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Abstract 
 
Identifying drug-target interactions is crucial for the success of drug discovery. 

Approaches based on machine learning for this problem can be divided into two 

types: feature-based and similarity-based methods. By utilizing the ‘Learning to 

rank’ framework, we propose a new method, DrugE-Rank, to combine these two 

different types of methods for improving the prediction performance of new 

candidate drugs and targets. DrugE-Rank is available at http://datamining-

iip.fudan.edu.cn/service/DrugE-Rank/. 
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1. Introduction 

Identifying drug-target interactions is crucial for the success of drug discovery. 

It can facilitate the understanding of drug side effect [1-3], disease pathology, as 

well as the drug action mechanism. Compared with using biochemical experiments 

to identify drug target interaction, computational approaches are more efficient and 

economical. Approaches based on machine learning for this problem can be 

divided into two types: feature-based and similarity-based methods [4-6]. By 

utilizing the ‘Learning to rank’ (LTR) [7-8] framework, we propose a new method, 

DrugE-Rank [9], to combine these two different types of methods for improving the 

prediction performance of new candidate drugs and targets. 

We are interested in the problem of predicting drug-target interactions for new 

drugs or new targets. This problem is especially challenging, due to three main 

reasons. Firstly, since there are no known interactions for new drug or target, the 

training of prediction models is difficult. Secondly, existing computational methods 

based on LTR do not consider the connections among different drugs or targets 

very well. Thirdly, the prediction of drug target interaction is a challenging multi-

label learning problem, where a new target (or drug) has multiple interacting drugs 

(or targets).  

Compared with previous computational approaches, DrugE-Rank has multiple 

advantages. Firstly, by utilizing the LTR paradigm, DrugE-Rank can solve this 

multi-label learning problem naturally and provide the most powerful performance. 

Secondly, DrugE-Rank integrates diverse cutting-edge techniques in the 

framework of LTR, which include both similarity-based and feature-based methods. 

Thirdly, DrugE-Rank only considers the top drug (or target) candidates 

recommended by each component method, which can greatly reduce the 

computational burden.  
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1 http://www.rdkit.org/ 

2. Materials 

The performance of DrugE-Rank was examined by using DrugBank [10], a 

manually annotated drug target interactions database. We carried out three rounds 

of experiments. I) cross validation over DrugBank data with FDA approved drugs 

before March 2014; 2) Independent test over DrugBank data with new targets and 

FDA approved drugs after March 2014; 3) Independent test over FDA 

experimental drugs. The experimental results demonstrate that DrugE-Rank 

outperformed all competing methods, being statistically significant. The 

improvement is especially promising for new drugs. Finally, we train DrugE-Rank 

with DrugBank data by the end of 2015. It consists of 1324 human protein targets, 

1242 FDA approved drugs, and altogether 5484 known interactions.  

 
3. Methods 

Six cutting-edge similarity-based methods are used in DrugE-Rank as 

component methods in the LTR framework: Bipartite Local Model with support 

vector classification (BLM-svc) [11], Bipartite Local Model with support vector 

regression (BLMsvr), k-Nearest Neighbor (k-NN) [12], Weighted Nearest 

Neighbor-based Gaussian Interaction Profile classifier (WNN-GIP) [13], 

Laplacian regularized least squares (LapRLS) [14], Network-based Laplacian 

regularized least squares(NetLapRLS). In addition, we extract drug features 

using RDKit (see Note 1), and target features from PROFEAT [15]. 

 

4. Usage 
 
4.1 New Drug 
 
Given a new drug, DrugE-Rank returns the top 20 targets as the predicted result. 

The input interface is shown in Figure 1. 

1. Choose input format. You can input the drug profile by DrugBank ID, SMILES 

or MOL Format Text. An example of input is shown in Figure 2. 
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2. Click the "Send" button. Click the button at the bottom of the page and your 

task will be in processing. The process takes about 10 minutes, and the server 

will return the top 20 predictions for each method (DrugE-Rank and six 

similarity-based methods). The result can help you to prioritize the most 

promising targets (Figure 3). 

 
4.2 New target 
 
Given a new target, DrugE-Rank returns the top 20 drugs as the predicted result. 

The input interface is shown in Figure 4. 

1. Choose input format. You can input the target profile by UniProt ID or Amino 

Acid Sequence (Fasta format). An example of input is shown in Figure 5. 

2. Click the "Send" button. Click the button at the bottom of the page and your 

task will be in processing. The process takes around 10 minutes, and the 

server will return the top 20 predictions for each method (DrugE-Rank and six 

similarity-based methods). The result may help you to prioritize the most 

promising drugs (Figure 6).  

 

5. Notes 
 
1. http://www.rdkit.org/ 
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Figure 1: Input interface for New Drug 
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Figure 2: Input example for New Drug
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Figure 3: Output example for New Drug
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Figure 4: Input interface for New Target 
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Figure 5: Input example for New Target
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Figure 6: Output example for New Target 
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