

TANK-TO-WHEELS Report Version 4.0

JEC WELL-TO-WHEELS ANALYSIS

WELL-TO-WHEELS ANALYSIS OF FUTURE AUTOMOTIVE FUELS AND POWERTRAINS IN THE EUROPEAN CONTEXT

Authors: Arno HUSS (AVL), Heiko MAAS (FORD), Heinz HASS (EUCAR/Ford)

Editors: Robert Edwards (JRC), Simon Godwin (EUCAR), Alois Krasenbrink (JRC), Laura Lonza (JRC), Robin Nelson (CONCAWE), Alan Reid (CONCAWE), Kenneth D. Rose (CONCAWE)

2013

European Commission Joint Research Centre Institute for Energy and Transport

Contact information Laura Lonza Address: Joint Research Centre, Via Enrico Fermi 2749, TP 230, 21027 Ispra (VA), Italy E-mail: laura.lonza@ec.europa.eu Tel.: +39 0332 78 3902 Fax: +39 0332 78 6671

http://iet.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

This publication is a Technical Report by the Joint Research Centre of the European Commission.

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/.

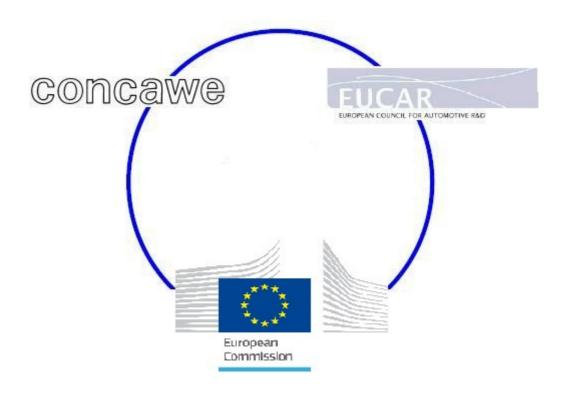
JRC82852

EUR 26027 EN

ISBN 978-92-79-31195-6 (pdf)

ISSN 1831-9424 (online)

doi:10.2788/40409


Luxembourg: Publications Office of the European Union, 2013

© European Union, 2013

Reproduction is authorised provided the source is acknowledged.

Printed in Italy

WELL-TO-WHEELS ANALYSIS OF FUTURE AUTOMOTIVE FUELS AND POWERTRAINS IN THE EUROPEAN CONTEXT

TANK-TO-WHEELS (TTW) REPORT

VERSION 4, JULY 2013

This report is available as an ADOBE pdf file on the JRC/IET website at:

http://iet.jrc.ec.europa.eu/about-jec

Questions and remarks may be sent to:

infoJEC@jrc.ec.europa.eu

Notes on version number:

This is version 4 of this report replacing version 3c published in July 2011. The main changes and additions to the previous version are:

- Base year for Tank-to-Wheels evaluation moved from 2002 to 2010;
- Re-evaluation of 2010 conventional and Hybrid vehicle configurations;
- Introduction of additional fuels;
- Introduction of additional electrified vehicle configurations such as Plug-In Hybrid Electric Vehicles (PHEV), Range Extended Electric Vehicles (REEV) and Battery Electric Vehicles (BEV);
- Consideration of conventional and electrified vehicle configurations for 2020+;
- In contrast to the recent versions of the TTW report, no cost assessments have been made.

Acknowledgments

This JEC Consortium study was carried out jointly by experts from the JRC (EU Commission's Joint Research Centre), EUCAR (the European Council for Automotive R&D), and CONCAWE (the oil companies' European association for environment, health and safety in refining and distribution), assisted by experts from Ludwig-Bölkow-Systemtechnik GmbH (LBST) and AVL List GmbH (AVL).

Main authors Tank-to-Wheels (TTW) report

A. Huss	AVL
H. Maas	FORD
H. Hass	EUCAR/Ford

JEC Scientific Advisory Board

R. Edwards	JRC
S. Godwin	EUCAR
H. Hass	EUCAR/Ford
A. Krasenbrink	JRC
L. Lonza	JRC
H. Maas	EUCAR/Ford
R. Nelson	CONCAWE
A. Reid	CONCAWE
K. Rose	CONCAWE

JRC Task Force

A. Agostini	JRC
R. Edwards	JRC
J. Giuntoli	JRC
M. Kousoulidou	JRC
L. Lonza	JRC
A. Moro	JRC
M. Padella	JRC

EUCAR Task Force

T. Becker	Opel
V. Boch	Renault
B. Bossdorf-Zimmer	VW
H-P. Deeg	Porsche
V. Formanski	Opel
T. Galovic	BMW
A. Gerini	Fiat
H. Hass	Ford
F. Herb	Daimler
E. Iverfeldt	Scania
L. Jacobs	Volvo
J. Klemmer	Opel
D. Le-Guen	Renault
H. Maas	Ford
B. Moeller	Daimler
B. Perrier	PSA
W. Prestl	BMW
J. Rizzon	Daimler
A. Roj	Volvo
A. Schattauer	BMW
J. Wind	Daimler

CONCAWE Task Force

F. Bernard	TOTAL
S. Boreux	TOTAL
V. Court	CONCAWE
C. Diaz Garcia	Repsol
J. Farenback-Brateman	ExxonMobil
S. Kuusisto	Neste Oil
J-F. Larivé	CONCAWE
R. Malpas	Shell
E. Marin	Repsol
C. Olivares Molina	CEPSA
C. Price	Shell
A. Rankine	BP
A. Reid	CONCAWE
D. Rickeard	CONCAWE
K. Rose	CONCAWE
T. Venderbosch	CONCAWE

LBST (Well-to-Tank Consultant) W. Weindorf

AVL List GmbH (Tankto-Wheels Consultants) A. Huss

R. Albrecht

E. Morra

Table of Contents

1	Introduction	10
2	Executive Summary	11
3	 Fuels & Powertrain Configurations 3.1 Fuel properties 3.2 Reference C-segment vehicle 3.2.1 Main vehicle specification 3.2.2 Vehicle minimum performance requirements 3.3 Powertrain configurations 3.3.1 Basic description of powertrain configurations 3.3.2 Analyzed fuel & powertrain configurations 3.4.1 xEV functionalities 3.4.2 xEV operational strategies 	12 12 12 13 14 14 17 18 18 20
4	Simulation Methodology 4.1AVL CRUISE as simulation environment 4.2Test cycle & constraints 4.2.1 NEDC 4.2.2 Performance tests 4.3Methodology 4.3.1 Modelling methodology 4.3.2 xEV control logic 4.3.3 Evaluation of GHG emission 4.3.4 Error assessment	24 24 24 26 26 27 27 28
5	 2010 Vehicle Configurations & Results 5.1 Vehicle configurations 5.1.1 Simulation parameter & main data 5.1.2 ICE specifications 5.1.3 xEV specifications 5.2Simulation results 5.2.1 Results for conventional ("ICE only") configurations 5.2.2 Results for xEV configurations 	30 30 31 34 36 36 36
6	 2020+ Vehicle Configurations & Results 6.1 Vehicle configurations 6.1.1 Simulation parameter & main data 6.1.2 ICE Specifications 6.1.3 xEV specifications 6.2Simulation results 6.2.1 Results for conventional ("ICE only") configurations 6.2.2 Results for xEV configurations 	 39 39 41 43 45 46 46
7	Summary	50
8	Acronyms & Abbreviations used in the TTW study	55

List of Figures

Figure 2-1: Summary of TTW simulation results for NEDC - 2010 & 2020+ configurations	11
Figure 3-1: P2 AT parallel Hybrid topology	15
Figure 3-2: P2 parallel Hybrid topology	15
Figure 3-3: Series Hybrid topology	16
Figure 3-4: Series Hybrid topology for FC vehicles	16
Figure 3-5: Drivetrain schematic for BEV	16
Figure 3-6: xEV functionalities: regenerative braking	19
Figure 3-7: xEV functionalities: battery assistance	19
Figure 3-8: xEV operational strategies: HEV and PHEV	21
Figure 3-9: xEV operational Strategies: REEV	22
Figure 4-1: Velocity profile of the New European Driving Cycle (NEDC)	24
Figure 4-2: Evaluation of a PHEV fuel consumption based on the UN ECE R 101 (Rev 2)	25
Figure 4-3: Evaluation of a REEV fuel consumption based on the UN ECE R 101 (Rev 2)	26
Figure 5-1: Fuel Cell System Efficiency of FCEV Configuration 2010	35
Figure 6-1: Fuel cell system efficiency of 2020+ configurations	45
Figure 6-2: Electric system layout of the FCEV	45
Figure 6-3: Electric system layout of the REEV FC	45
Figure 7-1: Summary of CO_2 equivalent emission results for SI ICE Configurations 2010	50
Figure 7-2: Summary of CO2 equivalent emission results for CI ICE Configurations 2010	50
Figure 7-3: Summary of CO2 equivalent emission results for SI ICE Configurations 2020+	51
Figure 7-4: Summary of CO2 equivalent emission results for CI ICE Configurations 2020+	51
Figure 7-5: Summary of energy consumption results for SI ICE Configurations 2010	52
Figure 7-6: Summary of energy consumption results for CI ICE Configurations 2010	52
Figure 7-7: Summary of energy consumption results for SI ICE Configurations 2020+	53
Figure 7-8: Summary of energy consumption results for CI ICE Configurations 2020+	53
Figure 7-9: Summary of energy consumption results for BEV & FCEV Configurations 2010 & 2020+	- 54
Figure 8-1: Powertrain layouts, explanations of used symbols	56

List of Tables

Table 3-1: Fuel properties for WTW study version 4	12
Table 3-2: Characteristics of the generic C-segment reference vehicle	13
Table 3-3: Vehicle minimum performance criteria (see the appendix for abbreviations)	13
Table 3-4: Vehicle GVW and payload definition for 2010 configurations	14
Table 3-5: Vehicle GVW and payload definition for 2020+ configurations	14
Table3-6: Matrix of fuel / powertrain combinations investigated in the current TTW study	18
Table 3-7: Overview of the xEV operational strategies implemented	20
Table 3-8: xEV operational strategies: FCEV and REEV FC	22
Table 4-1: Impact of CH ₄ and N ₂ O emission to CO ₂ equivalent (GHG) emissions	28
Table 5-1: Mass balance for "ICE only" configurations 2010	30
Table 5-2: Mass balance for xEV Configurations 2010	31
Table 5-3: Gasoline ICE specifications for 2010 configurations with (standard) gasoline fuel	32
Table 5-4: Diesel ICE specifications for 2010 configurations with (standard) diesel fuel	32
Table 5-5: PISI ICE specifications for 2010 configurations with alternative fuels	33
Table 5-6: DISI ICE specifications for 2010 configurations with alternative fuels	33
Table 5-7: xEV components' specifications: overview of xEV 2010 configurations	34
Table 5-8: Simulation results for "ICE only" configurations 2010	36
Table 5-9: Simulation results for HEV configurations 2010	37
Table 5-10: Simulation results for PHEV configurations 2010 (according to ECE 101 regulation)	37
Table 5-11: Simulation results for REEV SI configuration 2010 (according to ECE 101 regulation)	37
Table 5-12: Simulation results for BEV configuration 2010	38
Table 5-13: Simulation results for FCEV configuration 2010	38
Table 6-1: Mass balance for "ICE only" configurations 2020+	39
Table 6-2: Mass balance for xEV configurations 2020+ in relation to the DISI ("ICE only")	40
Table 6-3: Mass balance for xEV configurations 2020+ in relation to the DICI ("ICE only")	41
Table 6-4: Gasoline ICE specification for configurations 2020+ with (standard) gasoline fuel	42
Table 6-5: Diesel ICE specification for configurations 2020+ with (standard) diesel fuel	42
Table 6-6: PISI ICE specification for ("ICE only") configurations 2020+ with alternative fuels	43
Table 6-7: DISI ICE specification for ("ICE only") configurations 2020+ with alternative fuels	43
Table 6-8: xEV components' specifications: overview of xEV 2020+ configurations	44
Table 6-9: Simulation results for "ICE only" configurations 2020+	46
Table 6-10: Technology walk for "ICE only" configurations (PISI, DISI, DICI) 2010 $ ightarrow$ 2020+	46
Table 6-11: Simulation results for HEV configurations 2020+	47
Table 6-12: Technology walk for hybrid configurations (DISI, DICI) 2010 $ ightarrow$ 2020+	47
Table 6-13: Simulation results for PHEV configurations 2020+ (according to ECE101 regulation)	47
TTW Report v4 July 2013 Page 8	of 58

- Table 6-18: Technology walk for BEV configuration $2010 \rightarrow 2020+$ 49
- Table 6-19: Simulation results for FCEV & REEV FC 2020+49
- Table 6-20: Technology walk for FCEV configuration $2010 \rightarrow 2020+$ 49

1 Introduction

The study of current and future automotive fuels and powertrains in the European market consists of two parts: First, the issues related to fuel production and provision are covered in the Well-to-Tank report (WTT) of the study, and second the Tank-to-Wheel (TTW) report describes the final use of the various fuels and corresponding powertrain options. The Well-to-Wheels (WTW) report finally provides the integrated view of the relative merits of the wide range of options studied.

The Tank-to-Wheel study described in this report includes several different fuel-powertrain configurations for conventional¹ (i.e. "ICE-only") as well as electrified (i.e. "xEV") vehicles. These configurations are considered for 2010 (representing vehicles on the market in the years 2008 to 2012) to characterize the current state-of-the-art in automotive industry. Version 3 of the TTW study used 2002 as base year. To give an outlook on the future technical development of passenger cars, configurations for 2020+ are presented. They are based on the technology development expected by EUCAR and AVL experts.

All fuel-powertrain configurations are investigated for fuel consumption, Greenhouse Gas (GHG) emission and electric energy consumption based on the New European Driving Cycle (NEDC). Real world driving may show different results due to a range of impacting parameters and customer choices like different driving habits, road conditions and cabin comfort needs.

The study is founded on a generic C-segment vehicle as a reference. All conventional or xEV configurations are derived from this reference and retain pre-defined vehicle performance criteria. The xEV configurations include definitions of powertrain topologies and system architectures, best engineering estimations of Hybrid functionalities and operational strategies, and powertrain components including optimized layout and a detailed mass balance. For detailed investigation all configurations are modeled in the system simulation tool AVL CRUISE based on data and control calibration delivered by EUCAR or estimated by AVL based on its internal database and experience. Data, models and strategies are widely discussed and mutually agreed between EUCAR and AVL to ensure a high quality of results.

It should be noted that all investigated powertrain configurations are theoretical vehicle configurations and do not represent any existing vehicle or brand. However the definitions made do ensure that the investigated powertrain configurations - conventional as well as their xEV derivatives - strive to provide a representative overview about todays and expected future automotive technologies and their GHG emissions in European C-segment passenger cars.

¹ Non-electrified vehicle configurations driven by an ICE only will subsequently be named as "conventional". This also excludes Hybrid vehicles, which fall into the xEV category.

2 Executive Summary

The TTW simulation results are summarized in

Figure 2-1 showing the CO₂ equivalent emission and the energy consumption for 2010 and 2020+ configurations. All simulation runs were based on the New European Driving Cycle (NEDC).

A basic introduction of the fuels and powertrain configurations covered in the TTW study is given in chapter 3. Conventional powertrains include the ICE technologies of Port Injection Spark Ignition (PISI), Direct Injection Spark Ignition (DISI) and Direct Injection Compression Ignition (DICI). Electrification of conventional powertrains is done in terms of a Hybrid Electric Vehicle (HEV), a Plug-In Hybrid Electric Vehicle (PHEV) and a Range Extender Electric Vehicle (REEV). Additionally pure electric powertrains like the Battery Electric Vehicle (BEV) and the Fuel Cell driven Electric Vehicle (FCEV) are investigated. A description of all analyzed combinations of these powertrains with corresponding fuel configurations for 2010 and 2020+ is given in chapter 3.3.2. The methodology used for the simulation study is shown in chapter 4. Finally the detailed description of investigated powertrain configurations and their component specifications for 2010 configurations is given in chapter 5, and for 2020+ configurations in chapter 6.

Detailed summary diagrams showing the results for TTW CO₂ equivalent emission and energy consumption including the evaluation of error bars are given in chapter 7.

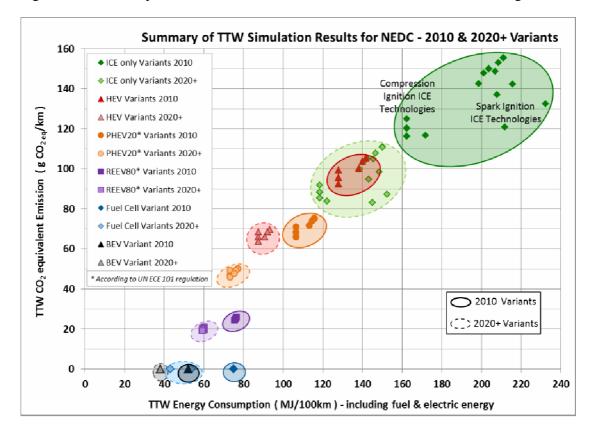


Figure 2-1: Summary of TTW simulation results for NEDC - 2010 & 2020+ configurations

3 Fuels & Powertrain Configurations

3.1 Fuel properties

The main properties of the fuels considered in the current study are listed in **Table 3-1**. For each fuel type the density, the Research Octane Number (RON) or Cetane Number (CN), the Lower Heating Value (LHV), the mass portion of Carbon and the CO_2 emission factors are given. Fuel properties are defined based on 2010 specifications and are used for simulation of 2010 as well as 2020+ configurations to enable comparability of results. For some fuel properties the specifications give certain bandwidths and market fuels show variations within these ranges.

