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For development of a low-cost superconducting wire operating at high temperature, we 

propose a new approach using conductive rather than insulating buffer layers, combined 

with {100}<001> textured pure Cu tape to form YBa2Cu3O7/Nb-doped 

SrTiO3/Ni/Cu/stainless steel. The critical current density of the YBa2Cu3O7 layer was 

2.5 MA/cm2 at 77 K in a magnetic self-field. We also confirmed that some current 

flowed into the Cu tape through the conductive buffer layers when the current exceeded 

the critical current of the YBa2Cu3O7 layer, suggesting that the textured Cu tape worked 

not only as a biaxial template but also as a stabilizer layer. 

  



Coated conductors (second generation superconducting wires, 2G-wires) become 

highly resistive when quenching occurs. Thus, to manufacture reliable and safe wires 

for high-temperature superconducting applications, it is necessary to attach conducting 

(metal) layers with very low resistivity to stabilize and protect the wires from damage 

due to quenching. Presently, insulative oxides are used for buffer layers in commercially 

available coated conductors. Thick Ag and Cu layers are required to be deposited as the 

stabilizer layers on the superconducting REBa2Cu3O7 (REBCO; where RE represents 

rare-earth elements) layer. However, high costs associated with Ag and the process itself 

are the major obstacles for achieving low-cost 2G-wires. Use of a conductive buffer 

layer instead of an insulative one, combined with textured pure Cu tape, can overcome 

the necessity of an expensive Ag stabilizing layer for 2G-wires. 

Several attempts using conductive buffers combined with {100}<001> textured 

pure Cu tape have been made toward exploring new architectures.1-4) Aytug et al. 

reported that they obtained a biaxially oriented YBa2Cu3O7 (YBCO) layer on a Ni and 

LaMnO3 (LMO) buffered Cu tape (YBCO/LMO/Ni/Cu) with sufficient critical current 

density (Jc) of 1 × 106 A/cm2 at 77 K in a magnetic self-field. However, insulative NiO 

was formed at the interface between the LMO and Ni buffer layers (LMO/Ni interface) 

following LMO deposition.1) The Jc of a YBCO/(La0.7Sr0.3)MnO3/Ni/Cu sample was 

reported to be 2 × 106 A/cm2 at 77 K in a magnetic self-field.2) However, insulative NiO 

was formed at the (La0.7Sr0.3)MnO3/Ni interface. An YBCO/(La,Sr)TiO3/Ir/Cu structure 

was also attempted and the Jc was reported to be 1 × 106 A/cm2 at 77 K in a magnetic 

self-field, but insulative CuO and Cu2O were generated at the Ir/Cu or the (La, 

Sr)TiO3/Ir interface.3) Although a number of oxides, metals, nitrides, and their 

combinations as the conductive buffer layers have been attempted for developing 

low-cost coated conductor architectures, thus far none have succeeded in fabricating a 

coated conductor in which the substrate Cu tape functioned as the stabilizer layer as 

well as the template for biaxial crystal alignment of the REBCO. 

Buffer layers must exhibit at least five properties simultaneously: (1) chemical 

inertness to both REBCO and Cu, (2) a low diffusion coefficient for metals in the layers, 

(3) a low diffusion coefficient of oxygen in the layers, (4) similar lattice constants for 

both REBCO and Cu, and (5) low electrical resistivity. It was not easy to find a material 

or a combination of a few materials fulfilling the above five requirements. Due to the 

ease of oxidation of Cu metal tape, a very low oxygen diffusion coefficient is required 

for the conductive buffer material to prevent generation of insulative CuO and/or Cu2O 

at the Cu/buffer interface to ensure good electrical coupling between REBCO and Cu 

tape. 



We recently reported on the advanced architecture for an electrical self-stabilized 

coated conductor composed of YBCO, Sr(Ti0.95Nb0.05)O3, Ni, and Cu tape laminated 

with stainless steel tape (SUS316).5, 6) Electrical resistivity of the Sr(Ti0.95Nb0.05)O3 thin 

film was quite low (2.5 × 10-3 ·cm at 77 K) and the Jc of the YBCO layer was 2.6 × 

106 A/cm2 at 77 K under a magnetic self-field for the 

YBCO/Sr(Ti0.95Nb0.05)O3/Ni/Cu/SUS316 tape.5) NiO was generated at the 

Sr(Ti0.95Nb0.05)O3/Ni interface when the Sr(Ti0.95Nb0.05)O3 layer was 120 nm thick,5) 

however, thicker Sr(Ti0.95Nb0.05)O3 layer suppressed the NiO generation.6)  

In this paper, we report the current versus voltage (I-V) characteristics near and 

above the critical current (Ic) and discuss electrical coupling between the YBCO layer 

and the Cu tape through Sr(Ti0.85Nb0.15)O3/Ni conductive buffer layers for YBCO/ 

Sr(Ti0.85Nb0.15)O3/Ni/Cu/SUS316 tape with a Jc of 2.5 × 106 A/cm2. 

