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FOREWORD 

This report on EU harmonised terminology for low-temperature water electrolysis for 

energy-storage applications was carried out under the framework contract between the 

Joint Research Centre and the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH2JU), 

2017 rolling plan deliverable B.2.3 ‘Harmonised electrolysis testing’. 
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1. INTRODUCTION 

The energy transition towards low-carbon technologies is a key political objective for the 

European Union, which has defined a strategy to progressively decrease CO2-equivalent 

content throughout all relevant power generation and distribution, industrial, transport 

and buildings sectors, with the ultimate goal of decreasing greenhouse gas emissions to 

80 % below 1990 levels by 2050, with intermediate steps of 20 % by 2020 and 40 % by 

2030. 

In this context, hydrogen could play an important role as it has significant potential 

benefits to enable this transition to low-carbon energy systems. Hydrogen, in fact, is not 

only considered as the ultimate cleaner-energy carrier as it has no CO2 emissions when 

burned, but is very versatile and therefore could be used in a number of industrial 

applications, from feedstock in many industries (ammonia, refineries, etc.) to the fuel 

transportation sector. 

Hydrogen production is still largely based on steam reforming of natural gas. Such a 

type of production cannot be classified as renewable as it is linked to a fossil fuel as 

feedstock. Water would be a better source of hydrogen, but although the water 

electrolysis process has been known for more than a century, today only 4 % of 

hydrogen is produced by this process due to the higher cost of production. However, 

recently water electrolysis has been receiving new industrial attention as a possible 

relevant player in the emerging sustainable energy storage field, because electrolysers 

can operate when electricity generation is available at very low prices or when there is 

an excess of demand due to the introduction of renewable energy sources. 

This report on EU harmonised terminology for low-temperature water electrolysis for 

energy-storage applications was produced under the framework contract between the 

Joint Research Centre and the Fuel Cells and Hydrogen 2 Joint Undertaking, 2017 rolling 

plan. 

This document is the result of a collaborative effort between industry partners, research 

organisations and academia participating in several Fuel Cells and Hydrogen 2 Joint 

Undertaking-funded projects in low-temperature water electrolysis applications. 

The objective of the report is to present to those involved in research and development a 

comprehensive and harmonised compendium of various terminology terms which are 

encountered in low-temperature water electrolysis for energy storage applications. 

It provides clear definitions of module and system boundaries for the three low-water 

electrolysis technologies, namely alkaline water electrolysis (AWE), anion exchange 

membrane water electrolysis (AEMWE) and proton exchange membrane water 

electrolysis (PEMWE). In addition, the report provides, in alphabetical order, a 

comprehensive list of appropriate terminology expressions used in various electrolysis 

applications, such as various ‘electrochemical expressions’. It also presents a set of 

expressions frequently used within the ‘renewable energy-storage sector’ with ‘power 

distribution grid balancing’ terminology expressions, where electrolysis technology could 

play an important role. 

In this respect, the document also makes reference to terminology expressions derived 

from other international standards drafting organisations, such as the IEC, and from 

relevant European initiatives such as the European Network of Transmission System 

Operators for Electricity and the Fuel Cells and Standardisation Network. 
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In addition, the document provides an extensive account of science-based industry-

endorsed definitions of key performance indicators, such as definitions of various 

‘efficiency’ terms currently in use by research, academia and industry, and provides a 

detailed methodology of the derivation of the relevant efficiency equations. 
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2. LOW-TEMPERATURE WATER ELECTROLYSIS 
TECHNOLOGIES 

Three different types of low-temperature water electrolysis technologies are currently 

available as commercial products, namely PEMWE, which uses an acidic polymer 

electrolyte (and for this reason is sometimes also called polymer electrolyte membrane), 

AWE (liquid electrolyte electrolysis) and, most recently, AEMWE. 

The relevant differences between the three aforementioned technologies are summarised 

in Table 1 below. 

Table 1: State-of-the art low-temperature water electrolysis technologies 

Type AEMWE AWE PEMWE 

Charge carrier OH- OH- H+ 

Reactant Water Water Water 

Electrolyte 
Anion exchange 

membrane 

KOH 20-40 

wt. %/water 

Proton exchange 

membrane 

Electrode 
Ni, NiO, Co-based 

catalyst 
Raney Ni, Fe, Co, Mn Pt/C, IrO2 

Current density 0.2-0.8 A/cm2 0.2-0.5 A/cm2 0.2-3.0 A/cm2 

Temperature 40-50 °C 40-90 °C 20-80 °C (*) 

Pressure H2 out 105 — 30·105 Pa 105 — 30·105 Pa 105 –30·105 Pa 

Cathode reaction 
(hydrogen evolution 

reaction) (**) 

2H2O(l) + 2e- 
H2(g)+ 2 HO-(aq) 

2H2O(l)+2e- 

H2(g) + 2 HO-(l) 

2H+(aq) + 2e- 

H2(g) 

Anode reaction (oxygen 
evolution reaction) (**) 

2 HO- 
(aq) H2O(l) 

+1/2 O2 (g) + 2e- 

2 HO- 
(aq) H2O(l) 

+1/2 O2(g) + 2e- 

H2O(l) 1/2 O2 

(g) + 2H+(aq) + 2e- 

(*) Research efforts are targeting temperatures up to 120 °C. 

