
Exploring the Capabilities of Support Vector Machines in
Detecting Silent Data Corruptions

Omer Subasi,1 Sheng Di,3 Leonardo Bautista-Gomez,2 Prasanna Balaprakash,3

Osman Unsal,2 Jesus Labarta,2 Adrian Cristal,2,4 Sriram Krishnamoorthy,1

Franck Cappello3
1Pacific Northwest National Laboratory, Washington, USA

2Barcelona Supercomputing Center, Spain
3Argonne National Laboratory, Lemont, Illinois, USA

4IIIA - Artificial Intelligence Research Institute CSIC - Spanish National Research
Council, Spain

{omer.subasi, sriram}@pnnl.gov
{leonardo.bautista, osman.unsal, jesus.labarta, adrian.cristal}@bsc.es

{sdi1, cappello, pbalapra}@anl.gov

Abstract

As the exascale era approaches, the increasing capacity of high-performance comput-

ing (HPC) systems with targeted power and energy budget goals introduces significant

challenges in reliability. Silent data corruptions (SDCs), or silent errors, are one of

the major sources that corrupt the execution results of HPC applications without being

detected.

In this work, we explore a set of novel SDC detectors - by leveraging epsilon-

insensitive support vector machine regression - to detect SDCs that occur in HPC

applications. The key contributions are threefold. (1) Our exploration takes tempo-

ral, spatial, and spatiotemporal features into account and analyzes different detectors

based on different features. (2) We provide an in-depth study on the detection abil-

ity and performance with different parameters, and we optimize the detection range

carefully. (3) Experiments with eight real-world HPC applications show that support-

vector-machine-based detectors can achieve detection sensitivity (i.e., recall) up to 99%

yet suffer a less than 1% false positive rate for most cases. Our detectors incur low per-

formance overhead, 5% on average, for all benchmarks studied in this work.

Keywords: Silent Data Corruptions, Support Vector Machines, HPC Applications.

Preprint submitted to Journal of LATEX Templates January 24, 2018

© 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

The typical future exascale high-performance computing (HPC) system is expected

to have one billion processing elements. This increase in system complexity coupled

with the associated thermal and power challenges is expected to increase error rates.

Thus, reliability is a serious concern advancing to the exascale era. Silent data cor-5

ruptions (SDCs) or silent errors are one of the most significant problems stymieing the

reliability of HPC applications running on such systems. As opposed to fail-stop errors,

silent errors are hazardous because they cannot be detected by the underlying hardware:

the application data and results are corrupted without any indication to users. There-

fore, effective and efficient detection of SDCs is critical to guarantee the correctness of10

the HPC application results.

In this work, we explore a set of novel and efficient SDC detectors by leveraging

machine learning. In particular, we use a support vector machine (SVM) supervised

learning method to detect SDCs. SVMs are effective because their non-linear nature

detects complex SDCs. In this work, we undertake a design space exploration of SVM15

regression, namely spatial, temporal, and spatiotemporal regression. Our strategy fo-

cuses on analyzing the different features of each set of observed data, involving the

following two critical steps: (1) predicting the values for each data point1 by using a

dynamic ε2 in Vapnik’s loss function [1] and (2) checking the observed value for each

data point to see if it falls inside the confidence value range.20

To design and implement our data analytic detectors, we have to resolve two sig-

nificant challenges. On the one hand, designing an effective data prediction algorithm

based on SVM is challenging, especially because of the data dynamics. In particular,

we observe that impact error bounds correspond to the insensitivity of the loss func-

tion for an SVM, and the correspondence is diverse because the impact error bound25

1The user annotates state variables (e.g., density, pressure) such that our detectors check them at each

application iteration (Section 3).
2This parameter refers to the insensitivity, meaning the amount of deviation tolerated by the SVM during

the regression process.

2

changes dynamically at runtime. On the other hand, devising an appropriate detection

range that achieves both a low false positive rate and high recall require a careful trade-

off. Moreover, the detection range formulation should be generic enough to fit as many

HPC applications as possible.

In this work, we devise a set of novel SDC detectors - with extensive evaluation30

over five different error distributions and eight real-world HPC applications. Our main

contributions are summarized as follows:

• We design dynamic, online, SVM-based SDC detectors for HPC applications.

To the best of our knowledge, this is the first machine-learning-based framework

leveraging temporal, spatial and spatiotemporal SVM regression to detect SDCs35

for HPC applications. The predictors incorporate different features while main-

taining a dynamic loss function.

• We provide an in-depth study of the detection ability and performance with dif-

ferent parameters, and we optimize the detection range carefully.

• We implement our detectors library supporting a wide range of HPC applica-40

tions. It can be downloaded from [2].

• We evaluate our detectors using eight real-world HPC applications with five dif-

ferent error distributions and compare our detectors with the state-of-the-art SDC

adaptive impact-driven (AID) detector [3] and multivariate interpolation [4]. Ex-

periments show that our detectors can achieve detection sensitivity (i.e., recall)45

up to 99% yet suffer a less than 1% false positive rate for most cases. Our de-

tectors also incur low performance overhead, 5% on average, for all benchmarks

examined in the work.

We proposed a novel SDC detector based on spatial evolution of data in a prior

study [5]. This work extends the prior study with temporal and spatiotemporal regres-50

sion. It analyzes the effect of temporal and spatiotemporal data in detecting SDCs.

The rest of the paper is organized as follows: in Section 2, we present the back-

ground for this study. In Section 3, we discuss the design of our detectors in detail. In

Section 4, we evaluate our detectors in terms of detection and prediction capability and

3

performance overheads. In addition, we compare our detectors’ performance to that of55

the AID algorithm and multivariate interpolation. Section 5 describes the state of the

art in SDC mitigation research, and Section 6 includes concluding remarks.

2. Background

This section provides an overview of SVMs, which are the core technique used in

our solution. We then continue with data prediction types and discuss the impact-driven60

SDC detection, which is the fundamental detection model we employ. Finally, we

close the section with an overview of the AID algorithm and multivariate interpolation

because they are the most related to our work.

2.1. SVMs: An Overview

SVMs were originally designed for pattern classification problems by Vapnik and65

coworkers [1], and they have been widely applied to other fields for function approx-

imation signal processing, regression, and time series prediction [6, 7, 8, 9]. The key

feature of SVMs is that they leverage the structural risk minimization principle to find

a decision function with a good generalization capacity. The solution to a particular

problem depends only on a specific subset of the training data points called support70

vectors [1]. Figure 1 shows the difference between SVMs and other linear classifiers.

SVMs construct a maximum margin hyperplane, whereas linear classifiers attempt to

find some hyperplane. As a result, SVMs are able to reach a unique and global optimal

solution as opposed to other linear classifiers.

To handle nonlinearity, a technique called kernel trick is applied in SVMs. The75

points in the input space are mapped to a high-dimensional feature space via nonlinear

mapping, where they are linearly separable and the optimal hyperplane is constructed

in the feature space, as illustrated in Figure 2, where ϕ refers to some kernel function.

