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Abstract

A method is presented for optimal placement of braces of plane frames using

machine learning. The frame is subjected to static horizontal loads representing

seismic loads. We consider the process of seismic retrofit by attaching braces.

Therefore, the maximum value of additional stresses in the existing beams and

columns and the maximum interstory drift angle are incorporated in the opti-

mization problem. Characteristics of approximate optimal solutions and nonopti-

mal solutions are extracted using machine learning based on support vector

machine and binary decision tree. Convolution and pooling are used for defining

the features characterizing the solutions while reducing the number of variables.

Optimization is carried out using a heuristic algorithm called simulated annealing

based on local search. It is shown in the numerical examples that the computa-

tional cost is successfully reduced by avoiding costly structural analysis for a solu-

tion judged by machine learning as nonoptimal, and the important features in

approximate optimal and nonoptimal solutions are identified.

Keywords

binary decision tree, braced frame, machine learning, optimization, simulated

annealing, support vector machine

1. Introduction

Optimization of frame structures is a well-established field of
research, and cross-sectional properties of small frames can be
easily optimized using an appropriate method of mathematical
programming or heuristic approach.1,2 However, there still
exist serious difficulties, if a real-world problem with many
design variables and large number of degrees of freedom is to
be solved, because substantial computational cost is needed for
evaluation of functions defined by structural responses.
Therefore, various approximation methods such as response
surface approximation and kriging have been utilized.3 A prob-
lem involving topology optimization is especially difficult to
solve, because the problem becomes a combinatorial problem
for which sensitivity information cannot be used.
Optimization methods are classified into mathematical pro-

gramming and heuristic approach. The latter is further classified
into population-based approach such as genetic algorithm (GA)
and the methods based on local search including simulated
annealing (SA)4 and tabu search (TS).5 In the method based on
local search, a single solution is improved by successively
selecting its best neighborhood solution. For a structural opti-
mization problem, the properties of neighborhood solutions are
evaluated by static and/or dynamic structural analysis, which

demands large computational cost for a large-scale complex
structure. Therefore, the computational cost may be substantially
reduced if a solution that cannot be an approximate optimal solu-
tion or a feasible solution is excluded before carrying out analy-
sis. For this purpose, machine learning can be effectively used.
Machine learning has been extensively applied in various fields

of engineering including image processing,6 automatic control,
etc. Machine learning is regarded as a basic component of artificial
intelligence and data mining.7 Binary decision tree (BDT), support
vector machine (SVM),8 and association rule9 are the basic tools
of machine learning. However, only a few studies can be found for
application of machine learning to structural optimization. In
1990s, artificial neural network (ANN) was extensively used for
estimating the structural responses in the process of structural opti-
mization.10 Biedermann and Grierson11 presented a method for
training ANN for design knowledge such as member grouping in
the process of optimization of plane frames. Lagaros and Papadra-
kakis12 estimated nonlinear seismic responses of a 3D-frame using
ANN. Ootao et al13 used ANN for estimation of maximum stress
ratio of a plate composed of functionally graded material. Adeli
and Park14 proposed a basic framework of structural optimization
based on estimation of constraint functions by ANN. Kontovourkis
et al15 optimized the process of kinematic transformation using
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ANN. However, most of the applications are for estimation of
function values rather than classification of solutions that can be a
candidate of approximate optimal solution. Furthermore, most of
applications of ANN are in the second generation, when applica-
tion to only small toy problems was possible.
Liu et al16 proposed application of BDT to particle swarm

optimization (PSO). Hanna17 used SVM for estimating optimal
geometry of modular structures for a given load set. SVM can
also be used for constructing surrogate models.18 Yang and
Hsieh19 used SVM for classification of feasible and infeasible
solutions in the process of reliability optimization. Hagishita
and Ohsaki20 used association rule for topology optimization
of framed structures. Szczepanik et al21 applied constructive
induction to wind design of tall steel building. Schwabacher
et al22 used inductive learning to find feasible initial design of
a structural optimization problem. Reinforcement learning has
been successfully applied for optimal control of robots.23

