcription factors that anchor on

the retinoic acid response element (RARE) of retinoic acid target

genes [2]. Aside from this classical pathway, RA also affects gene

expression via other signaling pathways, in the absence or

presence of retinoic acid receptors [1].

Retinoic acid, its synthesizing and metabolizing enzymes, its

receptors, as well as its target genes have been widely studied,

particularly in the field of developmental biology [3]. In the kidney

specifically, Wilson and Warkany first reported that rat fetuses

with maternal vitamin A deficiency suffered severe kidney

malformation [4]. In the late twentieth century, Mendelsohn et

al. observed kidney development impairment in compound

mutants of RAR and RXR isotypes [5]. Soon after that, it was

found that ablation of a key RA synthesizing enzyme RALDH2

(Raldh22/2) also resulted in defected nephrogenesis [6]. Thus, it

has been long appreciated that RA is the primary bioactive

vitamin A derivative crucial for nephrogenesis, and that impaired

renal development during vitamin A and RA deficiency is due to

perturbation of the functional RA-RXR/RAR-RARE pathway.

In contrast to the compelling evidence of RA playing a pivotal

role in nephrogenesis, its activity in kidneys after birth is poorly

understood, despite emerging data suggesting endogenous RA,

upon the accomplishment of its role in nephrogenesis, may have

additional functions in the post-natal kidney. We and others had

reported the presence of endogenous RA in murine kidneys after

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16770

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/1865566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


birth as measured by high performance liquid chromatography

(HPLC) [7–11], which may be synthesized locally by RA

synthesizing enzymes (RALDH1-4) that are expressed in the

kidney [11–14]. Furthermore, according to the Nuclear Receptor

Signaling Atlas (NURSA) database on tissue-specific expression

level of nuclear receptors in adult C57BL/6J and 129X1/SvJ

mice, the two most commonly used mouse strains, all six isotypes

of retinoic acid receptors (RARa/b/c and RXRa/b/c) are

expressed in the kidney. More importantly, kidney is among the

top two organs that have the highest level of RARa, and among

the top five that have the highest level of RARb in the two mouse

strains (http://www.nursa.org/10.1621/datasets). In spite of the

contemporary presence of endogenous RA, its synthesizing

enzymes and its nuclear receptors, direct proof of endogenous

RA being transcriptionally active in the kidney after birth is

lacking.

To address this issue, we employed a strain of RARE-hsp68-

lacZ transgenic mice, a well-established mouse model of a

C57BL/6 genetic background, to detect endogenous RA activity

[15]. These mice harbor a lacZ reporter gene driven by an hsp68

minimal promoter with three copies of RARE upstream of the

minimal promoter, which is activated by endogenous RA in the

presence of its receptors and auxiliary factors, leading to RARE-

dependent transcription of lacZ [15]. Expression of lacZ reporter

gene can then be detected by X-gal assay and immunostaining of

the lacZ gene product b-galactosidase (b-gal). In this model, a

strong RA activity was first detected in the metanephric kidneys at

embryonic day (E) 11.5–E12.5 [15], during which the ureteric

buds invade the metanephric mesenchyme. By employing the

same reporter mouse model, Rosselot et al. had recently

demonstrated an intense RA activity in the ureteric bud lineage,

the precursor of collecting ducts, in E12-E14 kidneys [16]. In this

study, we extend the above observations by showing the presence

of endogenous RA activity in neonatal, young and adult kidneys,

and the activity is confined to the principal cells and intercalated

cells of the collecting duct system. Our observations suggest RA

activity may play specific roles in these two specialized cell types

and lay a foundation for further studies on the target genes and

functions of retinoic acid in kidneys after birth.

Results

Endogenous RA activity observed in whole-mount
kidneys but not liver

Tissues of wild-type and RARE-hsp68-lacZ transgenic mice were

examined to differentiate endogenous b-gal, which should be

expressed at the same level in both wild-type and transgenic mice,

from the specific lacZ reporter gene product that should only be

observed in transgenic mice. As shown in Figure 1A, kidneys of 1-

and 2-week-old wild-type mice demonstrated weak and ubiquitous

cortical staining whereas kidneys of 3-, 5- and 8-week-old wild-

type mice showed no signal. In contrast, we observed distinct X-

gal signal in kidneys of RARE-hsp68-lacZ transgenic mice that was

equivalent in both male and female at all time points examined.