Fuel Type	Density RON / CN		LHV	Elemental composition of Carbon	CO2 emission factor		
	kg/m ³ i.N.*		MJ/kg	%m	g/MJ	kg/kg	
Gasoline	745	95	43.2	86.4	73.4	3.17	
Gasoline E10	750	97	41.5	82.8	73.3	3.04	
Gasoline E20 high RON	755	102	39.7	79.2	73.1	2.91	
E85	786	106	29.2	56.9	71.6	2.09	
LPG	550	**	46.0	82.4	65.7	3.02	
CNG	0.790	**	45.1	69.2	56.2	2.54	
Diesel	832	51	43.1	86.1	73.2	3.16	
Diesel B7 market blend	836	51	42.7	85.4	73.4	3.13	
FAME	890	56	37.2	77.3	76.2	2.83	
FT Diesel	780	70	44.0	85.0	70.8	3.12	
HVO	780	70 - 75	44.0	85.0	70.8	3.12	
DME	670	55	28.4	52.2	67.3	1.91	
Hydrogen (CGH2 & cCGH2)	0.084	#	120.1	0	0	0	
*) All values are related to standard conditions according to DIN 1343 & ISO 2533; **) can vary significantly							

 Table 3-1: Fuel properties for WTW study version 4

For the vehicle simulation the fuel properties are taken into consideration in two different ways: For some main fuels like Gasoline, Gasoline E20 high RON, E85, Diesel, LPG and CNG ICE fuel consumption maps are specifically designed for the various ICE technologies and implemented into the powertrain simulated models for detailed calculation. The impacts of the other fuels are derived from these calculations based on their properties as given above.

3.2 Reference C-segment vehicle

All simulations are based on a generic or "virtual" reference vehicle, representing a common European C-segment 5-seater sedan for the time 2010 and 2020+. This reference vehicle is used as a tool for comparing the various fuels and associated technologies covered in this report; it is not claimed to be representative of the European fleet.

3.2.1 Main vehicle specification

The C-segment reference vehicle model year 2010 is equipped with a 1.4L DISI ICE, a 6 speed Manual Transmission (MT) and Front Wheel Drive (FWD). The main reference vehicle characteristics covered in vehicle simulation are given in

Table 3-2.

Generic C-segment reference vehic	le with 1.4	L DISI ICE (2010)	Improved Reference Vehicle for 2020+				
Curb weight (incl. driver and 90% fuel)	kg	1310	1200 (*)				
ITW class	kg	1360	1250				
Length	mm	432	26.5				
Width (without exterior mirror)	mm	178	39.4				
Height	mm	148	1484.8				
Cross-sectional area	m²	2	.2				
Air drag coefficient		0.30	0.24				
Rolling resistance coefficient		0.007	0.005				
Wheel base	mm	263	2638.9				
Height of gravity center	mm	6	00				
Distance of gravity center from front axle	mm	12	1200				
Dynamic Rolling Radius	mm 309						
(*) Vehicle mass is reduced by 110 kg; Add	itional Inform	ation is shown in section "3	3.3.1.1 Vehicle mass"				

Table 3-2: Characteristics of the generic C-segment reference vehicle

The curb weight is defined as the total weight of the vehicle with standard equipment, all necessary operating consumables (e.g. motor oil and coolant 100% filled), fuel tank filled to 90% and a driver with 75kg (see EC Directive 95/48/EC).

3.2.2 Vehicle minimum performance requirements

To guarantee a fair comparison between all investigated vehicle configurations, minimum "customer performance" criteria are defined to ensure that each powertrain-fuel configuration meets the same customer expectations in terms of vehicle driveability. Therefore all conventional or xEV configurations are derived from the reference C-segment vehicle in a way, that specific measures in powertrain component layout (e.g. adaptation of ICE displacement) are undertaken to fulfill the minimum performance criteria in all configurations. These performance criteria are simulated in detail and guaranteed everywhere, but for sake of simplicity they are not shown in detail in the report. The vehicle minimum performance criteria are summarized in

Table 3-3.

Please note that the top-speed criterion for BEV and REEV is reduced in general to reflect the market in the 2010 timeframe. The driving range criterion for BEV is clearly reduced for 2010 compared to the other configurations, and higher but still clearly below 500km (all other configurations) for 2020+ due to restricted battery capacities. However, acceleration and gradeability criteria are identical.

		2010						2020+			
		PISI DISI DICI Hybrid SI Hybrid CI		REEV SI	BEV	FCEV	PISI DISI DICI Hybrid SI Hybrid CI	PHEV SI PHEV CI	REEV SI REEV CI REEV FC	BEV	FCEV
Time to accelerate from 0-100 km/h	[s]	11	11	11	11	11	11	11	11	11	11
Elasticity for 80-120 km/h (1)	[s]	11	11	11	11	11	11	11	11	11	11
Gradeability at 1 km/h (2)	[%]	30	30	30	30	30	30	30	30	30	30
Gradeability at 10km/h	[%]	20	20	20	20	20	20	20	20	20	20
Minimum Top speed	[km/h]	180	180	130	130	180	180	180	130	130	180
Minimum Top speed pure electric	[km/h]	#	100	130	130	180	#	100	130	130	180
Total minimum driving range	[km]	500	500	500	120	500	500	500	500	200	500
Battery powered minimum driving range	[km]	#	20	80	120	#	#	20	80	200	#
Fuel consuming minimum driving range	[km]	500	480	420	#	500	500	480	420	#	500
 Elasticity, i.e. the time needed to accele according to the corresponding shifting str Gradeability, i.e. the steepness of grade 	ategies in o	ase of Auto	omatic Trai	nsmissions			ghest gear i	n case of N	1anual Trai	nsmission	s, and

Table 3-3: Vehicle minimum performance criteria (see the appendix for abbreviations)

3.3 Powertrain configurations

3.3.1 Basic description of powertrain configurations

3.3.1.1 Vehicle mass

For the 2010 conventional configurations the starting weight is the curb weight. This results in 1300kg for PISI, 1310kg for DISI and 1370kg for DICI. For the 2020+ configurations the corresponding vehicle masses are reduced by 110kg. All other configuration masses (Conventional & xEV) are determined based on a mass balance calculation of the propulsion system components of ICE, Fuel Cell, Transmission, E-machines, Battery, xEV wiring harness, Tank systems & fuel content that characterize the corresponding vehicle. For further details and an example see **Table 5-1**. The driving performance simulations except for gradeability² are using the performance mass defined as curb weight with additional payload of 125kg.

For vehicle gradeability the Gross Vehicle Weight (GVW) is used, which is defined as follows: 2010 vehicle configurations all show the same GVW of 1900kg and the payload varies for the different configurations. This reflects that most alternative vehicles are assumed to be based on conventional vehicles and use the same glider, suspension, etc. For the 2020+ vehicle configurations it has been assumed that all vehicles are assumed to be constructed leading to the same payload performance, i.e. all show the same payload of 550kg but leading to different GVW. The corresponding values for GVW and payload for all conventional vehicle configurations are shown in

Table 3-4 and *Table 3-5*.

Vehicle mass for selected conventional vehicles and xEV variants in 2010		PISI	DISI	DICI	PHEV20 DISI	REEV80 DISI	BEV	FCEV
Curb weight (incl. Driver and 90% fuel)	kg	1300	1310	1370	1479	1548	1365	1458
Performance mass	kg	1425	1435	1495	1604	1673	1490	1583
Payload	kg	600	590	530	421	352	535	442
Gross vehicle weight	kg	1900	1900	1900	1900	1900	1900	1900

 Table 3-4: Vehicle GVW and payload definition for 2010 configurations

Table 3-5: Vehicle GVW and payload definition for 2020+ configurations

Vehicle mass for selected convention vehicles and xEV variants in 2020	PISI	DISI	DICI	PHEV20 DISI	REEV80 DISI	BEV	FCEV	
Curb weight (incl. Driver and 90% fuel)	kg	1190	1200	1260	1333	1356	1230	1278
Performance mass	kg	1315	1325	1385	1458	1481	1355	1403
Payload	kg	550	550	550	550	550	550	550
Gross vehicle weight	kg	1740	1750	1810	1883	1906	1780	1828

3.3.1.2 Powertrain technologies & topologies

a) Conventional ("ICE only") configurations

Conventional configurations PISI, DISI and DICI are equipped with a 6-speed MT for both 2010 and 2020+ configurations (except PISI 2010 which has a 5 speed MT). Start-Stop functionality is only included for 2020+ configurations.

For the alternative fuels LPG, CNG and E85 the respective ICEs are optimized for their specific fuel type in general, but do also operate with gasoline in either mono-fuel³ or bi-fuel⁴ configuration.

² Gradeability, i.e. the steepness of grade that a vehicle is capable of climbing at a defined speed

³ Mono-fuel: any vehicle engineered and designed to be operated using a single fuel, but with a gasoline system for emergency purposes or starting only, with petrol tank capacity of no more than 15 liters

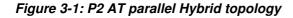
In 2010 CNG fuel is assumed to use port fuel injection only, as direct CNG injection is expected to be established on the market by 2020+ or later. Hence in the current study all CNG ICEs are defined based upon port fuel injection for CNG fuel. However the gasoline fuel for the DISI CNG configurations is of course directly injected. The CNG ICE displacement is increased in relation to the gasoline reference ICE in order to compensate the additional vehicle mass (due to the tank system) and the reduced ICE volumetric efficiency (due to displacement of air by CNG in the intake manifold) to deliver the vehicle minimum performance targets. As an alternative measure also a direct injection technology for CNG could be used, but this technology is currently still in development and thus not covered in this report.

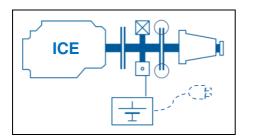
In 2010 fuel injection systems for DME are quite common for Heavy Duty applications but do not exist for passenger car applications. Therefore in the current study DME is considered only as theoretical fuel configuration for 2010 and even for 2020+, as any DME use in passenger cars is currently at research stage.

b) Fuel tank systems of conventional ("ICE-only") configurations

All conventional configurations PISI, DISI and DICI are equipped with a 55L standard size fuel tank for 2010. This is reduced to a 35L fuel tank for 2020+ to ensure a comparable driving range for the more efficient future powertrains.

The conventional (gasoline, diesel) fuel tank system in LPG & DME vehicles is a standard 55L tank for 2010 (bi-fuel). The conventional (gasoline, diesel) fuel tank is reduced to a 14L tank (with 10kg tank system mass) for 2020+, which enables the LPG & DME vehicles to be classified as mono-fuel vehicles. The LPG & DME fuel tank system in LPG & DME vehicle configurations is reduced from an 80L tank size for 2010 to a 60L tank size in 2020+.

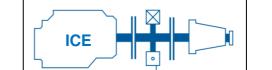

CNG configurations for both 2010 and 2020+ are defined as mono-fuel vehicles including a 14L gasoline fuel tank. CNG fuel tank system is defined as a 150kg 3-cylinder steel tank system for 2010, and an improved 50kg 2-cylinder composite tank system for 2020+.

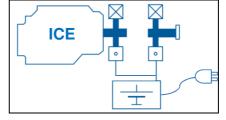

c) xEV configurations

Within the actual TTW study the following powertrain topologies are considered as representative for electrified vehicles:

Hybrid Electric Vehicle (HEV) & Plug-In Hybrid Electric Vehicle (PHEV):

A parallel configuration including full Hybridization (i.e. battery powered driving is included) is selected for HEV and PHEV, combining an ICE with an E-Machine and a HV Battery. For 2010 the parallel configuration includes a 6 speed automatic transmission with a torque converter as launch element (P2 AT, *Figure 3-1*), whereas for 2020+ the transmission is changed to a 8 speed automatic transmission and the torque converter is replaced by a dry clutch (P2, *Figure 3-2*). The battery powered driving range for the PHEV is 20km, whereas for the HEV it is restricted to a few km, basically allowing launching the vehicle in electric driving mode. See *Figure 8-1* for details on the symbols used in the figures below.




Figure 3-2: P2 parallel Hybrid topology

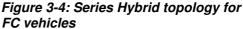
Range Extender Electric Vehicle (REEV):

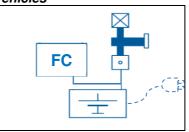
A series configuration is selected for the REEV with SI and CI ICEs, as shown in Figure 3-3.

The battery powered driving range for the REEVs is 80km.

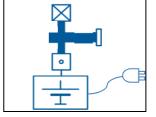
Figure 3-3: Series Hybrid topology

Fuel Cell Electric Vehicle (FCEV) & Fuel Cell Range Extender Electric Vehicle (REEV FC):


A series configuration is selected for both the FCEV and REEV FC, as shown in Figure 3-4.


The electric driving range for the FCEV is given as 500km for both 2010 and 2020+, for the REEV FC the battery-powered electric driving range is 80km similar to the other REEVs using an ICE as range extender. In general, no shifting transmission is used.

Battery Electric Vehicle (BEV):


The drivetrain schematic for the BEV is shown in Figure 3-5.

The battery powered driving range for the BEV is given as 120km for 2010 and 200km for 2020+. No shifting transmission is used.

d) xEV technologies

All xEV batteries are based on Li-ION technology and designed for a voltage range between 300V and 400V. Battery system energy densities range from 90Wh/kg for BEV to 40Wh/kg for HEV in 2010 and from 120Wh/kg for BEV to 40Wh/kg for HEV in 2020+ configurations. Battery system power densities range from <600W/kg for BEV to 900W/kg for HEV in 2010, and from <600W/kg for BEV to 1150W/kg for HEV in 2020+ configurations. Charging losses within the vehicle, i.e. battery and power electronics, for externally chargeable configurations PHEV, REEV, REEV FC and BEV are considered for 3.x kW standard charging mode, which includes 20% charging losses for 2010 and a reduced 15% charging loss for 2020+ for all configurations⁵.

All xEV electric traction motors are based on Brushless Permanent Magnet Synchronous Machine technology. E-Machine power densities range from 1200W/kg for BEV to 750W/kg for HEV in 2010 and from 1350W/kg for BEV to 850W/kg for HEV in 2020+ configurations. E-Machine continuous-topeak power ratios are designed in the range between 0.5 and 0.7 which is common for automotive applications. Generator E-Machines for the Series Hybrid configurations are based on surfacemounted Brushless Permanent Magnet Synchronous Machine technology. Their power density is defined to 1300W/kg for 2010 and 1400W/kg for 2020+.

Fuel Cells are based on Proton Exchange Membrane (PEM) technology because it is commonly used for automotive applications.

http://www.green-cars-initiative.eu/public/documents/Electrification Roadmap Web.pdf/view

⁵ The 3.x kW standard charging mode has been chosen as it should represent-home and work place charging. Charging losses are based on:

e) Fuel tank systems of xEV configurations

xEV configurations HEV and PHEV are equipped with a 55L standard size fuel tank for 2010 similar to the conventional configurations (as 2010 the electrification is seen as an add-on technology), and a reduced 25L fuel tank for 2020+ to ensure a comparable driving range.

The SI and CI REEV are equipped with a 35L standard size fuel tank for 2010, and a reduced 25L fuel tank for 2020+.

Hydrogen fuel tank systems include both Compressed Gaseous Hydrogen (CGH2) and cryo Compressed Gaseous Hydrogen (cCGH2) technology. The specific weight of both CGH2 and cCGH2 tank systems are estimated to be 23kg/kgH2 for 2010 and 20kg/kgH2 for 2020+. In both 2010 and 2020+ the fuel tank capacity is assumed to be 4kg which gives a driving distance well above the 500km minimum criteria. Due to a negligible mass difference between CGH2 and cCGH2 technology for the targeted tank capacity of 4kg H2 only one simulation run for each FCEV 2010 and FCEV 2020+ configurations is done based on a generic tank system.

3.3.1.3 Auxiliaries

The following ICE-related auxiliary systems are considered in the vehicle simulation: Steering pump (HPS, EHPS or EPS), Vacuum pump for braking system, ICE water pump, ICE oil pump, transmission oil pump and cooling systems for xEV Batteries and E-Machines. Corresponding fuel consumption impacts due to partial or full electrification of these auxiliaries are covered in the vehicle simulation for all configurations. The Battery voltage level for vehicle electrics is assumed to be 12 V for all configurations 2010 & 2020+.

3.3.2 Analyzed fuel & powertrain configurations

All fuel-powertrain configurations for conventional as well as electrified vehicle configurations are shown in **Errore. L'origine riferimento non è stata trovata.** These configurations are considered for 2010 (including technologies in a range from approximately 2008 up to 2012) to represent today's state of the art in automotive industry, and for 2020+ (to give an outlook on the expected future development of drivetrain technologies) based upon the likely technology development foreseen by EUCAR and AVL experts. To complete the REEV line-up, two additional configurations are given for 2020+: the REEV80 CI is considered in two different layouts, and the REEV80 FC.