Topology optimization of braces under stress constraints is
difficult to solve, because the stress constraint need not be sat-
isfied if the brace does not exist24; ie, the stress constraint is
design-dependent. It is possible to optimize brace location of
highrise buildings using GA.25 Hagishita and Ohsaki20 pre-
sented an optimization method of braces with semirigid joints
using scatter search. Continuum approaches have also been
proposed for layout optimization of braces.26,27 Zhu et al28

optimized the brace locations for stochastic dynamic loads. It
is important to consider the 3-dimensional properties of frame,
if practical aspects are to be investigated. Park et al29 opti-
mized the locations of buckling restrained braces using multi-
objective GA. However, to the authors’ knowledge, there
exists no research on application of machine learning to topol-
ogy optimization of braces of a plane frame.
In this paper, we apply machine learning to reduce the compu-

tational cost for optimization of brace locations of building
frames. The properties of approximate optimal solutions and
nonoptimal solutions are identified by machine learning such as
BDT and SVM. It is shown that the computational time is suc-
cessfully reduced utilizing machine learning in the process of
optimization using SA, and the properties of approximate opti-
mal and nonoptimal solutions can be explicitly identified using
machine learning. The primary goal of this research is to show
the effectiveness of machine learning for complex topology opti-
mization problems. Therefore, the properties of optimal solu-
tions are not discussed in detail, and practical application of the
optimization results is not the main subject of this study.

2. Outline of optimization problem and optimization
method

We consider a steel building frame that is designed as an
assembly of plane frames. Its seismic performances are
upgraded using braces of various types including K-, V-, and
diagonal braces as shown in Figure 1. Although a single type
is usually used for each frame, it is possible to use different
types simultaneously. In this paper, locations and combinations
of braces are optimized for seismic retrofit; ie, the cross-sec-
tional properties of beams and columns are fixed.

One of the important points in seismic retrofit is that
increase of stresses in the existing beams and columns should
be kept as small as possible,30 so that fracture in existing
members is to be prevented. Figure 2 illustrates distribution of
axial forces in beams and columns of three types of 2-story 2-
span frame subjected to horizontal load at the center of the
roof, where the width of each member in the right-hand side
figures is proportional to its absolute value of axial force. As
seen from the figure, the maximum axial force depends on the
types of braces. Therefore, it is important to optimize types
and locations of braces considering additional stress to the
existing beams and columns.
The design variables are the integer numbers representing

types of braces including “no-brace” as illustrated in Figure 1.
Let ns and nf denote the numbers of spans and stories (floors),
respectively. Then, the number of design variables, which is
equal to the number of rectangular spaces surrounded by
beams and columns, is m = nsnf. The number of types of
braces including no-brace is denoted by t. The values of inte-
ger variables y = (y1,. . ., ym) are selected from the list {1,. . .,
t}. For the example in Figures 1 and 2, m = 4 and t = 5.
The objective function such as the total structural volume and a

representative response value defined by stress or displacement is
denoted by F(y). Inequality constraints are given with upper bound
�gi as gi(y) ≤ �gi (i = 1,. . ., nc), where nc is the number of con-
straints. Then, the optimization problem is formulated as follows:

1 2 3 4 5

Figure 1. Types of braces including “no-brace”; 1: no-brace, 2: K-brace, 3: V-brace, 4: right diagonal brace, 5: left diagonal brace

Frame Axial force

Figure 2. Additional axial forces of beams and columns under a hori-
zontal load for a 2-story 2-span frame with three types of braces
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MinimizeFðyÞ
subject to giðyÞ� �gi; ði ¼ 1; . . .; ncÞ

ð1Þ

Since problem (1) is a combinatorial problem, a gradient-
based method is not applicable. Furthermore, the number of
function evaluations during optimization should be restricted
to a small value, because generally substantial computational
cost is required for evaluation of the objective and/or con-
straint functions defined by structural responses such as stress
and displacement. Therefore, population-based methods such
as GA and PSO are not suitable, and we use a heuristic
method called SA that is an extension of local search.4 It sim-
ulates annealing process of metal. In the early stage of process,
movement to a worse neighborhood solution is allowed to
search a wide space in the feasible region to find the global
optimal solution. A parameter representing the temperature in
the annealing process is gradually reduced to restrict accep-
tance of a worse solution to converge to a local optimal solu-
tion. Since the values 1,. . ., t of each variable in our problem
are not related to the order of mechanical property, it is not
appropriate to change the values of all variables randomly in
the process of generating the neighborhood solutions. There-
fore, we select nv variables to be modified.
The algorithm of SA for this study is summarized as follows:

