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SNC log symplectic structures on Fano products

Katsuhiko Okumura
Waseda University

Introduction to Poisson structures

Definition (Poisson bracket).

The holomorphic Poisson bracket on X:

@ (bilinear form) {—, —} : Ox x Ox — Ox

® (skew-symmetric) { f, g} = —{g, [},

o (acobi identity) { f, {g, h}} + {g, {h, f}} + {h.{f,9}} =0,
o Leibnizrue) {f, g - h} = {f, g}h +{f, h}g.

Definition (Poisson structure).

The holomorphic Poisson structure on the smooth vari-

ety X:

Il € D(X,A*Tx) s.t. [IL 1] = 0 € A*Ty, where [—, —] is the
Schouten bracket.
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Remark.

o {Poisson structures on X } <> {Poisson brackets on X }
(2‘)

:Ox x Ox a 03(: (f.g) — TI#(df . dg)
A H Lr i,z m, %

o ILI=0 < Jacobl identity

Definition (Degeneracy divisor).

o Poisson structure (X, I) is generically symplectic
<= dim X = 2n and 1" # 0.

Suppose that (X, II)is a generically symplectic.

e D(IT) := {z € X | II"(x) = 0} forms a divisor called the
degeneracy divisor,

o (X, 1) is a log symplectic strucuture

<= D(II) is a reduced divisor,

o (X,11) is a SNC log symplectic structure

<= (X, II) is a log symplectic structure and D(II) is a simple
normal crossing divisor.

" € (X, A""Tx) ~ D(Il) ~ —Kx .

Motivations & Main Result

Main Theorem
X;: Fano variety over C, Pic(X;) = Z,
dim Xz =Mn; > 3,
X =1",X;,dmX = 2n,
II: SNC log symplectic structure.

o X, =DP"

~ o II : diagonal Poisson structure

Background
Question

How many (X, IT) with conditions

e X : smooth projective variety
e D(II) : reduced SNC

Theorem (Lima, Pereira).
X Fano variety over C, Pic(X) = Z, dim X = 2n > 4,
I1: SNC log symplectic structure on X.

o X =P"

=~ o ll: diagonal Poisson structure on P"

How about if p(X) > 2

Corollary (O).

X Fano variety over C, Pic(X) = Z,

dimX >3

X = P"< 311 :SNC log symplectic structure
on X x X

Diagonal Poisson structures and form as bivector fields

Definition (Diagonal Poisson structure).

X :A?" or (product of) P", dim X = 2n
(X, 1I) is a diagonal Poisson structure
<= D(II) is composed of all coordinate hyperplanes.

Theorem (Polishchuk).
There is a surjective map of bivector fields:
@n : LAV TI) | TT : quadratic} — {(P", 1)}

Furthermore, II is Poisson on A"*! = 4,9,,,(1:[) is also Poisson on
P,

()
{:L f;}7 —{w, v} - {L;L z;} —
{ai, )} is quadratlc -, 4} e K,

Fact (Pym).

X =112, P", dim X = ¥_7" | n; = 2n,II: diagonal Poisson str. on X,
coordinate:[1g, « ++ ¢ Tip, S Tt Topy Lt Ty, s

= 30 = Yi<ikem.i<j<n,i<m<n, Aiji: diagonal Poisson str. on
AP o~ ) AL where Aj; = c,,;yw,]x”o‘—”” A ﬁ

s.t. o induces ITon X.

()
Definition. (r-matrix construction)

1T is constructed by r-matrix construction w.r.t a Lie group G
IT'is a image of 7 along g — ['(X, Tx),
where g: Lie algebra of G, 7: r-matrix for G, i.e. [r,7] = 0.

The Fact comes from r-matrix construction for
G = (C)" x (C*)™ x --- x (C*)"™ [}

Key lemma (Pym).

(X, II): SNC log symplectic structure
D(II) = 2’;’,1 D;: irreducible decomposition of the degeneracy

divisor. )
=ch(Tx) — ch(Tx ") = 2sinh[D;]

(") We have 2 exact sequences;
m
0 — Qy — Qx(log D) - _@1 Op, — 0,
j=

0 = Ox(=D;) = Ox — Op, = 0.
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