Figure 3 shows the basic architecture of SVMs and how they work3. The input

x vector and the support vectors xi are mapped by Φ into a feature space. Then, the80

dot products are computed using a proper kernel function. All dot products are then

3This example is adopted from Smola and Schölkopf [10].

4

Figure 1: SVM classification compared with other linear classifiers

Figure 2: SVM kernel trick to tackle a nonlinear data problem

Figure 3: SVM architecture. The input x vector and the support vectors xi (which are digits in this example)

are mapped by Φ into a feature space where dot products are computed. Kernel k is used in practice to

compute the dot products. The results are linearly combined by weights wi, which are found by solving a

quadratic program. Finally, the sign function σ(Σ) = sign(Σ) is used to classify the input x vector.

5

linearly combined by the weights, which are computed by solving a quadratic program

that finds the optimal hyperplane. Finally, the sign of the linear combination (which

is computed by the weights found in the previous step) becomes the class of the input

vector x.85

SVMs can also be used for regression problems, such as ε-insensitive SVM regres-

sion. The basic idea involves fitting a function to the training data where deviations be-

low ε are tolerated. Slack variables are often introduced to make the problem tractable

or handle noisy/inseparable data [1].

As follows, we list four key properties of SVMs and compare them to other tech-90

niques. (1) The first property of a SVM is its duality property: the data only appear in

dot products both in the decision function and training algorithm. This enables SVMs

to operate in higher dimensions without explicit transformation and to use the afore-

mentioned kernel trick to tackle the nonlinearly separable data as opposed to linear

techniques. (2) The second property relates to the kernel trick technique, where the95

implicit mapping is taken rather than the explicit computation of the kernel itself. This

prevents costly processing of high-dimensional data. (3) The third property of SVMs

is the ability to control capacity by maximizing the margin. This property mitigates

the overfitting problem that exists in other techniques, such as neural networks. (4)

The forth property guarantees the convergence of the SVM algorithm. SVMs have the100

convexity property, which makes them solvable in polynomial time. This property al-

lows SVMs to effectively avoid the local minimum solution, guaranteeing the global

optimum of the solution.

The reader is advised to refer to [1] and [11] for detailed general discussions about

SVMs, and [10] for SVM regression.105

2.2. Temporal vs. Spatial Prediction

Data prediction can be categorized into two classes. In temporal prediction, previ-

ous time step snapshots of data are used to make a prediction. In contrast, in spatial

prediction only the neighboring data points are used to make a prediction. A third class,

termed spatiotemporal, forms by considering spatial and temporal prediction together.110

Figure 4 shows the techniques. Specifically, it depicts the spatial and temporal SVM-

6

Figure 4: Temporal (temporal SVM predictor) versus spatial prediction (spatial SVM predictor)

based predictors. In the spatial SVM predictor, neighboring points are used to obtain

an SVM model, which is then used to predict a value for the target point. In contrast,

the temporal SVM predictor leverages application snapshots of previous time steps.

2.3. Impact-Driven SDC Detection115

Research by Di and Cappello [3] demonstrates that not all SDCs may impact the

application execution results significantly, and the primary focus should be on the in-

fluential SDCs. Di and Cappello gave an in-depth analysis of the impact of SDCs on

HPC execution results, and revealed that the impact of SDCs can be characterized by

an impact error bound, which is defined as the maximum ratio of the data value change120

between adjacent time steps to the global value range size for every data point in a

snapshot. As long as the data changes incurred by SDCs are within such an impact

error bound, the maximum deviation of the data values (compared to the original fault-

free results) will be limited to only 3% of the global value range for most of cases. In

particular, the experiments with real-world HPC applications (as shown in [3]) demon-125

strated that the impact error bound = 0.00078125 (or 0.0001 some times) is enough for

detecting SDCs for most applications. In this work, we leverage such an impact error

bound to devise our SVM-based detectors.

2.4. AID: Adaptive Impact-Driven SDC Detector

AID [3] is an outstanding SDC detector, which allows different processes to dy-130

namically select the best-fit curve fitting models with minimum prediction errors based

on their runtime data. The curve fitting models include last-state, linear, and quadratic.

The AID algorithm incorporates types and periodically selects the best curve fitting

7

with the lowest prediction error, and the selection process is conducted periodically

(every 20 iterations as set in the experiments). The detection is performed by maintain-135

ing a normal value range that is based on the user-specified impact error bound and the

dynamically aggregated value range for data points. If the observed value for any data

point falls outside the normal value range, the corresponding time step will be treated

as an SDC step and correction operation (such as restarting the application from one

previous checkpoint file) will be triggered accordingly. Otherwise, the execution will140

not be interrupted.

2.5. Multivariate Interpolation

We now examine the multivariate interpolation method proposed by Bautista-Gomez

and Cappello [4]. Multivariate interpolation is a mathematical technique used for func-

tions with more than one variable. The interpolation itself can be implemented with

different techniques. Bautista-Gomez and Cappello [4] chose linear interpolation for

simplicity. For three-dimensional (3D) space, for example, linear interpolation can be

performed by

f(x, y, z) = f(xa, y, z) + (f(xb, y, z)− f(xa, y, z))×
x− xa
xb − xa

.

For any data point in a snapshot, its value will be predicted by using its neighboring

points, and the predicted value will also be compared with a normal range for detect-

ing possible anomalies. In [4], the normal range is acquired at the beginning of the145

execution by estimating the maximum error, which then is used until the end of the

execution.

3. Dynamic Online SVM-Based SDC Detectors

In this section, we first present the formalization of our predictors. Then, we discuss

our detection range design and detail its implementation.150

3.1. Formalization of The SVM Predictors

Let {(x1, y1), ...(xn, yn)} ⊂ X × < be training data, where X denotes the space

of input patterns and X = <d for some dimension d. In our ε − SV regression [1],

8

the aim is to approximate a function f(x) such that it deviates at most from targets yi

while being as flat as possible. Therefore, we set ε = θIr
j
i , where θI is the impact

error bound of the application under consideration and rji is the estimated value range

for the ith input pattern in the jth iteration of the application. In our SVM, the target

function takes the conventional form

f(x) = 〈w, x〉+ b, w ∈ X, b ∈ <, (1)

where 〈w, x〉 denotes the dot product inX . Furthermore, to tackle nonlinear regression

problem, a mapping Φ, called a kernel, is introduced such that the patterns are mapped

into some feature space F where they are linearly separable:

Φ : X → F. (2)

The SVM-based prediction can be formalized as follows:

MINIMIZE
1

2
‖ w ‖2 +γ

n∑
i=1

(κiξi + κ∗i ξ
∗
i) (3)

subject to

yi − 〈w,Φ(x)〉 − b ≤ θIrji + κiξi (4)

〈w,Φ(x)〉+ b− yi ≤ θIrji + κ∗i ξ
∗
i (5)