(**) (aq), (l) and (g) refer to aqueous, liquid and gaseous states. 

Each type of electrolyser is a combination and assembly of various parts that can be 

grouped in ascending order of complexity per individual technology as follows: 

− single cell (electrolysis cell), 

− stack (electrolysis stack), 

− electrolysis component or string, 

− electrolysis system. 
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 ALKALINE WATER ELECTROLYSIS CELL 2.1.

An electrolysis set-up consisting of three functional elements: a cathode, a microporous 

diaphragm or membrane and an anode, which are embedded in an alkaline solution for 

hydrogen-and-oxygen production with the provision of electrical energy. 

 ANION EXCHANGE MEMBRANE WATER ELECTROLYSIS CELL 2.2.

An electrolysis cell consisting of three functional elements: a cathode, a solid hydroxyl 

exchange polymer membrane as an electrolyte for the transport of hydroxides and an 

anode for hydrogen-and-oxygen production with the provision of external electrical 

energy as the driving force in an electrochemical process. 

 PROTON EXCHANGE MEMBRANE WATER ELECTROLYSIS CELL 2.3.

An electrolysis cell consisting of three functional elements: a cathode, a solid proton 

exchange polymer and an anode, which is able to produce hydrogen and oxygen from 

electrochemical water splitting by providing external electrical energy. 

 ELECTROLYSIS STACK 2.4.

An electrolysis stack is an assembly of more than one electrolysis cell, mostly in a filter 

press arrangement and connected electrically either in parallel (diagram (a), monopolar 

assembly), in full series (diagram (b), bipolar assembly) or in series with a central anode 

(diagram (c)) and hydraulically in parallel. In addition to these cells, an electrolysis stack 

consists of further components such as separators, cooling plates, manifolds and a 

supporting structure. 

DC

+ + +- -

DC

+ - + - + - + - +
-

+
-

+
-

+
-

+
-

+
-

-

+

-

(a) (b) (c)
 

Figure 1: Schematic diagram showing various cell interconnection modes 

The typical components of an electrolysis stack are: 

 membrane or diaphragm; 

 electrodes (anode and cathode); 

 porous transport layers or liquid gas diffusion layer; 

 bipolar plate as a separator plate between two adjacent electrolysis cells, 

sometimes with additional flow fields for an easier fluid distribution; 

 cell frames and/or gaskets and/or sealing; 

 current distributor; 

 end plates for mechanical compression; 

 electrical terminals; 

 remaining components of the stack such as tie bolts, etc. 
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 PROTON EXCHANGE MEMBRANE WATER ELECTROLYSIS SYSTEM 2.5.

A PEMWE system, a typical diagram of which is depicted in Figure 2, is an assembly 

incorporating various components designed to operate the electrochemical conversion 

units (also called stacks) under the intended operating conditions (temperature, 

pressure, water, etc). 

 

Figure 2: Schematic representation of the components of a PEMWE system 

2.5.1. PROTON EXCHANGE MEMBRANE WATER ELECTROLYSIS 
COMPONENTS 

The typical components of a PEMWE system are as follows. 

 Power supply, which includes the following parts. 

o Incoming power distribution, which consists of the grid connection and 

transformer to adjust the electricity from the transportation or distribution 

network to the operational requirements. 

o Rectifier for stack operation. 

o System control board for other auxiliary components of the electrolysis 

system, including an automatic control system to operate the system 

according to the manufacturer’s specifications. It includes safety sensors, 

process parameter measuring devices, piping and valves, programmable 

logic controller (PLC), data input/output (data I/O), personal computer 

(PC). 

 Water conditioning for the necessary treatment of the water supplied and 

recovered, composed of the following. 
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o Make-up water tank. 

o Water feed pump. 

o Deionised water production unit. 

o Anodic circulation loop consisting of: 

 water purification unit — mostly an ion-exchange resin bed — used 

to keep the water quality at the desired level, to minimise the risk 

of chemical contamination of the stack; 

 oxygen/water separator vessel used for a first separation of 

residual liquid water in the gas outlet stream; 

 demisters used for further removal of small liquid-water droplets 

from the gas outlet stream. 

o Cathodic circulation loop consisting at least of a hydrogen/water separator 

vessel and subsequent demister, and sometimes an additional circulation 

pump for defined thermal management of the cathode side. 

 Electrolyser stack, which is the core of the system where water is 

electrochemically converted into hydrogen and oxygen by means of a DC current. 

It comprises one or more PEMWE stack(s) connected either in series or parallel 

mode. 