No specific signal was noted in livers of both wild-type and

transgenic mice. X-gal signal intensity showed a general decline

with age, with kidneys of 1-, 2- and 3-week-old transgenic mice

demonstrating a stronger signal compared to kidneys of 5- and 8-

week old transgenic mice (Figure 1B). In neonatal kidneys of 1-

and 2-day-old mice, a staining pattern similar to that of 1- and 2-

week-old mice was observed, whereby X-gal signal was noted in

the developing kidneys of the transgenic mice but no signal was

observed in the livers of both wild-type and transgenic mice

(Figure S1Bi and data not shown).

RA activity was absent from glomeruli, proximal tubules
and thin limbs of Henle’s loop

In order to confirm our observation of X-gal signal in whole-

mount tissues, we performed X-gal assay on cryosections from

transgenic and wild-type mice to eliminate the possibility of poor

X-gal substrate penetration. In concordance with whole-mount

staining, X-gal staining performed on kidney and liver cryosections

demonstrated structural specific signal only in kidneys, which was

more abundant in the young mice especially in the medulla

(Figure 2), but not in livers (Figure S2) of the transgenic mice.

Close examination revealed X-gal signal in a subpopulation of

tubules, in which some cells exhibited higher staining intensity

than others, but no signal was observed in glomeruli and proximal

tubules of young and adult mice (Figure 3A). The histological

orientation of the X-gal positive tubules containing large and

cuboidal cells indicated that those tubules were not the thin limbs

of Henle’s loop. Since X-gal assay relies on b-gal enzymatic

activity that might be affected by tissue fixation [17], the tubular

pattern of lacZ gene expression and its absence from the glomeruli

were confirmed with b-gal immunofluorescence (Figure 3B). In

neonatal kidneys of transgenic mice, X-gal signal was observed in

the tips of the ureteric bud and the collecting ducts. No signal was

observed in the glomeruli, proximal tubules, thin limbs of Henle’s

loop and the distal tubules (Figure S1Bii).

Characterization of antibodies as cell type-specific
markers

To localize the expression of the RARE-hsp68-lacZ reporter gene

in the remaining segments of the nephron, a Tamm-Horsfall

protein (THP) antibody was used to label the thick ascending limbs

[18] while a calbindin D28K (CD28K) antibody was used to

identify distal convoluted tubules and connecting tubules, although

cortical collecting ducts was also reported to have weaker CD28K

expression [18,19]. To localize the expression of the reporter gene

in the collecting duct system that comprises connecting tubules

and collecting ducts, AQP2 and V-ATPase antibodies were used

to label principal cells and intercalated cells, the two main cell

types of the collecting duct system, respectively [18,20]. We first

characterized the specificity of the antibodies by performing

double immunofluorescence with different combinations of these

antibodies. Results of double immunofluorescence were congruent

with their reported histological localization, demonstrating their

appropriateness as markers for specific segments of renal tubules

and the two cell types in the collecting duct system (Figure 4).

Lack of RA activity in thick ascending limbs
In kidneys of both young and adult mice, thick ascending limbs,

identified by positive THP signal, were distinct from b-gal positive

tubules (Figure 5). In kidneys of 1-week-old mice, we observed

overlapping THP and b-gal signals in a few individual cells within

2–3 tubules in the kidney cortex (data not shown). Given the rare

instances, the biologic relevance of this finding is uncertain.

RA activity was absent from distal convoluted tubules
but likely to be present in connecting tubules and
cortical collecting ducts

Tubules with intense CD28K did not demonstrate positive b-gal

signal, suggesting the absence of RA activity from distal

convoluted tubules. b-gal signal was observed in some tubules

with intermittent and relatively weak CD28K signal (Figure 6),

which were likely the connecting tubules or cortical collecting

ducts, consistent with the presence of CD28K-negative intercalat-

ed cells in these segments [19].