Table 3-6: Matrix of fuel / powertrain combinations* investigated in the current TTW study

<u> </u>												
Powertrain Fuel	ISId	DISI	סוכו	Hybird DISI	Hybrid DICI	PHEV20 DISI	REEV80 SI	PHEV20 DICI	REEV80 CI*	NEV	FCEV	REEV80 FC**
Gasoline												
Gasoline E20 market blend												
Gasoline E20 high RON												
Diesel												
Diesel B7 market blend												
LPG												
CNG												
E85												
FAME												
DME												
FT-Diesel												
нуо												
Electricity												
Hydrogen (CGH2)												
Hydrogen (cCGH2)												

Configurations identified by blue colour are modelled in detail with a vehicle simulation; Configurations identified by gray colour are derived from these simulations using the relevant fuel properties;

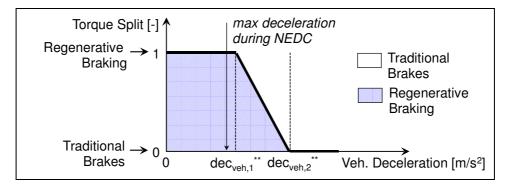
All configurations are considered for 2010 and 2020+.

Exceptions are marked in red: REEV80 FC** and REEV80 CI* are only considered for 2020+; REEV80 CI* in two different layouts.

3.4 xEV operation

3.4.1 xEV functionalities

xEV configurations include a control unit which drives the operational strategy for all actively controlled powertrain components such as ICE, E-Machines and Fuel Cell. Such a control unit is covered in the vehicle simulation and includes charge depleting and charge sustaining phases separately. All xEV functionalities, that are included in the current TTW study, are described in the following sections.


3.4.1.1 Start & Stop

In order to avoid the operation at ICE idle, the ICE is switched-off in case of vehicle standstill. The Start & Stop feature is active, if the ICE temperature is above a certain limit, and if no Battery charging demand is given due to low battery SOC.

3.4.1.2 Regenerative braking

Regenerative Braking is applied in situations where the driver requires negative traction power. In case of the HEV and PHEV configurations, during these phases the ICE is disengaged by opening its separation clutch and, in case of warm condition, it is switched-off.

Figure 3-6: xEV functionalities: regenerative braking

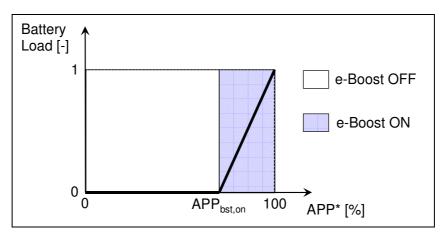
For safety and comfort reasons, traditional brakes are enabled during severe decelerations. Two parameters "decVeh,1" and "decVeh,2" define the linear transition between only regenerative braking (i.e. torque split equal to 1) and only traditional brakes (refer to *Figure 3-6*). Due to limited deceleration in NEDC no restriction in regenerative braking is observed in general.

3.4.1.3 ICE / fuel cell off mode

ICE / Fuel Cell Off Mode (in public also known as "electric driving") is applied to avoid low-efficiency operating points of the ICE (in HEV, PHEV and REEV configurations) or the Fuel Cell (in FCEV and REEV FC configurations), if enough Battery energy is available to drive the vehicle. This mode is typically selected in case of low driving power request.

3.4.1.4 ICE / fuel cell load point moving

ICE / Fuel Cell Load Point Moving (LPM) is applied to shift the operation of the ICE / Fuel Cell towards better efficiency conditions, and to increase the reserve of available energy in the Battery to be exploited e.g. during ICE / Fuel Cell Off Mode. The ICE / Fuel Cell LPM is typically activated at intermediate driving power request, if the ICE / Fuel Cell Off Mode is disabled.


3.4.1.5 ICE / fuel cell alone mode

ICE / Fuel Cell Alone Mode is mainly applied in case the ICE / Fuel Cell works at high efficiency. This strategy implies no usage of the energy reserve of the battery.

3.4.1.6 Battery assistance

Battery Assistance (also called e-Boost) is applied to support the full load driving performance of the vehicle, if enough Battery energy is available.

Figure 3-7: xEV functionalities: battery assistance

This mode is linearly enabled, starting from a calibration limit in the Acceleration Pedal Position (APP) close to 100% (APPbst,on in *Figure 3-7*). This function is not active during the NEDC. However, it is

necessary to properly assess the full load driving performance of the vehicle, e.g. to meet the performance criteria.

3.4.2 xEV operational strategies

The xEV configurations considered in this study feature the operational strategies defined in *Table 3-7.* Regarding the BEV, the ICE / Fuel Cell Off Mode indicates the operation, in which the vehicle produces positive traction power supported by the battery as the only available power source.

Table 3-7: Overview of the xEV operational strategies in	mplemented
--	------------

xEV operational strategies	HEV	РНЕV	REEV	BEV	REEV FC	FCEV
Start & Stop	~	✓				
Regenerative Braking	✓	1	1	✓	✓	✓
ICE / Fuel Cell Off Mode	✓	✓	✓		✓	✓
ICE / Fuel Cell Load Point Moving	✓	✓	✓		✓	✓
ICE / Fuel Cell Alone Mode	✓	1	1		✓	✓
Battery Assistance	✓	✓	✓		✓	✓

Concerning Start-Stop, Regenerative Braking and Battery Assistance, their activation is a straightforward consequence of the driver behaviour and the actual vehicle status: Stop-Start is activated, if the vehicle is at standstill and the ICE temperature is above a certain limit. Regenerative braking is activated in case of a negative torque request by the driver. Battery Assistance is activated in case of a full load request of the driver.

In case of the other operational strategies a detailed study was carried on, based on AVL experience, in order to optimize the energy management of the xEV powertrains. The following sections give a general overview of the methodologies adopted.

3.4.2.1 HEV and PHEV

ICE Off Mode is applied in case of available battery energy, to avoid low efficiency operation of the ICE. In particular it is applied in case of low vehicle velocity if the required traction torque is lower than a calibrated threshold (

Figure 3-8).

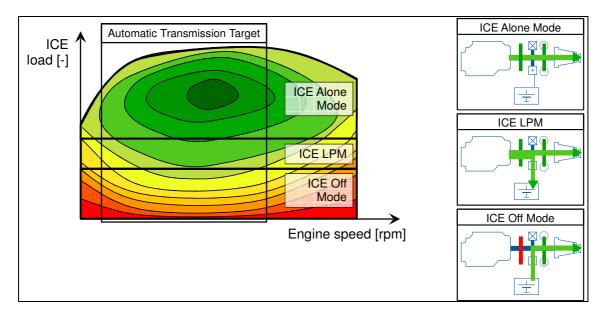
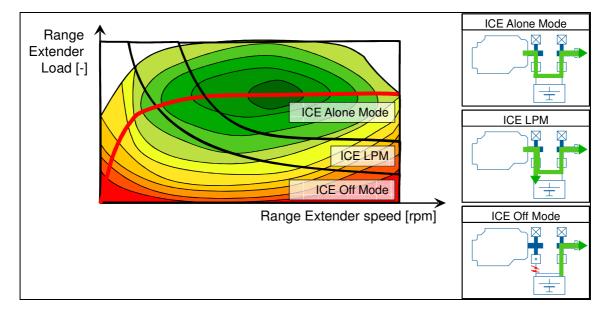


Figure 3-8: xEV operational strategies: HEV and PHEV

ICE Load Point Moving is activated in case the ICE Off Mode is disabled and the required traction torque is lower than a calibrated threshold. The ICE torque is defined by the following equation:

 $Tq_{\text{ICE}} = Tq_{\text{req}} + \Delta T_{\text{LPM}}$

where Tq_{req} is the traction torque required at the ICE crankshaft for driving, and ΔT_{LPM} is the additional (calibrated) torque to increase the load of the ICE accordingly (


Figure 3-8). The ICE Alone Mode is applied otherwise, in case of low specific fuel consumption operation of the ICE. In case of the PHEV, due to the Plug-In feature, two different calibrations of the operational strategy are required to simulate both the charge depleting and the charge sustaining phase.

3.4.2.2 REEV

The Range Extender Electric Vehicle features a Series Hybrid powertrain layout, where the speed and load of the ICE are independent from the driving conditions. Therefore the Range Extender module (system of ICE and generator) is optimized to work along its optimal operating line (i.e. the line that combines the lowest fuel consumption per generated electric power for all possible operation points). The ICE Off Mode is applied, in case of available Battery energy, to avoid low efficiency operation of the ICE. In particular it is applied in case of low vehicle velocity if the required electric power is lower than a calibrated threshold (

Figure 3-9).

Figure 3-9: xEV operational Strategies: REEV

The ICE Load Point Moving is activated in case the ICE Off Mode is disabled and the required electric power is lower than a calibrated threshold. The Range Extender electric power is defined by the following equation:

 $P_{\text{RE,el}} = P_{\text{req,el}} + \Delta P_{\text{LPM}}$

Where $P_{req,el}$ is the electric power required by the traction E-Machine for driving, and ΔP_{LPM} is the additional (calibrated) electric power to increase the load of the Range Extender (

Figure 3-9). The ICE Alone Mode is applied otherwise, in case of low specific fuel consumption operation of the range extender. Due to the Plug-In feature of the REEV, two different calibrations of the operational strategy are required to simulate both the charge depleting and the charge sustaining phase.

3.4.2.3 FCEV and REEV FC

The operational strategy for Fuel Cell driven configurations is optimized to operate the Fuel Cell at a maximum efficiency within a suitable range of the battery SOC. This control logic consists of four different operation modes defined as a function of the Battery SOC and the required electric power (*Table 3-8*), with Popt and k as calibration parameters⁶.

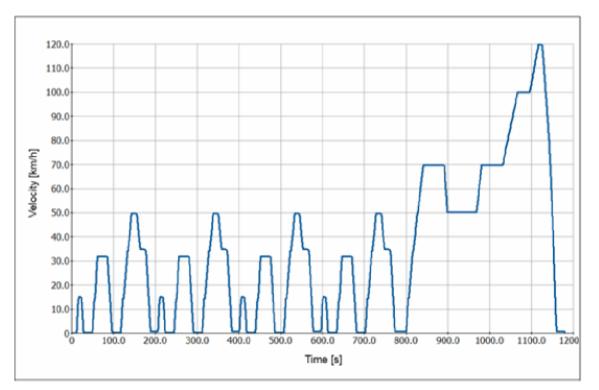
Table 3-8: xEV operational strategies: FCEV and REEV FC

Demanded Power SOC		> P _{opt}
< SOC _{min}	$P_{fc} = P_{opt}$	$P_{fc} = P_{req}$
> SOC _{min}	$P_{fc} = 0$	$P_{fc} = k \cdot P_{req}$

⁶ The operating strategy implemented in the FCEV and REEV FC is based on the "Load Follower Energy Management Strategy" extracted by the paper "Prasada Rao Akula, Lakshmi Jandhyala, Frieder Herb, Akash Narayana, Development of Energy Management Strategies and Analysis with Standard Drive Cycles for Fuel Cell Electric Vehicles, SAE International, 2012"

Herein $P_{fc}=P_{opt}$ and $P_{fc}=kP_{req}$ represent the "Fuel Cell Load Point Moving" functionality, $P_{fc}=0$ represents the "Fuel Cell Off" mode, and $P_{fc}=P_{req}$ represents the "Fuel Cell Alone" mode. In the case of the REEV FC, due to its Plug-In feature, two different calibrations of the operational strategy are required to simulate both the charge depleting and the charge sustaining phase.

4 Simulation Methodology


4.1 AVL CRUISE as simulation environment

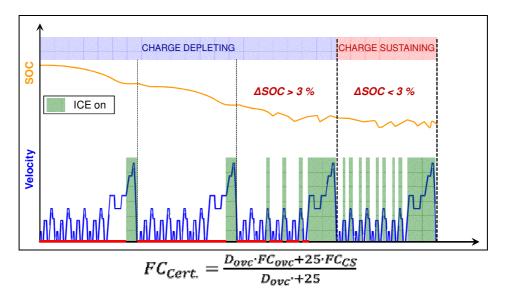
AVL CRUISE is a vehicle and powertrain system level simulation tool which supports everyday tasks in vehicle system and driveline analysis in all vehicle and powertrain development phases, from concept planning through to start of production and beyond. Its application envelope covers the full range of conventional vehicle powertrains including highly-advanced hybrid systems and pure electric vehicles. The CRUISE modelling library includes mechanical powertrain components, Hybrid electric components like Battery and E-Machine, Vehicle, driver, test track and freely definable simulation use cases like test cycles or performance tasks. Controller functions and operational strategies can easily be implemented using standard C-code. As a frequently used vehicle and powertrain simulation tool, AVL CRUISE is a well-proven environment for the detailed analysis of all investigated drivetrain configurations as given in the current study.

4.2 Test cycle & constraints

4.2.1 NEDC

The New European Driving cycle (NEDC) is defined in the European legislation (ECE R 83). It consists of the two phases "Urban" (repeated four times and including an ICE cold start at the beginning) and "Extra Urban". The overall velocity profile shown in *Figure 4-1* allows deviations of up to ± 2km/h in test driving. Gear changes for conventional vehicle configurations with manual transmission (MT5 or MT6) are defined by legislation, whereas gear changes for xEV vehicles with automatic transmission are chosen due to shifting strategies based on the specific xEV control.

Shift indication, although showing relatively high fuel reduction potentials in conventional MT powertrains, is not considered in the current study in correlation to the actually existing NEDC related Homologation procedures. In this Homologation procedure the Inertia Test Weight (ITW) classes are defined for dynamometer measurements. However in the current TTW analysis the calculation of NEDC fuel consumption is done based on the actual vehicle weight instead of using the ITW classes:


This measure allows showing the fuel consumption impacts of variable powertrain component masses in the different vehicle configurations in a more particular resolution.

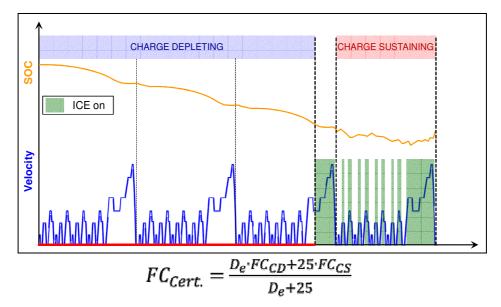
To ensure comparability of results for 2010 and 2020+ configurations the NEDC is used as the reference driving cycle in general. It is expected, that by 2020+ the Worldwide harmonized Light vehicles Test Procedure (WLTP) will be an obligation in terms of vehicle fuel consumption and emission testing, whether in parallel to or instead of the NEDC. However at the time of elaboration of this study the WLTP is still not clearly defined in all its details. Therefore, it could not be used for the investigation in the current version of the TTW study.

Evaluation of PHEV & REEV

The European Legislation UN ECE R 101 (Rev 2) considers the following rule for evaluation of the fuel consumption (FC_{Cert}) of a PHEV with intermittent ICE operation, which is based on the weighting of Charge Depleting (CD) and Charge Sustaining (CS) operation modes partial results:

Figure 4-2: Evaluation of a PHEV fuel consumption based on the UN ECE R 101 (Rev 2)


where:


 FC_{OVC} : Fuel Consumption during Charge Depleting

 FC_{CS} : Fuel Consumption during Charge Sustaining

 D_{OVC} : Total electric Range during Charge Depleting (marked in red)

The European Legislation UN ECE R 101 (Rev 2) considers the following rule for evaluation of the fuel consumption ($FC_{Cert.}$) of a REEV without intermittent ICE operation, which is based on the weighting of Charge Depleting (CD) and Charge Sustaining (CS) operation modes partial results:

where:

 FC_{CD} : Fuel Consumption during Charge Depleting

 FC_{CS} : Fuel Consumption during Charge Sustaining

D_e: All Electric Range (marked in red)

For both PHEV and REEV the corresponding result for electric energy consumption based on the European Legislation UN ECE R 101 (Rev 2) is calculated via the same weighting equation, if the fuel consumption (CD, CS and overall) in each equation is simply replaced by the corresponding electric energy consumption values.

4.2.2 Performance tests

The investigation of the minimum performance criteria shown in

Table 3-3 requires the simulation of corresponding vehicle performance driving tests. The following performance tests are used:

- Full Load Acceleration from 0 to 100 km/h
- Elasticity⁷ from 80 to 120 km/h
- Vehicle Top Speed
- o Gradeability @ 1 km/h
- o Gradeability @ 10 km/h

4.3 Methodology

4.3.1 Modelling methodology

All input data used in the vehicle simulation are defined in close cooperation by EUCAR and AVL. Data include efficiencies of the main powertrain components ICE, transmission, E-Machine and Battery in various different layouts. ICE maps are defined based on stationary fuel consumption maps for hot ICE condition. The NEDC cold start fuel consumption is modelled based on the AVL CRUISE standard semi-empirical ICE temperature model, which includes impacts of ICE internal and external cooling circuits as well as ICE fuel consumption gain based on increased ICE FMEP (Friction Mean Effective Pressure) at cold temperature. Corresponding ICE thermal model calibration is done based on AVL database, and the main effects of ICE electrification e.g. like Start-Stop or an improved ICE thermal management are taken into account. The NEDC hot start fuel consumption results (not

⁷ Elasticity, i.e. the time needed to accelerate from 80 to 120 km/h. The vehicle is driven in the second highest gear in case of Manual Transmissions, and according to the corresponding shifting strategies in case of Automatic Transmissions.

considered in detail in this study) are 8.0 to 11.9% lower than the corresponding cold start fuel consumption results.