 Process utilities consisting of the elements using power for the operation, such 

as the water recirculation pump enabling a continuous flow of water into the stack 

for the electrochemical reaction itself and for the thermal management of the 

stack; process-value-measuring devices (i.e. pressure sensor, flow meter, gas 

sensors). 

 Process cooling consisting of heat exchangers for the thermal management of 

the pumped water to remove heat from the circulation loop and to keep the stack 

at the proper temperature range. 

 Gas cooling consisting of heat exchangers for the thermal management of the 

gases produced during the electrolysis process. 

 Gas purification to clean the hydrogen product stream to the desired level of 

quality consisting of the following. 

o A de-oxidation stage, to recombine catalytically residual traces of oxygen 

that could be present due to crossover effects. 

o A gas dryer to remove residual moisture down to the parts per million 

(ppm ) level. 

o A buffer tank for compensation of variable hydrogen production. 

 Gas compression composed of the following. 

o A pressure control valve for hydrogen and oxygen to operate the 

electrolyzer system at the desired pressure level (either pressure balanced 

or differential pressure). 

o A compressor, to bring the gas pressure to the specified value. 

o High-pressure storage tanks for the final storage of the gas produced by 

the electrolyser. 

 ALKALINE WATER ELECTROLYSIS SYSTEM 2.6.

The principle layout of an AWE system is shown in Figure 3. The most noticeable 

difference compared to PEMWE systems is that in this case the electrolyte is an aqueous 

alkaline solution called lye, formed by KOH with a concentration of approximately 20-

30 % in deionised water. The anode and cathode electrodes are immersed in this 

solution and separated by a diaphragm. This solution is caustic and this should be taken 

into consideration for the selection of the proper material for the components that are or 

may be in contact with a lye solution. 
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Figure 3: Schematic representation of the components of an AWE system 

2.6.1. ALKALINE WATER ELECTROLYSIS COMPONENTS 

The typical AWE components include the following items. 

 Power supply, see Section 2.5.1. 

 Water conditioning as follows. 

o Alkaline electrolysis stack. 

o A lye supply/recirculation system is used to provide a continuous electrolyte 

flow into the stack for the electrochemical reaction and thermal management. 

The main components are: 

 lye recirculation pump; 

 lye heat exchanger. 

o Gas/lye separator, used for the first separation of a residual liquid in the gas 

outlet stream produced. 

o Demisters and scrubbers are devices used for the further removal of water 

and lye aerosols from the gas outlet stream. 

 Electrolyser stack, see Section 2.5.1. 

 Process utilities, see Section 2.5.1. 

 Process cooling, see Section 2.5.1. 
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 Gas cooling, see Section 2.5.1. 

 Gas purification, see Section 2.5.1. 

 Gas compression, see Section 2.5.1. 

 ANION EXCHANGE MEMBRANE WATER ELECTROLYSIS SYSTEM 2.7.

An AEMWE system is an assembly essentially similar to a PEMWE system but the type 

of stack technology used is based on the anion exchange membrane instead of the ion 

exchange membrane. 

 

Figure 4: Schematic representation of the components of an AEMWE system 

2.7.1. ANION EXCHANGE MEMBRANE WATER ELECTROLYSIS 
COMPONENTS 

As mentioned above, the components are equivalent to the ones described for the 

PEMWE system in Section 2.5.1, with the only difference being related to the stack 

technology. 
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3. TERMINOLOGY 

 Area 3.1.

3.1.1. Active area 

Geometric area of the electrode, which is perpendicular to the direction of the current 

flow and is available for an electrochemical reaction (2). 

Note 1 to entry: it is expressed in m². 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.1.2. Cell area 

Geometric area of the bipolar plate perpendicular to the direction of the current flow (1). 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.1.3. Geometric electrode area 

Geometric electrode area is the largest area of the electrode projected on a plane. 

Note 1 to entry: it is expressed in m². 

3.1.4. Effective area 

See active area. 

3.1.5. Electrochemical surface area 

Electrochemical surface area (ECSA) is the actual surface area of an electrocatalyst 

accessible to an electrochemical process due to its open porous structure. 

Note 1 to entry: it is presented as ECSA per unit mass (or volume) of the catalyst or per 

geometric electrode area. 

Note 2 to entry: it is expressed in m2/g, m2/m3, m²/m². 

3.1.6. Specific surface area 

Electrochemical surface area per unit mass (or volume) of the catalyst. 

Note 1 to entry: the specific surface area corresponds to the area of an electrocatalyst 

accessible to reactants due to its open porous structure, per unit mass (or volume, or 

electrode geometric area) of the catalyst (1). 

Note 2 to entry: it is expressed in m2/g, m2/m3. 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Axial load 3.2.

Compressive load applied to the end plates of an electrolysis cell or stack to ensure 

contact and/or gas tightness (2). 

Note 1 to entry: it is expressed in Pa. 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 
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 Cell components 3.3.