Endogenous Retinoic Acid in Collecting Duct System
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Figure 2. X-gal assay of kidney cryosections. X-gal signal (blue) was detected in kidneys of RARE-hsp68-lacZ transgenic (TG) mice but not in
wild-type (WT) mice. X-gal signal in the 1-week-old TG mice was more abundant than in the 5- and 8-week-old TG mice. Original magnification was
1006. C: cortex; M: medulla.
doi:10.1371/journal.pone.0016770.g002

Figure 1. X-gal assay of kidney and liver of RARE-hsp68-lacZ transgenic (TG) and wild-type (WT) mice. A. Fresh tissues were collected and
subjected to X-gal assay. Conspicuous X-gal signal (blue) was observed in kidneys of TG mice. Shown here are representative images taken from
tissues of 5–13 TG mice and 1–7 WT mice at different time points. Pictures were taken freshly after X-gal assay for 1-, 2-, 5- and 8-week groups; tissues
of the 3-week group were fixed in formalin overnight before pictures were taken. TG-K and WT-K: kidney of TG and WT mice respectively; TG-L and
WT-L: liver of TG and WT mice respectively. To confirm X-gal signal in the 3-week group, freshly stained tissues were photographed in another
instance (Figure S1A). B. X-gal signal in kidneys of TG mice was scored semi-quantitatively based on the intensity. 0: no signal; 1: weak signal; 2:
moderate signal; 3: strong signal; 4: very strong signal. Gray bars refer to inner medulla of kidney; white bars refer to outer medulla and cortex of
kidney. n: number of kidneys from TG mice examined; *: p,0.01 compared to gray bars of 1-, 2- and 3-week old kidneys; #: p,0.01 compared to
white bars of 1-, 2- and 3-week old kidneys.
doi:10.1371/journal.pone.0016770.g001
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RA activity was observed in principal cells and
intercalated cells of collecting duct system

As shown in Figure 7, the immunostaining pattern of b-gal and

AQP2 closely resembled each other and the overlay image

confirmed the co-localization of the two signals to the collecting

duct system. At the cellular level, cells that stained positive for both

b-gal and AQP2 were observed in most instances, indicating that

the RA activity is most abundant in principal cells, one of the

major cell types of the colleting duct system. b-gal expression was

more extensive in kidney of young mice, where many cells in the

cortex and medulla had dual positive signals (Figure 7A); in older

mice, while b-gal expression was less widespread, it was largely

localized to principal cells, which was particularly apparent in the

medulla (Figure 7B). Although majority of the cells with positive b-

gal expression were the principal cells, we found that some

intercalated cells, another major cell type of the collecting ducts,

also expressed b-gal protein, which was observed in kidneys of

both young and adult mice (Figure 8).

Discussion

The activity of RA is tightly controlled within a coordinated

system comprising its synthesizing and metabolizing enzymes to

determine its level in the cells [3], its carrier proteins that direct it

to different pathways [21], as well as its nuclear receptors and

transcriptional co-regulators that confer its transcriptional function

[2]. In murine embryonic kidney, the basic components of the

retinoid system, i.e. the retinoic acid synthesizing enzymes [6] and

the retinoic acid receptors [5], are required to support RA activity

during kidney development. Various groups had suggested target

genes of RA involved in this regard, including c-ret [22], midkine

[23] and LGL1 [24]. In contrast to the well elucidated functions of

RA during embryonic nephrogenesis, little is known about its role

in kidney after birth. In fact, it remained unknown if RA activity is

switched off completely after birth.

If RA activity is of no biological importance in the kidney, from

an evolutionary point of view, one would envisage its absence from

the organ after birth. However, the existing evidence suggests not

only the presence of RA [7–11], but also the RA synthesizing

enzymes [11–14] and the retinoid nuclear receptors (NURSA,

http://www.nursa.org/10.1621/datasets). Our observation on the

presence of RA activity in the kidney provides evidence that the

presence of RA, the RA synthesizing enzymes and the retinoid

nuclear receptors is not a mere coincidence, and that the RA-

RXR/RAR-RARE pathway that plays an indispensable role

during nephrogenesis remains intact and functional in the kidney

after birth.

