

Title	Evaluating the ontogenetic external morphology of an ectoparasitic Torix tukubana (Hirudinida: Glossiphoniidae), with records of its new host amphibian species
Author(s)	Kambayashi, Chiaki; Kurabayashi, Atsushi; Nakano, Takafumi
Citation	Parasitology Research (2019), 118(2): 663-666
Issue Date	2019-02
URL	http://hdl.handle.net/2433/236132
Right	This is a post-peer-review, pre-copyedit version of an article published in 'Parasitology Research'. The final authenticated version s available online at: https://doi.org/10.1007/s00436-018-6141-y.; The full-text file will be made open to the public on 13 November 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1 SHORT COMMUNICATION

2	Evaluating the ontogenetic external morphology of an ectoparasitic Torix tukubana
3	(Hirudinida: Glossiphoniidae), with records of its new host amphibian species
4	
5	Chiaki Kambayashi ¹ • Atsushi Kurabayashi ^{2,3} • Takafumi Nakano ⁴
6	
7	¹ Amphibian Research Center, Hiroshima University, Hiroshima, Japan
8	² Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga,
9	Japan
10	³ Unit for Environmental Sciences and Management, North-West University, Potchefstroom,
11	South Africa
12	⁴ Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
13	
14	Corresponding author: Chiaki Kambayashi
15	chkambayashi@gmail.com
16	+81-82-424-4494
17	ORCID IDs:

- 18 0000-0003-4820-9842 (Chiaki Kambayashi)
- 19 0000-0002-0381-5219 (Atsushi Kurabayashi)
- 20 0000-0001-6107-2188 (Takafumi Nakano)

21 Abstract

22	Torix is a leech genus containing freshwater proboscidate species, and several members of
23	this taxon are ectoparasites specific to amphibians. Torix tukubana inhabits mountain streams
24	in Japan, and only two frog species are known to be hosts. We collected this leech from two
25	other amphibians, Onychodactylus japonicus (Japanese clawed salamander) and Rana
26	ornativentris (montane brown frog), for the first time. This finding suggests that the host
27	specificity of <i>T. tukubana</i> is low. The immature individuals of <i>T. tukubana</i> were also
28	collected and identified based on DNA data. This is the first juvenile record of this species
29	confirmed by its DNA barcode sequences. Several morphological characters known from
30	large individuals and used as diagnostic characteristics in taxonomic keys were not observed
31	in the juveniles, suggesting that these are ontogenetic traits.
32	
33	Keywords leech • Onychodactylus japonicus • Rana ornativentris • cox1 • Japan
34	
35	Acknowledgments We are grateful to Junichi Naito and Norio Shimizu for their kindness in
36	conducting the amphibian investigation. We also appreciate Nobuaki Furuno and Ryosuke

37 Kakehashi for providing valuable advice on this study.

38

- 39 Funding information This study was financially supported by the Japan Society for the
- 40 Promotion of Science (JSPS) KAKENHI Grant numbers JP15J00720, JP17K20064,
- 41 JP26291080 and JP18H02497.

43 Introduction

45	<i>Torix</i> is a leech genus classified within the proboscidate family Glossiphoniidae, and the
46	genus now contains seven nominal species, which are mainly distributed in East Asia
47	(Sawyer 1986). Three Japanese species: T. orientalis (Oka, 1925a), T. tagoi (Oka, 1925b),
48	and T. tukubana (Oka, 1935) inhabit mountain streams in Japan and are ectoparasitic on
49	multiple amphibian species (Oka 1925a, b; Sasaki 2015). However, further elucidation of
50	their host specificities and their true taxonomic accounts have been hampered by a lack of
51	sufficient information regarding their hosts, developmental stages and life cycles.
52	Torix tukubana is characterized by its possession of developed papillae on the dorsal
53	surface (Oka 1935), and can thus be identified based on its external characteristics. To our
54	knowledge, only two Japanese brown frogs: Rana japonica Boulenger, 1879 and Rana tagoi
55	Okada, 1928, have been reported as host amphibians of this leech (Kikuchi and Fukatsu
56	2005; Yoshida 2009). However, we recently found <i>T. tukubana</i> individuals that were parasitic
57	on other mountainous Japanese amphibians. Here, we report those amphibian species as new
58	hosts of <i>T. tukubana</i> . In addition, we briefly report the morphological differences between the
59	large individuals and juveniles of this leech species according to mitochondrial DNA

60 identification and observation of their external morphology.