ξ, ξ∗ ≥ 0, (6)

where γ is the regularization parameter, κi and κ∗i are criticality coefficients, and ξi and

ξ∗i are slack variables. The regularization parameter determines the trade-off between

the flatness of f and the amount of deviations larger than θIr
j
i that is tolerated. When155

provided, the criticality coefficients convey the relative vulnerabilities of variables. The

higher the coefficient, the higher the penalty. When not provided, all coefficients are

assumed to be one. The slack variables can have various purposes. They can be used

to cope with the infeasibility of the optimization. They can also be used for noisy or

inseparable data.160

Vapnik’s ε-insensitive loss function [1] is

|ξ|ε :=

0, if |ξ| ≤ ε

|ξ| − ε, otherwise.
(7)

9

Table 1: Training Set with respect to Regression Type and Size

Size Spatial Temporal Spatiotemporal

1 xi−1 xti−1 -

2 xi−1, xi+1 xti−1 , xti−2 xi−1, xti−1

4 xi−1, xi+1, xi−2, xi+2 xti−1
, xti−2

, xti−3
, xti−4

xi−1, xi+1,xti−1
, xti−2

Our key observation is that the impact error bounds correspond to the ε, the insensitiv-

ity, in the loss function of an SVM. That is, the impact error bounds specify how much

an SVM can tolerate during the process of regression. Hence, the loss function of our

SVM predictors is

|ξ|θIrji :=

0, if |ξ| ≤ θIrji

|ξ| − θIrji , otherwise.
(8)

Equation (3) presents a convex quadratic problem that is solved by Lagrangian

multipliers and Karush-Kuhn-Tucker (KKT) conditions [12] in its dual form. For each

state variable specified to be protected, Equation (3) is solved at each iteration of the

application to make a prediction.

The feature vectors and training set of our predictors depend on the type of regres-165

sion. If spatial regression is performed, then the training set and feature vector consist

of the values of the neighboring data points. If temporal regression is performed, then

the training set and feature vector consist of the past data values of the target point. If

spatiotemporal regression is performed, then the training set and feature vector consist

of both the values of the neighboring data points and the past data values of the target170

point. Table 1 shows the feature vectors of our detectors, i.e., the data points used in

the training set with respect to the regression type and training sizes.

Finally, we examine the admissibility of kernel functions for SVMs and the kernels

used in our design. Mercer’s condition [13] provides a necessary and sufficient condi-

tion for a kernel to be admissible so that the input patterns are mapped to the feature175

space:

Mercer’s Theorem. Assume k ∈ L∞(X2) such that the integral operator Tk : L2(X)→

10

L2(X)

Tkf(.) :=

∫
X

k(., x)f(x)dµ(x) (9)

is positive, where µ denotes a measure onX such that µ(X) is finite and supp(µ) = X .

Let ψj ∈ L2(X) be the eigenfunction of Tk associated with the eigenvalue λj 6= 0

normalized such that ‖ ψj ‖L2
= 1, and let ψj denote its complex conjugate. Then:

1. (λj(T))j ∈ `1180

2. k(x, x,) =
∑
j∈N λjψj(x)ψj(x

,) holds for almost all (x, x,), where the series

converges absolutely and uniformly for all (x, x,).

Less formally, the theorem says that if the following holds, then k(x, x,) is admis-

sible, meaning it can be written as a dot product in some feature space:∫
X×X

k(x, x,)f(x)f(x,)dxdx, > 0 (10)

for all f ∈ L2(X).

The following polynomial and radial basis functions (RBF) are examples for ad-

missible kernels:

k(x, x,) = (〈x, x,〉+ c)p

k(x, x,) = e−
‖x−x,‖2

2σ2 .

Even though sigmoid kernels do not satisfy Mercer’s conditions, they work well in

practice:

k(x, x,) = tanh(ϑ+ ν〈x, x,〉).

We explore the effect of different kernels in our design. Specifically, the kernels we

study are linear (p = 1, c = 0), polynomial (p = 2, c = 0), RBF (σ = 1), and sigmoid185

(ϑ = 0, ν〈x, x,〉 = 〈x, x,〉).

3.2. The Formalization of Detection Range and Algorithm

Our detection model is formalized with the parameters in Table 2. The detection

radius ρ(t) is defined as

ρ(t) := η(t)θr(t) + feedback(t− 1), (11)

11

Table 2: Detection Model Parameters

Parameter Description

X(t) Predicted value by the predictor at time t

V (t) Observed value of the data point at time t

feedback(t− 1) Max prediction error estimate at time t− 1

η(t) Number of iterations with false positives at time t

θ Relative impact error bound of the application

r(t) Range of the data point at time t

where feedback(t − 1) is the maximum prediction error at time step t−1 based on

second-order (quadratic) prediction and r(t) = max(V (t))−min(V (t)).

The rationale behind the design is that the detection range is supposed to be en-190

larged as the application experiences a time step with false positives - in order to min-

imize false positives. In addition, θr(t) is the impact error bound that determines if

the SDCs will lead to a significant impact on the execution results. The design of the

feedback term feedback(t−1) is to adapt to possibly sharp data changes, which will

lead to large prediction errors accordingly.

θr

real data value

V(t)

Predicted

data

value X(t)

ε

Predicted data value

Real data value

ε Prediction error

θr Impact error bound

Impact error bound

ρ detection radius

ρ

θr

Figure 5: Detection model

195

Figure 5 illustrates our detection model. At each iteration, our detector checks a

data point based on this model. The normal data value range is defined as [X(t) −

ρ(t), X(t)+ρ(t)]. The detection is performed by checking whether the observed value

V (t) falls in this normal range.

Algorithm 1 summarizes our detection algorithm for a single process at each itera-200

tion in the execution. For each data value (state variables), the value range is aggregated

12

Algorithm 1: SVM-Based Detector
Data: Current step t, data value V (t), relative error bound θ

Result: Boolean indicating whether SDC is present

1 begin

2 Compute range r

3 isDetected← false

4 SVM SetEpsilon(θ, r)

5 SVM Train()

6 X(t)← SVM Predict(t)

7 ρ(t)← calculateRadius(feedback(t), η(t), θr)

8 isDetected← checkInRange(ρ(t), X(t), V (t))

9 if (isDetected) then

10 Trigger some operation for data recovery.

11 end

12 end

among processes, and the epsilon parameter of the SVM is initialized with the relative

error bound θ and value range r (note that the impact error bound is θr). Then, the

SVM is trained using data points in the dataset according to the type of spatial, tem-

poral, and spatiotemporal regression. The prediction of the SVM and the computed205

radius is used to calculate the normal range. The observed value for each data point is

checked to determine if it is in the normal range. If not, the current time step will be

considered with SDCs.