Liver was examined alongside kidney, as it is known to be the

major organ for retinoid storage in the body. Endogenous all-trans

RA, the most abundant isomer of RA, had been reported to be

present in the adult murine liver at a level higher than that in the

kidney [8–10] but our group found that endogenous all-trans RA

was not measureable in the liver of 3-week-old C57BL/6 mice

despite the presence of an abundant all-trans vitamin A [7]. The

discrepancy may be due to numerous variables including dietary

vitamin A content, tissue preparation and retinoid extraction

Figure 3. X-gal assay and b-galactosidase (b-gal) immunohistochemistry. A. X-gal signal was detected (blue) in a subset of tubules but not
in the proximal tubules (arrow) and glomeruli. Original magnification was 4006. Bi. b-gal (green) immunostaining in the kidney of RARE-hsp68-lacZ
transgenic (TG) mice showed a similar staining pattern to X-gal assay (Figure 2) with abundant signal noted in medulla. The background signal that
was also noted in the kidney of wild-type (WT) mice might be attributed to endogenous b-gal. Bii. Merged image: b-gal signal (green) was observed
in tubules and no signal was detected in glomeruli. Nuclei were visualized with DAPI (blue) counterstaining. Original magnification was 1006. No
specific signal was noted on sections incubated with non-immune IgG in place of primary antibody (data not shown). C: cortex; M: medulla; G:
glomeruli.
doi:10.1371/journal.pone.0016770.g003
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methods, sensitivity of HPLC assays and animal strain or age

difference in the homeostasis of endogenous all-trans RA. It is a

noteworthy observation however that in the RARE-hsp68-lacZ

transgenic mice, liver was devoid of signal indicating RA activity,

in keeping with our HPLC results earlier on the absence of

endogenous all-trans RA [7]. The very low level of RARs in the

liver (NURSA, http://www.nursa.org/10.1621/datasets) may also

account for the absence of RA activity.

In this study, we observed that RA activity was present

specifically in the ureteric bud-derived cortical and medullary

collecting ducts from the neonatal stage up to adulthood, which

was reminiscence of the observation from Rosselot et al., where RA

activity was noted to be present in both the ureteric bud tip and

the ureteric bud trunk in mouse embryonic kidneys at E12-14

[16]. More interestingly, we were able to confirm the presence of

RA activity in both major cell types of the collecting ducts, namely

the principal cells and the intercalated cells, by employing markers

specific to these two cell types. Given that endogenous retinoid

nuclear receptor is a prerequisite for the activation of the

transgene and that RARb2 is a direct target gene of RA, we

found that some tubules with RA activity indeed expressed

RARb2 protein (Figure S3).

The collecting duct system plays important functions in

regulating water transport and acid/base balance, which are roles

undertaken by the principal cells and the intercalated cells,

respectively. The specific localization of lacZ gene expression in the

principal cells and the intercalated cells of the collecting duct

system indicates that these cells have the appropriate machineries

to support transcriptional activity of retinoic acid. It was recently

reported that pkd1 gene, which is expressed in the collecting ducts,

is a target gene of RA in vitro [25]; a DR1-type RARE was found in

59-flanking region of aqp2, a gene encoding the water channel

Figure 4. Characterization of antibodies for their specificity in labeling nephron and collecting ducts. A. Schematic representation of
nephron and collecting ducts. Tamm-Horsfall protein (THP), calbindin D28K (CD28K), aquaporin 2 (AQP2) and vacuolar H+-ATPase B1 (V-ATPase)
antibodies were used to identify thick ascending limbs, distal convoluted tubules, as well as principal cells and intercalated cells of collecting ducts,
respectively. B. Left panel (merged image): CD28K signal (red) was observed only in the cortex, whereas THP signal (green) was detected in both
cortex and outer medulla, but not in the deep inner medulla. Original magnification was 1006. Right panel (merged image): CD28K (red) and THP
(green) signals were mutually exclusive. Original magnification was 4006. C. Left panel (merged image): CD28K (red) was detected only in the cortex
whereas AQP2 (green) was observed in the outer medulla and inner medulla. Original magnification was 1006; right panel (merged image): distal
convoluted tubules stained exclusively and intensely for CD28K (double arrow); tubules stained positive for both CD28K and AQP2 were the
connecting tubules (arrowhead) whereas those showing weak or negative CD28K but a positive AQP2 signal were the cortical collecting ducts
(arrow). Original magnification was 4006. D. Principal cells and intercalated cells that stained positive for AQP2 (green) and V-ATPase (red),
respectively, co-localized to the same tubules in the cortex, outer medulla and inner medulla. Original magnification was 4006. No specific signal was
noted on sections incubated with non-immune IgGs in place of primary antibodies (data not shown). Shown here are kidney paraffin sections of a 2-
week-old mouse. Nuclei were visualized with DAPI (blue) counterstaining. C: cortex; OM: outer medulla; IM: inner medulla; G: glomeruli.
doi:10.1371/journal.pone.0016770.g004
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Figure 5. Absence of b-galactosidase (b-gal) signal from the thick ascending limbs. Tubules stained positive for b-gal (green) and Tamm-
Horsfall protein (THP, red) were mutually exclusive in kidneys of 2-week-old (A) and 8-week-old (B) mice. Original magnification was 2006. No
specific signal was detected on sections incubated with non-immune IgGs in place of primary antibodies (data not shown). C: cortex; M: medulla.
doi:10.1371/journal.pone.0016770.g005