61

62 Materials and methods

64	During faunal investigations of Mt. Kanmuriyama in Hiroshima Prefecture, Honshu, Japan
65	(34°28′07″N, 132°04′33″E) that were carried out from March 2016 to June 2018, we
66	observed amphibians in the mountain streams. Host amphibians were not collected, but were
67	identified by the first author in the field. Leeches attached to these amphibian hosts and
68	free-living individuals from the same locations were collected and used for identification. In
69	total, eight lots that comprise 53 individuals were obtained. All leeches were directly
70	preserved in 99% ethanol and deposited in the Zoological Collection of Kyoto University
71	(KUZ) (Table 1).
72	The leeches were identified preliminarily by their external morphologies based on Oka
73	(1935). Mitochondrial cytochrome c oxidase subunit I gene ($cox1$) sequences, known as a
74	usable DNA barcoding marker for animals and often used for phylogenetic estimation of
75	leeches (Siddall and Burreson 1998; Tessler et al. 2018), were then determined from the
76	specimens. The partial <i>cox1</i> sequences for the leeches were obtained using the methods

77	described in Nakano (2012) using the primer sets (LCO1490 and HCO2198: Folmer et al.
78	1994), and the total DNA of each specimen was extracted from its caudal sucker. The
79	sequence data collected in this study were deposited in the International Nucleotide Sequence
80	Database Collaboration (INSDC) through the DNA Data Bank of Japan (Table 1). The cox1
81	sequences were aligned by MAFFT version 7 (Katoh and Standley 2013) and their
82	uncorrected <i>p</i> -distances were calculated using MEGA6 (Tamura et al. 2013).
83	
84	Results and discussion
85	
86	In total, 53 (four large and 49 small) glossiphoniid leeches were collected. Among them,
87	three individuals were free-living, and the other 50 specimens were ectoparasitic on
88	amphibians. On 18th June 2017, four Japanese clawed salamanders, Onychodactylus
89	japonicus (Houttuyn, 1782), gathered for breeding in a headstream where the water was
90	gushing from the bedrock. We discovered one large Torix tukubana attached to the right
91	forefoot of one of these salamanders and collected this leech (KUZ Z2017). Three large
92	free-living <i>T. tukubana</i> individuals were collected (KUZ Z2019, Z2020, Z2056) at the same
93	time.

94	On 23 March 2016, we found many small leeches clinging to two other amphibians,
95	Rana tagoi and R. ornativentris Werner, 1903 (montane brown frog), submerged under the
96	rocks. Twenty-two leeches were attached to the first of these frogs and six leeches to the
97	second; the leeches were preserved (KUZ Z2016). Similarly, we collected 34 and seven small
98	leeches from distinct individuals of <i>R. tagoi</i> on 19 May 2018 (KUZ Z2025 and Z2026,
99	respectively), and one small individual was isolated from a larva of O. japonicus on 26 May
100	2018 (KUZ Z2028). Because these leeches lacked key morphological traits for species
101	identification, we analyzed their $cox1$.
102	We amplified and sequenced the partial <i>cox1</i> region (645 bp in length) using the eight
103	specimens (four large T. tukubana and four unidentified small leeches) from Mt.
104	Kanmuriyama. The cox1 sequence of one of the small leeches (KUZ Z2016) dovetailed
105	perfectly with those of the several large individuals of <i>T. tukubana</i> (KUZ Z2017, Z2019, and
106	Z2020) (Table 2), and thus we concluded that the small leeches from <i>R. tagoi</i> and <i>R</i> .
107	ornativentris were the juveniles of T. tukubana. Although few cox1 divergences (p-distance:
108	0.1–0.9%) were observed among other specimens (including both juveniles and large
109	individuals), the values fall in the range of intraspecific cox1 divergences for other leeches
110	(e.g. de Carle et al. 2017).

