

Title	SNC log symplectic structures on Fano products
Author(s)	Okumura, Katsuhiko
Citation	代数幾何学シンポジウム記録 (2018), 2018: 149-149
Issue Date	2018
URL	http://hdl.handle.net/2433/236417
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

SNC log symplectic structures on Fano products

Katsuhiko Okumura Waseda University

Introduction to Poisson structures

Definition (Poisson bracket).

The holomorphic **Poisson bracket** on X:

- (bilinear form) $\{-,-\}: \mathcal{O}_X \times \mathcal{O}_X \to \mathcal{O}_X$
- (skew-symmetric) $\{f, g\} = -\{g, f\},$
- ullet (Jacobi identity) $\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0$,
- (Leibniz rule) $\{f, g \cdot h\} = \{f, g\}h + \{f, h\}g$.

Definition (Poisson structure).

The holomorphic **Poisson structure** on the smooth variety X:

 $\Pi \in \Gamma(X, \wedge^2 \mathcal{T}_X)$ s.t. $[\Pi, \Pi] = 0 \in \wedge^3 \mathcal{T}_X$, where [-, -] is the Schouten bracket. $[f\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}, g\frac{\partial}{\partial z} \wedge \frac{\partial}{\partial w}] := f\frac{\partial g}{\partial x}\frac{\partial}{\partial w} \wedge \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial w} + f\frac{\partial g}{\partial y}\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial w} + g\frac{\partial f}{\partial z}\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial w} + g\frac{\partial f}{\partial w}\frac{\partial}{\partial x} + g\frac{\partial f}{\partial w}\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial w} + g\frac{\partial f}{\partial w}\frac{\partial}{\partial x} + g\frac{\partial f}{\partial w}\frac{\partial f}{\partial x} + g\frac{\partial f}{\partial w}\frac{\partial f}$

Remark.

- {Poisson structures on X} \leftrightarrow {Poisson brackets on X}
- \rightarrow : $\Pi: \mathcal{O}_X \times \mathcal{O}_X \rightarrow \mathcal{O}_X; (f,g) \mapsto \Pi^{\#}(df,dg)$
- \leftarrow : $\Pi = \sum_{i,j} \{x_i, x_j\} \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_i}$
- $[\Pi, \Pi] = 0 \iff \text{Jacobi identity}$

Definition (Degeneracy divisor).

• Poisson structure (X,Π) is **generically symplectic** \iff dim X = 2n and $\Pi^n \neq 0$.

Suppose that (X, Π) is a generically symplectic.

- $D(\Pi) := \{x \in X \mid \Pi^n(x) = 0\}$ forms a divisor called the degeneracy divisor.
- (X,Π) is a log symplectic strucuture ⇔ D(Π) is a reduced divisor.
- (X,Π) is a **SNC log symplectic structure**
- \iff (X,Π) is a log symplectic structure and $D(\Pi)$ is a simple normal crossing divisor.
- $\Pi^n \in \Gamma(X, \wedge^{2n}T_X) \rightsquigarrow D(\Pi) \sim -K_X$.

Motivations & Main Result

Main Theorem

 X_i : Fano variety over \mathbb{C} , $Pic(X_i) = \mathbb{Z}$, $\dim X_i = n_i > 3$,

 $X = \prod_{i=1}^{m} X_{i}, \dim X = 2n,$

 Π : SNC log symplectic structure.

Background

Question

How many (X,Π) with conditions

- X : smooth projective variety
- $D(\Pi)$: reduced SNC

Theorem (Lima, Pereira).

- X: Fano variety over \mathbb{C} , $Pic(X) = \mathbb{Z}$, $\dim X = 2n \ge 4$, Π : SNC log symplectic structure on X.
- $\Rightarrow \begin{array}{l} \bullet \ X = \mathbb{P}^n \\ \bullet \ \Pi : \text{ diagonal Poisson structure on } \mathbb{P}^n \end{array}$

How about if $\rho(X) > 2$

Corollary (O).