Figure 6. Absence of b-galactosidase (b-gal) signal from the distal convoluted tubules. In kidneys of 2-week-old (A) and 8-week-old (B)
mice, tubules with intense CD28K signal (arrow) did not stain positive for b-gal protein. Some tubules with intermittent CD28K, likely connecting
tubules or cortical collecting ducts, demonstrated positive b-gal signal (double arrow). Original magnification was 4006. No specific signal was
detected on sections incubated with non-immune IgGs in place of primary antibodies (data not shown).
doi:10.1371/journal.pone.0016770.g006

Endogenous Retinoic Acid in Collecting Duct System
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aquaporin 2 expressed in the principal cells of collecting ducts

[26]. We have also noted that post-natal vitamin A deficiency in

experimental murine models has been correlated with a series of

anomalies including dysregulation of urinary pH and metabolites,

some of which are associated with an increased risk of developing

urolithiasis [27–29], an altered structure and composition of the

glomerular and tubular basement membrane [30], and alteration

of cytokeratin expression in renal pelvic epithelium [31]. Whether

the RA activity in the collecting ducts observed in this study is

linked to the specialized functions of principal cells and

intercalated cells, and whether it is linked to the regulation of

the genes and abnormalities aforementioned, require further

investigation.

The ability of RA in stimulating kidney formation has led to

postulations that RA may be beneficial in post-natal acquired

kidney injury, by modulating its target genes hence re-establishing

the developmental program [32,33]. It has been recently reported

in zebrafish, that endogenous RA is required for fin regeneration

[34] and for renal progenitor cell expansion [35]. Should the tissue

regenerative power of endogenous RA observed in zebrafish be

also true in murine kidneys, the localization of endogenous RA

activity in the collecting duct system, the only tubular segment that

spans across the whole kidney from cortex to the inner medulla,

makes it an ideal candidate as first-line repair mechanism to

mitigate kidney injury in the collecting ducts as well as other parts

of the kidney.

On a different note, an alteration of the endogenous retinoid

system in the kidney, including the RA synthesizing enzymes and

the retinoic acid receptors, had been reported in various

experimental murine models of kidney diseases such as kidney

fibrosis [7], diabetic nephropathy [11], glomerulonephritis [36]

and puromycin aminonucleoside-induced nephrosis [37], some of

Figure 7. Localization of b-galactosidase (b-gal) to principal cells in collecting ducts. Ai. In kidneys of 2-week-old mice, immunostaining
pattern of b-gal (green) closely resembled that of aquaporin 2 (AQP2, red). Right panel showed co-localization of the two signals to the same tubules.
Original magnification was 1006. Aii. Merged images: Principal cells in the cortex, outer medulla and inner medulla appeared yellow-orange when
AQP2 signal co-localized with b-gal signal. Original magnification was 4006. B. b-gal (green) signal was also observed in principal cells that stained
positive for AQP2 (red) in the collecting ducts in cortex, outer medulla and inner medulla of 8-week-old mice. Asterisk indicates non-specific staining,
which was also observed on sections incubated with non-immune IgGs in place of primary antibodies (data not shown). Original magnification was
4006.
doi:10.1371/journal.pone.0016770.g007

Endogenous Retinoic Acid in Collecting Duct System

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16770



which accompanied with a reduction of renal endogenous RA

level [7,11,36]. It is tempting to speculate that the depletion of

endogenous RA from the kidney can be replenished by exogenous

RA and hence halt disease progression. However, our recent data

failed to demonstrate the therapeutic value of exogenous RA in a

transgenic mouse model of kidney fibrosis characterized by a total

wipe-out of endogenous RA in the fibrotic kidneys, and when

administered at high dose, RA worsened kidney fibrosis [7]. While

RA had been identified as one of the promising therapeutic agents

in treating various kidney diseases, it is imperative to reconsider

how well RA administered exogenously mimics the endogenous

RA activity, and whether non-specific activation of the retinoid

system in other parts other than the collecting ducts would

contribute towards the adverse effects of retinoids.