3.3. Implementation

We implement our detectors following a design based on LibSVM [14]. We in-210

tegrate our detectors with the Fault Tolerance Interface (FTI) library [15] such that

application users are allowed not only to detect the SDCs, but also to correct the errors

by checkpoint/restart. Our implementation provides both C and Fortran interfaces so

a broad range of HPC applications can use the detector. The library is available for

download from [2]. To use our detectors, users must follow four simple steps where215

they annotate their applications: (1) initialize the detectors by calling SDC Init(), (2)

specify the state variables to protect by calling SDC Protect(var,ierr), (3) annotate the

13

execution iterations by calling SDC Snapshot() in the main loop, and (4) release the

memory by calling SDC Finalize() in the end.

4. Evaluation220

Table 3: Applications Used in Evaluation
Name Description

Blast2 [16] Strong shocks and narrow features

SodShock [17] Sodshock tube for testing compressible code’s ability with shocks and contact discontinuities

DMReflection [16] Double Mach reflection: evolution of an unsteady planar shock on an oblique surface

RHD Sod [18] Relativistic Sod Shock-tube: involving the decay of 2D-fluids into 3D-elementary wave structures

RHD Riemann2D [19] Relativistic 2D Riemann: exploring interactions of four basic waves consisting of shocks, etc.

BrioWu [20] Coplanar magneto-hydrodynamic counterpart of hydrodynamic Sod problem

OrszagTang [21] Simple 2D problem that has become a classic test for magnetohydrodynamics (MHD) codes

Cellular [22] Burn simulation: cellular nuclear burning problem

This section details the experimental evaluation of our detectors. Our evaluation

is twofold. First, we evaluate the false positive rate and detection sensitivity (recall)

of our detectors. We additionally evaluate the effect of different parameters on these

metrics. Moreover, we compare the detection results of our detectors with that of the

AID algorithm [3] and multivariate interpolation [4]. Second, we evaluate the detection225

overhead of our detectors. We discuss the experimental setup first then present the

experimental results.

 0 10 20 30 40 50 60 70

P
D
F

Number of Bits in Error

Beta 5-1

Beta 1-10

Normal 32-4

Beta 0.5-0.5

Uniform

Figure 6: Distributions used in the experimental evaluation

14

4.1. Experimental Setup

We perform our experiments using the Fusion [23] cluster at Argonne National Lab-

oratory. Table 3 shows the applications employed in our evaluation from the FLASH230

package [24]. For each application, we protect state variables, which are checked at

every main iteration of the applications. When assessing detection sensitivity, we use

the relative impact error bounds recommended in [3]. In particular, we use 0.0001

for Blast2 and 0.00078125 for the other seven benchmarks. We perform error injec-

tion according to the error distribution chosen where injections are performed to the235

random bit positions of state variables in sensitivity analysis. We do not use any crit-

icality coefficients, meaning we treat all state variables to have the same significance.

In fault injection experiments, each single case is repeated 10 times, and the averages

are reported.

Because we have no information about how silent errors will exhibit themselves,

we use five different error distributions (shown in Figure 6) to cover reasonable sce-

narios that can occur in the exascale era and to assess our detectors’ performance. In

Figure 6, the number of bits in the x-axis is 64, and it shows the probability density

function (PDF) for a 64-bit word. The exact number of errors injected depends on the

distributions and is injected randomly in a word after the number is set.

Beta Distributions. Beta distribution is typically used in control systems and popula-

tion genetics. This class provides distributions that fit possible scenarios that can occur

in the exascale time frame by adjusting shape parameters. Formally the PDF of the

beta distribution is defined for 0 ≤ x ≤ 1 and shape parameters α and β as

f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (12)

where Γ is the gamma function that can be viewed as the extension of the factorial

function over complex numbers. Formally, it can be defined by the integral (except

nonpositive integers)

Γ(t) =

∫ ∞
0

xt−1e−xdx. (13)

We use three settings with the beta distributions (Figure 6). Beta distribution with

shape parameter α = 1 and β = 10 represent the case where the PDF value decreases

15

with the number of bits corrupted. This setting represents the case where single-bit

errors are more likely than multi-bit errors and the probability of error decreases as the

number of bits in error increases. In contrast, α = 5 and β = 1 represent the case where

the PDF value increases with the number of bits corrupted. This case can be justified

by the postulation that single- or double-bit flip errors are likely to be detected by the

underlying hardware ECCs while multi-bit flip errors cannot be detected effectively by

hardware ECCs. α = 0.5 and β = 0.5 represent another possible case in which single-

bit flip errors or all-bit flip errors are more common than other types of bit flip errors.

This case is included to reflect those with erratic behavior.

Normal Distribution. The central limit theorem implies that the number of errors

should follow a normal distribution given that the flip event on each bit follows an

independent and identical distribution. Therefore, we include normal distribution to

account for the case where errors are independent and identically distributed. Formally,

the normal distribution is defined with the PDF as follows:

f(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (14)

where µ is the mean and σ is the variance of the distribution. Without loss of generality,

µ and σ are set to 32 and 4 respectively in our evaluation.

Uniform Distribution. Another possible case is that the number of bits flipped follows

a uniform distribution, where the PDF is defined over an interval [a, b] as

f(x) =
1

b− a
. (15)

Because we use double precision in our experimentation, the interval in our evaluation240

is [1, 64]. This distribution represents the scenario that on the unprotected hardware,

such as logic unit, any number of bit flips can occur. Hence, a uniform distribution on

the number of bit flips can be assumed.

4.2. Experimental Results

Before presenting the results, we define the relevant concepts: prediction error,245

false positive rate, and recall. Prediction error is the difference between the predicted

value and the observed value. The false positive rate is the ratio of the number of false

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) Spatial Beta5-1 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) Temporal Beta5-1 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) Spatiotemporal Beta5-1 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) Spatial Beta1-10 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) Temporal Beta1-10 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(f) Spatiotemporal Beta1-10 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(g) Spatial Normal FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(h) Temporal Normal FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(i) Spatiotemporal Normal FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(j) Spatial Beta0.5-0.5 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(k) Temporal Beta0.5-0.5 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(l) Spatiotemp Beta0.5-0.5 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(m) Spatial Uniform FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(n) Temporal Uniform FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(o) Spatiotemporal Uniform FP

Figure 7: False positive rate results for our SVM detectors

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) Multiv. Beta 5-1 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) Multiv. Beta 1-10 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) Multiv. Normal 32-4 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) Multiv. Beta 0.5-0.5 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) Multiv. Uniform FP

Figure 8: False positive rate results for multivariate interpolation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) AID Beta 5-1 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) AID Beta 1-10 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) AID Normal 32-4 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) AID Beta 0.5-0.5 FP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) AID Uniform FP

Figure 9: False positive rate results for AID

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) Spatial Beta5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) Temporal Beta5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) Spatiotemporal Beta5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) Spatial Beta1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) Temporal Beta1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(f) Spatiotemporal Beta1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(g) Spatial Normal Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(h) Temporal Normal Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(i) Spatiotemporal Normal Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(j) Spatial Beta0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(k) Temporal Beta0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(l) Spatiotemp Beta0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(m) Spatial Uniform Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(n) Temporal Uniform Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(o) Spatiotemporal Uniform Re.