Ni-electroplated Cu/SUS316 laminate tapes were provided from Tanaka Kikinzoku 

Kogyo KK as the substrates. A SUS316 tape with a thickness of 100 m was bonded to 

a 30 m thick {100}<001> textured Cu tape to strengthen the very soft annealed pure 

Cu tape, and a 0.5 m thick Ni layer was electro-deposited on the surface of the 

laminated tape to provide Ni/Cu/SUS316 tape.7-9) The crystal orientation of the Ni layer 

in the Ni/Cu/SUS316 tape was 5.0 to 5.5° (full width at half maximum (FWHM) value 

in the X-ray (111) -scan measurement). A Nb-doped SrTiO3 (Nb-STO) thin film of 310 

nm thickness was deposited in a 3% H2/97% Ar atmosphere by a pulsed laser deposition 

(PLD) method using sintered bulk Sr(Ti0.85Nb0.15)O3+ as the target. We changed the 

chemical composition from Sr(Ti0.95Nb0.05)O3+, which was used in our previous works5, 

6), to Sr(Ti0.85Nb0.15)O3+ with the objective of improving the oxygen-blocking ability of 

the conductive buffer layer. For deposition of Nb-STO, the chamber was maintained at 2 

× 10-3 Pa pressure and with a substrate temperature of 800 °C. A 190 nm thick YBCO 

layer was then deposited by the PLD method in an oxygen atmosphere of 35 Pa at 

740 °C, and finally annealed under oxygen flowing at 450 °C for 16 h. 

The crystal orientation of the prepared sample was evaluated by X-ray diffraction 

measurements (-2 and pole figure methods). The microstructure of the sample 

cross-section was observed using scanning transmission electron microscopy (STEM, 

JEOL JEM-2100F) with energy dispersive X-ray spectroscopy (EDX). The STEM 

specimens were prepared by cutting and milling using a focused ion beam. The 

resistivity of the Nb-STO thin film and the I-V characteristics of the specimen were 

measured by a standard 4-probe method. Ic was defined by an electric field criterion of 1 

V/cm. The I-V curves for YBCO/Nb-STO/Ni/Cu/SUS316 were calculated using a 

commercial finite element method software package “VOLT” (PHOTON Co., Ltd.) by 



changing the resistivity of the Nb-STO layer in order to compare with the measured I-V 

curve. 

Before Nb-STO deposition on the Ni/Cu/SUS316 tape, we prepared Nb-STO thin 

films on MgO(100) single crystal substrates under the same experimental conditions. 

The resistivity of the Nb-STO thin films were confirmed to be approximately 1.2-8.6 × 

10-3 ·cm at 77 K. The Nb-STO layer was epitaxially grown on the Ni/Cu/SUS316 tape, 

then the YBCO thin film was deposited on the conductive Nb-STO layer. Based on the 

results using Nb-STO/MgO(100), the resistivity would be expected to be within the 

same range of 10-3 ·cm as well for Nb-STO/Ni/Cu/SUS316 tape. Figure 1 shows the 

(102) pole figure of the YBCO layer. Strong X-ray diffraction intensities were observed 

at (, ) = (57°, 0°), (57°, 90°), (57°, 180°), (57°, 270°) with a FWHM of 6.0° in the  

direction, indicating that the YBCO layer has an excellent biaxial crystal orientation. 

The orientation relationship between Cu, Ni, Nb-STO, and YBCO crystal was (001)Cu || 

(001)Ni || (001)Nb-STO || (001)YBCO and [100]Cu || [100]Ni || [100] Nb-STO || [100] YBCO. 

Figures 2a and 2b show bright field images (BFI) for cross-sections of the 

YBCO/Nb-STO/Ni/Cu/SUS316 specimen after the Ic measurement by STEM at low 

and high magnification, respectively. From figure 2a, no NiO or Cu oxides were 

observed at the interfaces of YBCO/Nb-STO, Nb-STO/Ni, or Ni/Cu over a wide area 

(~8 m). We also confirmed that there were no NiO, CuO, or Cu2O diffraction peaks in 

the X-ray -2 spectrum for the YBCO/Nb-STO/Ni/Cu/SUS316 specimen (-2 

diffraction result not shown here). The vague Ni/Cu interface suggests Ni-Cu 

interdiffusion during the deposition of Nb-STO and YBCO. Although the grain 

boundary of Cu is present (figure 2a, middle-right side), the Nb-STO layer and the 