Early studies are largely devoted to examining the target genes

and roles of RA activity in embryonic nephrogenesis. Our data on

the presence of RA activity in the kidney collecting ducts support

the notion that the retinoid system remains intact and functional

after birth, and warrants further studies to unravel the target genes

and roles of endogenous RA in the kidney after birth, particularly

in the collecting duct system.

Methods

Ethics statement
The RARE-hsp68-lacZ transgenic mice, which were bred onto a

C57BL/6 background, and the related control wild-type mice

were fed a standard chow and maintained at the animal facilities at

Biological Services, University College London under the approval

of the UK Home Office project license PPL 70/6875. All studies

on these mice were carried out according to the Animals (Scientific

procedures) Act 1986, UK.

Tissue preparation for histological studies
For cryosections, freshly harvested tissues were submerged in

30% sucrose overnight at 4uC, then transferred to 30% sucrose

and Optimum Cutting Temperature (OCT) compound (VWR

International Ltd, Lutterworth, UK) at a ratio of 1:1 before being

Figure 8. Localization of b-galactosidase (b-gal) to intercalated cells in collecting ducts. b-gal signal (green) was detected in intercalated
cells of collecting ducts (arrow) that stained positive for vacuolar H+-ATPase B1 (V-ATPase, red) in kidney cortex (Ai) and medulla (Aii) of 2-week-old
mice. In 8-week-old mice, b-gal signal (green) was less apparent in the cortex but was noted in the medulla (arrow) (B). Original magnification was
4006. No specific signal was detected on sections incubated with non-immune IgGs in place of primary antibodies (data not shown).
doi:10.1371/journal.pone.0016770.g008
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embedded in OCT and stored at 280uC. Tissues were sectioned

at 5 mm and mounted on poly-lysine coated slides (VWR

International Ltd). For paraffin sections, tissues were fixed with

10% neutral buffered formalin (pH 7.4) for 16–24 h and were

sectioned at 4 mm. For routine histology examination, kidney and

liver paraffin sections were subjected to periodic acid-Schiff (PAS)

and hematoxylin and eosin staining, respectively.

X-gal histochemistry
For whole-mount staining, fresh kidneys and livers were

harvested from 5-13 RARE-hsp68-lacZ transgenic mice and 1–7

wild-type mice. Kidneys with capsule removed, and livers were then

cut transversely and fixed for 10 min with phosphate buffered saline

(PBS) containing 2% paraformaldehyde and 2 mM MgCl2 (pH 7.4)

then rinsed with 2 mM MgCl2 in PBS twice before being

transferred into X-gal staining solution containing 20 mM

K3Fe(CN)6, 20 mM K4Fe(CN)6.3H2O, 2 mM MgCl2, 0.01%

sodium deoxycholate, 0.02% tergitol NP-40 and 1 mg/ml X-gal

substrate (Promega UK Ltd, Southampton, UK) in PBS (pH 7.4),

and incubated for 2–48 h at 37uC till desired staining developed.

The most representative tissues were selected for photomicrogra-

phy. For microscopic examination on b-gal localization, OCT

embedded tissues from 1- to 8-week-old mice were first sectioned

then post-fixed in ice-cold 10% formalin in PBS (pH 7.4) for

10 min. After washing with 3 changes of PBS, 5 min each wash, the

cryosections were stained at 37uC with X-gal staining solution

containing 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6.3H2O, 2 mM

MgCl2 and 1 mg/ml X-gal substrate in PBS (pH 7.4) for 7 h and

25 h for kidneys and livers, respectively, and then washed with 2

additional changes of PBS. Kidney and liver cryosections were then

counterstained with PAS and nuclear fast red respectively, before

being coverslipped with GlycergelH (Dako UK Ltd, Ely, UK). For

microscopic examination on b-gal localization of 1- and 2-day-old

tissues, X-gal stained whole-mount tissues were fixed in zinc

formalin (pH 7.4) for 16 h and embedded in paraffin wax, then

sectioned at 4 mm and counterstained with PAS and hematoxylin.