For all simulation models (conventional and xEV) after a draft layout of components including initial model setup and calibration, a model refinement in an iterative approach is done based on fulfillment of defined vehicle targets. Simulation results are checked for plausibility based on frequent discussions between EUCAR and AVL, taking into account comparisons to various benchmark vehicles available on today's automotive market.

4.3.2 xEV control logic

xEV configurations in general include a control unit which steers the torque split and operational strategies of all actively controlled powertrain components. Such a control unit is also covered in vehicle simulation including CD and CS phases separately. Battery State-Of-Charge (SOC) is ensured to be balanced for all CS operation modes in HEV, PHEV and REEV. The control unit is modelled for all xEV configurations in AVL CRUISE based on C-code programming and a basic control function calibration. The following xEV functionalities are included for 2010 and 2020+ vehicles in the current TTW study:

- o Start & Stop
- Regenerative Braking
- o Battery powered driving
- Load Point Moving
- o Boost

These functionalities are explained and defined for the specific xEV configurations in detail in chapters 5 and 6.

4.3.3 Evaluation of GHG emission

The total Tank-to-Wheel GHG emissions are evaluated referring to CO_2 exhaust emissions on the one hand and CH_4 and N_2O exhaust emissions on the other hand^{8.} CO_2 emissions are calculated directly in AVL CRUISE and derived from the fuel consumption results through the fuel specific CO_2 emission factors. CH_4 and N_2O emissions are assessed based on the legislation limits for Euro 5 and Euro 6 employed in case of 2010 and 2020+ vehicle configurations, respectively. The defined percentages of the N_2O over the total NO_x emission limit and the CH_4 over the Total Hydro Carbon (THC) emission limit, respectively, are reported in **Table 4-1**⁹. The resulting CO_2 equivalent emissions of Methane (CH_4) and Nitrous Oxide (N_2O) are derived based on their Global Warming Potential (GWP) factor, which is the parameter that considers the GHG effect of the specific gas. This factor is equal to 25 for Methane and 298 for Nitrous Oxide¹⁰. The following equations are evaluated in **Table 4-1** for the CO_2 equivalent emissions due to N_2O and CH_4 contributions:

$$\begin{split} &CO_{2eq}(CH_4)[gCO_{2eq}/km] \ = \ THC_{EL} \ \bullet \ CH_4\text{-}\% \ \bullet \ GWP_{CH4} \\ &CO_{2eq}(N_2O)[gCO_{2eq}/km] \ = \ NOx_{EL} \ \bullet \ N_2O\text{-}\% \ \bullet \ GWP_{N2O} \end{split}$$

where:

 NOx_{EL} , THC_{EL}: EURO 5 & 6 legislation limits in terms of NO_x and THC emissions

N₂O-%: percentages of N₂O from the total NO_x emission limit

CH₄-%: percentages of CH₄ from the total THC emission limit

GWPx: Global Warming Potential factor of molecule x

⁸ Issues related to fuel production and provision is covered in the Well-to-Tank report (WTT) of the study.

⁹Data for the GHG evaluations are partially taken from the "INGAS" project: <u>http://www.ingas-eu.org</u>

¹⁰ 2007 IPCC Fourth Assessment Report (AR4): the activities of the Working Group 1 (WG1) and Chapter 2 of that report (Changes in Atmospheric Constituents and Radiative Forcing) <u>http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf</u>

Table 4-1: Impact of CH₄ and N₂O emission to CO₂ equivalent (GHG) emissions

	2010	EURO 5 limit THC or NOx [mg/km]	Percentage (N2O or CH4)	GWP [-]	CO _{2-eq} GHGs [g/km]		2020+		Percentage (N2O or CH4)	GWP [-]	CO _{2-eq} GHGs [g/km)
	Gasoline	100	10%	25	0.25	СН4	Gasoline	100	10%	25	0.25
C 114	LPG	100	10%	25	0.25		LPG	100	10%	25	0.25
CH4	CNG	100	60%	25	1.50		CH4	CNG	100	45%	25
	Diesel	50	10%	25	0.13		Diesel	90	10%	25	0.23
	Gasoline	60	2%	298	0.36		Gasoline	60	3%	298	0.54
	LPG	60	2%	298	0.36		LPG	60	3%	298	0.54
N20	CNG	60	2%	298	0.36	N2O	CNG	60	3%	298	0.54
	Diesel	180	2%	298	1.07		Diesel	80	5%	298	1.19

In case of fully electrified vehicles (BEV, FCEV and REEV FC), no CO₂, Methane or Nitrous Oxide is released. In case of xEV configurations with a Plug-In feature (PHEV and REEV), the CH₄ and N₂O emissions have a reduced impact due to the battery powered driving. Based on the European legislation, the following weighting equation is used therefore:

$$CO_{2,eq} = \frac{D_e \cdot CO_{2,eq,CD} + 25 \cdot CO_{2,eq,CS}}{D_e + 25}$$

where:

CO_{2,eqCD}: CO₂ equivalent emissions in Charge Depleting

CO_{2,eqCS}: CO₂ equivalent emissions in Charge Sustaining

De: All Electric Range

4.3.4 Error assessment

The general approach for error assessment is based on the evaluation of impacts of main parameters and data (like ICE maps or powertrain component efficiencies) to the overall result based on experience. Fixed boundaries like e.g. vehicle mass, driving resistance or performance criteria are not considered to have any impact to the estimated errors. Due to the complexity of the analyzed systems, the chosen approach of error assessment is to isolate the subsystems responsible for the total Tank-to-Wheel CO_2 emissions, which in case of conventional vehicles lead to:

$$CO_2\left[\frac{g_{CO2}}{km}\right] = EF \cdot \int \frac{P_{veh} \cdot BSFC}{\varepsilon_{dr}} dt$$

where:

CO₂: Tank-to-Wheels CO₂ emissions

EF: Specific CO₂ Emission Factor

P_{VEH}: Traction power required by the vehicle

BSFC: ICE Brake Specific Fuel Consumption

 ϵ_{dr} : Total driveline efficiency

Within a simplified approach, the total error of the Tank-to-Wheel CO_2 emissions are defined by the following equation for conventional configurations:

$$Err(CO_2) \otimes Err(P_{veh}) + Err(\varepsilon_{dr}) + Err(BSFC)$$

where:

Err(P_{VEH}): Error in the estimation of the vehicle traction power

 $Err(\epsilon_{dr})$: Error in the estimation of the total driveline efficiency

Err(BSFC): Error in the estimation of the average ICE specific fuel consumption

Based on the same approach, the error for xEV configurations (HEV, PHEV, REEV, BEV, FCEV and REEV FC) derives from:

$$\begin{split} Err(CO_2) &\approx \left[Err(P_{veh}) + Err(\varepsilon_{dr}) + Err(BSFC) \right] \cdot c_{ICE,alone} \\ &+ \left[Err(P_{veh}) + Err(\varepsilon_{dr}) + Err(\varepsilon_{EM}) + Err(\varepsilon_{Batt}) \right] \\ &\cdot c_{ICE,off} \\ &+ \left[Err(P_{veh}) + Err(\varepsilon_{dr}) + Err(BSFC) + Err(\varepsilon_{EM}) \\ &+ Err(\varepsilon_{Batt}) \right] \cdot c_{LPM} \end{split}$$

where:

 $Err(\epsilon_{EM})$: Error in the estimation of the electric machine efficiency

 $Err(\epsilon_{Batt})$: Error in the estimation of the total driveline efficiency

c_{xx}: Weighting factors of the different driving phases

In the detailed definition of the errors of each specific subsystem, the following considerations were assumed:

- \circ 2020+ configurations are characterized by an increased error (3 6%) with respect to 2010 configurations, due to the uncertain forecast of the technological development
- In conventional vehicles the main inaccuracy is due to ICE simulation (challenging definition of a representative ICE for each technological solution, simulation approach chosen based on fuel consumption maps). The resulting overall error is in the range of 3.5 – 5% for 2010 configurations, and 5.8 – 9.8% for 2020+ configurations.
- Partially electrified vehicles (HEV, PHEV and REEV) are characterized, on average, by higher uncertainty due to their higher complexity. The resulting overall error is in the range of 5.2 – 6.7% for 2010 configurations, and 9.1 – 12.9% for 2020+ configurations.
- The considered Battery Electric Vehicles are lean systems (unique power source and single gear transmission) and the components are characterized by a high-level simulation approach. A good confidence follows in the case of the 2010 configuration (3% of error).
 2020+ configurations are characterized by a higher error (7.2%) due to the uncertain evolution of future Li-lon battery technology development.
- The FCEV and, even more, the REEV FC show a lower technological maturity. The resulting errors are high in both 2010 (6.5%) and 2020+ configurations (10.1 11.9%)

All the obtained errors are displayed together with the Tank-to-Wheel CO_2 emissions and energy consumption results, by means of dedicated error bars (*Figure 7-1* to *Figure 7-9*).

5 2010 Vehicle Configurations & Results

5.1 Vehicle configurations

In the following the 2010 conventional as well as electrified vehicle configurations are described in detail regarding their main component specifications. In terms of definition of the components technologies for 2010 a range from approximately 2008 up to 2012 is considered to represent today's state of the art in automotive industry in a more general way. The specifications include the main ICE description, a definition of rated and peak power and torque of E-Machines, peak power of Fuel Cell systems, and peak power and energy content of Batteries. A detailed mass balance for all subsystems is included. The general description of the vehicle parameters and powertrain topologies are given in chapter 3.

5.1.1 Simulation parameter & main data

Table 5-1: Mass balance for "ICE only" configurations 2010

Mass balance for			PISI			DISI		DI	СІ
"ICE only" Variants 2010)	Gasoline ¹	LPG (bi-fuel)	CNG (mono-fuel)	Gasoline ¹	LPG (bi-fuel)	CNG (mono-fuel)	Diesel ²	DME (bi-fuel)
Powertrain									
ICE mass	kg	135	135	135	145	145	145	165	165
Transmission mass	kg	50	50	50	50	50	50	50	50
Powertrain mass change	kg	Reference	0	0	Reference	0	0	Reference	0
Storage System									
Fuel Tank Capacity	L	55	80 + 55	150 + 14	55	80 + 55	150 + 14	55	80 + 55
Tank System mass	kg	15	50	160	15	50	160	15	50
Fuel mass	kg	41	76	36	41	76	36	46	89
Storage System mass change	kg	Reference	+70	+140	Reference	+70	+140	Reference	+78
Vehicle									
Curb weight (incl. driver, 90% fuel)	kg	1300	1370	1440	1310	1380	1450	1370	1448
Reference mass for ITW	kg	1325	1395	1465	1335	1405	1475	1395	1473
ITW Class	kg	1360	1360	1470	1360	1360	1470	1360	1470
Performance mass	kg	1425	1495	1565	1435	1505	1575	1495	1573
Payload	kg	600	530	460	590	520	450	530	452
Gross vehicle mass	kg	1900	1900	1900	1900	1900	1900	1900	1900

Mass balance for		DISI ("ICE only")	Hybrid DISI	PHEV20 DISI	REEV80 SI	BEV	FCEV	DICI ("ICE only")	Hybrid DICI	PHEV20 DICI
xEV Variants 2010		Gasoline ¹	Gasoline ¹	Gasoline ¹	$Gasoline^1$	Electricity	Hydrogen ³	Diesel ²	Diesel ²	Diesel ²
Powertrain			-	-						-
ICE mass	kg	145	145	145	135	0	0	165	165	165
Transmission mass	kg	50	80	80	10	10	10	50	80	80
Powertrain mass change	kg	Reference	+30	+30	-50	-185	-185	Reference	+30	+30
Fuel Cell			-	-						-
Fuel cell module mass ⁵	kg	#	#	#	#	#	167	#	#	#
Electric Components			-	-						-
eMachine mass ⁴	kg	#	32	44	76	76	72	#	32	44
Generator (2 nd eMachine) mass ⁴	kg	#	#	#	42	#	#	#	#	#
Battery mass ⁴	kg	#	34	80	165	200	34	#	34	80
xEV wiring harness mass	kg	#	11	15	20	20	20	#	11	15
eComponents mass change	kg	Reference	+77	+139	+303	+296	+126	Reference	+77	+139
Storage System										
Fuel Tank Capacity	L	55	55	55	35	0	#	55	55	55
Tank System mass	kg	15	15	15	15	0	92	15	15	15
Fuel mass	kg	41	41	41	26	0	4	46	46	46
Storage System mass change	kg	Reference	0	0	-15	-56	+40	Reference	0	0
Vehicle										
Curb weight (incl. driver, 90% fuel)	kg	1310	1417	1479	1548	1365	1458	1370	1477	1539
Reference mass for ITW	kg	1335	1442	1504	1573	1390	1483	1395	1502	1564
ITW Class	kg	1360	1470	1470	1590	1360	1470	1360	1470	1590
Performance mass	kg	1435	1542	1604	1673	1490	1583	1495	1602	1664
Payload	kg	590	483	421	352	535	442	530	423	361
Gross vehicle mass	kg	1900	1900	1900	1900	1900	1900	1900	1900	1900

Table 5-2: Mass balance for xEV Configurations 2010

3) Same vehicle mass is assumed for both Hydrogen Variants (CGH2 & cCGH2). 4) Masses for e-components include housing, power electronics and cooling system.

5) Mass of Fuel Cell module includes the whole system.

A DC/DC converter for LV power supply is included in all relevant xEV components masses in terms of weight; however DC/DC losses are omitted in the system efficiency chain for all xEV configurations due to negligible impact on results.

Auxiliaries – status of electrification 2010:

- Steering Pump: HPS (Hydraulic Power Steering) for Conventional ("ICE only") configurations, 0 EHPS (Electro-Hydraulic Power Steering) for xEV configurations
- Brake Vacuum Pump: Mechanical for conventional configurations (for PISI not required), 0 electrified for xEV configurations
- Water Pump: Mechanical (not controlled) for conventional configurations, electrified for xEV 0 configurations
- (ICE) Oil Pump: Mechanical for all configurations 0
- (Transmission) Oil Pump: Only needed for xEV Configurations (due to AT), electrified 0

5.1.2 ICE specifications

The RON for the Gasoline blends and CN for Diesel B7 are defined in the fuel properties table (Table 3-1). However in market fuels these numbers could vary in a certain range of a few numbers. Such slight RON / CN changes for fuels (e.g. Gasoline E20 RON range of 99-102) do not require ICE map adaptions in this simulation work, as the estimations of ICE maps for specific fuels are based on a comparable level of accuracy, and slight RON effects are considered not to be significant compared to the overall simulation accuracy. Regulated emissions (e.g. NOx, PM, ...) are not simulated in the current TTW analysis. However all ICE maps prepared for simulation of 2010 configurations comply with the legislative emissions standards for EURO 5. In addition, electrification is considered as an Add-On technology for 2010 xEV configurations in general, therefore no adaptations (e.g. ICE downsizing) are made for the 2010 xEV ICEs in relation to the conventional ICE definitions.