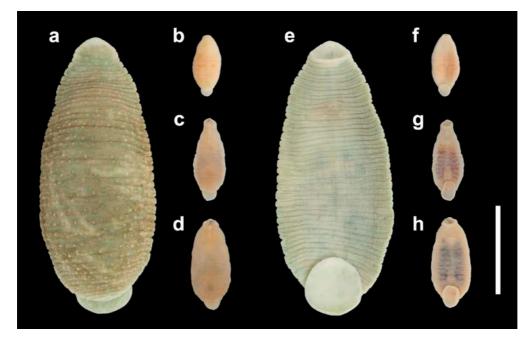
111	It is known that <i>T. tukubana</i> is distinguishable from other congenic species by the
112	possession of numerous papillae on each annulus and a unique mid-body annulation pattern
113	(dorsally biannulate and ventrally triannulate: Fig. 1). In addition, one pair of eyes and a
114	small caudal sucker (with a diameter less than half the body width) are recognized as the
115	diagnostic characteristics of this species (Sawyer 1986). Some of these characteristics were
116	commonly observed in both the large and small individuals collected here. However, dorsal
117	papillae, which are quite prominent in large individuals, were not observed in juveniles.
118	Furthermore, there were some variations in the ventral annulus structures of their mid-body
119	segments (uniannulate: KUZ Z2016; biannulate: Z2025 and Z2028; triannulate: Z2026)
120	(Table 1). These morphological characters are assumed to be ontogenetic traits, and the
121	morphologies will be developed along with the growth. In addition, the characteristics of no
122	papillae on the back and mid-body segments biannulate dorsally and ventrally are consistent
123	with the description of <i>T. tagoi</i> in Sawyer (1986). As a result, it is possible that the juveniles
124	of T. tukubana have been confused with T. tagoi. Further taxonomic studies will be needed to
125	clarify whether there is a genetic or morphological difference between the two.
126	Although only <i>R. tagoi</i> and <i>R. japonica</i> are known hosts of <i>T. tukubana</i> so far, our
127	observations added new host records for this leech. Because host Onychodactylus

128	salamanders and Rana frogs belong to distinct amphibian orders, the host specificity of T.
129	tukubana seems to be low. Moreover, the leech was also found on a larva of O. japonicus,
130	suggesting that all amphibians that use stream environments, regardless of their growth stage,
131	can be potential hosts of <i>T. tukubana</i> .
132	It is known that some glossiphoniid leeches including <i>T. tukubana</i> are sometimes
133	infected by Rickettsia spp. (Kikuchi et al. 2002; Kikuchi and Fukatsu 2005). Meanwhile,
134	there are many unknown parts in the life cycle of <i>Rickettsia</i> , including their degree of host
135	specificity and the mechanism used to maintain the population, and these are usually unique
136	to each Rickettsia species. In the terrestrial ecosystem, Rickettsia is known to enlarge its
137	population through horizontal transmission via the vertebrate hosts of blood-sucking
138	arthropods (Dasch and Weiss 1992). Although it is plausible that amphibians, the host of
139	Torix leeches, are also involved in the maintenance of Rickettsia, no data on Rickettsia within
140	amphibians are available yet. To assess the amphibian-leech-Rickettsia relationship, it is first
141	necessary to ascertain the range of host leech taxon for each Rickettsia species and the
142	availability of amphibians as a secondary host. Consequently, further study into precise
143	identification of the leeches, phylogenetic estimation of <i>Rickettsia</i> from each leech species
144	and a survey of <i>Rickettsia</i> in amphibians will be required.

140	
146	References
147	
148	Boulenger GA (1879) Étude sur les grenouilles rousses Ranae temporariae et description
149	d'espèces nouvelles ou méconnues. Bull Soc Zool France 4:158–193
150	Dasch GA, Weiss E (1992) The genera Rickettsia, Rochalimaea, Ehlichia, Cowdaria, and
151	Neorickettsia. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds)
152	The Prokaryotes, vol 3. Springer-Verlag, New York, pp 2407–2470
153	de Carle D, Oceguera-Figueroa A, Tessler M, Siddall ME, Kvist S (2017) Phylogenetic
154	analysis of Placobdella (Hirudinea: Rhynchobdellida: Glossiphoniidae) with
155	consideration of COI variation. Mol Phylogenet Evol 114:234–248.
156	https://doi.org/10.1016/j.ympev.2017.06.017
157	Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of
158	mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol
159	Mar Biol Biotechnol 3:294–299
160	Houttuyn M (1782) Het onderscheidt der Salamanderen van de Haagdissen in't algemeen, en
161	van de Gekkoos in't byzone aangetoond. Verh Zeeuwsch Genootsch Wetensch

- 162 Vlissingen 9:305–336
- 163 Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7:
- 164 improvements in performance and usability. Mol Biol Evol 30:772–780.
- 165 https://doi.org/ 10.1093/molbev/mst010
- 166 Kikuchi Y, Fukatsu T (2005) *Rickettsia* infection in natural leech populations. Microb Ecol
- 167 49:265–271.
- 168 https://doi.org/10.1007/s00248-004-0140-5
- 169 Kikuchi Y, Sameshima S, Kitade O, Kojima J, Fukatsu T (2002) Novel clade of Rickettsia
- 170 spp. from leeches. Appl Environ Microb 68:999–1004.
- 171 https://doi.org/10.1128/aem.68.2.999-1004.2002
- 172 Nakano T (2012) A new species of Orobdella (Hirudinida, Arhynchobdellida,
- 173 Gastrostomobdellidae) and redescription of *O. kawakatsuorum* from Hokkaido, Japan
- 174 with the phylogenetic position of the new species. ZooKeys 169:9–30.
- 175 https://doi.org/10.3897/zookeys.169.2425
- 176 Oka A (1925a) Notices sur les Hirudinées d'Extreme Orient, I–IV. Annot Zool Jpn 10:311–
- 177 326
- 178 Oka A (1925b) Notices sur les Hirudinées d'Extrême Orient, V-VII. Annot Zool Jpn 10:327-