3.3.1. Bipolar plate 

Electrical conductive and gas-tight plate separating individual cells in a single cell or 

stack, acting as a reagent flow distributor and current distributor and providing 

mechanical support for the electrodes or membrane electrode assembly (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.3.2. Catalyst 

Substance that increases the rate of a reaction without being consumed itself. The 

catalyst lowers the activation energy of the reaction, allowing for an increase in the 

reaction rate, or allowing it to proceed at a lower temperature or overpotential. A 

catalyst that promotes an electrochemical reaction is termed an ‘electrocatalyst’ (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.3.3. Catalyst-coated membrane 

Specific configuration of a membrane electrode assembly (for PEMWE and AEMWE cells) 

where catalyst layers are coated directly onto the membrane as electrodes. 

 Catalyst layer 3.3.3.1.

Layer adjacent to the membrane on either side of the membrane comprising 

electrocatalyst particles and ionomers with co-existing ionic and electronic conductivity. 

This layer comprises the spatial region where electrochemical reactions take place (4). 

 Catalyst loading 3.3.3.2.

Amount of catalyst incorporated per unit of electrode geometric area, specified either 

separately per anode or cathode, or as combined anode and cathode loading (2). 

Note 1 to entry: it is expressed in g/cm². 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Catalyst poisoning 3.3.3.3.

Inhibition of the catalyst properties by adsorbate substances (poisons) (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Electrocatalyst 3.3.3.4.

Catalyst that participates in and accelerates/catalyses an electrochemical reaction. 

For low-temperature water electrolysis, the electrocatalyst can be built up as a porous 

bulk catalyst or it can consist of a catalyst dispersed on support particles, such as carbon 

powder or titanium sub-oxides, which increase the ECSA of the catalyst. 

 Electrocatalyst support 3.3.3.5.

Component of an electrode that supports the electrocatalyst and serves as a porous and 

electrically conductive medium. It also leads to a higher ECSA of the catalyst and 

reduced loading of the electrocatalyst in the electrode (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 
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3.3.4. Clamping plate 

See end plate, Section 3.3.8. 

3.3.5. Compression end plate 

See end plate, Section 3.3.8. 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.3.6. Electrode 

Electronic conductor through which an electric current enters or leaves the 

electrochemical cell as the result of an electrochemical reaction (1). 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1]  

 Anode 3.3.6.1.

Electrode at which the water oxidation reaction (electron loss) occurs, leading to an 

oxygen evolution reaction. 

 Cathode 3.3.6.2.

Electrode at which the water reduction reaction (electron gain) occurs, leading to a 

hydrogen evolution reaction reduction. 

 Electrode potential 3.3.6.3.

Difference between the internal electric potential of the electrode (electronic conductor) 

and the electrolyte (ionic conductor). 

3.3.7. Electrolyte 

Medium for charge transfer between the electrodes in an electrochemical cell. 

It is an ionic conductor (e.g. solution, solid, molten salt or gas) in which the electric 

current is carried by ionic species (cations and anions). The respective transference 

number characterises the fraction of the current carried either by cations or anions. In 

an electrochemical cell the charge transfer reactions (e.g. oxygen evolution reaction or 

hydrogen evolution reaction) take place at the interface between the electrode and the 

electrolyte. 

The nature of the electrolyte is the main distinctive feature of the different fuel cell 

technologies and determines the useful operating temperature range  (4). 

 Electrolyte molar conductivity 3.3.7.1.

Specific conductivity of an electrolyte solution that depends on the electrical conductivity 

and concentration of the gas-free electrolyte solution. 

Note 1 to entry: it is expressed in m2 Ω−1mol-1.  

 Liquid electrolyte leakage 3.3.7.2.

Undesired escape of liquid electrolyte from a cell/stack (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Electrolyte loss 3.3.7.3.

Any decrease with respect to the initial electrolyte content in an electrolysers 

system (2). 
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[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Electrolyte matrix 3.3.7.4.

Insulating gas-tight cell component with a properly tailored pore structure that retains 

the liquid electrolyte (1). 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Electrolyte migration 3.3.7.5.

Ion transport mechanism resulting from electric potential gradients affecting the local 

electrolyte local concentration. 

 Electrolyte reservoir 3.3.7.6.

Component of a liquid electrolyte module. A proper amount of liquid electrolyte is stored 

therein with the purpose of replenishing electrolyte losses over the life of the cell (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.3.8. End plate 

Component located on either end of the electrolysis cell or stack to transmit the required 

compression to the stacked cells to allow proper electrical contact and to avoid fluid 

leaks. The end plate may comprise ports, ducts or manifolds for the conveyance of fluids 

(reactants, coolant, cable wiring) to/from the cell or stack (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.3.9. Gasket 

Component that prevents the exchange of fluids between two or more compartments of 

a device or the leakage of fluids from a device to the outside (4). 

3.3.10. Ionomer solution 

Dispersion of ion-conductive polymers in water, or in water and low-aliphatic alcohols. It 

is used in the manufacturing of electrocatalytic layers to increase the electrode-

electrolyte interface area by ensuring better contact between the electrocatalyst particles 

and the ion-conducting polymer membrane. 