Figure 10: Recall results for our SVM detectors

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) Multiv. Beta 5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) Multiv. Beta 1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) Multiv. Normal Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) Multiv. Beta 0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) Multiv. Uniform Re.

Figure 11: Recall results for multivariate interpolation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) AID Beta 5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) AID Beta 1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) AID Normal Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) AID Beta 0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) AID Uniform Re.

Figure 12: Recall results for AID

20

positive iterations (iterations in which at least one false positive occurs) to all iterations.

Recall is the number of injected errors over the number of detected errors.

4.2.1. False Positive Rate and Sensitivity250

Figures 7 8, and 9 show the cumulative distribution functions (CDFs) of the false

positive rate (depicted as FP-rate) under our spatial, temporal, and spatiotemporal de-

tectors; multivariate interpolation; and AID. The results are collected by running appli-

cations on 128 processes. We report results where the training size is 2 (the effect of the

training size will be discussed later). The false positive rate is defined as the number255

of false positive iterations (iterations that have at least one false positive detected) over

the total number of iterations. The false positive rate is quite useful in assessing the

precision of a detector. As shown in the figures, our detectors outperform multivari-

ate interpolation and achieves false positive rates close to those of AID. In particular,

except for the Beta 5-1 distribution, our detectors achieve a false positive rate of less260

than 1%. The Beta 5-1 distribution is to stress our detectors, and, even under stress, our

detectors achieve less than 2% false positive rate on average. Multivariate interpolation

performs poorly especially because of the overly large detection range. Although we

improved on the detection range presented in [4], it still exhibits a 4-17% false posi-

tive rate on average. Among our detectors, the spatiotemporal detector outperforms the265

temporal and spatial detectors because the prediction is done based on both time and

space information, which closely reflects the actual computation.

We propose using the spatial or spatiotemporal algorithm. The spatial algorithm has

0% memory cost and is on par with AID in terms of detector performance. Combined

with 5% performance overhead on average, our detector is lightweight and almost as270

efficient as AID. On the other hand, AID incurs up to 52% memory overhead due to

the need for retaining the past values. AID will be prohibitive for many applications,

whereas our solution does not have high memory or performance costs.

The spatiotemporal algorithm is our best-performing algorithm. Although it incurs

some memory penalty due to the single past snapshot, it is still more memory efficient275

than AID, which requires up to four past snapshots.

Figures 10 11, and 12 present the CDFs of the detection sensitivity (recall) for the

21

benchmarks for all detectors. The results are with 128 processes and training sets of

size 2. Recall is defined as the fraction of the true positives detected over all SDCs ex-

perienced/injected. Our spatial, temporal, and spatiotemporal detectors achieve greater280

than 90% and up to 99% recall as AID with error distributions other than Beta 1-10.

This distribution injects errors sparsely. As a result, the recall is lower than that of

other distributions. With this distribution, AID achieves 85% recall, and our detectors

achieve 79% on average. Multivariate interpolation achieves 77%-99% with Beta 5-1

and Beta 1-10 at the low and high end, respectively. The key reason that our detec-285

tors outperform multivariate interpolation is twofold: (1) more precise data prediction

and (2) more accurate detection range estimated. Among our spatial, temporal, and

spatiotemporal detectors, the recall performance is close to each other.

In our evaluation, we also study four different kernels: linear, polynomial with

degree 2, radial basis, and sigmoid functions for our SVM-based SDC detectors. Ac-290

cording to the results, no correlation exists between recall and the kernel type. Across

applications kernels can incur relatively high or low recall (we still recommend RBF as

it often achieves relatively high recall). However, this is not the case for the false posi-

tive rate. Sigmoid and polynomial kernels consistently lead to the lower false positive

rate. We suspect the reason is that data evolve nonhomogeneously among neighbors.295

Figure 13(a) shows the effect of the kernel type on the false positive rate (representative

figure).

When we evaluate the effect of the training size on the false positive rate and recall,

we cannot infer any relationship between false positive rate and training size based on

the experimental data. With recall, we find an almost universal correlation. Figure300

13(b) illustrates the effect of the training size on the recall (representative figure). No-

tably, when only one data point is used in the training set, the recall is lowest. Recall

is highest when two data point are used in the training set. Two data points seem to be

optimal, providing enough information while causing relatively low noise.

4.2.2. Prediction Errors305

Figure 14 shows the normalized prediction error of multivariate interpolation and

AID in comparison to our solution. Because the prediction errors of spatial, temporal,

22

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

Kernel Type

LINEAR
POLY2

SIGMOID
RBF

(a) Kernel Effect

 0.835

 0.84

 0.845

 0.85

 0.855

 0.86

 0.865

 0 1 2 3 4 5

R
e
c
a
l
l

Training Size

Size = 1
Size = 2
Size = 4

(b) Training Size Effect

Figure 13: Effect of kernel type and training size

and spatiotemporal detectors are close, we choose and show the prediction error of

the spatial detector. Specifically, the brown dotted curve refers to the difference of the

prediction error between AID and our detectors (negative value means AID leads to310

smaller prediction errors than our detectors). Meanwhile, the blue solid curve refers to

the difference of prediction errors between multivariate interpolation and our detectors

(negative value means multivariate interpolation leads to smaller prediction errors).

We include the comparison for one state variable and omit others for brevity. We see

that detectors’ behavior changes across benchmarks. No detector always outperforms315

others on prediction errors. Yet, in most cases, AID and our detectors outperform

multivariate interpolation. Results show that the deviation of prediction error between

AID and our detectors is larger than that of our detectors and multivariate interpolation.

23

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(a) Blast2

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(b) BrioWu

-4e+06

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(c) Cellular

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(d) DMReflection

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(e) OrszagTang

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(f) RHD Riemann

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(g) RHD Sod

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(h) Sod

Figure 14: Prediction error comparison

This reason is that the AID predictor only is based on the temporal evolution of data.

4.2.3. Computation Overheads320

We now present the computation time overheads of our detectors. As the perfor-

mance overhead does not vary much among different types of regression, we choose

and show the performance overheads of the spatial detector. We report the averages

over all processes. Figure 15 shows the computation time overheads (in percentages)

with 256, 512, and 1,024 cores. From 512 to 1,024 cores, we see a decreasing trend in325

overheads. When 1,024 cores are utilized, all overheads are less than 8% and are 5%

on average. From the results, we see that our solution is both lightweight and efficient.

24

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

Blast2

(a) Blast2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

BrioWu

(b) BrioWu

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

Cellular

(c) Cellular

 0

 1

 2

 3

 4

 5

 6

 7

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

DoubleMachReflection

(d) DMReflection

 4

 4.5

 5

 5.5

 6

 6.5

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

OrszagTang

(e) OrszagTang

 3

 4

 5

 6

 7

 8

 9

 10

 11

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

RHD_Riemann

(f) RHD Riemann

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

RHD_Sod

(g) RHD Sod

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

Sod

(h) Sod

Figure 15: Computation time overheads

From the figures, we can see that 512 core execution incurs the highest overhead in

some cases. We suspect that the execution overhead may be unstable to a certain extent

because it is related to the efficiency of the context switch in time slices and memory330

management.