- 179 335
- 180 Oka A (1935) Description d'un nouveau genre d'Hirudinée de la famille des Glossiphonides,
- 181 Oligoclepsis tukubana n. g. n. sp. Proc Imp Acad 11:66–68
- 182 Okada Y (1928) Notes on Japanese frogs. Annot Zool Jpn 11:269–277
- 183 Sasaki A (2015) First record of Torix tagoi (Oka, 1925) in Yamanashi Prefecture, and
- 184 Shizuoka Prefecture. Nat Hist Tokai Distr 8:5–8
- 185 Sawyer RT (1986) Leech Biology and Behaviour. Clarendon Press, Oxford
- 186 Siddall ME, Burreson EM (1998) Phylogeny of leeches (Hirudinea) based on mitochobdrial
- 187 cytochrome *c* oxidase subunit. Mol Phylogenet Evol 9:156–162.
- 188 https://doi.org/10.1006/mpev.1997.0455
- 189 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular
- 190 Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729.
- 191 https://doi.org/10.1093/molbev/mst197
- 192 Tessler M, de Carle D, Voiklis ML, Gresham OA, Neumann JS, Cios S, Siddall ME (2018)
- 193 Worms that suck: Phylogenetic analysis of Hirudinea solidifies the position of
- 194 Acanthobdellida and necessitates the dissolution of Rhynchobdellida. Mol Phylogenet
- 195 Evol 127:129–134.


- 196 https://doi.org/10.1016/j.ympev.2018.05.001
- 197 Werner F (1903) Über Reptilien und Batrachier aus Guatemala und China in der
- 198 zoologischen Staats-Sammlung in München nebst einem Abhang über seltene Formen
- aus Anderer gebieten. Abh Math-Phys Kl K Bayer Akad Wiss 22:342–384
- 200 Yoshida K (2009) [Occurrence record of *Torix tukubana* (Annelida: Hirudinea:
- 201 Rhynchobdellida) collected from Mt. Tenzan (Kyuragi-machi, Karatsu-shi, Saga
- 202 Prefecture)]. Saga Nat Stud 15:47

Voucher	Collection	Host	Stage	Ventral	Coxl
	Date			Annulation	INSDC
					Accession
					#
KUZ	23 Mar	Rana tagoi, Rana	Juvenile	uniannulate	LC41390
Z2016	2016	ornativentris			
KUZ	18 Jun 2017	Onychodactylus japonicus	Large	triannulate	LC41390
Z2017					
KUZ	17 Dec	Free-living	Large	triannulate	LC41390
Z2019	2017				
KUZ	07 Jan 2018	Free-living	Large	triannulate	LC41390
Z2020					
KUZ	19 May	Rana tagoi	Juvenile	biannulate	LC41390
Z2025	2018				
KUZ	19 May	Rana tagoi	Juvenile	triannulate	LC41391
Z2026	2018				
KUZ	26 May	Onychodactylus japonicus	Juvenile	biannulate	LC41391
Z2028	2018	(Larvae)			
KUZ	02 Jun 2018	Free-living	Large	triannulate	LC41391
Z2056					

203 Table 1. Specimens collected and used in this study.

Voucher	1	2	3	4	5	6	7	8
1. KUZ Z2016								
2. KUZ Z2017	0.000							
3. KUZ Z2019	0.000	0.000						
4. KUZ Z2020	0.000	0.000	0.000					
5. KUZ Z2025	0.004	0.004	0.004	0.004				
6. KUZ Z2026	0.007	0.007	0.007	0.007	0.006			
7. KUZ Z2028	0.004	0.004	0.004	0.004	0.000	0.006		
8. KUZ Z2056	0.009	0.009	0.009	0.009	0.007	0.001	0.007	

205 Table 2. Uncorrected *p*-distance of the *cox1* sequences of *Torix tukubana*.

207

- 209 individual (KUZ Z2020: a, e) and juveniles; ventrally uniannulate (KUZ Z2016: b, f),
- biannulate (KUZ Z2025: c, g) and triannulate (KUZ Z2026: d, h). Scale bar: 5 mm
- 211