3.3.11. Liquid-/gas-diffusion layer 

Porous diffusion layer facilitating the mass transport of reactants and the removal of 

reaction products. It is made of a porous medium or a combination of different porous 

media forming adjacent layers or a composite layer. 

3.3.12. Membrane 

Separating layer that acts as an electrolyte (ion exchanger) as well as a barrier film 

separating H2/O2 gases and electronic conducting materials of the anode and cathode 

compartments of the AEM or proton exchange membrane (PEM) electrolyser (4). 

 Anion exchange membrane 3.3.12.1.

Polymer-based membrane with anion conductivity, which acts as an electrolyte and a 

separator between the anode and the cathode. 
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 Proton exchange membrane 3.3.12.2.

Polymer-based membrane with proton conductivity, which acts as an electrolyte and a 

separator between the anode and the cathode. 

3.3.13. Membrane electrode assembly 

Catalyst-coated membrane assembly with thin porous transport layers and edge-

reinforcement membranes. Its geometric area includes active (see Section 3.1.1) and 

non-active areas. 

3.3.14. Porous transport layer 

See liquid-/gas-diffusion layer, Section 3.3.11. 

3.3.15. Separator plate 

See equivalent definition of bipolar plate. 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.3.16. Single electrolysis cell 

Basic unit of an electrolysis device composed of three functional elements, namely a 

cathode, an electrolyte and an anode, which are capable of breaking up chemical 

compounds by means of applied electrical energy to produce reduced and oxidised 

compounds. In a water electrolysis cell, hydrogen and oxygen are generated by the 

electrochemical splitting of deionised water or water in alkaline aqueous solutions by 

providing external electrical energy. 

3.3.17. Spacer 

Electrically insulating component that separates two opposite electrodes and provides 

space for the flow of electrolytes between the electrodes. 

 Gap 3.3.17.1.

Space between electrodes or an electrode separator. 

 Zero-gap design 3.3.17.2.

Electrolyser cell where electrodes are separated only by the gas separator. 

3.3.18. Water separator 

Device that condenses and separates water vapour from the gas discharged from the 

cell/system (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Coolant 3.4.

Fuid used to control heat transfer between various media and components (4). Heat 

dissipated into the atmosphere through the cooling circuit of the system, typically by an 

air-to-liquid heat exchanger (4). 
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 Current 3.5.

3.5.1. Current density 

Vector-point function describing the magnitude and direction of the charge flow, i.e. the 

current intensity per unit area (4). 

Note 1 to entry: it is expressed in A/m2 or A/cm2. 

3.5.2. Current ramp rate 

Rate at which the amount of electric current changes over time. 

Note 1 to entry: it is expressed in A/s. 

3.5.3. Leakage current 

Electric current on an unwanted conductive path other than a short circuit (1) 

Note 1 to entry: it is expressed in A.  

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.5.4. Nominal current 

Electric current value associated with the nominal design point as specified by the 

manufacturer. 

Note 1 to entry: it is expressed in A. 

3.5.5. Overload current 

See rated current. 

3.5.6. Rated current 

Maximum continuous electric current, as specified by the manufacturer, at which the 

electrolysers system has been designed to operate (2). 

Note 1 to entry: it is expressed in A. 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.5.7. Specific current density 

Current per unit of electrochemical surface area at a given cell voltage. 

Note 1 to entry: it is expressed in A/m². 

3.5.8. Volumetric current density 

Vector-point function describing the magnitude and direction of the charge flow, i.e. the 

current-intensity-per-unit volume. 

Note 1 to entry: it is expressed in A/m3. 

 Degradation 3.6.

3.6.1. Degradation rate 

Rate of change of a measurable quantity over time. 
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Note 1 to entry: the degradation rate can be used to measure both reversible (non-

permanent) and irreversible (permanent) losses in cell performance. The degradation 

rate mainly refers to the cell voltage (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.6.2. Cell-voltage degradation rate 

Increase in cell voltage due to material degradation processes inside an electrolysis cell. 

Note 1 to entry: the cell-voltage evolution rate is the expression used most often to 

describe the degradation rate of an electrolysis cell and is defined as an average cell-

voltage increase per time unit. 

Note 2 to entry: it is expressed in V/h or V/1,000 h. 

 Initial cell-voltage degradation rate 3.6.2.1.

Voltage rate of change during the initial part of a test or operation phase when this time 

is excluded from the operational cell-voltage degradation time. 

It is expressed as the absolute voltage difference divided by the initial test time. 

ΔUin = (|Ut_start — Ut_0|)/ (t_start-t_0) 

Where t_start is the start time of a degradation measurement and t_0 is the start time of 

the test/operation. 

 Operational cell-voltage degradation rate 3.6.2.2.

Voltage rate of change during a defined experiment time. 

It is expressed as the absolute voltage difference divided by the operation time. 