Step 1 Randomly assign initial value y0 of y, which satisfies
all constraints, and let F(y0). Assign initial value T0
for temperature parameter T. Set the iteration counter
k = 0, and assign the scaling parameter s, the temper-
ature reduction parameter a that is slightly less than
1, the total number of steps nt, the number of neigh-
borhood solutions nb, and the number of variables nv
to be modified at each step to generate neighborhood
solutions.

Step 2 Randomly modify nv variables from the current value
yk to generate neighborhood solutions y�i (i = 1,. . .,
nb). Obtain structural responses of each neighborhood
solution and compute the objective function value
Fðy�i Þ. Assign a large value to Fðy�i Þ if the constraints
are not satisfied. Find the best feasible solution ŷ that
minimizes Fðy�i Þ.

Step 3 Accept ŷ as yk+1 = ŷ if FðŷÞ\FðykÞ; otherwise, accept
ŷ with the following probability p:

p ¼ exp
FðykÞ � FðŷÞ

Ts

� �
ð2Þ

Step 4 Update the temperature parameter as T  aT.
Step 5 Terminate the process and output the best solution if

k reaches the specified value nt; otherwise, increase k
as k  k + 1 and go to Step 2.

3. Estimation of property of approximate optimal and
nonoptimal solutions

In the search process by SA, some of the randomly generated
neighborhood solutions obviously cannot be optimal. There-
fore, computational cost will be drastically reduced by avoid-
ing analysis for such solutions. For this purpose, we use tools
of machine learning, namely, BDT and SVM. BDT expresses
the hierarchical process of decision using binary tree. The data
are classified through the decision associated with each node

along the path from the root to a leaf node. SVM separates the
data using a linear dividing hyperplane. The minimum value
of margin from the dividing hyperplane to the data is maxi-
mized by solving an optimization problem. Complex data can
be classified applying nonlinear transformation using kernels
such as Gaussian kernel before solving an optimization prob-
lem.
Learning data are generated by random sampling of feasible

solutions, and approximate optimal solutions and nonoptimal
solutions are labeled as 1 and �1, respectively. The total set of
data is divided into N groups with equal size to carry out cross-
validation. The N � 1 groups are used for learning, and the
remaining one group for validation. Although the labels have
integer values, a real number called score, which has a value
between �1 and 1, is used to incorporated probabilistic estima-
tion of characteristics of solutions. After learning is completed,
the scores of validation data are evaluated and the labels are
predicted. Possible combinations of the predicted and true labels
are classified as shown in Table 1. In the table, FP indicates that
the estimated positive value 1 is false, ie, the true value is nega-
tive. It is important to reduce the possibility of FN, so that we
do not miss the approximate optimal solutions. Cross-validation
error is also used for evaluating the efficiency of learning.
Preprocessing is very important to improve the accuracy of

learning. The following procedures are used here:

• Dummy binary variable: Since SVM and BDT are effective
for ordered variables, they cannot be directly used for a func-
tion defined by categorical variables. Therefore, the categori-
cal variables defining the types of braces are converted to
dummy 0-1 variables. For example, if a categorical variable

Table 1. Combinations of estimated and true values of labels

True label

1 �1

Estimated label 1 TP (true-positive) FP (false-positive)

�1 FN (false-negative) TN (true-negative)

Figure 3. Examples of convolution filters defined by relative loca-
tions of a pair of braces; each filter has 16 patterns

Filter

1

0 00

0 0

0 0 0

0 0 0

0 1 0

Figure 4. Illustration of application process of convolution filter
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has the value “4” among the set {1, 2, 3, 4, 5} in Figure 1,
then the corresponding binary variables are (0, 0, 0, 1, 0).