YBCO layer on the upper part of the figure are not subject to the grain boundary of Cu 

and crystal growth occurs smoothly in the direction parallel to the tape surface. When 

fabricating REBCO coated conductors using the RABiTS method,10) there was a 

concern that the Jc may decrease owing to the existence of a groove at the grain 

boundaries on the surface of the metal tape like Ni-W or Cu. However, we confirmed 

that the groove problem does not occur in the case of the Cu tape. From figure 2b, we 

can see that the interfaces of YBCO/Nb-STO and Nb-STO/Ni were very sharp and clean, 

suggesting that the Nb-STO layer blocked both oxygen diffusion from the atmosphere 

through the YBCO layer to the Nb-STO/Ni interface and Ni diffusion from Ni to the 

YBCO layer during the YBCO deposition and oxygen annealing processes. The 

thickness of the YBCO and Nb-STO layers were confirmed to be 190 and 310 nm, 

respectively. 

Figure 3 shows the BFI image and EDX elemental mapping images of Y, Ba, Cu, 



Nb, Sr, O, and Ni in the same region for the cross-section of the 

YBCO/Nb-STO/Ni/Cu/SUS316 specimen after Ic measurement. From mapping all of 

the elements, it can be seen that the contrast of any element at the interfaces 

corresponding to YBCO, Nb-STO, and Ni layers are very clear and distinct (not vague), 

suggesting that the Nb-STO layer blocked the diffusion of O, Y, Ba, and Cu inward and 

the diffusion of Ni outward. From the mapping results of Cu and Ni, we can see that Cu 

diffused into the Ni layer. However, Cu did not reach the Nb-STO/Ni interface within 

the process time. There were no insulative NiO, CuO, nor Cu2O species in the 

YBCO/Nb-STO/Ni/Cu/SUS316 specimen, that is, we can expect good electrical 

coupling between the YBCO layer and Cu tape through conductive Ni and Nb-STO 

buffer layers. 

The YBCO layer of YBCO/Nb-STO/Ni/Cu/SUS316 was patterned by a Nd:YAG 

laser for I-V measurements. The distances between current tap-voltage tap and voltage 

tap-voltage tap were each 2 mm and the bridge width was 0.2 mm. After patterning, 200 

nm thick Ag contacts were deposited on the voltage and current taps, and then the 

patterned YBCO/Nb-STO/Ni/Cu/SUS316 tape was annealed at 450 °C for 16 h with 

oxygen. Black open circles in figure 5 show the measured I-V characteristics of the 

patterned YBCO/Nb-STO/Ni/Cu/SUS316 tape immersed in liquid nitrogen in the 

absence of an external magnetic field. The Ic was 0.94 A, corresponding to a Jc of 2.5 × 

106 A/cm2. Red solid line in figure 5 indicates the I-V curve calculated using a 

power-law model, V/V0 = (I/I0)
n. We determined the n value to be 11.6 from the I-V 

curve of the YBCO thin films deposited on insulative SrTiO3 single crystal substrates 

under the same experimental conditions. If the buffer layer were insulative, the 

measured I-V curve may match with the red solid line in Figure 5. 

I-V curves for YBCO/Nb-STO/Ni/Cu/SUS316 were simulated by a 

three-dimensional finite element method (3-D FEM) by changing the resistivity of the 

Nb-STO layer in order to compare with the measured I-V curve. The potential difference 

between the two current taps was considered the boundary condition. In the simulation, 

we simplified the shape of the specimen by deleting the voltage taps, and also used the 

two-plane-symmetry property to reduce the FEM model to one-quarter of the original 

structure. The mesh size was changed gradually in the area where the change in current 

and/or potential is not moderate; the mesh size near the bridge and current pads was 

reduced to 50 nm × 70 nm × 140 nm.  

Figure 6 shows the potential distribution of the meshes (a) at the bottom layer of the 

YBCO layer (just above the Nd-STO layer), (b) at the bottom layer of the YBCO layer 

near the corner of the bridge and the current tap, and (c) at the cross-sectional plane at 



the center of the bridge near the corner of the bridge and the current tap, when 

·cm and I = 1.9 A. The blue color signifies that that area of the mesh is at a low 

potential whereas the red color signifies high potential. The black lines show the 

boundaries of the meshes. We confirmed that the potential distribution was reasonable 

by checking the gradual change of the mesh colors even near the corner of the bridge 

and the current tap. Gradual color change from red to blue from the YBCO layer toward 

the Ni layer in figure 6 (c) indicates that some portion of the current flowing in the 