ΔUop = (|Ut_end — Ut_start |)/ (t_end-t_start) 

Where t_start is the start time of a degradation measurement and t_end is the time of the 

end of the test. 

3.6.3. Durability 

Ability to withstand wear, pressure or damage within the defined operational settings. 

3.6.4. Efficiency degradation rate 

Decrease in overall efficiency over time with reference to the initial efficiency level and 

expressed in percentage per unit of time. 

Note 1 to entry: it is expressed in %/h. 

3.6.5. Performance degradation rate 

Decrease in hydrogen productivity over time with reference to initial productivity under 

constant operating conditions of load, temperature and pressure, expressed in 

percentage per unit of time. 

Note 1 to entry: it is expressed in %/h. 

 Cell lifetime 3.6.5.1.

Length of time under operating conditions between first start-up and the time at which 

the cell voltage, under the defined conditions, exceeds the maximum acceptable voltage 

specified (2). 
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Note 1 to entry: it is expressed in h. 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Stack lifetime 3.6.5.2.

Lifespan of the stack when the process-relevant (i.e. hydrogen production rate or 

hydrogen production efficiency) performance loss over time has reached 20 % compared 

with its initial performance (beginning of life) or when the average cell potential has 

reached the cut-off voltage defined by the manufacturer. This condition is indicated as 

end of life. 

Note 1 to entry: it is expressed in operating hours (h) at nominal load. This relates to 

steady-state operation at the nominal operating point. 

3.6.6. Stability factor 

Parameter used to assess the stability characteristics defined as the reciprocal of the 

product of the voltage increase rate (operational cell-voltage degradation) and the initial 

cell overvoltage versus the thermoneutral potential (~ 1.47 V at 80 °C). 

Stability factor = 1 / [ΔUop · (Ucell-Utn)t_start] 

Note 1 to entry: it is expressed in h·V-2. 
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 Efficiency 3.7.

3.7.1. General comments on efficiency 

A critical review of the different definitions of the efficiency of the water electrolysis 

reactions (at cell, stack, component and system level) found in the literature is provided 

in this section. The discussion is applicable to near-ambient-temperature technologies 

such as PEM, alkaline and anion membranes only. 

From a thermodynamic viewpoint, the water electrolysis cells, stacks and systems can be 

seen as energy-conversion devices. The energy efficiency of such devices is defined as 

the ratio between the useful chemical energy output (the hydrogen/oxygen energy 

content) and the energy input (electricity and heat). The efficiency factors or descriptors 

thus obtained offer a common and practical way to characterise such conversion devices, 

assess the quality of the conversion process and compare the results. 

The following Figure 5 provides a schematic overview of mass and energy flows across 

the boundaries of the system under consideration and the environment. 

 

Figure 5: Schematic diagram of typical input/output mass flows and energy of an 
electrolyser system 

The approach used in this document reviews the definitions, starting from the 

fundamental thermodynamics of the electrolysis processes, and in turn applies them at 

single cell, stack, component and finally system level. To facilitate the comparison of 

water electrolysis technologies (at cell, stack or system level), quantitative descriptors 

must be used. In this document, the term ‘energy efficiency coefficient’ (the symbol for 

which is ) will be the descriptor used for this purpose.  is a real number such as: 

0   1. To express the energy efficiency coefficient as a percentage, it is necessary to 

multiply  by 100. It should be noted here that in the literature, the term ‘efficiency’ is 

sometimes used instead of ‘energy efficiency coefficient’. In some cases, this might lead 

to confusion (e.g. it is necessary to differentiate between energy, current and overall 

efficiencies), which needs to be avoided by using the appropriate terms (in this 

document, the descriptor used for current and overall efficiency is labelled using the 

symbol ). It should also be noted here that there are several methods to define the 

‘energy efficiency coefficient’ of water electrolysis. The objective of this document is to 
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review the various definitions and explain their differences and the corresponding 

simplifying assumptions. 

There are basically three main approaches to defining and calculating the water 

electrolysis efficiency coefficient to facilitate comparison of results. 

The first approach is mostly used by the academic/scientific research community. It is 

based on thermodynamic considerations. The focus is on the water electrolysis reaction 

only, under constant temperature and pressure (T,p) conditions. The electrolysis cell is 

placed in a thermostat (this could be air when electrolysis takes place at ambient 

temperature, but in most laboratory experiments it is a thermostatic device which is 

used to perform electrolysis at temperatures other than ambient temperature). The 

energy efficiency coefficient is defined as the ratio of the minimum amount of energy 

required to split one mole of water at T,p (when the current is zero) to the actual 

amount of energy required to split one mole of water at T,p (when the current is not 

zero). The difference is due to the second principle of thermodynamics: the transport of 

electric charges across the cell induces irreversible energy degradation (dissipation). 

Therefore, the denominator is larger than the numerator and   1, except at equilibrium 

where  = 1. 