• Convolution: The property of braced frame is not defined
only from the type of brace at each location. The relative
locations of pairs of braces are also important for smooth
transmission of the forces to the supports. To extract relative
locations, we use the technique called convolution, which is
often used in the field of image processing for feature
extraction through filters. In our problem, the pairs of braces
located in vertical, horizontal, and two diagonal directions,
as shown in Figure 3, are used as filters as illustrated in
Figure 4. The value 1 is given if the pair of braces matches
the filter, otherwise, the value is 0. If there are four types of
braces as shown in Figure 1, then each filter has 16
(=4 9 4) patterns; accordingly, the filters in four directions
in Figure 3 have 64 (=16 9 4) patterns in total. Figure 4
illustrates application process of convolution filter for a
5-story 3-span frame. In this case, there are 15 (=3 9 5)

locations for each filter; therefore, the total number of filter
variables becomes 960 (=64 9 15).

• Pooling: Although convolution enhances capability of
extracting properties of solutions, it increases the total num-
ber of variables in the learning process as described above.
Therefore, we reduce the number of variables using pooling.
For example, the two solutions in Figure 5A and B have a
similar property, because both patterns are effective for
reducing the interstory drift angles of the 1st and 2nd sto-
ries. Therefore, they are converted to Figure 5C using the
procedure called pooling. This way, the redundancy of solu-
tions is reduced.

The definitions of approximate optimal solutions and nonop-
timal solutions are also important to enhance the performance
of machine learning. The following two patterns are investi-
gated in the numerical examples:

• Pattern 1: Best 10% are approximate optimal solutions, and
the remaining solutions are nonoptimal.

• Pattern 2: Best 10% are approximate optimal solutions, and
the worst 10% are nonoptimal.

Note that approximate optimal solutions and nonoptimal
solutions are distinctly separated if Pattern 2 is used.
We carry out machine learning before optimization, and the

Step 2 of algorithm of SA is modified as follows:

Step 2 Randomly modify nv variables from the current value
yk to generate neighborhood solutions y�i (i = 1,. . .,
nb). Predict the characteristics of each solution based
on the result of machine learning. Carry out analysis
if it is judged as an approximate optimal solution;
otherwise, assign a large value to Fðy�i Þ without car-
rying out analysis. Also assign a large value to Fðy�i Þ
if the constraints are not satisfied. Find the best feasi-
ble solution ŷ that minimizes Fðy�i Þ.

4. Optimization problem of braced frame

We consider a 5-story 3-span frame as shown in Figure 6. The
numbers in the figures indicate the variable numbers.
A frame analysis software package OpenSees31 is used for

evaluating static responses of frames. The properties of model
and analysis are summarized as follows:

1 The frame has stiff base beams, and is pin-supported at the
column base.

1

0

0

A B C

Pool

Figure 5. Illustration of application process of pooling

4 m

4 m

4 m

6 m 6 m

2P

4P

3P

1

4

7

2

5

8

3

6

9

10 11 12

13 14 15
5P

RP

6 m

4 m

4 m

Figure 6. A 5-story 3-span frame

A B C

Figure 7. Typical patterns of brace locations; (A) pattern A, (B) pattern B, (C) pattern C
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2 The columns, beams, and braces are modeled using elastic
beam-column element, and the braces are rigidly connected
to the beams and columns.

3 Buckling and yielding of beams, columns, and braces are
not considered.

4 Increase of edge stresses considering axial force and bend-
ing moment of beams and columns due to horizontal loads
is incorporated in the optimization problem to simulate the
process of seismic retrofit; therefore, the stress and dis-
placement under self-weight are not computed.

5 The axial stiffness of beam is multiplied by 10 to evaluate
in-plane stiffness of slab without using the conventional
assumption of neglecting the in-plane deformation of slab.
Accordingly, horizontal loads are applied at beam-column
joints as shown in Figure 6, and deformation and stress in
beams can be computed.