Table 5-3: Gasoline ICE specifications for 2010 configurations with (standard) gasoline fuel

Gasoline	ICE Variants			Gasoline ICE Vari	ants 2010		
AVL Specificat	tions by AVL	PISI ("ICE only")	DISI ("ICE only")	Hybrid DISI	PHEV20 DISI	REEV80 SI	
ICE Type / Technology		- MPI - NA		- NA - High-expansion Atkinson Cycle - VVT-i - Cooled EGR			
Displacement	L	1.4	1.4			1.4	
No. of Cylinders		IL4	IL4			IL4	
Specific power	kW/L	~64		~64			
Maximum Power	kW @ rpm	90 @ 5750		90@4300		55 @ 5500	
Maximum Torque	Nm @ rpm	158 @ 3500		200 @ 1750 - 400	00	110 @ 4000	
Maximum Speed	rpm	6250		4800		6000	
Idle Speed	rpm	700		800			
BSFC @ 2000 rpm / 2 bar	g/kWh	380 - 385	370 - 375		~350		
BSFC minimum	g/kWh	240	235 ~				

Table 5-4: Diesel ICE specifications for 2010 configurations with (standard) diesel fuel

💑 Diesel	ICE Variants		Diesel ICE	Variants 2010				
AVL Specificat	tions by AVL	DICI ("ICE only")	Hybrid DICI	PHEV20 DICI	REEV80 CI			
ICE Type / Technology			- Common Rail with1800 bar, solenoid injector - High pressure EGR - VGT Turbocharger - Closed coupled DOC-DPF 1.6					
Displacement	L		No REEV 80 CI Variant for 2010					
No. of Cylinders			4		aria			
Specific power	kW / L		~55					
Maximum Power	kW @ rpm		88 @ 4000		/80			
Maximum Torque	Nm @ rpm		285 @ 1750 –2750		GEE			
Maximum Speed	rpm		NoF					
Idle Speed	rpm] _					
BSFC @ 2000 rpm / 2 bar	g/kWh							
BSFC minimum	g/kWh		205					

Gasoline	ICE Variants		PISI ICE 2010 for "ICE only" Variants								
AVL Specifica	tions by AVL	Gasoline	E20 high RON	E85	LPG	CNG					
ICE Type / Technology			- MPI - NA				LPG ICE - MPI - NA	CNG ICE - MPI - NA			
Displacement	L		1.4		1.46	1.72					
No. of Cylinders			IL4								
Specific power	kW/L		~64		~64	~57					
Maximum Power	kW @ rpm		90 @ 5750		94 @ 5750	99 @ 5750					
Maximum Torque	Nm @ rpm		158@3500		160 @ 3500	170 @ 3500					
Maximum Speed	rpm			6250		•					
Idle Speed	rpm		700								
BSFC @ 2000 rpm / 2 bar	g/kWh	380 - 385	5 414 560		357 <i>≙</i> ~375 Gasoline equivalent	355 <i>≙</i> ~375 Gasoline equivalent					
BSFC minimum	g/kWh	240	251	340	217 <i>≙</i> ~231 Gasoline equivalent	216 <i>≙</i> ~228 Gasoline equivalent					

 Table 5-5: PISI ICE specifications for 2010 configurations with alternative fuels

Table 5-6: DISI ICE specifications for 2010 configurations with alternative fuels

Gasoline	ICE Variants	DISI ICE 2010 for "ICE only", Hybrid & PHEV20 Variants							
AVL Specificat	tions by AVL	Gasoline	E20 high RON	E85	LPG ¹	CNG ¹			
ICE Type / Technology			- TGDI ICE - IVVT		LPG ICE - Turbo - MPI - IVVT	CNG ICE - Turbo - MPI - IVVT			
Displacement	L		1.4		1.46	1.55			
No. of Cylinders		IL4							
Specific power	kW/L		~64		~64	~64			
Maximum Power	kW @ rpm		90 @ 4300		94 @ 4300	99 @ 4300			
Maximum Torque	Nm @ rpm		200 @ 1750 - 4000		210 @ 1750 - 4000	220 @ 1750 - 4000			
Maximum Speed	rpm	4800							
Idle Speed	rpm	750							
BSFC @ 2000 rpm / 2 bar	g/kWh	370 - 375	401	540	346 <i>≙</i> ~369 Gasoline equivalent	344 <i>≙</i> ~363 Gasoline equivalen			
BSFC minimum	g/kWh	235	239	322	210 <i>≙</i> ~224 Gasoline equivalent	205 <i>≙</i> ~215 Gasoline equivalent			
1) LPG & CNG fuel is only	used for the	"ICE only" variant.							

5.1.3 xEV specifications

Variant	Component	Specific	Unit	Requirements to meet the performance criteria				
НЕV	Electric Machine	Power	kW	Complete regenerative braking during the NEDC	24 (12)			
		Torque	Nm	Complete regenerative braking during the NEDC	160 (80)			
	Li Jon Battory Dec	Power	kW	Required electric power from/to the electric machine	30			
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, complete regenerative braking and a lifetime of at least 160000 km				
РНЕV	Electric Machine	Power	kW	Electric drive up to 100 km/h: continuously, during the NEDC (continuous P and Tq)	40 (20)			
		Torque	Nm	occasionally, during high demanding transients (peak P & Tq): Artemis Cycles as driving reference	190 (100)			
	Li-Ion Battery Pack	Power	kW	Required electric power from/to the electric machine	50			
		Energy	kWh	Along the NEDC, 20 km of All Electric Range and a lifetime of at least 160000 km	3.7 (2.1)			
REEV	Electric Machine	Power	kW	Maximum Speed => Continuous Power Acceleration and Elasticity => Peak Power	90 (45)			
		Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque				
	Generator	Power	kW	Guarantees the continous power required by the electric machine	57 (57)			
		Torque	Nm	Suitable coupling with the ICE				
	Li-Ion Battery Pack	Power	kW	Required electric power from/to the electric machine during charge depleting and high demanding transients of charge sustaining				
		Energy	kWh	Along the NEDC, 80 km of All Electric Range and a lifetime of at least 160000 km				
BEV	Electric Machine	Power	kW	Maximum Speed => Continuous Power Acceleration and Elasticity => Peak Power	90 (45)			
		Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque	280 (180)			
	Li-Ion Battery Pack	Power	kW	Required electric power from/to the electric machine	> 100			
		Energy	kWh	Along the NEDC, 120 km (2010) or 200 km (2020) of All Electric Range and a lifetime of at least 160000 km	17.8 (14.2)			
	Electric Machine	Power	kW	Maximum Speed => Continuous Power Acceleration and Elasticity => Peak Power	85 (60)			
FCEV		Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque				
	Fuel Cell System	Power	kW	To supply the required power to the electric machine. Demanding transients require the battery support (top speed: 180 km/h)				
		Power	kW	Required electric power from/to the electric machine				
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, complete regenerative braking and a lifetime of at least 160000 km				
				The values show the peak and (in parenthesis) the continuous power and d (in parenthesis) the available energy	l torque;			

Table 5-7: xEV components' specifications: overview of xEV 2010 configurations

The xEV components specifications of the 2010 configurations were designed and optimized in correlation to the given boundary conditions and vehicle minimum performance criteria of the current TTW study.

Table 5-7 gives an overview of the considered electrified components, the requirements to be achieved and the main specifications. The values reported in the table in case of the Electric Machine and the Generator show the peak and, in parenthesis, the continuous power and torque. Concerning the Li-Ion Battery Pack, the total as well as the available energy (in parenthesis) is outlined.

Figure 5-1 shows the Fuel Cell System Efficiency characteristic for the FCEV configuration 2010. The efficiency was obtained by input from several EUCAR members based on available technologies used in demonstration vehicles. For better comparability of the FC characteristic with 2020+ configurations the characteristic is given in percent of the Fuel Cell System maximum power.

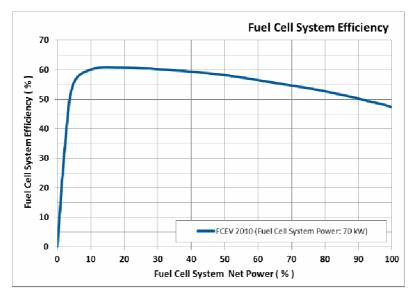


Figure 5-1: Fuel Cell System Efficiency of FCEV Configuration 2010

Impacts of FC cooling pump losses and other FC related ancillaries are included in the FC system efficiencies. For 2010 the FC system is assumed to have its own cooling system (showing a slightly reduced FC system efficiency), whereas for 2020+ the FC system cooling is integrated into the cooling system of the vehicle. The FC module in the FCEV and REEV FC (for 2020+ configurations) is assumed to operate in a way, that the FC starting phase is only lasting a few seconds, hence the starting phase of the FC is neglected in simulation.

The 2010 BEV E-Machine is oversized in comparison to the 2010 FCEV due to the fact, that for a production related system design xEV components are maintained for different configurations as much as possible; therefore, based on similar performance criteria, REEV80 (SI) and BEV use the same E-Machine, whereas the FCEV needs a different E-Machine due to its different maximum driving velocity criterion (180km/h instead of 130km/h for REEV80 and BEV).

5.2 Simulation results

5.2.1 Results for conventional ("ICE only") configurations

	Curb	Fuel Tank			El. Energy Consumption ¹		GHG emissions ¹				
2010 VARIANTS	Weight	Capacity	Fuel Consumption ¹			w/o charging losses	with charging losses	as CO ₂	as CH4	as N ₂ O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km		kWh/100km	g CO2 /km	g CO2 eq/km	g CO₂ eq/km	g CO₂ eq/km
PISI ("ICE only") 2010, MT5											
Gasoline	1300	55	211.3	6.57	4.89	#	#	155.1	0.3	0.4	155.8
Gasoline E10 market blend	1300	55	211.3	6.80	5.10	#	#	154.8	0.3	0.4	155.5
Gasoline E20 high RON	1300	55	208.6	6.95	5.25	#	#	152.5	0.3	0.4	153.2
LPG ²	1370	80	215.7	8.53	4.69	#	#	141.8	0.3	0.4	142.5
CNG ³	1440	150 (25 kg)	232.3	#	5.15	#	#	130.7	1.5	0.4	132.6
E85	1300	55	207.1	9.04	7.10	#	#	148.2	0.3	0.4	148.9
DISI ("ICE only") 2010, MT	DISI ("ICE only") 2010, MT6										
Gasoline	1310	55	203.8	6.33	4.72	#	#	149.6	0.3	0.4	150.3
Gasoline E10 market blend	1310	55	203.8	6.56	4.92	#	#	149.3	0.3	0.4	150.0
Gasoline E20 high RON	1310	55	201.3	6.71	5.07	#	#	147.2	0.3	0.4	147.9
LPG ²	1380	80	207.8	8.22	4.52	#	#	136.6	0.3	0.4	137.3
CNG ³	1450	150 (25 kg)	211.8	#	4.70	#	#	119.1	1.5	0.4	121.0
E85	1310	55	198.6	8.67	6.81	#	#	142.1	0.3	0.4	142.8
DICI ("ICE only") 2010, M	DICI ("ICE only") 2010, MT6										
Diesel	1370	55	162.5	4.53	3.77	#	#	119.0	0.1	1.1	120.2
Diesel B7 market blend	1370	55	162.5	4.55	3.81	#	#	119.3	0.1	1.1	120.5
FAME	1370	55	162.5	4.91	4.37	#	#	123.8	0.1	1.1	125.0
DME ⁴	1448	80	171.8	9.02	6.04	#	#	115.6	0.1	1.1	116.8
FT-Diesel	1370	55	162.5	4.73	3.69	#	#	115.1	0.1	1.1	116.3
HVO	1370	55	162.5	4.73	3.69	#	#	115.1	0.1	1.1	116.3
 NEDC Cycle results for cold start condition; Vehicle Test Mass = Curb weight incl. Driver, 90% fuel Bi-valent LPG Vehicle; MPI ICE; ICE Displacement increased to compensate additonal vehicle weight; Mono-valent CNG Vehicle; MPI ICE; ICE Displacement increased to compensate reduced ICE volumetric efficiency & additional vehicle weight; Mono-valent CNG Vehicle; MPI ICE; ICE Displacement increased to compensate reduced ICE volumetric efficiency & additional vehicle weight; Only theoretical consideration of Bi-valent DME Vehicle - DME is currently not used for PC applications; ICE Displacement increased to compensate add. 											

 Table 5-8: Simulation results for "ICE only" configurations 2010

Compared to the results of correlating 2010+ configurations in the Version 3c report the results of 2010 PISI, DISI and DICI conventional configurations in the current study show some specific differences in fuel consumption; these differences are given by the higher ITW class of the C-segment reference vehicle of 1360kg (adding 3.4g CO₂/km relative to the 1250kg ITW class), the different and in general more stringent minimum vehicle performance targets (11s instead of 13s in the Version 3c report), and finally the Start-Stop functionality, which was included in the 2010 conventional vehicle parameters were chosen in correlation to the current market situation. Additionally the 2010 EU C-segment average is well reflected by the actual results.

5.2.2 Results for xEV configurations

In the following result tables the results for electric energy consumption in case of configurations including a Plug-In feature are always given both with and without consideration of Battery charging losses. In general the legislative regulations in UNECE R101 define, that charging losses are to be included in reference values of electric energy consumption for all Plug-In features vehicle configurations.

5.2.2.1 HEV

	Curb	Fuel Tank			1	El. Energy Co	onsumption ¹		GHG en	nissions ¹	
2010 VARIANTS	Weight	Capacity	apacity Fuel Consumption ¹		on	w/o charging losses	with charging losses	as CO_2	as CH_4	as N_2O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO2 eq/km	g CO₂ eq/km	g CO2 eq/k
	+ TCC)										
Gasoline	1417	55	141.7	4.44	3.28	#	#	104.9	0.3	0.4	105.6
Gasoline E10 market blend	1417	55	141.7	4.56	3.42	#	#	104.7	0.3	0.4	105.4
Gasoline E20 high RON	1417	55	139.9	4.66	3.52	#	#	103.1	0.3	0.4	103.8
LPG	#	#	#	#	#	#	#	#	#	#	#
CNG	#	#	#	#	#	#	#	#	#	#	#
E85	1417	55	138.1	6.03	4.74	#	#	99.6	0.3	0.4	100.3
Hybrid DICI 2010 (AT6 +	TCC)										
Diesel	1477	55	128.0	3.60	2.97	#	#	94.4	0.1	1.1	95.6
Diesel B7 market blend	1477	55	128.0	3.59	3.00	#	#	94.6	0.1	1.1	95.8
FAME	1477	55	128.0	3.87	3.44	#	#	98.2	0.1	1.1	99.4
DME	#	#	#	#	#	#	#	#	#	#	#
FT-Diesel	1477	55	128.0	3.73	2.91	#	#	91.3	0.1	1.1	92.5
HVO	1477	55	128.0	3.73	2.91	#	#	91.3	0.1	1.1	92.5

Table 5-9: Simulation results for HEV configurations 2010

5.2.2.2 PHEV

Table 5-10: Simulation results for PHEV configurations 2010 (according to ECE 101 regulation)

	Curb	Fuel Tank	1			El. Energy Co	onsumption ¹		GHG en	nissions ¹	
2010 VARIANTS	Weight	Capacity	Fue	l Consumpti	on¹	w/o charging losses	with charging losses ²	as CO ₂	as CH4	as N ₂ O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO2 eq/km	g CO ₂ eq/km	g CO₂ eq/km
PHEV20 DISI 2010 (AT6	+ TCC)										
Gasoline	1479	55	101.2	3.17	2.34	3.12	4.07	75.0	0.1	0.2	75.3
Gasoline E10 market blend	1479	55	101.2	3.25	2.44	3.12	4.07	74.9	0.1	0.2	75.2
Gasoline E20 high RON	1479	55	99.8	3.33	2.51	3.12	4.07	73.7	0.1	0.2	74.0
LPG	#	#	#	#	#	#	#	#	#	#	#
CNG	#	#	#	#	#	#	#	#	#	#	#
E85	1479	55	98.6	4.30	3.38	3.12	4.07	71.3	0.1	0.2	71.6
PHEV20 DICI 2010 (AT6	+ TCC)										
Diesel	1539	55	91.6	2.57	2.12	3.17	4.14	67.4	0.1	0.6	68.1
Diesel B7 market blend	1539	55	91.6	2.57	2.15	3.17	4.14	67.8	0.1	0.6	68.5
FAME	1539	55	91.6	2.77	2.46	3.17	4.14	70.2	0.1	0.6	70.9
DME	#	#	#	#	#	#	#	#	#	#	#
FT-Diesel	1539	55	91.6	2.67	2.08	3.17	4.14	65.3	0.1	0.6	66.0
HVO	1539	55	91.6	2.67	2.08	3.17	4.14	65.3	0.1	0.6	66.0

2) Charging losses based on the Charger Type 3.x kW (1x 16A)

5.2.2.3 REEV

Table 5-11: Simulation results for REEV SI configuration 2010 (according to ECE 101 regulation)

	Curb	Fuel Tank				El. Energy Co	onsumption ¹		GHG en	nissions ¹	
2010 VARIANTS	Weight	Capacity	Fue	l Consumpti	on ¹	w/o charging losses	with charging losses ²	as CO₂	as CH4	as N ₂ O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	$g CO_2 eq/km$	g CO₂ eq/km	g CO ₂ eq/km
REEV80 SI 2010 (Single	Stage Tra	nsmission	ı)								
Gasoline	1548	35	34.9	1.09	0.81	9.12	11.58	25.7	0.1	0.1	25.9
Gasoline E10 market blend	1548	35	34.9	1.12	0.84	9.12	11.58	25.5	0.1	0.1	25.7
Gasoline E20 high RON	1548	35	34.4	1.15	0.86	9.12	11.58	25.0	0.1	0.1	25.2
LPG	#	#	#	#	#	#	#	#	#	#	#
CNG	#	#	#	#	#	#	#	#	#	#	#
E85	1548	35	33.9	1.48	1.16	9.12	11.58	24.2	0.1	0.1	24.4
1) NEDC Cycle results for cold	start condit	ion according	g to ECE 101 r	egulation; V	ehicle Test M	ass = Curb wei	ght incl. Driver,	90% fuel			
Charging losses based on t	he Charger	rger Type 3.x kW (1x 16A)									

5.2.2.4 BEV

	Curb	Fuel Tank				El. Energy Co	El. Energy Consumption ¹		GHG emissions ¹			
2010 VARIANTS	Weight	Capacity	Fue	l Consumpti	on ¹	w/o charging losses	with charging losses ²	as CO_2	as CH ₄	as N_2O	TOTAL	
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO ₂ eq/km	g CO ₂ eq/km	g CO ₂ eq/km	
BEV 2010 (Single Stage Transmission)												
Electricity	1365	#	#	#	#	11.38	14.49	0.0	0.0	0.0	0.0	

For better comparability the BEV electric energy consumption is additionally given in MJ/100km, resulting in 40.97 MJ/100km w/o charging losses and 52.16 MJ/100km with charging losses.