𝜀𝑐𝑒𝑙𝑙 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
=

𝑊𝑡 (𝐽. 𝑚𝑜𝑙−1)

𝑊𝑟 (𝐽. 𝑚𝑜𝑙−1)
          [𝐴] 

It should be noted here that despite the simplicity of this definition, three different 

cases (quantitative expressions) of  could be found in literature for this first 

approach. The difference arises from the different thermodynamic simplifying 

assumptions that are applied in the evaluation of the energy flows between the 

electrolysis cell and the environment. These assumptions impact both the numerator and 

the denominator of equation [A]. 

In case 1, the enthalpy change of the reaction (reversible electrical work + reversible 

heat) is taken as reference at the numerator and the total electrical work plus a constant 

additional reversible heat input is provided at the denominator. 

In case 2, the Gibbs free energy of the reaction (reversible electrical work) is taken as 

reference at the numerator and only the total electrical work is provided at the 

denominator. 

In case 3, the enthalpy change of the reaction (reversible electrical work + reversible 

heat) is taken as reference at the numerator (as for case 1) and the total electrical work 

plus a variable additional heat input (depending on UCell to differentiate between an 

endothermal and exothermal mode of operation) is provided at the denominator. 

Case 4 is a more general approach than case 3, where it is assumed that the heat input 

into the cell is provided in full by an external source. 

These four cases will be presented and discussed in detail in Section 3.7.3. 

The second approach is a more practical one and is mainly used by the industry sector. 

Compared with the definitions of the first approach, there are two main differences: (i) 

all parasitic losses (those of the electrolysis unit, such as energy and current losses, heat 

losses, etc., but also those of auxiliary subsystems such as heaters, pumps, etc.) are 

taken into account at the denominator of the definition of 𝜼, in order to define the 

overall performance of the complete electrolyser system; (ii) the energy of reference 

(the numerator in the definition of ) is different. 
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This is the ratio of the energy content of the products obtained at the output of the 

device (cell, stack, system plant) to the total energy that is provided to the system. 

𝜂𝑐𝑒𝑙𝑙 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠
=

𝑊𝑡 (𝐽. 𝑚𝑜𝑙−1)

𝑊𝑟 (𝐽. 𝑚𝑜𝑙−1)
                                                   [𝐵] 

The third approach acknowledges the fact that the efficiency definitions of the first and 

second approaches provide insights into the conservation of energy only (first principle 

of thermodynamics). Environmental conditions and energy degradation are not 

considered quantitatively. However, ensuring meaningful comparisons between different 

technologies (e.g. electrolysis plant, photovoltaic system, wind turbine generator) and 

eventually ranking them is not a straightforward task. In order to do that, there is a 

need to define the best theoretical performance of a device. The best approach is to 

perform a detailed exergy analysis, i.e. to take into account the exergy (energy quality) 

of various input/output energy flows to calculate the efficiency. The analysis of the 

exergy losses (magnitude and location within the device) will provide a more detailed 

picture of the strengths and weaknesses of any energy-conversion device and it will help 

in identifying improvements in various components of the device. However, this 

approach will not be taken in this document. 

3.7.2. Electrolysis thermodynamics fundamentals 

 Thermodynamics of the water dissociation reaction 3.7.2.1.

The energetics of the water electrolysis reaction performed under reversible conditions 

(current intensity I = 0) under standard ambient temperature and pressure 

conditions (SATP) (International Union of Pure and Applied Chemistry, IUAPC) 

T° = 25 °C (298.15 K) and p° = 105 Pa = 1 bar(a) are summarised in equation [1]: 

H2O(l) + 48.6 kJ mol-1 heat + 237.2 kJ mol-1 electrical energy → H2 (g)+ ½ O2 (g)  [1] 

The total energy required by the electrolysis process ΔHcell(T°,p°) = 285.8 kJmol-1 is the 

sum of the thermal energy needs ΔQrev(T°,p°) and the electrical energy needs 

ΔGcell(T°,p°), also known as the Gibbs free energy change of the reaction. All of these 

quantities are connected by means of the Gibbs-Helmholtz equation: 

ΔHcell(T,p) = ΔQrev(T,p) + ΔGcell(T,p)     [2] 

where T is the absolute temperature (in K) of the electrolysis cell. 

Under reversible conditions (I = 0) the thermal energy change is related to the entropy 

change ΔS(T) of the water-splitting reaction, i.e. ΔQrev(T,p) = T ΔS(T,p). 

The entropy change ΔS(T°,p°) for one mole of water at standard conditions, based on: 

SH2
0 = 130.7 J (mol ∙ K)−1, SO2

0 = 205.1 J(mol ∙ K)−1 and SH2O
0 = 69.9 J(mol ∙ K)−1 is: 

ΔS(298) = 130.7 + 0.5 x 205.1 — 69.9 = 163.3 J (mol ∙ K)−1, 

leading to ΔQrev(298) = 298 x 163.3 = 48.6 kJ mol-1. 
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 Cell voltage of the water electrolysis reaction 3.7.2.2.