The maximum value among the absolute values of edge
stresses at two ends of all beams and columns is denoted by
rmax(y), which is a function of y defining the locations and
types of braces, and is computed by adding the stresses due to
axial force and bending moment. In the following, the maxi-
mum absolute value is called maximum value for brevity. The
maximum value among interstory drift angles of all stories is
denoted by hmax(y). Let �h denote the upper bound for hmax(y).
The following optimization problem is to be solved:

Minimize rmaxðyÞ
subject to hmaxðyÞ� �h

JiðyÞ� �J; ðj ¼ 1; . . .; nfÞ
ð3Þ

where Ji(y) is the number of braces in the ith story, and �J is
its upper bound.
We consider a case where the constraint on the interstory

drift angle is violated if no brace is assigned. Then, the con-
straints are to be satisfied by assigning braces; it leads to
increase in stresses in beams and columns. Therefore, optimal
locations of braces exist to satisfy the constraints while keep-
ing the stresses small. For example, for the three typical pat-
terns A, B, and C in Figure 7A-C, respectively, the maximum
values of stress and interstory drift angle are computed as

listed in Table 2. “Member” indicates the location of member
that has the maximum stress, where the first integer is the
story (floor) number, {C, B} indicates {column, beam}, and
{ex, in} indicates {exterior, interior}. “Optimal” is the result
to be obtained in next section. The total volume V(y) of braces
is also listed in Table 2 for comparison purpose. It is seen
from Table 2 that the typical patterns will lead to large stres-
ses in beams and columns, and optimization of brace locations
efficiently reduces those stresses.

5. Optimization results without machine learning

Optimization is carried out for the 5-story frame in Figure 6.
The best solution after 20 trials with different random seeds is
regarded as the optimal solution. The upper bounds for inter-
story drift angle and the number of braces in each story are
given as �h ¼ 0:005 and �J ¼ 2, respectively. Sufficiently large
value is given for the bending stiffness of base beam, so that
the frame is almost rigidly supported at the base. Note that the
horizontal loads are applied only in one direction, because we
consider linear elastic behavior of beams, columns, and braces.
Consequently, the optimal locations of braces are asymmetric;
however, the maximum stress and drift angle are the same for
the loads in the opposite direction. The scaling parameter s for
SA is given, so that the acceptance probability is 0.5 for a
neighborhood solution that increases the objective value 10%
at the initial solution with T = 1.0.

Table 2. Maximum values of stresses and interstory drift angles of

patterns A, B, and C

rmax(N/mm2) Member hmax V (m3)

No brace 649.54 2B-ex 0.0220 0

Optimal 84.83 1B-ex 0.0019 0.35

Pattern A 169.32 1C-ex 0.0028 0.27

Pattern B 221.82 1C-in 0.0034 0.18

Pattern C 118.57 1C-in 0.0016 0.37

Table 3. Cross-sectional area and second moment of area of beams, columns, and braces of 5-story frame

Floor Beam A (cm2) I (cm4) Story Column A (cm2) I (cm4)

R H-346 9 174 9 699 52.45 11 000 1-5 HSS-350 9 350 9 9 122.76 23 800

5 H-350 9 175 9 7911 62.91 13 500

4 H-396 9 199 9 7911 71.41 19 800

3 H-396 9 199 9 7911 71.41 19 800

2 H-400 9 200 9 8913 83.37 23 500 Brace H-250 9 125 9 699 36.97 3960

Table 4. Optimization results of 5-story frame

rmax

(N/mm2)
Member Pattern hmax V (m3)

No brace 649.54 2B-ex 111111111111111 0.0220 0

Optimal 84.83 1B-ex 122133221431125 0.0019 0.35

Figure 8. Locations of braces of the optimal solution
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The parameters of SA are specified as nv = 5, nb = 15,
nt = 1000, and a = 0.99 after several parametric studies. The
loads P2, P3, P4, P5, PR are calculated as 97, 139, 185, 237, 465
(kN), which are the sum of four loads in each floor. Section prop-
erties of beams, columns, and braces are listed in Table 3.
The responses of the frame without brace and the optimiza-

tion results are shown in Table 4. The optimal solution is
shown in Figure 8, which does not have much regularity; how-
ever, most of the braces are connected with each other to
allow continuous load path to the support.