4.2.4. Detailed Discussion

Support Vectors as Nonparametric Methods. As opposed to Gaussian pro-

cesses, SVMs are parametric methods whose parameters are usually optimized through

Bayesian techniques or cross validation. However, because the ε corresponds to the im-335

pact error bound and we choose not to perform any cross validation for the remaining

25

parameters in our case, such as regularization parameter γ or kernel parameter σ (both

are set to one), to be efficient, support vector regression has essentially become a non-

parametric method achieving good performance. On mission-critical situations, some

computation cost can be sacrificed, and cross validation can be performed for the re-340

maining parameters. We will investigate parameter optimization as future work.

Case with Sigmoid Kernels. As discussed by Schölkopf [25], choosing the appropri-

ate capacity control is more important than selecting the type of kernels used in support

vector learning. However, the performance of sigmoid kernels cannot be overlooked.

Experimental data show that when sigmoid kernels are used, the maximum prediction345

error (less variance) is lower relative to that of the other kernels. Consequently, the

false positive rate is relatively lower.

5. Related Work

Research on SDC mitigation can be categorized mainly into three different cate-

gories: runtime analysis techniques, replication of computation, and algorithm-based350

fault tolerance (ABFT) techniques.

Runtime data analysis recently has gained attention in the HPC community. Stud-

ies [26, 27, 28] investigate and compare different prediction methods, such as linear

curve fitting or autoregressive moving average (ARMA) models, to detect SDCs. They

convert the problem of detecting SDC into a next-step prediction problem. Sharma et355

al. [29] use temporal features of data (in addition to spatial features) and provide a

tailored SDC detector for stencil applications, where they use SVMs as a linear func-

tion approximator. As a spatial technique, spatial SVM detector (SSD) [30] incurs low

memory cost while having low computation overhead. The Sirius [31] is a neural-

network-based offline SDC detection tool. Training is performed offline and thus Sir-360

ius fundamentally differs from online techniques. Offline techniques are limited by

the coverage of training datasets. On the memory side, Subasi et al. [32] propose a

hardware-accelerated cyclic redundancy checks (CRCs)-based mechanism for SDCs

occurring in memory of HPC applications.

Replication-based schemes [33] can be deployed for mission-critical situations. In365

26

such contexts, double or triple redundancy of computation is performed to detect SDCs

by comparing the results of replica computations. The inherent drawback of the repli-

cation is its high power/energy cost. For example, with double redundancy, the cost

is 100%. Partial replication [34] has been proposed to decrease costs while providing

the required level of reliability. Although partial replication is promising, it may not370

be applicable for certain HPC systems, mainly because errors may not be reproducible

for some systems, such as heterogeneous systems.

ABFT [35, 36, 37] techniques are tailored solutions to specific numerical algo-

rithms. As a result, they are usually efficient. However, they fundamentally lack the

ability to apply to algorithms other than the specific numerical or algebraic kernel they375

are designed for.

Fail-stop errors are out of the scope of this study. This type of error usually is

mitigated by checkpoint/restart. For instance, FTI [38] is a scalable checkpoint/restart

scheme that offers multi-level checkpointing. Moreover, there are techniques specific

to programming models, such as [39], [40], [41], and [42], which target task-based380

computations.

6. Conclusion

In this work, we propose a set of novel lightweight SDC detectors based on online

support vector regression. Our detectors are built on spatial, temporal, and spatiotem-

poral training sets. We have analyzed the capability of our detectors compared with385

state-of-the-art detectors and note our detectors perform on par with them. In addition,

experimental evaluation shows that our detectors incur low performance overhead (5%

on average.). Moreover, experiments with eight real-world HPC applications show that

for most of the failure distributions and applications, detection sensitivity is high, up to

99%, and the false positive rate is low, less than 1% - except being under stress. Finally,390

our implementation supports a diverse range of HPC applications in both Fortran or C.

27

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Of-

fice of Science, Office of Advanced Scientific Computing Research under Award Num-

ber 66905, program manager Lucy Nowell. Pacific Northwest National Laboratory is395

operated by Battelle for DOE under Contract DE-AC05-76RL01830. In addition, this

material is based upon work supported by the National Science Foundation under Grant

No. 1619253, and also by the U.S. Department of Energy, Office of Science, Office

of Advanced Scientific Computing Research, program manager Lucy Nowell, under

contract number DE-AC02-06CH11357 (DOE Catalog project) and in part by the Eu-400

ropean Union FEDER funds under contract TIN2015-65316-P.

References

[1] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995.

[2] SDC detection framework and library. [online]. available at :

https://collab.cels.anl.gov/display/esr/aid.405

[3] S. Di, F. Cappello, Adaptive impact-driven detection of silent data corruption for

HPC applications, IEEE Transactions on Parallel and Distributed Systems

doi:10.1109/TPDS.2016.2517639.

[4] L. Bautista-Gomez, F. Cappello, Detecting and correcting data corruption in sten-

cil applications through multivariate interpolation, in: 2015 IEEE International410

Conference on Cluster Computing (CLUSTER), 2015, pp. 595–602.

[5] O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. S. Ünsal, J. Labarta,

A. Cristal, F. Cappello, Spatial support vector regression to detect silent errors in

the exascale era, in: IEEE/ACM 16th International Symposium on Cluster, Cloud

and Grid Computing, CCGrid 2016, Cartagena, Colombia, May 16-19, 2016,415

2016, pp. 413–424. doi:10.1109/CCGrid.2016.33.

URL https://doi.org/10.1109/CCGrid.2016.33

28

http://dx.doi.org/10.1109/TPDS.2016.2517639
https://doi.org/10.1109/CCGrid.2016.33
https://doi.org/10.1109/CCGrid.2016.33
https://doi.org/10.1109/CCGrid.2016.33
http://dx.doi.org/10.1109/CCGrid.2016.33
https://doi.org/10.1109/CCGrid.2016.33

[6] L. Cao, F. Tay, Support vector machine with adaptive parameters in financial time

series forecasting, IEEE Transactions on Neural Networks 14 (6) (2003) 1506–

1518. doi:10.1109/TNN.2003.820556.420

[7] T. Farooq, A. Guergachi, S. Krishnan, Chaotic time series prediction using knowl-

edge based green’s kernel and least-squares support vector machines, in: 2007

IEEE International Conference on Systems, Man and Cybernetics, 2007, pp. 373–

378. doi:10.1109/ICSMC.2007.4414023.

[8] T. Raicharoen, C. Lursinsap, P. Sanguanbhokai, Application of critical support425

vector machine to time series prediction, in: Proceedings of the 2003 Interna-

tional Symposium on Circuits and Systems, Vol. 5, 2003, pp. V–741–V–744 vol.5.

doi:10.1109/ISCAS.2003.1206419.