5.2.2.5 FCEV

Table 5-13: Simulation results for FCEV configuration 2010

	Curb	Fuel Tank				El. Energy Consumption ¹		GHG emissions ¹			
2010 VARIANTS	Weight	Capacity	Fue	Fuel Consumption ¹			with charging losses	as CO ₂	as CH_4	as N_2O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO2 eq/km	g CO₂ eq/km	g CO₂ eq/km
FCEV 2010 (Single Stage	e Transmi	ission)									
Hydrogen (CGH2)	1458	4	74.99	#	0.624	#	#	0.0	0.0	0.0	0.0
Hydrogen (cCGH2)	1458	4	74.99	#	0.624	#	#	0.0	0.0	0.0	0.0
1) NEDC Cycle results for cold start condition; Vehicle Test Mass = Curb weight incl. Driver, 90% fuel											

FCEV simulation results for 2010 show a distinctively lower Hydrogen fuel consumption than currently available Fuel Cell Electric Vehicles like the Honda FCX Clarity or the Mercedes Benz B-class FC configuration. Such lower fuel consumption can be explained by the lower vehicle driving resistance of the C-segment reference vehicle defined for this study including vehicle mass and hence rolling resistance on the one hand, and air drag coefficient on the other hand. In addition, the vehicle performance criteria of the currently available Fuel Cell Electric Vehicles are likely different to the ones defined in the current TTW study.

6 2020+ Vehicle Configurations & Results

6.1 Vehicle configurations

In the following the 2020+ conventional as well as electrified vehicle configurations are described in detail regarding their main component specifications. Definition of the components technologies for 2020+ is assessed based upon the likely technology development foreseen by EUCAR and AVL experts. The specifications include the main ICE description, a definition of rated and peak power and torque of E-Machines, peak power of Fuel Cell systems, and peak power and energy content of Batteries. A detailed mass balance for all subsystems is included. The general description of the vehicle parameters and powertrain topologies are given in chapter 3.

6.1.1 Simulation parameter & main data

Table 6-1: Mass balance for "ICE only" configurations 2020+

Mass balance for			PISI			DISI		D	ICI
"ICE only" Variants 2020	+	Gasoline ¹	LPG (mono-fuel)	CNG (mono-fuel)	Gasoline ¹	LPG (mono-fuel)	CNG (mono-fuel)	Diesel ²	DME (mono-fuel)
Powertrain									
ICE mass	kg	135	135	135	135	135	135	165	165
Transmission mass	kg	50	50	50	50	50	50	50	50
Powertrain mass change	kg	Reference	0	0	Reference	0	0	Reference	0
Storage System									
Fuel Tank Capacity	L	35	60 + 14	100 + 14	35	60 + 14	100 + 14	35	60 + 14
Tank System mass	kg	15	40	60	15	40	60	15	40
Fuel mass	kg	26	37	27	26	37	27	29	44
Storage System mass change	kg	Reference	+36	+46	Reference	+36	+46	Reference	+40
Vehicle									
Curb weight (incl. driver, 90% fuel)	kg	1190	1226	1236	1200	1236	1246	1260	1300
Reference mass for ITW	kg	1215	1251	1261	1225	1261	1271	1285	1325
ITW Class	kg	1250	1250	1250	1250	1250	1250	1250	1360
Performance mass	kg	1315	1351	1361	1325	1361	1371	1385	1425
Payload	kg	550	550	550	550	550	550	550	550
Gross vehicle mass	kg	1740	1776	1786	1750	1786	1796	1810	1850
1) Same vehicle mass is assumed f 2) Same vehicle mass is assumed f							0	& E85.	

Table 6-2: Mass balance for xEV configurations 2020+ in relation to the DISI ("ICE only")

Mass balance for		DISI ("ICE only")	Hybrid DISI	PHEV20 DISI	REEV80 SI	REEV80 FC	BEV	FCEV
xEV Variants 2020+		Gasoline ¹	Gasoline ¹	Gasoline ¹	Gasoline ¹	Hydrogen ²	Electricity	Hydrogen ²
Powertrain			• •					-
ICE mass	kg	135	135	135	130	0	0	0
Transmission mass	kg	50	80	80	10	10	10	10
Powertrain mass change	kg	Reference	+30	+30	-45	-175	-175	-175
Fuel Cell								
Fuel cell module mass ⁴	kg	#	#	#	#	79	#	109
Electric Components								
eMachine mass ³	kg	#	28	36	58	55	51	55
Generator (2 nd eMachine) mass ³	kg	#	#	#	35	#	#	#
Battery mass ³	kg	#	26	59	95	90	175	26
xEV wiring harness mass	kg	#	11	15	20	20	20	20
eComponents mass change	kg	Reference	+65	+110	+208	+165	+246	+101
Storage System								
Fuel Tank Capacity	L	35	25	25	25	#	0	#
Tank System mass	kg	15	15	15	15	80	0	80
Fuel mass	kg	26	19	19	19	4	0	4
Storage System mass change	kg	Reference	-7	-7	-7	+43	-41	+43
Vehicle								
Curb weight (incl. driver, 90% fuel)	kg	1200	1288	1333	1356	1312	1230	1278
Reference mass for ITW	kg	1225	1313	1358	1381	1337	1255	1303
ITW Class	kg	1250	1360	1360	1360	1360	1250	1250
Performance mass	kg	1325	1413	1458	1481	1437	1355	1403
Payload	kg	550	550	550	550	550	550	550
Gross vehicle mass	kg	1750	1838	1883	1906	1862	1780	1828

1) Same vehicle mass is assumed for the different fuel variants Gasoline, Gasoline E10 market bl., Gasoline E20 High RON & E85.

2) Same vehicle mass is assumed for both Hydrogen Variants (CGH2 & cCGH2).

3) Masses for e-components include housing, power electronics and cooling system. 4) Mass of Fuel Cell module includes the whole system.

Table 6-3: Mass balance for xEV configurations 2020+ in relation to the DICI ("ICE only")

Mass balance for		DICI ("ICE only")	Hybrid DICI	PHEV20 DICI	REEV80 CI (Variant 1)	REEV80 CI (Variant 2)
xEV Variants 2020+		Diesel ¹	Diesel ¹	Diesel ¹	Diesel ¹	Diesel ¹
Powertrain						
ICE mass	kg	165	165	165	145	115
Transmission mass	kg	50	80	80	10	10
Powertrain mass change	kg	Reference	+30	+30	-60	-90
Electric Components						
eMachine mass ²	kg	#	28	36	58	58
Generator (2 nd eMachine) mass ²	kg	#	#	#	40	35
Battery mass ²	kg	#	26	59	95	95
xEV wiring harness mass	kg	#	11	15	20	20
eComponents mass change	kg	Reference	+65	+110	+213	+208
Storage System						
Fuel Tank Capacity	L	35	25	25	25	25
Tank System mass	kg	15	15	15	15	15
Fuel mass	kg	29	21	21	21	21
Storage System mass change	kg	Reference	-8	-8	-8	-8
Vehicle						
Curb weight (incl. driver, 90% fuel)	kg	1260	1347	1392	1405	1370
Reference mass for ITW	kg	1285	1372	1417	1430	1395
ITW Class	kg	1250	1360	1360	1470	1360
Performance mass	kg	1385	1472	1517	1530	1495
Payload	kg	550	550	550	550	550
Gross vehicle mass	kg	1810	1897	1942	1955	1920

1) Same vehicle mass is assumed for the different fuel variants Diesel, Diesel B7, FAME, FT-Diesel & HVO. 2) Masses for e-components include housing, power electronics and cooling system.

2) Masses for e-components include housing, power electronics and cooling system.

A DC/DC converter for LV power supply is included in all relevant xEV components masses in terms of weight; however DC/DC losses are omitted in the system efficiency chain for all xEV configurations due to negligible impact on results. For the 2020+ conventional configurations a completely electrified oil pump to support a quick Start-Stop functionality is not necessary, as a hydraulic oil pressure storage unit similar to the technology used in some automatic transmissions is considered.

Auxiliaries - status of electrification 2020+:

- Steering Pump: EPS for all Configurations 2020+ (ICE only & xEV)
- Brake Vacuum Pump: Mechanical for conventional configurations, electrified for xEV configurations
- Water Pump: Controllable mechanical for conventional configurations, electrified for xEV configurations
- (ICE) Oil Pump: Partly electrified for all configurations
- o (Transmission) Oil Pump: Only needed for xEV Configurations (due to AT), electrified

6.1.2 ICE Specifications

The RON for the Gasoline blends and CN for Diesel B7 are defined in the fuel properties table (*Table 3-1*). However in market fuels these numbers could vary in a certain range of a few numbers. In this

simulation work, such slight RON / CN changes for fuels (e.g. Gasoline E20 RON range of 99-102) do not require ICE map adaptions in this simulation study, as the estimations of ICE maps for specific fuels are based on a comparable level of accuracy, and slight RON / CN effects are considered not to be significant compared to the overall simulation accuracy. Regulated emissions (e.g. NOx) are not evaluated in detail in the current TTW analysis. However, all vehicle simulations of the 2020+ configurations comply with the legislative emissions standards for EURO 6, which is the currently known emission standard for 2020+.

In contrast to 2010 the definition of 2020+ ICE specifications is adapted to the degree of electrification of xEV configurations: Electrification is not just seen as an Add-On technology like in 2010, but as an integrated system design approach, where the ICE is optimized together with the E-Machines (used for propulsion) in terms of combined system performance. Accordingly in case of the HEV and the PHEV the Gasoline ICEs are downsized and downrated (reduced in their maximum power). Diesel ICEs are not downsized nor downrated to prevent complex NOx after-treatment systems. For this study, it is not assumed that the representative Diesel engines are operated in HCCI/PCCI mode in the 2020+ timeframe. Both Gasoline and Diesel ICEs are improved in terms of technology (e.g. friction reduction) for electrified configurations.

Table 6-4: Gasoline ICE specification for configurations 2020+ with (standard) gasoline fuel

Gasoline	ICE Variants			Gasoline ICE Varia	ants 2020+		
AVL Specificat	tions by AVL	PISI ("ICE only")	DISI ("ICE only")	Hybrid DISI	PHEV20 DISI	REEV80 SI	
ICE Type / Technology		- MPI - Electr. Supercharged - Optimized Friction - CDA		- NA - High-expansion Atkinson Cycle - Cooled EGR - Increased Compression			
Displacement	L	1.4	1.2	1.2			
No. of Cylinders		IL4		IL3		IL3	
Specific power	kW/L	~54	~71		~70	~39	
Maximum Power	kW @ rpm	75 @ 5500	85 @ 5500	70) @ 5500	47 @ 5000	
Maximum Torque	Nm @ rpm	175 @ 2500	185 @ 1500 - 4000	150 @	1750 - 4000	95 @ 4000	
Maximum Speed	rpm	6000		6000		5500	
Idle Speed	rpm	750		750		750	
BSFC @ 2000 rpm / 2 bar	g/kWh	~340	~365 ~360			~345	
BSFC minimum	g/kWh	~240	~225	~225 ~220			

Table 6-5: Diesel ICE specification for configurations 2020+ with (standard) diesel fuel

Diesel	ICE Variants			Diesel ICE Varia	nts 2020+	
AVL Specifica	tions by AVL	DICI	Hybrid DICI	PHEV20 DICI	REEV80 CI - Variant 1	REEV80 CI - Variant 2
ICE Type / Technology		- Waste	- Derating - LNT & DPF educed low-end-toro Gate Loader instead imized / Reduced Fri	of VGT	- Derating - LNT - DPF - Reduced low-end- torque	- Derating - (Advanced) LNT - DPF - Reduced low-end- torque
Displacement	L		1.6		1.2	0.9
No. of Cylinders			IL4		IL3	IL2
Specific power	kW/L		~53		~52	~51
Maximum Power	kW @ rpm		85 @ 4000		63 @ 4000	46 @ 4000
Maximum Torque	Nm @ rpm		285 @ 1750 - 2500		205 @ 2000 - 2500	150 @ 2000 - 2500
Maximum Speed	rpm		4500		4500	4500
Idle Speed	rpm		750		750	750
BSFC @ 2000 rpm / 2 bar	g/kWh	~260	~2	50	~315	~320
BSFC minimum	g/kWh	~202	~2	00	~210	~210

Table 6-6: PISI ICE specification for ("ICE only") configurations 2020+ with alternative fuels

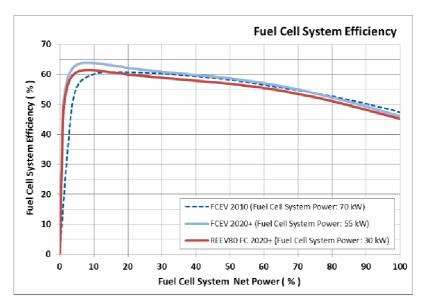
Gasoline	ICE Variants		PISI	ICE 2020+ for "ICE	only" Variants		
AVL Specificat	tions by AVL	Gasoline	E20 high RON	E85	LPG	CNG	
ICE Type / Technology			- MPI Electr. Supercharged - Optimized Friction - CDA		LPG ICE - MPI - Electr. Supercharged - Optimized Friction - CDA	CNG ICE - MPI - Electr. Supercharged - Optimized Friction - CDA	
Displacement	L		1.4		1.44	1.6	
No. of Cylinders				IL4			
Specific power	kW/L		~54		~54	~48	
Maximum Power	kW @ rpm		75 @ 5500		77 @ 5500	77 @ 5500	
Maximum Torque	Nm @ rpm		175 @ 2500		180 @ 2500	180 @ 2500	
Maximum Speed	rpm			6000)		
Idle Speed	rpm			750			
BSFC @ 2000 rpm / 2 bar	g/kWh	~340	368	498	314 <i>≙</i> ~334 Gasoline equivalent	312 <i>≙</i> ~326 Gasoline equivalent	
BSFC minimum	g/kWh	~240	245	331	209 <i>≙</i> ~223 Gasoline equivalent	205 <i>≙</i> ~215 Gasoline equivalent	

Table 6-7: DISI ICE specification for ("ICE only") configurations 2020+ with alternative fuels

Gasoline	ICE Variants		DIS	ICE 2020+ for "ICE	only" Variants			
AVL Specificat	tions by AVL	Gasoline	E20 high RON	E85	LPG	CNG		
ICE Type / Technology			- TGDI - Miller Cycle - Dual VVT ncreased Compressi Cooled EGR & manifo		LPG ICE - Turbo DI - Miller Cycle - Dual VVT - Increased Compression - Cooled EGR & manifold	CNG ICE - Turbo MPI - Miller Cycle - Dual VVT - Increased Compression - Cooled EGR & manifold		
Displacement	L		1.2		1.23	1.32		
No. of Cylinders				IL3				
Specific power	kW/L		~71		~71	~66		
Maximum Power	kW @ rpm		85 @ 5500		87 @ 5500	87 @ 5500		
Maximum Torque	Nm @ rpm		185 @ 1500 - 4000		190 @ 1500 - 4000	191 @ 2000 - 3000		
Maximum Speed	rpm			6000				
Idle Speed	rpm			750				
BSFC @ 2000 rpm / 2 bar	g/kWh	~365	389	524	336 <i>≙</i> ~357 Gasoline equivalent	335 <i>≙</i> ~347 Gasoline equivalent		
BSFC minimum	g/kWh	~225	231	311	199 <i>≙</i> ~212 Gasoline equivalent	198 <i>≙</i> ~206 Gasoline equivalent		

6.1.3 xEV specifications

The xEV components specifications of the 2020+ configurations were designed and optimized in correlation to the given boundary conditions and vehicle minimum performance criteria of the current TTW study.


Table 6-8: xEV components' specific	ations: overview of xEV 2020+ configurations
-------------------------------------	--

Variant	Component	Specific	Unit	Requirements to meet the performance criteria	Value*
	Flantain Manhima	Power	kW	Complete regenerative braking during the NEDC	24 (12)
НЕЛ	Electric Machine	Torque	Nm	Complete regenerative braking during the NEDC	140 (70)
Ξ		Power	kW	Required electric power from/to the electric machine	30
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, complete regenerative braking and a lifetime of at least 160000 km	1.0 (0.4)
		Power	kW	Electric drive up to 100 km/h: continuously, during the NEDC (continuous P and Tq)	38 (19)
S	Electric Machine	Torque	Nm	occasionally, during high demanding transients (peak P & Tq): Artemis Cycles as driving reference	155 (65)
РНЕV		Power	kW	Required electric power from/to the electric machine	50
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, 20 km of All Electric Range and a lifetime of at least 160000 km	2.7 (1.8)
		Power	kW	Maximum Speed => Continuous Power Acceleration and Elasticity => Peak Power	75 (38)
	Electric Machine	Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque	270 (180)
2	_	Power	kW	Guarantees the continous power required by the electric machine	50 (50)
REEV	Generator	Torque	Nm	Suitable coupling with the ICE	105 (105)
		Power	kW	Required electric power from/to the electric machine during charge depleting and high demanding transients of charge sustaining	> 90
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, 80 km of All Electric Range and a lifetime of at least 160000 km	11.8 (9.1)
		Power	kW	Maximum Speed => Continuous Power Acceleration and Elasticity => Peak Power	70 (37)
>	Electric Machine	Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque	235 (160)
BEV		Power	kW	Required electric power from/to the electric machine	> 90
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, 120 km (2010) or 200 km (2020) of All Electric Range and a lifetime of at least 160000 km	22.1 (18.4)
		Power	kW	Acceleration and Elasticity >> Peak Power	70 (45)
	Electric Machine	Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque	270 (185)
FCEV	Fuel Cell System	Power	kW	To supply the required power to the electric machine. Demanding transients require the battery support (top speed: 180 km/h)	55
-		Power	kW	Required electric power from/to the electric machine	30
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, complete regenerative braking and a lifetime of at least 160000 km	1 (0.5)
		Power	kW	Maximum Speed => Continuous Power Acceleration and Elasticity => Peak Power	72 (36)
FC	Electric Machine	Torque	Nm	Gradeability 20% => Continuous Torque Gradeability 30% => Peak Torque	250 (170)
REEV F	Fuel Cell System	Power	kW	To supply the required power to the electric machine. Demanding transients require the battery support (top speed: 130 km/h)	30
BE		Power	kW	Required electric power from/to the electric machine	> 90
	Li-Ion Battery Pack	Energy	kWh	Along the NEDC, 80 km of All Electric Range and a lifetime of at least 160000 km	10.7 (8.2)

Table 6-8 gives an overview of the considered electrified components, the requirements to be achieved and the main specifications. The values reported in the table in case of the Electric Machine and the Generator show the peak and, in parenthesis, the continuous power and torque. Concerning the Li-Ion Battery Pack, the total as well as the available energy (in parenthesis) is outlined.