YBCO layer goes into the Ni layer through the Nb-STO layer. Before plotting the I-V 

curve, for all the FEM calculation cases, the potentials and current vectors for all 

meshes were confirmed to be reasonable. I was the total current in the specimen and V 

was the potential difference between the two voltage taps; these correspond to the 

measured I and V, respectively. In the 3D-FEM calculation, we applied V/V0= (I/I0)
11.6 to 

the I-V characteristics of the YBCO layer. The resistivities of Ag, Ni, Cu, and SUS316 

were fixed at 0.2, 0.55, 0.2, and 55 ·cm (resistivities at 77 K) respectively, and the 

resistivity () of Nb-STO was swept from 1× 10-3 to 1× 103 ·cm. We confirmed that 

the simulated I-V curves approach that calculated by the power-law model with 

increasing , and that the I-V curves approach a straight line expressed by the equation 

V=Cu × (c) in the I > Ic region with decreasing , where Cu is the resistivity of Cu. 

In Figure 5, the blue triangles ( = 1·cm), light blue squares ( = 5·cm), green 

diamonds ( = 10·cm), and orange pentagons ( = 100·cm) represent the values 

calculated by 3-D FEM. The experimental data resides between the calculated I-V 

curves of 1·cm and 5·cm, clearly showing that some current flowed into the Cu 

tape through the conductive Nb-STO and Ni buffer layers in I > Ic regions, that is, 

{100}<001> textured pure Cu tape functioned as the stabilizer layer as well as the 

template for YBCO biaxial crystal alignment. 

Although the resistivity of Nb-STO was previously assumed to be approximately 

1.2-8.6 × 10-3 ·cm at 77 K, after YBCO deposition and oxygen annealing, the 

resistivity was estimated from figure 5 to be a few ·cm. Because an oxygen vacancy in 

STO forms a donor center11), increasing the oxygen content of Nb-STO also increases 

the resistivity. The observed increase in resistivity of the Nb-STO layer suggests that 

oxygen diffused into the Nb-STO layer through the YBCO layer from the atmosphere 

during the YBCO deposition and oxygen annealing processes. The lower  of the 

conductive buffer layer apparently provides a shorter current transfer length. Efforts 

toward finding more effective oxygen-blocking materials with low resistivity are the 

next step to further improve this system. Discovering more effective oxygen-blocking 

materials with low resistivity is underway. 



In conclusion, we demonstrated that the {100}<001> textured pure Cu tape worked 

not only as the template for YBCO biaxial crystal alignment but also as the stabilizer 

layer for the newly coated conductor architecture of the YBCO/Nb-STO/Ni/Cu/SUS316 

tape. The interfaces of YBCO/Nb-STO and Nb-STO/Ni were very sharp and clean, and 

no NiO, CuO, nor Cu2O species were generated in our coated conductor utilizing a new 

buffer layer approach. From comparison of the measured and calculated I-V 

characteristics, it was confirmed that some current flowed into the Cu tape from the 

YBCO layer through conductive Nb-STO and Ni buffer layers in I > Ic regions. The Jc 

at 77 K in a magnetic self-field was 2.5 × 106 A/cm2, making this the first example 

whereby incorporation of a conductive buffer layer for a coated conductor not only 

functions, but also results in a commercially competitive Jc. We believe that our 

architecture may provide a new way to realize low-cost and commercially feasible 

coated conductors. 
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Figure captions 
Figure 1 

X-ray (102)YBCO pole figure for an YBCO/Nb-STO/Ni/Cu/SUS316 specimen. 

 

Figure 2  

Cross-sectional STEM images of the YBCO/Nb-STO/Ni/Cu/SUS316 tape at (a) low 

and (b) high magnifications. 

 

 

Figure 3 

STEM image and EDX mapping images of Y, Ba, Cu, Nb, Sr, O, and Ni in the same 

region as the cross-section of the YBCO/Nb-STO/Ni/Cu/SUS316 specimen. 

 

 

Figure 4 

Schematic of the patterned YBCO/Nb-STO/Ni/Cu/SUS316 sample. 

 

Figure 5 

Current versus voltage curves of the YBCO/Nb-STO/Ni/Cu/SUS316 specimen 

measured in liquid nitrogen without external magnetic field (black open circle), the 

calculated data in cases of = 1 (blue solid triangle), 5 (light blue solid square), 10 

(green solid diamond), 100 ·cm (orange solid pentagon) by a FEM, and the calculated 

curve ( red solid line) using a power-low model with n = 11.6. 

 

Figure 6 

Potential distribution of the meshes (a) at the bottom layer of the YBCO layer (just 

above the Nd-STO layer), (b) at the bottom layer of the YBCO layer near the corner of 

the bridge and the current tap, and (c) at the cross-sectional plane at the center of the 

bridge near the corner of the bridge and the current tap. 
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