6. Machine learning for properties of approximate
optimal and nonoptimal solutions

The BDT and SVM, which are available in Statistics and
Machine Learning Toolbox in Matlab Ver. 2016,32 are used
for learning the properties of approximate optimal solutions

and nonoptimal solutions. The solutions are classified by Pat-
terns 1 and 2 described in Section 3. The number N of groups
for cross validation is 10 for both BDT and SVM. The maxi-
mum number of splits is 100 in BDT. For SVM, linear kernel
with standardization and autoscale are used, and the parameter
for box constraint is 3.
Depending on the use of convolution and pooling, one of the

following strategies S1, . . . S5, which are illustrated in Figure 9,
is used for extracting the patterns of braces of the 5-story frame:

S1: Do not use convolution.

S2: Use convolution, but do not use pooling.

S3: Use convolution. Classify the five stories to four
groups consisting of 1st, 2nd, 3rd, and upper {4th, 5th}
stories, respectively, and carry out pooling for each group.

1

0 00

0 0

0 0 0

0 0 0

0 1 0

0

0

1

1

1

1

1

{

{
{ {

{
{
{

Pooling

Filter

S4S3 S5

S2 S1

Figure 9. Five strategies of convolution and pooling

Table 5. Learning results of SVM for 5-story frame

Classification pattern Strategy
Filter 4 Filter 5

Error FN FP Error FN FP

Pattern 1 S1 0.1000 1000/1000 0/9000 0.1000 1000/1000 0/9000

S2 0.0836 675/1000 159/9000 0.0770 586/1000 157/9000

S3 0.0945 914/1000 32/9000 0.0823 611/1000 157/9000

S4 0.1000 1000/1000 0/9000 0.1000 1000/1000 0/9000

S5 0.1000 1000/1000 0/9000 0.1000 1000/1000 0/9000

Pattern 2 S1 0.0250 17/1000 35/1000 0.0250 17/1000 35/1000

S2 0.0410 41/1000 28/1000 0.0110 10/1000 10/1000

S3 0.0560 64/1000 28/1000 0.0120 15/1000 18/1000

S4 0.1495 133/1000 144/1000 0.0385 26/1000 57/1000

S5 0.2050 194/1000 221/1000 0.0965 107/1000 106/1000
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S4: Use convolution. Classify the five stories to two groups
consisting of lower {1st, 2nd} and upper {3rd, 4th, 5th} sto-
ries, respectively, and carry out pooling for each group.

S5: Use convolution, and carry out pooling for the whole stories
as single group.

The filters as shown in Figure 3, for example, are used for
convolution for extracting the properties in vertical, horizontal,
and two diagonal directions. We consider the following two
combinations of brace types in each filter:

Filter 4: Do not include the case without brace. There are
4 9 4 = 16 types for each of four relative locations in
Figure 3; the total number of filters is 4 9 494 = 64.

Filter 5: Include the case without brace. There are
5 9 5 = 25 types for each of four relative locations in
Figure 3; the total number of filters is 5 9 594 = 100.

Note that Filter 5 is expected to have better performance,
because it includes Filter 4. However, Filter 5 demands more
computational time than Filter 4.
The learning results of the 5-story frame are listed in Tables 5

and 6, respectively, for SVM and BDT. In the tables, “Error” is
the cross-validation error, and FN and TN are the ratios of false-
negative and true-negative to the total number of verification
data. Note that the total number of “negative” (nonoptimal) solu-
tions is 9000 and 1000 for Patterns 1 and 2, respectively,
although the total number of “positive” (approximate optimal)
solutions is 1000 for both patterns. Therefore, FN is the ratio of