Figure 6-1 shows the Fuel Cell System Efficiency characteristics for the 2020+ configurations in comparison to the 2010 FCEV characteristic, given in percent of the Fuel Cell System maximum power. 2020+ efficiencies are defined by the EUCAR working group and are based on current research and development projects (see also footnote 3).

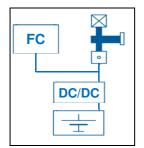

Figure 6-1: Fuel cell system efficiency of 2020+ configurations

Figure 6-2 and *Figure 6-3* show the schematics of the electric system layout of the configurations featuring a Fuel Cell, the FCEV and the REEV FC. Besides the Plug-In feature, the only difference between the two layouts is the positioning of the DC/DC converter, which for each layout is optimized towards the most efficient power supply for driving: In the case of the FCEV (mainly operating via the Fuel Cell) the DC/DC converter is directly connected to the HV battery. In the case of the REEV FC (mainly operating via the HV battery) the DC/DC converter is directly connected to the FUEV connected to the Fuel Cell. Therefore the Fuel Cell System efficiency of the REEV FC (including a DC/DC converter) is slightly reduced in comparison to the efficiency of the FCEV.

REEV FC

Figure 6-2: Electric system layout of the FCEV

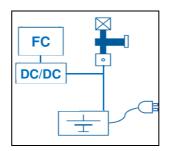


Figure 6-3: Electric system layout of the

Impacts of FC cooling pump losses and other FC related ancillaries are included in the FC system efficiencies. For 2010 the FC system is assumed to have its own cooling system (showing a slightly reduced FC system efficiency), whereas for 2020+ the FC system cooling is integrated into the cooling system of the vehicle. The FC module in the FCEV and REEV FC (for 2020+ configurations) is assumed to operate in a way, that the FC starting phase is only lasting a few seconds, hence the starting phase of the FC is neglected in simulation.

6.2 Simulation results

2020+ simulation results include additionally a so-called "Technology Walk", which shows in detail the foreseen improvements in xEV technology development in comparison to the 2010 configurations, as they were assessed by EUCAR and AVL experts to their best knowledge.

6.2.1 Results for conventional ("ICE only") configurations

	Curb	Fuel Tank			1	El. Energy Co	onsumption ¹	GHG emissions ¹				
2020+ VARIANTS	Weight	Capacity	Fue	l Consumpti	on	w/o charging losses	with charging losses	as CO_2	as CH_4	as N ₂ O	TOTAL	
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO2 eq/km	g CO2 eq/km	g CO₂ eq/k	
PISI ("ICE only") 2020+, M	T6											
Gasoline	1190	35	150.1	4.67	3.48	#	#	110.2	0.3	0.5	111.0	
Gasoline E10 market blend	1190	35	150.1	4.83	3.62	#	#	110.0	0.3	0.5	110.8	
Gasoline E20 high RON	1190	35	146.6	4.89	3.69	#	#	107.2	0.3	0.5	108.0	
LPG ²	1226	60	148.5	5.87	3.23	#	#	97.6	0.3	0.5	98.4	
CNG ³	1236	100 (17 kg)	152.5	#	3.38	#	#	85.8	1.1	0.5	87.4	
E85	1190	35	145.5	6.35	4.99	#	#	104.1	0.3	0.5	104.9	
DISI ("ICE only") 2020+, M	IT6											
Gasoline	1200	35	142.4	4.43	3.30	#	#	104.5	0.3	0.5	105.3	
Gasoline E10 market blend	1200	35	142.4	4.58	3.43	#	#	104.3	0.3	0.5	105.1	
Gasoline E20 high RON	1200	35	140.7	4.69	3.54	#	#	102.9	0.3	0.5	103.7	
LPG ²	1236	60	143.2	5.66	3.11	#	#	94.1	0.3	0.5	94.9	
CNG ³	1246	100 (17 kg)	145.1	#	3.22	#	#	81.6	1.1	0.5	83.2	
E85	1200	35	138.6	6.05	4.75	#	#	99.1	0.3	0.5	99.9	
DICI ("ICE only") 2020+, N	1T6											
Diesel	1260	35	118.5	3.30	2.75	#	#	86.8	0.2	1.2	88.2	
Diesel B7 market blend	1260	35	118.5	3.32	2.78	#	#	87.0	0.2	1.2	88.4	
FAME	1260	35	118.5	3.58	3.19	#	#	90.3	0.2	1.2	91.7	
DME ⁴	1300	60	122.3	6.42	4.30	#	#	82.3	0.2	1.2	83.7	
FT-Diesel	1260	35	118.5	3.45	2.69	#	#	83.9	0.2	1.2	85.3	
HVO	1260	35	118.5	3.45	2.69	#	#	83.9	0.2	1.2	85.3	
) NEDC Cycle results for cold) Mono-valent LPG Vehicle; F) Mono-valent CNG Vehicle;) Only theoretical considerat	PISI ICE as N MPI ICE (PI	1PI / DISI ICE (SI & DISI Vario	as DI; ICE Dis ants); ICE Dis	placement in placement in	creased to co acreased to co	mpensate ada ompensate red	uced ICE volun	netric efficien	,	5	,	

Table 6-9: Simulation results for "ICE only" configurations 2020+

Table 6-10: Technology walk for "ICE only" configurations (PISI, DISI, DICI) 2010 → 2020+

		PISI with G	asoline Fuel	DISI with G	asoline Fuel	DICI with	Diesel Fuel
Techno	logy Walk for "ICE only" Powertrain Variant (without consideration of GHG)	NEDC ¹ CO ₂ -Emissions	Technology dependent CO2-Reduction	NEDC ¹ CO ₂ -Emissions	Technology dependent CO2-Reduction	NEDC ¹ CO ₂ -Emissions	Technology dependent CO2-Reductio
		g/km	%	g/km	%	g/km	%
"ICE only" Varia	ant 2010	155.1	Reference	149.6	Reference	119.0	Reference
Transmission	Transmission Measures ²	148.2	4.4%	145.4	2.8%	114.2	4.0%
	New ICE for 2020+	133.4	9.5%	125.6	13.2%	105.4	7.4%
ICE	Improved Auxiliaries	129.8	2.3%	122.1	2.3%	102.2	2.7%
Start & Stop		122.4	4.8%	116.0	4.1%	98.0	3.5%
	Weight Reduction	118.7	2.3%	112.6	2.3%	94.6	2.8%
Vehicle Measures	Improved aerodynamics	113.9	3.1%	108.0	3.0%	90.4	3.5%
	Improved rolling resistance	110.2	2.4%	104.5	2.3%	86.8	3.0%
"ICE only" Varia	ant 2020+	110.2	28.9%	104.5	30.1%	86.8	27.1%

2) For PISI: New 6-Speed Manual Transmission (MTS is replaced); For DISI & DICI: Downspeeding & Improved Efficiency of 6-Speed Manual Tra

6.2.2 Results for xEV configurations

The following tables show the results for electric energy consumption always for both with and without consideration of Battery charging losses, where applicable. In general legislative regulations (UN ECE R101) define, that charging losses are to be included in reference values of electric energy consumption for all Plug-In features vehicle configurations.

6.2.2.1 HEV

	Curb	Fuel Tank				El. Energy Co	onsumption ¹		GHG en	nissions ¹	
2020+ VARIANTS	Weight	Capacity	Fue	Fuel Consumption ¹		w/o charging losses	with charging losses	as CO_2	as CH_4	as N_2O	TOTAL
	kg	L	MJ/100km	I/100km	kg/100km	kWh/100km	kWh/100km	g CO2 /km	g CO₂ eq/km	g CO₂ eq/km	g CO₂ eq/kr
lybrid DISI 2020+ (AT8	+ LC)										
Gasoline	1288	25	93.4	2.92	2.16	#	#	69.0	0.3	0.5	69.8
Gasoline E10 market blend	1288	25	93.4	3.00	2.25	#	#	68.9	0.3	0.5	69.7
Gasoline E20 high RON	1288	25	92.2	3.07	2.32	#	#	67.9	0.3	0.5	68.7
LPG	#	#	#	#	#	#	#	#	#	#	#
CNG	#	#	#	#	#	#	#	#	#	#	#
E85	1288	25	90.8	3.96	3.11	#	#	65.4	0.3	0.5	66.2
lybrid DICI 2020+ (AT8	+ LC)										
Diesel	1347	25	87.5	2.46	2.03	#	#	64.5	0.2	1.2	65.9
Diesel B7 market blend	1347	25	87.5	2.45	2.05	#	#	64.7	0.2	1.2	66.1
FAME	1347	25	87.5	2.64	2.35	#	#	67.1	0.2	1.2	68.5
DME	#	#	#	#	#	#	#	#	#	#	#
FT-Diesel	1347	25	87.5	2.55	1.99	#	#	62.4	0.2	1.2	63.8
HVO	1347	25	87.5	2.55	1.99	#	#	62.4	0.2	1.2	63.8

Table 6-11: Simulation results for HEV configurations 2020+

Table 6-12: Technology walk for hybrid configurations (DISI, DICI) 2010 \rightarrow 2020+

		Hybrid DISI wit	h Gasoline Fuel	Hybrid DICI with Diesel Fuel		
Тес	hnology Walk for HEV Powertrain Variants (without consideration of GHG)	NEDC ¹ CO ₂ -Emissions	Technology dependent CO ₂ - Reduction	NEDC ¹ CO ₂ -Emissions	Technology dependent CO ₂ - Reduction	
		g/km	%	g/km	%	
Hybrid Varian	t 2010	104.9	Reference	94.4	Reference	
Transmission	New 8-Gear Automatic Transmission	98.6	6.0%	88.5	6.3%	
ICE	New ICE ²	86.5	11.5%	80.9	8.1%	
Electric Machine	New 24 kW Brushless Permanent Magnet EM	84.4	2.0%	78.4	2.6%	
Battery	New 1.0 kWh High Power Density Li-Ion Battery	84.0	0.4%	78.2	0.2%	
Auxiliaries	Improved Auxiliaries	81.9	2.0%	76.3	2.0%	
Vehicle	Improved vehicle weight, aereodynamics & rolling resistance	69.0	12.3%	64.5	12.5%	
Hybrid Varian	t 2020+	69.0	34.2%	64.5	31.7%	

2) For Hybrid DISI new 70 kW ICE; For Hybrid DICI new 85 kW ICE

6.2.2.2 PHEV

Table 6-13: Simulation results for PHEV configurations 2020+ (according to ECE101 regulation)

	Curb	Fuel Tank				El. Energy Co	onsumption ¹		GHG en	nissions ¹	
2020+ VARIANTS	Weight	Capacity	Fue	l Consumpti	on	w/o charging losses	with charging losses ²	as CO ₂	as CH4	as N ₂ O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO2 eq/km	g CO₂ eq/km	g CO₂ eq/km
PHEV20 DISI 2020+ (AT8	3 + LC)										
Gasoline	1333	25	67.4	2.11	1.56	2.21	2.70	49.9	0.1	0.3	50.3
Gasoline E10 market blend	1333	25	67.4	2.17	1.62	2.21	2.70	49.6	0.1	0.3	50.0
Gasoline E20 high RON	1333	25	66.5	2.22	1.67	2.21	2.70	49.0	0.1	0.3	49.4
LPG	#	#	#	#	#	#	#	#	#	#	#
CNG	#	#	#	#	#	#	#	#	#	#	#
E85	1333	25	65.5	2.86	2.25	2.21	2.70	47.4	0.1	0.3	47.8
PHEV20 DICI 2020+ (AT	3 + LC)		-			_					
Diesel	1392	25	63.2	1.77	1.46	2.28	2.79	46.4	0.1	0.7	47.2
Diesel B7 market blend	1392	25	63.2	1.77	1.48	2.28	2.79	46.7	0.1	0.7	47.5
FAME	1392	25	63.2	1.91	1.70	2.28	2.79	48.5	0.1	0.7	49.3
DME	#	#	#	#	#	#	#	#	#	#	#
FT-Diesel	1392	25	63.2	1.84	1.44	2.28	2.79	45.2	0.1	0.7	46.0
HVO	1392	25	63.2	1.84	1.44	2.28	2.79	45.2	0.1	0.7	46.0

Table 6-14: Technology walk for PHEV20 configurations (DISI, DICI) 2010 → 2020+

		PHEV20 DISI wi	th Gasoline Fuel	PHEV20 DICI w	vith Diesel Fuel
Techr	ology Walk for PHEV20 Powertrain Variants (without consideration of GHG)	NEDC ¹ CO ₂ -Emissions	Technology dependent CO ₂ - Reduction	NEDC ¹ CO ₂ -Emissions	Technology dependent CO ₂ - Reduction
		g/km	%	g/km	%
PHEV20 Variar	nt 2010	75.0	Reference	67.4	Reference
Transmission	New 8-Gear Automatic Transmission	70.1	6.5%	62.9	6.7%
ICE	New ICE ²	62.3	10.4%	57.4	8.2%
Electric Machine	New 38 kW Brushless Permanent Magnet EM	60.7	2.1%	55.9	2.2%
Battery	New 1.0 kWh High Power Density Li-Ion Battery	63.0	-3.1%	58.4	-3.7%
Auxiliaries	Improved Auxiliaries	61.4	2.1%	57.2	1.8%
Vehicle	Improved vehicle weight, aereodynamics & rolling resistance	49.9	15.3%	46.4	16.0%
PHEV20 Variar	nt 2020+	49.9	33.5%	46.4	31.2%
	ults for cold start condition according to ECE101 regulation; Vehic il new 70 kW ICE; For PHEV20 DICI new 85 kW ICE	ele Test Mass = Curb v	veight incl. Driver, 909	% fuel	

6.2.2.3 REEV

Table 6-15: Simulation results for REEV configurations 2020+ (according to ECE101 regulation)

2020+ VARIANTS	Curb	Fuel Tank								nissions ¹		
	Weight	Capacity	Fue	l Consumptio	on	w/o charging losses	with charging losses ²	as CO_2	as CH4	as N ₂ O	TOTAL	
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO₂ /km	g CO₂ eq/km	g CO₂ eq/km	g CO2 eq/kr	
EEV80 SI 2020+ (Single	Stage Tr	ansmissio	n)									
Gasoline	1356	25	27.0	0.85	0.63	7.63	9.12	20.1	0.1	0.1	20.3	
Gasoline E10 market blend	1356	25	27.0	0.87	0.65	7.63	9.12	19.9	0.1	0.1	20.1	
Gasoline E20 high RON	1356	25	26.7	0.89	0.67	7.63	9.12	19.6	0.1	0.1	19.8	
LPG	#	#	#	#	#	#	#	#	#	#	#	
CNG	#	#	#	#	#	#	#	#	#	#	#	
E85	1356	25	26.3	1.15	0.90	7.63	9.12	18.9	0.1	0.1	19.1	
EEV80 CI 2020+ "Varian	nt 1" (3-C	ylinder wi	ith LNT, Si	ngle Stage	e Transmis	sion)						
Diesel	1405	25	27.1	0.76	0.63	7.71	9.25	19.9	0.1	0.3	20.3	
Diesel B7 market blend	1405	25	27.1	0.76	0.63	7.71	9.25	19.7	0.1	0.3	20.1	
FAME	1405	25	27.1	0.82	0.73	7.71	9.25	20.7	0.1	0.3	21.1	
DME	#	#	#	#	#	#	#	#	#	#	#	
FT-Diesel	1405	25	27.1	0.79	0.62	7.71	9.25	19.3	0.1	0.3	19.7	
HVO	1405	25	27.1	0.79	0.62	7.71	9.25	19.3	0.1	0.3	19.7	
EEV80 CI 2020+ "Varian	t 2" (2-C	ylinder wi	ith advand	ed LNT, Si	ingle Stag	e Transmiss	ion)					
Diesel	1370	25	26.3	0.74	0.61	7.66	9.17	19.4	0.1	0.3	19.8	
Diesel B7 market blend	1370	25	26.3	0.74	0.62	7.66	9.17	19.6	0.1	0.3	20.0	
FAME	1370	25	26.3	0.79	0.71	7.66	9.17	20.3	0.1	0.3	20.7	
DME	#	#	#	#	#	#	#	#	#	#	#	
FT-Diesel	1370	25	26.3	0.77	0.60	7.66	9.17	18.8	0.1	0.3	19.2	
HVO	1370	25	26.3	0.77	0.60	7.66	9.17	18.8	0.1	0.3	19.2	

Table 6-16: Technology walk for REEV80 SI configuration 2010 → 2020+

Techno	ology Walk for REEV80 SI Powertrain Variant (without consideration of GHG)	NEDC ¹ CO ₂ -Emissions	Technology dependent CO ₂ - Reduction
		g/km	%
REEV80 SI 2010), Gasoline Fuel, Single Stage Transmission	25.7	Reference
ICE	New 47 kW ICE	24.3	5.4%
Generator	New 50 kW Brushless Permanent Magnet EM	23.6	2.7%
Electric Machine	New 75 kW Brushless Permanent Magnet EM	22.6	3.9%
Battery	New 11.8 kWh High Power Density Li-Ion Battery	26.0	-13.2%
Auxiliaries	Improved Auxiliaries	25.1	3.5%
Vehide	Improved vehicle weight, aereodynamics & rolling resistance	20.1	19.5%
REEV80 SI 2020	0+, Gasoline Fuel, Single Stage Transmission	20.1	21.8%
1) NEDC Cycle rest 90% fuel	ults for cold start condition according to ECE101 regulation; Vehic	cle Test Mass = Curb w	veight incl. Driver,

6.2.2.4 BEV

Table 6-17: Simulation results for BEV co	onfiguration 2020+
---	--------------------

	Curb	Fuel Tank				El. Energy Consumption ¹		GHG emissions ¹				
2020+ VARIANTS Weight		Capacity	Fuel Consumption ¹			w/o charging losses	with charging losses ²	as CO_2	as CH ₄	as N_2O	TOTAL	
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO ₂ eq/km	g CO₂ eq/km	g CO ₂ eq/km	
BEV 2020+ (Single Stage Transmission)												
Electricity	1230	#	#	#	#	8.89	10.59	0.0	0.0	0.0	0.0	

For better comparability the BEV electric energy consumption is additionally given in MJ/100km, resulting in 32.00 MJ/100km w/o charging losses and 38.12 MJ/100km with charging losses.