[9] Y. Fan, P. Li, Z. Song, Dynamic least squares support vector machine, in: The

Sixth World Congress on Intelligent Control and Automation, Vol. 1, 2006, pp.430

4886–4889. doi:10.1109/WCICA.2006.1713313.

[10] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics and

Computing 14 (3) (2004) 199–222. doi:10.1023/B:STCO.0000035301.

49549.88.

URL http://dx.doi.org/10.1023/B:STCO.0000035301.49549.435

88

[11] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3) (1995)

273–297. doi:10.1007/BF00994018.

URL http://dx.doi.org/10.1007/BF00994018

[12] H. W. Kuhn, A. W. Tucker, Nonlinear programming, in: Proceedings of the Sec-440

ond Berkeley Symposium on Mathematical Statistics and Probability, 1951, pp.

481–492.

[13] Z. Ovari, Kernels, eigenvalues and support vector machines (2000).

[14] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM

Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27.445

29

http://dx.doi.org/10.1109/TNN.2003.820556
http://dx.doi.org/10.1109/ICSMC.2007.4414023
http://dx.doi.org/10.1109/ISCAS.2003.1206419
http://dx.doi.org/10.1109/WCICA.2006.1713313
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018

[15] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, S. Mat-

suoka, FTI: High performance fault tolerance interface for hybrid systems, in:

Proceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011, pp. 32:1–

32:32. doi:10.1145/2063384.2063427.450

URL http://doi.acm.org/10.1145/2063384.2063427

[16] P. Colella, P. R. Woodward, The piecewise parabolic method (ppm) for gas-

dynamical simulations, Journal of Computational Physics 54 (1) (1984) 174–201.

URL http://www.sciencedirect.com/science/article/pii/

0021999184901438455

[17] G. A. Sod, A survey of several finite difference methods for systems of nonlinear

hyperbolic conservation laws, Journal of Computational Physics 27 (1) (1978)

1–31.

URL http://www.sciencedirect.com/science/article/pii/

0021999178900232460

[18] J. M. Martı́, E. Müller, Numerical hydrodynamics in special relativity, Vol. 6,

2003.

[19] C. W. Schulz-Rinne, J. P. Collins, H. M. Glaz, Numerical solution of the riemann

problem for two-dimensional gas dynamics, SIAM Journal on Scientific Comput-

ing 14 (6) (1993) 1394–1414.465

[20] M. Brio, C. Wu, An upwind differencing scheme for the equations of ideal mag-

netohydrodynamics, Journal of Computational Physics 75 (2) (1988) 400–422.

URL http://www.sciencedirect.com/science/article/pii/

0021999188901209

[21] S. A. Orszag, C.-M. Tang, Small-scale structure of two-dimensional magnetohy-470

drodynamic turbulence, Journal of Fluid Mechanics 90 (1979) 129–143.

URL http://journals.cambridge.org/article_

S002211207900210X

30

http://doi.acm.org/10.1145/2063384.2063427
http://dx.doi.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063427
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999178900232
http://www.sciencedirect.com/science/article/pii/0021999178900232
http://www.sciencedirect.com/science/article/pii/0021999178900232
http://www.sciencedirect.com/science/article/pii/0021999178900232
http://www.sciencedirect.com/science/article/pii/0021999178900232
http://www.sciencedirect.com/science/article/pii/0021999178900232
http://www.sciencedirect.com/science/article/pii/0021999188901209
http://www.sciencedirect.com/science/article/pii/0021999188901209
http://www.sciencedirect.com/science/article/pii/0021999188901209
http://www.sciencedirect.com/science/article/pii/0021999188901209
http://www.sciencedirect.com/science/article/pii/0021999188901209
http://www.sciencedirect.com/science/article/pii/0021999188901209
http://journals.cambridge.org/article_S002211207900210X
http://journals.cambridge.org/article_S002211207900210X
http://journals.cambridge.org/article_S002211207900210X
http://journals.cambridge.org/article_S002211207900210X
http://journals.cambridge.org/article_S002211207900210X
http://journals.cambridge.org/article_S002211207900210X

[22] F. X. Timmes, M. Zingale, K. Olson, B. Fryxell, P. Ricker, A. C. Calder, L. J.

Dursi, H. Tufo, P. MacNeice, J. W. Truran, R. Rosner, On the cellular structure of475

carbon detonations, The Astrophysical Journal 543 (2) (2000) 938.

URL http://stacks.iop.org/0004-637X/543/i=2/a=938

[23] Fusion cluster. [online]. available at : http://www.lcrc.anl.gov/.

[24] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNe-

ice, R. Rosner, J. W. Truran, H. Tufo, FLASH: An Adaptive Mesh Hydrodynam-480

ics Code for Modeling Astrophysical Thermonuclear Flashes, apjs 131 (2000)

273–334. doi:10.1086/317361.

[25] B. Schölkopf, Support vector learning (1997).

[26] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, F. Cappello, Lightweight silent

data corruption detection based on runtime data analysis for HPC applications, in:485

Proceedings of the 24th International Symposium on High-Performance Parallel

and Distributed Computing, HPDC ’15, New York, NY, USA, 2015, pp. 275–278.

doi:10.1145/2749246.2749253.

URL http://doi.acm.org/10.1145/2749246.2749253

[27] L. A. B. Gomez, F. Cappello, Detecting and correcting data corruption in stencil490

applications through multivariate interpolation, in: 2015 IEEE International Con-

ference on Cluster Computing, 2015, pp. 595–602. doi:10.1109/CLUSTER.

2015.108.

[28] S. Di, E. Berrocal, F. Cappello, An efficient silent data corruption detection

method with error-feedback control and even sampling for HPC applications,495

in: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting, CCGrid 2015, Shenzhen, China, May 4-7, 2015, 2015, pp. 271–280.

doi:10.1109/CCGrid.2015.17.

[29] V. Sharma, G. Gopalakrishnan, G. Bronevetsky, Detecting soft errors in stencil

based computations, in: The 11th Workshop on Silicon Errors in Logic - System500

Effects, 2015.

31

http://stacks.iop.org/0004-637X/543/i=2/a=938
http://stacks.iop.org/0004-637X/543/i=2/a=938
http://stacks.iop.org/0004-637X/543/i=2/a=938
http://stacks.iop.org/0004-637X/543/i=2/a=938
http://dx.doi.org/10.1086/317361
http://doi.acm.org/10.1145/2749246.2749253
http://doi.acm.org/10.1145/2749246.2749253
http://doi.acm.org/10.1145/2749246.2749253
http://dx.doi.org/10.1145/2749246.2749253
http://doi.acm.org/10.1145/2749246.2749253
http://dx.doi.org/10.1109/CLUSTER.2015.108
http://dx.doi.org/10.1109/CLUSTER.2015.108
http://dx.doi.org/10.1109/CLUSTER.2015.108
http://dx.doi.org/10.1109/CCGrid.2015.17

[30] O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. S. Ünsal, J. Labarta,

A. Cristal, F. Cappello, Spatial support vector regression to detect silent errors in

the exascale era, in: IEEE/ACM 16th International Symposium on Cluster, Cloud

and Grid Computing, CCGrid 2016, Cartagena, Colombia, May 16-19, 2016,505

2016, pp. 413–424. doi:10.1109/CCGrid.2016.33.