≥0.5

≥0.5

≥0.5

≥0.5

≥0.5

0.5>

0.5>

0.5>

0.5>

0.5>

–1

–1

–1

–11

x376

x377

x677

x421

x380
≥0.50.5>

–11

x617

Figure 10. Feature tree for 5-story frame

Figure 11. Filter variables indicating branch patterns near the root of BDT

Table 6. Learning results of BDT for 5-story frame

Classification pattern Strategy
Filter 4 Filter 5

Error FN FP Error FN FP

Pattern 1 S1 0.0972 720/1000 268/9000 0.0972 720/1000 268/9000

S2 0.1034 840/1000 177/9000 0.0935 586/1000 375/9000

S3 0.1086 854/1000 170/9000 0.0997 719/1000 231/9000

S4 0.1127 891/1000 202/9000 0.1123 840/1000 291/9000

S5 0.1114 947/1000 198/9000 0.1155 945/1000 150/9000

Pattern 2 S1 0.0390 38/1000 40/1000 0.0390 38/1000 40/1000

S2 0.0725 65/1000 63/1000 0.0290 33/1000 21/1000

S3 0.0920 76/1000 73/1000 0.0340 24/1000 24/1000

S4 0.2309 317/1000 107/1000 0.0930 83/1000 95/1000

S5 0.3413 407/1000 263/1000 0.2194 170/1000 250/1000
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number of solutions that are judged as “negative” among 1000
positive solutions, and FN is preferred to be small, so that we do
not miss the approximate optimal solutions.
The following properties are observed from the tables:

1 The value of FN is large for both of SVM and BDT if
Pattern 1 is used, because the approximate optimal and
nonoptimal solutions are more distinctly classified by Pat-
tern 2 than Pattern 1.

2 Performance generally improves if Filter 5 is used; how-
ever, the performance is still not good for Pattern 1. The
use of Filter 5 and Pattern 2 leads to the best performance,
which means that “no brace” is needed in the definition of
filters.

3 Use of pooling has good accuracy, if lower three stories
are distinguished. Obviously, strategy S5 has the largest
error and FN value among the five strategies for all cases,
because the structural responses depend on the locations of
braces.

7. Property of approximate optimal and nonoptimal
solutions

Properties of approximate optimal solutions and nonoptimal
solutions are investigated using the results of machine learn-
ing, where Filter 5 and strategy S2 without pooling are used to
clearly extract the properties. In this case, we have
5 9 594 9 15 = 1500 filter variables which are denoted by
x1,. . ., x1500.
First, we investigate the results of BDT. The feature tree is

shown in Figure 10. As seen from the figure, the features of
nonoptimal solutions, rather than approximate optimal solu-
tions, are extracted in the first four branches in Figure 10. This
fact indicates that the nonoptimal solutions have more distinct
features than the approximate optimal solutions.
Figure 11 illustrates the definitions of filters corresponding

to variables x376, x377, and x677. For example, the variable x367
is equal to 1 if there is no brace at locations 1 and 2 defined
in Figure 6, while x376 = 1 is satisfied if there is no brace at
locations 1 and 2. The first and second branches in Figure 10
indicate that the frame is labeled as �1 if x376 ≥ 0.5 or
x377 ≥ 0.5, which means that the frame without any brace in
the 1st story cannot be an approximate optimal solution.

Frequently observed patterns in nonoptimal and approximate
optimal solutions, respectively, in the randomly generated
10 000 solutions are shown in Figures 12 and 13. An example
of approximate optimal solution and its distribution of axial
forces in beams, columns, and braces are shown in Figure 14.
Although the stress due to bending moment is included in
evaluation of maximum stress for the optimization problem, the
load path of frame can be clearly seen by the distribution of axial
forces. It can be seen from Figure 14 that the external loads are
transmitted mainly through the V-braces and K-braces forming
an X-brace in the two vertically connected stories.
Next, we investigate the features of approximate optimal

and nonoptimal solutions using the learning results of SVM.
After learning, the score S(x) of solution x is evaluated using
the following equation:

SðxÞ ¼ 1

a
b � xþ b ð4Þ

where b = (b1,. . .,bm) is the coefficient vector of m variables,
a is the scaling factor, and b is the bias vector. It is seen from
Equation (4) that a large value of bi leads to a large score
when xi = 1, while a small (negative) value of bi leads a small
(negative) score when xi = 1. Therefore, the features of
approximate optimal and nonoptimal solutions can be esti-
mated by the values of bi. The filter variables with ten largest
and smallest values of bi are listed in Tables 7 and 8, respec-
tively, where the corresponding patterns are shown in
Figures 15 and 16. Note that all filter variables in Figure 10
except x677 are included in Table 8.