Table 6-18: Technology walk for BEV configuration 2010 → 2020+

Тес	hnology Walk for BEV Powertrain Variant	NEDC ¹ Electric Energy Consumption kWh/100km	Technology dependent Energy-Reduction %			
BEV 2010, Sing	le Stage Transmission	11.38	Reference			
Electric Machine	New 70 kW Brushless Permanent Magnet EM	11.15	2.0%			
Battery	New 23 kWh High Power Density Li-Ion Battery	11.10	0.4%			
Auxiliaries	Improved Auxiliaries	10.84 2.3%				
Vehide	Improved vehicle weight, aereodynamics & rolling resistance	8.89 17.1%				
BEV 2020+, Sin	gle Stage Transmission	8.89	21.9%			
1) NEDC Cycle results for cold start condition; Vehicle Test Mass = Curb weight incl. Driver, 90% fuel						

6.2.2.5 FCEV & REEV FC

Table 6-19: Simulation results for FCEV & REEV FC 2020+

	Curb	Fuel Tank	Fuel Consumption ¹		El. Energy Consumption ¹		GHG emissions ¹				
2020+ VARIANTS	Weight	Capacity			Fuel Consumption ¹		with charging losses ²	as CO2	as CH4	as N ₂ O	TOTAL
	kg	L	MJ/100km	l/100km	kg/100km	kWh/100km	kWh/100km	g CO ₂ /km	g CO ₂ eq/km	g CO₂ eq/km	g CO ₂ eq/km
FCEV 2020+ (Single Stag	CEV 2020+ (Single Stage Transmission)									_	
Hydrogen (CGH2)	1278	4	53.85	#	0.448	#	#	0.0	0.0	0.0	0.0
Hydrogen (cCGH2)	1278	4	53.85	#	0.448	#	#	0.0	0.0	0.0	0.0
REEV FC 2020+ (Single S	REEV FC 2020+ (Single Stage Transmission) ³										
Hydrogen (CGH2)	1312	4	13.43	#	0.110	6.94	8.28	0.0	0.0	0.0	0.0
Hydrogen (cCGH2)	1312	4	13.43	#	0.110	6.94	8.28	0.0	0.0	0.0	0.0
1) NEDC Cycle results for cold	1) NEDC Cycle results for cold start condition; Vehicle Test Mass = Curb weight incl. Driver, 90% fuel										
2) Charging losses based on the Charger Type 3.x kW (1x 16A)											
3) Results according to ECE 101 regulation											

Table 6-20: Technology walk for FCEV configuration 2010 → 2020+

Tec	nnology Walk for FCEV Powertrain Variant	NEDC ¹ H ₂ Consumption	Technology dependent H ₂ - Reduction		
		kg/100km	%		
FCEV 2010, Sin	gle Stage Transmission	0.624	Reference		
Electric Machine	New 70 kW Brushless Permanent Magnet EM	0.597	4.3%		
Battery	New 1.0 kWh High Power Density Li-Ion Battery	0.592	0.8%		
Fuel Cell System	New 55kW Fuel Cell System	0.580	1.9%		
Auxiliaries	Improved Auxiliaries	0.556	3.8%		
Vehide	Improved vehicle weight, aereodynamics & rolling resistance	0.448	17.3%		
FCEV 2020+, Si	ngle Stage Transmission	0.448	28.2%		
1) NEDC Cycle results for cold start condition; Vehicle Test Mass = Curb weight incl. Driver, 90% fuel					

7 Summary

In this summary, an overview of all results for the considered fuel-powertrain combinations including error estimations is given. The figures below show CO_2 equivalent emission (*Figure 7-1* to *Figure 7-4*) as well as energy consumption (*Figure 7-5* to *Figure 7-8*) for both conventional and electrified configurations. Diagrams are split for SI and CI ICEs and for 2010 and 2020+ configurations, for Plug-In electrified configurations the electric energy consumption is additionally included. Finally the pure electric configurations are summed up in an additional figure (*Figure 7-9*). For better readability of the report the considered fuel-powertrain combinations are always shown in a specific color-code throughout all diagrams and result tables. Detailed explanations of the results are given in the chapter 5 for the 2010 and in chapter 6 for the 2020+ configurations. In the results the DISI CNG configuration represents an exception, as the CNG fuel is port injected, but the gasoline fuel is directly injected (see also the description in chapter 3.3.1.2 a)).

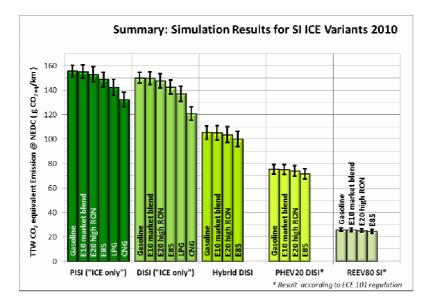
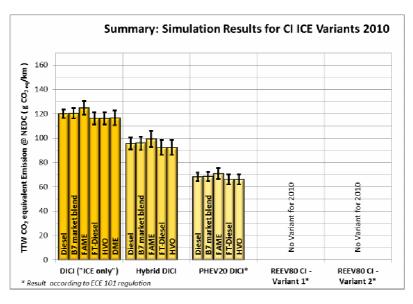



Figure 7-1: Summary of CO₂ equivalent emission results for SI ICE Configurations 2010

Figure 7-2: Summary of CO₂ equivalent emission results for CI ICE Configurations 2010

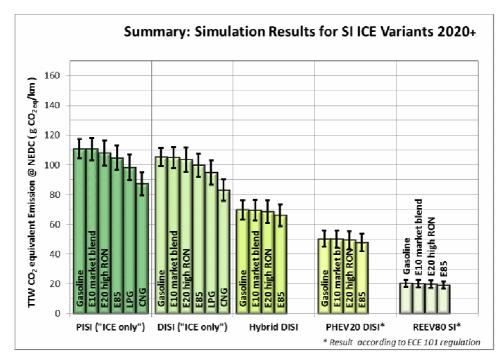
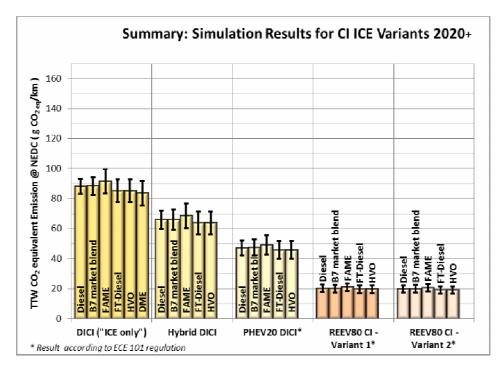
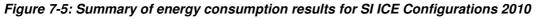




Figure 7-4: Summary of CO₂ equivalent emission results for CI ICE Configurations 2020+

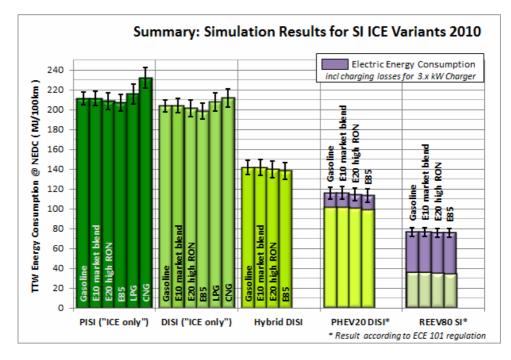
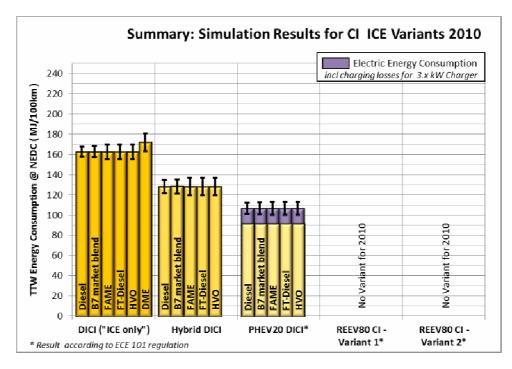
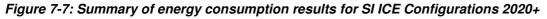




Figure 7-6: Summary of energy consumption results for CI ICE Configurations 2010

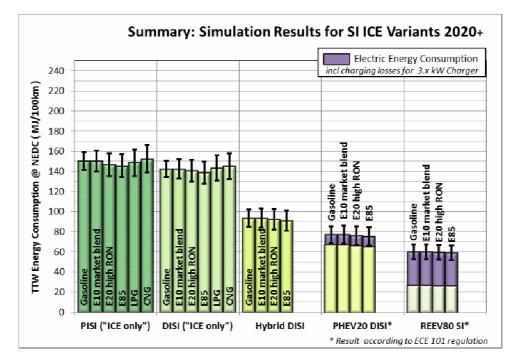
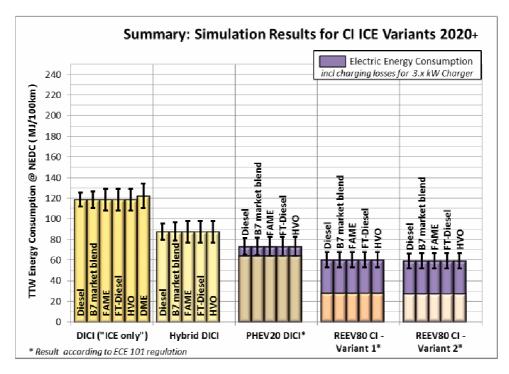
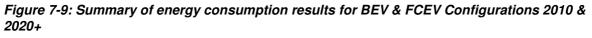
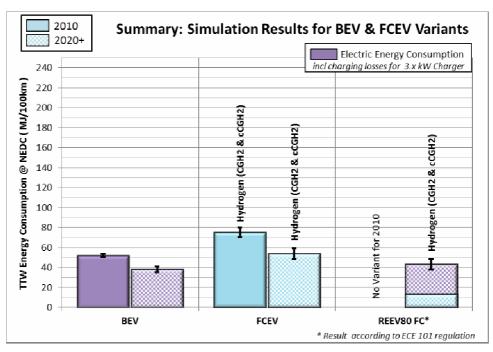
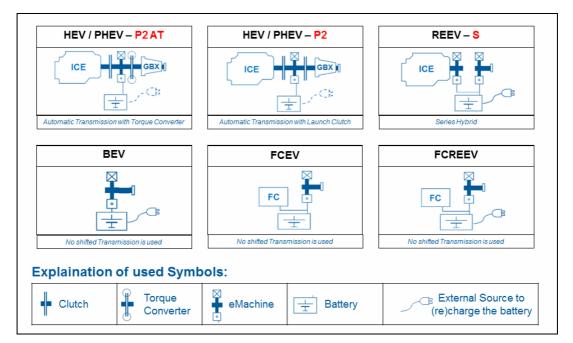





Figure 7-8: Summary of energy consumption results for CI ICE Configurations 2020+



8 Acronyms & Abbreviations used in the TTW study

APP	Acceleration Pedal Position
AT	Automatic Transmission
B7	Diesel fuel with up to 7% v/v FAME, according to EN590
BEV	Battery Electric Vehicle
cCGH ₂	cryo Compressed Gaseous Hydrogen (also known e.g. as CcH ₂)
CGH ₂	Compressed Gaseous Hydrogen
CI	Compression Ignition
CN	Cetane Number
CNG	Compressed Natural Gas
CO ₂	Carbon dioxide, the principal greenhouse gas
CONCAWE	The oil companies' European association for environment, health and safety in refining and distribution
DICI	Direct Injection Compression Ignition
DISI	Direct Injection Spark Ignition
DME	Di-Methyl-Ether
E10	Gasoline fuel with up to 10% v/v Ethanol (or 3.7 wt% oxygen content), according to EN228
E20	Gasoline fuel with up to 20% v/v Ethanol or up to 7.4 wt% oxygen content
E85	Gasoline fuel with 85% v/v Ethanol
ECE	Economic Commission for Europe
EHPS	Electro-Hydraulic Power Steering
EPS	Electric Power Steering
EUCAR	European Council for Automotive Research and Development
FAME	Fatty Acid Methyl Ester, scientific name for bio-diesel made from vegetable oil and methanol
FC	Fuel Cell
FCEV	Fuel Cell driven Electric Vehicle
FMEP	Friction Mean Effective Pressure
FT	Fischer-Tropsch, the process named after its original inventors that converts syngas to hydrocarbon chains
FWD	Front Wheel Drive
GHG	Greenhouse Gas
GVW	Gross Vehicle Weight
HC	Hydro Carbons, as a regulated pollutant
HEV	Hybrid Electric Vehicle
HPS	Hydraulic Power Steering
HV	High Voltage
HVO	Hydro-treated Vegetable Oil
ICE	Internal Combustion Engine
	Inertia Test Weight
ITW	

LHV	Lower Heating Value ('Lower" indicates that the heat of condensation of water is not included)
LNG	Liquefied Natural Gas
LPG	Liquefied Petroleum Gases
LPM	Load Point Moving (in ICE operation)
MT	Manual Transmission
N ₂ O	Nitrous oxide, a very potent greenhouse gas
NEDC	New European Drive Cycle
NOx	A mixture of various nitrogen oxides as emitted by combustion sources
PEM	Proton Exchange Membrane, a Fuel Cell technology
PHEV	Plug-In Hybrid Electric Vehicle
PISI	Port Injection Spark Ignition
REEV	Range Extender Electric Vehicle
REEV FC	Fuel Cell driven Range Extender Electric Vehicle
RON	Research Octane Number
SI	Spark Ignition
SOC	State Of Charge (of a Battery)
THC	Total Hydrocarbon
TTW	Tank-To-Wheels, description of the burning of a fuel in a vehicle
WLTP	Worldwide harmonized Light duty Test Procedure
WTT	Well-To-Tank: the cascade of steps required to produce and distribute a fuel (starting from the primary energy resource), including vehicle refuelling
WTW	Well-To-Wheels: the integration of all steps required to produce and distribute a fuel (starting from the primary energy resource) and use it in a vehicle
xEV	x-Electrified Vehicle, collective name for all electrified configurations

Figure 8-1: Powertrain layouts, explanations of used symbols

European Commission EUR 26027 – Joint Research Centre – Institute for Energy and Transport

Title: TANK-TO-WHEELS Report Version 4.o. JEC WELL-TO-WHEELS ANALYSIS

Author(s): Arno HUSS (AVL), Heiko MAAS (FORD), Heinz HASS (EUCAR/Ford) Luxembourg: Publications Office of the European Union

2013 – 58 pp. – 21.0 x 29.7 cm

EUR - Scientific and Technical Research series -ISSN 1831-9424 (online)

ISBN 978-92-79-31195-6 (pdf)

doi:10.2788/40409

Abstract

The Tank-to-Wheels study described in this report includes several different fuel–powertrain configurations for conventional (i.e. "ICE-only") as well as electrified (i.e. "xEV") vehicles. These configurations are considered for 2010 (representing vehicles on the market in the years 2008 to 2012) to characterize the current state-of-the-art in automotive industry. Version 3 of the TTW study used 2002 as base year. To give an outlook on the future technical development of passenger cars, configurations for 2020+ are presented.

This Version 4.0 replaces Version 3c [Report EUR 24952 EN] published in 2011

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security including nuclear; all supported through a cross-cutting and multi-disciplinary approach.