Immunofluorescence
Immunostaining for b-gal was performed on kidney paraffin

sections. Sections were dewaxed in 3 changes of xylene, 2 min

each, and rehydrated in graded alcohol. Antigen retrieval was

performed by pressure cooking slides with 0.01 M citrate buffer at

pH 6 for 3 min at full pressure. Sections were then cooled to room

temperature and incubated with 0.1 M glycine in PBS for 20 min

at room temperature to reduce fixative induced autofluorescence

followed by PBS washing for 5 min. Sections were next incubated

with 1% bovine serum albumin (BSA) for 2 h at room temperature

before incubation with primary antibodies for 1 h at room

temperature. The primary antibodies used were: chicken anti-b-

gal (dilution 1:200; Abcam Inc., Cambridge, UK), rabbit anti-

aquaporin 2 (AQP2; dilution 1:200; Milipore UK Ltd, Watford,

UK), rabbit anti-Tamm-Horsfall protein (THP; dilution 1:100;

Insight Biotechnology Ltd, Wembley, UK), goat anti- vacuolar

H+-ATPase B1 (V-ATPase; dilution 1:500; Insight Biotechnology

Ltd), goat anti-calbindin D28K (CD28K; dilution 1:200; Insight

Biotechnology Ltd) and rabbit anti-RARb2 (dilution 1:200; Insight

Biotechnology Ltd). Non-immune goat, rabbit and chicken IgGs

(Insight Biotechnology Ltd) served as negative controls for

specificity of primary antibodies. Sections were then incubated

with appropriate secondary antibodies (dilution 1:1000) conjugat-

ed with Alexa Fluor 488, Alexa Fluor 555 or Alexa Fluor 568

(Invitrogen Ltd, Paisley, UK). Cell nuclei were counterstained with

49,6-diamidino-2-phenylindole (DAPI) whenever necessary, before

being coverslipped with ProLongH Gold (Invitrogen Ltd). Double

immunofluorescence was performed sequentially with overnight

1% BSA incubation at 4uC or 2 h at room temperature before

each primary antibody incubation.

Microscopy
Histological examination was performed on a Nikon Eclipse

TE2000-S epifluorescence microscope equipped with a standard

RGB filter wheel (Nikon Instruments Europe B.V., Amstelveen,

The Netherlands). Images were captured with a DXM1200F

Nikon digital camera (Nikon UK Limited, Surrey, UK), and

processed and merged with Adobe Photoshop (Adobe Systems

Europe Ltd, Uxbridge, UK).

Statistics
Results are shown as Mean6SE. Statistical significance among

multiple groups was evaluated with one-way analysis of variance

and p,0.05 was taken as a statistically significant difference.

Supporting Information

Figure S1 X-gal assay on kidney and liver of 3-week-old
and neonatal RARE-hsp68-lacZ transgenic and wild-type
mice. A. Photograph of freshly stained 3-week-old tissues revealed

no endogenous X-gal signal in the kidneys of wild-type mice. TG-

K and WT-K: kidney of transgenic and wild-type mice

respectively; TG-L: liver of transgenic mice. Liver of wild-type

mice did not show any signal (data not shown). Bi. X-gal signal

(blue) was not detected in livers of 2-day-old transgenic (TG) and

wild-type (WT) mice. In kidneys of WT mice, endogenous X-gal

signal was localized to the inner cortex/outer medulla region while

kidney of TG mice showed a distinct staining pattern. TG-K and

WT-K: kidney of transgenic and wild-type mice respectively; TG-

L and WT-L: liver of transgenic and wild-type mice respectively.

Bii. Left panel: In kidneys of 2-day-old transgenic mice, X-gal

signal (blue) was observed in the ureteric bud-derived collecting

ducts and the tips of ureteric bud (arrow). Original magnification

was 100 x. Middle and right panels: X-gal signal (blue) was

localized to the tips of ureteric bud (black arrow) and collecting

ducts in the kidney cortex and medulla. No X-gal signal was

observed in the proximal tubules (blue arrow) and glomeruli (red

arrow). Original magnification was 400 x.

(TIF)

Figure S2 X-gal assay on liver cryosections of RARE-
hsp68-lacZ transgenic (TG) and wild-type (WT) mice. No

structural specific or cell-specific X-gal signal was detected in livers

of both TG and WT mice in all age groups. Shown are liver

sections from 1-, 5- and 8-week-old mice. Original magnification

was 100 x.

(TIF)

Figure S3 Immunohistochemistry of b-galactosidase (b-
gal) and RARb2. In 1-week-old kidney, b-gal signal was

observed in tubules that stained positive for RARb2 receptors

(arrow). Original magnification was 400 x. No specific signal was

detected on sections incubated with non-immune IgGs in place of

primary antibodies (data not shown).

(TIF)
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