8. Optimization using machine learning

Machine learning is incorporated to SA algorithm to reduce
the total computation time. Classification of the neighborhood
solution is based on the score that has real numbers. The
scores for 100% confident classification for approximate

A B

Figure 14. An example of approximate optimal solution; (A) brace
locations, (B) axial forces of beams, columns, and braces

Figure 12. Frequently observed patterns in nonoptimal solutions

Figure 13. Frequently observed patterns in approximate optimal solutions
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Figure 15. Filter variables with large value of bi indicating features of approximate optimal solutions

Table 7. Filter variables with ten largest values of bi

Order 1 2 3 4 5 6 7 8 9 10

Variable number 692 106 496 856 93 108 617 91 451 1352

bi 3.81 3.56 3.29 3.28 3.14 3.10 3.09 3.08 3.00 2.80

Table 8. Filter variables with ten smallest values of bi

Order 1500 1499 1498 1497 1496 1495 1494 1493 1492 1491

Variable number 376 377 380 379 382 383 4 751 796 1337

bi �7.78 �7.21 �4.63 �4.02 �3.97 �3.63 �3.24 �3.13 �2.82 �2.77
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optimal and nonoptimal solutions are 1 and �1, respectively,
while the threshold values are given dynamically, as follows,
during the optimization process:

1 Assign the initial value 0.0 for the threshold value s.
2 Add Δs1 to s at the beginning of each step of SA.
3 If the score obtained by prediction is greater than s, then

assume the solution as approximate optimal and carry out
structural analysis.

4 Reduce s by Δs2, if the objective value rmax(y) obtained
by analysis is less than the specified value �r.

In the preliminary investigation, we found that the computa-
tional time for prediction by SVM is very large, if we have

large number of filter variables. Therefore, the strategy S3 with
pooling is used for SVM. By contrast, the strategy S2 without
pooling is used for BDT to maintain accuracy of prediction.
The values of Δs1 and Δs2 in the following examples are 0.03
and 0.03, respectively, for BDT, and 1.00 and 0.50 for SVM.
The upper-bound stress is �r = 120 N/mm2, which is specified
in view of distribution of rmax(y) values in the 10 000 data.
Computation is carried out using a PC with Intel Core i5-
5200U 2.20 GHz and 8 GB memory.
Table 9 shows the sum of computation time and number

of analyses, respectively, for 20 trials as well as the optimal
objective value for each case. Note that “computation time”
means the elapsed time (wall-clock time) as an output of
Matlab. As seen from the table, the reduced numbers of

Figure 16. Filter variables with small value of bi indicating features of nonoptimal solution
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analyses are 31 658 and 39 549, respectively, for SVM and
BDT. The reduced CPU time is about 3800 for SVM, and
about 4700 seconds. for BDT. This way, computation time
has been successfully reduced using machine learning. The
optimization results are shown in Figure 17, which confirms
that the solutions by SVM and without learning are very
similar.

9. Conclusions

A method based on SA has been proposed for optimization of
brace locations of building frames utilizing machine learning
for detecting nonoptimal solutions during optimization. The
objective function is the maximum additional stress consider-
ing axial force and bending moment of beams and columns
under horizontal static loads representing seismic loads. It has
been shown that the computational cost can be successfully
reduced using BDT or SVM.
Various strategies of modeling features of brace locations

and preprocessing of variables have been investigated in view
of accuracy and computational cost of learning. It has been
shown that distinct classification of approximate optimal and
nonoptimal solutions is effective to improve the accuracy of
learning and prediction. Convolution using filters with “no
brace” generally improves the accuracy of prediction; however,
it increases the computational cost. Therefore, pooling in each
of lower stories is effective to reduce the number of variables,
while maintaining the accuracy.
It has been shown in the numerical examples of 5-story 3-

span frames that the computational cost for optimization by
SA can be drastically reduced using SVM or BDT. In the pro-
cess of SA using the learning results, it is effective to vary
dynamically the threshold value of the score for detecting a
non-optimal solution. The properties of approximate optimal
and nonoptimal solutions can be extracted from the feature

trees as an output of BDT and the coefficients of the function
for estimating the score of SVM. For example, the braces
should be continuously located to reduce the additional stresses
in beams and columns due to horizontal seismic loads.
Note that the primary goal of this research is to show the

effectiveness of machine learning for complex topology opti-
mization problems. Therefore, the properties of optimal solu-
tions are not discussed in detail, and practical application of
the optimization results may be a subject of future study.
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