URL http://dx.doi.org/10.1109/CCGrid.2016.33

[31] T. E. Thomas, A. J. Bhattad, S. Mitra, S. Bagchi, Sirius: Neural network based

probabilistic assertions for detecting silent data corruption in parallel programs,

in: 35th Symposium on Reliable Distributed Systems (SRDS), 2016.510

[32] O. Subasi, O. S. Ünsal, J. Labarta, G. Yalcin, A. Cristal, Crc-based memory re-

liability for task-parallel HPC applications, in: 2016 IEEE International Parallel

and Distributed Processing Symposium, IPDPS, Chicago, IL, USA, May 23-27,

2016, 2016, pp. 1101–1112. doi:10.1109/IPDPS.2016.70.

URL http://dx.doi.org/10.1109/IPDPS.2016.70515

[33] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, R. Brightwell, De-

tection and correction of silent data corruption for large-scale high-performance

computing, in: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’12, CA, USA, 2012, pp.

78:1–78:12.520

URL http://dl.acm.org/citation.cfm?id=2388996.2389102

[34] O. Subasi, J. Arias, O. Unsal, J. Labarta, A. Cristal, Programmer-directed partial

redundancy for resilient HPC, in: Proceedings of the 12th ACM International

Conference on Computing Frontiers, CF ’15, New York, NY, USA, 2015, pp.

47:1–47:2. doi:10.1145/2742854.2742903.525

URL http://doi.acm.org/10.1145/2742854.2742903

[35] M. Turmon, R. Granat, D. Katz, J. Lou, Tests and tolerances for high-performance

software-implemehted fault detection, IEEE Transactions on Computers 52 (5)

(2003) 579–591. doi:10.1109/TC.2003.1197125.

32

http://dx.doi.org/10.1109/CCGrid.2016.33
http://dx.doi.org/10.1109/CCGrid.2016.33
http://dx.doi.org/10.1109/CCGrid.2016.33
http://dx.doi.org/10.1109/CCGrid.2016.33
http://dx.doi.org/10.1109/CCGrid.2016.33
http://dx.doi.org/10.1109/IPDPS.2016.70
http://dx.doi.org/10.1109/IPDPS.2016.70
http://dx.doi.org/10.1109/IPDPS.2016.70
http://dx.doi.org/10.1109/IPDPS.2016.70
http://dx.doi.org/10.1109/IPDPS.2016.70
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://doi.acm.org/10.1145/2742854.2742903
http://doi.acm.org/10.1145/2742854.2742903
http://doi.acm.org/10.1145/2742854.2742903
http://dx.doi.org/10.1145/2742854.2742903
http://doi.acm.org/10.1145/2742854.2742903
http://dx.doi.org/10.1109/TC.2003.1197125

[36] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, D. S. Katz, Application-level530

fault tolerance in the orbital thermal imaging spectrometer, in: Proceedings of

the 10th IEEE Pacific Rim International Symposium on Dependable Computing

(PRDC’04), PRDC ’04, Washington, DC, USA, 2004, pp. 43–48.

URL http://dl.acm.org/citation.cfm?id=977407.978747

[37] J. Sloan, R. Kumar, G. Bronevetsky, Algorithmic approaches to low overhead535

fault detection for sparse linear algebra, in: Proceedings of the 2012 42Nd An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), DSN ’12, Washington, DC, USA, 2012, pp. 1–12.

URL http://dl.acm.org/citation.cfm?id=2354410.2355166

[38] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, S. Mat-540

suoka, FTI: high performance fault tolerance interface for hybrid systems, in:

Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC, 2011, pp. 32:1–32:32. doi:10.1145/

2063384.2063427.

URL http://doi.acm.org/10.1145/2063384.2063427545

[39] O. Subasi, J. Arias, O. Unsal, J. Labarta, A. Cristal, Nanocheckpoints: A

task-based asynchronous dataflow framework for efficient and scalable check-

point/restart, in: 23rd Euromicro International Conference on Parallel, Dis-

tributed and Network-Based Processing (PDP), 2015, pp. 99–102.

[40] O. Subasi, F. Zyulkyarov, O. S. Unsal, J. Labarta, Marriage between coordinated550

and uncoordinated checkpointing for the exascale era, in: 17th IEEE International

Conference on High Performance Computing and Communications, HPCC 2015,

New York, NY, USA, August 24-26, 2015, 2015, pp. 470–478. doi:10.1109/

HPCC-CSS-ICESS.2015.150.

URL http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150555

[41] T. V. Martsinkevich, O. Subasi, O. S. Unsal, F. Cappello, J. Labarta, Fault-tolerant

protocol for hybrid task-parallel message-passing applications, in: IEEE Interna-

tional Conference on Cluster Computing, CLUSTER, 2015, pp. 563–570.

33

http://dl.acm.org/citation.cfm?id=977407.978747
http://dl.acm.org/citation.cfm?id=977407.978747
http://dl.acm.org/citation.cfm?id=977407.978747
http://dl.acm.org/citation.cfm?id=977407.978747
http://dl.acm.org/citation.cfm?id=2354410.2355166
http://dl.acm.org/citation.cfm?id=2354410.2355166
http://dl.acm.org/citation.cfm?id=2354410.2355166
http://dl.acm.org/citation.cfm?id=2354410.2355166
http://doi.acm.org/10.1145/2063384.2063427
http://dx.doi.org/10.1145/2063384.2063427
http://dx.doi.org/10.1145/2063384.2063427
http://dx.doi.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063427
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.150

[42] O. Subasi, T. Martsinkevich, F. Zyulkyarov, O. Unsal, J. Labarta, F. Cappello,

Unified fault-tolerance framework for hybrid task-parallel message-passing ap-560

plications, The International Journal of High Performance Computing Applica-

tions 0 (0) (2016) 1094342016669416.

URL http://dx.doi.org/10.1177/1094342016669416

34

http://dx.doi.org/10.1177/1094342016669416
http://dx.doi.org/10.1177/1094342016669416
http://dx.doi.org/10.1177/1094342016669416
http://dx.doi.org/10.1177/1094342016669416

	Introduction
	Background
	SVMs: An Overview
	Temporal vs. Spatial Prediction
	Impact-Driven SDC Detection
	AID: Adaptive Impact-Driven SDC Detector
	Multivariate Interpolation

	Dynamic Online SVM-Based SDC Detectors
	Formalization of The SVM Predictors
	The Formalization of Detection Range and Algorithm
	Implementation

	Evaluation
	Experimental Setup
	Experimental Results
	False Positive Rate and Sensitivity
	Prediction Errors
	Computation Overheads
	Detailed Discussion

	Related Work
	Conclusion