X: Fano variety over \mathbb{C} , $\operatorname{Pic}(X) = \mathbb{Z}$, $\dim X > 3$,

 $X = \mathbb{P}^{\overline{n}} \Leftrightarrow \exists \Pi : SNC \text{ log symplectic structure}$ on $X \times X$

Diagonal Poisson structures and form as bivector fields

Definition (Diagonal Poisson structure).

 $X : \mathbb{A}^{2n}$ or (product of) \mathbb{P}^n , dim X = 2n (X, Π) is a diagonal Poisson structure

 $\iff D(\Pi)$ is composed of all coordinate hyperplanes.

Theorem (Polishchuk).

There is a surjective map of bivector fields:

$$\varphi_n: \{(\mathbb{A}^{n+1}, \bar{\Pi}) \mid \bar{\Pi} : \text{quadratic}\} \to \{(\mathbb{P}^n, \Pi)\}$$

Furthermore, $\bar{\Pi}$ is Poisson on $\mathbb{A}^{n+1} \Rightarrow \varphi_n(\bar{\Pi})$ is also Poisson on

$$\begin{split} &(\because) \\ &\{\frac{x_i}{x_k},\frac{x_j}{x_k}\} = \frac{1}{x_k^2}\{x_i,x_j\} - \frac{x_i}{x_k^3}\{x_k,x_j\} - \frac{x_j}{x_k^3}\{x_i,x_k\} \\ &\{x_i,x_j\} \text{ is quadratic, } \leadsto \frac{\{x_i}{x_i},\frac{x_j}{x_i}\} \in k[\frac{x_i}{x_i},\cdots,\frac{x_n}{x_l}] \end{split}$$

Fact (Pvm).

 $X := \prod_{i=1}^m \mathbb{P}^{n_i}$, dim $X = \sum_{i=1}^m n_i = 2n$, Π : diagonal Poisson str. on X, coordinate: $[x_{10}, \dots : x_{1n_1} : x_{20} : \dots : x_{2n_2} : \dots : x_{mn_m}],$ $\begin{array}{l} \Rightarrow \exists \sigma = \sum_{1 \leq i,k \leq m, 1 \leq j \leq n, 1 \leq m \leq n_k} \Delta_{ijk}; \text{ diagonal Poisson str. on} \\ \mathbb{A}^{2n-m} \simeq \prod_{i=1}^m \mathbb{A}^{n_i-1}, \text{ where } \Delta_{ij} = c_{ijkl} x_{ij} x_{kl} \frac{\partial}{\partial x_{kl}} \wedge \frac{\partial}{\partial x_{kl}} \end{array}$ s.t. σ induces Π on X.

Definition. (r-matrix construction)

 Π is constructed by **r-matrix construction** w.r.t a Lie group G: Π is a image of r along $\mathfrak{g} \to \Gamma(X, \mathcal{T}_X)$,

where \mathfrak{g} : Lie algebra of G, r: r-matrix for G, i.e. [r, r] = 0.

The Fact comes from r-matrix construction for $G = (\mathbb{C}^*)^{n_1} \times (\mathbb{C}^*)^{n_2} \times \cdots \times (\mathbb{C}^*)^{n_m}$

Kev lemma (Pvm).

 (X,Π) : SNC log symplectic structure

 $D(\Pi) = \sum_{i=1}^{k} D_i$: irreducible decomposition of the degeneracy

 $\Rightarrow \operatorname{ch}(T_X) - \operatorname{ch}(T_X^{\vee}) = 2 \sinh[D_i]$

(:.) We have 2 exact sequences;

$$0 \to \Omega_X^1 \to \Omega_X^1(\log D) \to \bigoplus_{j=1}^m \mathcal{O}_{D_j} \to 0,$$

$$0 \to \mathcal{O}_X(-D_j) \to \mathcal{O}_X \to \mathcal{O}_{D_j} \to 0.$$