From the thermodynamic viewpoint, the minimum but necessary cell voltage required for 
the onset of the water electrolysis reaction under reversible conditions, 𝑼𝒓𝒆𝒗

𝟎
 
, under 

standard ambient temperature and pressure conditions, is defined as (2): 

𝑼𝒓𝒆𝒗
𝟎

 
 = ΔG0/(n F)       [3] 

where n is the number of electrons transferred (n = 2 in the case of water electrolysis) 

and F is the Faraday constant (i.e. the product of the elementary electric charge by the 

Avogadro number, F = 96485.3329 ≈ 96485 C mol-1). 

Hence, under standard conditions ΔG0 = 237.22 kJ mol-1, then 𝑼𝒓𝒆𝒗
𝟎

 
 = 1.2293 V. 

The following remarks should be taken into account. 

 This is only valid when the heat corresponding to TΔS (48.6 kJ mol-1)
 
can be 

entirely transferred from the surrounding environment to the process, for 

example by supplying preheated water to the cell when the process is in an 

endothermic state. 

 Hydrogen generation cannot take place when the cell voltage is UCell < 𝑼𝒓𝒆𝒗
𝟎 . 

 The electrolysis cell can operate adiabatically (with a zero heat balance between 

thermal energy transferred to the cell and produced by the cell) at the so-called 

thermoneutral potential, Etn, or the thermoneutral voltage, Utn, which is 

defined, under SATP conditions, by: 

𝑼𝒕𝒏
𝟎

 
 = ΔH0/(n F)      [4] 

In equation [4], under SATP conditions, ΔH0 = HHV = 285.84 kJ mol-1 (Utn = 

1.4813 V). Under different physical conditions, namely when water is in a gaseous 
state, ΔH0 = LHV = 241.8 kJ mol-1 (Utn = 1.253 V). It should be noted that 𝑈𝑡𝑛

0 , 

equation [4], is larger than 𝑈𝑟𝑒𝑣
0

 
, equation [3], as it contains the heat associated with the 

entropy change ΔQrev. 

 Higher heating value (HHV in J.mol-1), which includes the heat of water 

vaporisation, is used as a reference for liquid water electrolysis. 

 Lower heating value (LHV) is used for steam electrolysis, for example solid 

oxide electrolysis, which is not discussed in this document. 

 Under strictly adiabatic conditions (a case of limited interest), the cell is cooling 

down when Urev < Ucell < Utn because the necessary heat required for the entropy 

change is taken only from the heat stored inside the cell. In such cases, thermal 

exchange between the cell and the surroundings is not possible. 

 When the operating cell voltage is Ucell > Utn, the heat required by the reaction is 

provided in situ by internal dissipation (overvoltages and ohmic dissipations). In 

cases in which the dissipated heat is higher than the required heat, this results in 

an increase in cell temperature. 

                                           

 

(2) IUAPC notation should be used here. E or Eemf is used for automotive cells (ΔG < 0). Voltage = U is used 
for electrolysis cells (ΔG > 0). 
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 Heat balance (Qcell) of the water electrolysis reaction 3.7.2.3.

Under specific operating conditions (under constant T and p operating conditions), the 

heat balance, Qcell, can be defined as the difference between the reversible heat ΔQrev 

associated with the entropy change of the reaction, ΔQrev = TΔS, which is 

spontaneously transferred from the surroundings to the cell when the temperature 

gradient Tcell < Tout, and the energy loss due to internal dissipation via charge transfer 

overvoltages (i) and ohmic dissipation (ReI) associated with the irreversible heat, 

Qirrev, which is spontaneously transferred from the cell to the surroundings when Tcell 

> Tout: 

Qoutput = Qirrev (J.mol-1) = n·F·(Ucell – Urev) = n·F·loss =n·F(i + ReI)   [5] 

 nFQirrev ~ (Ucell — Urev) = loss 

=> Qcell = Qinput-Qoutput = ΔQrev — Qirrev = TΔS — n·F·(Ucell — Urev) 

With Qinput = ΔQrev = TΔS = ΔHrev — ΔGrev = n·F·(Utn — Urev)    [6] 

This leads to the expression of the Qcell heat balance as follows: 

Qcell = n·F·(Utn — Urev) — n·F·(Ucell — Urev) = n·F·(Utn — Ucell)   

 [7] 

Under SATP conditions: ΔQ°rev = nF (1.48 – 1.23) = 285.8 – 237.2 = 48.6 kJ mol-1 and 

ΔQrev/2F ~ 0.25 volts. 

This expression describes the total heat exchange between the surroundings and the 

electrolysis cell according to the value of Ucell compared with the value of Utn. Under all 

operating conditions, the Qcell heat balance depends on the reversible heat (Qrev = TS) 
exchanged with the outside area and the irreversible heat (n·F loss) resulting from 

overvoltages and the joule effect. It is not possible to distinguish between these two 

sources of heat, but if Ucell < Utn the system needs an external heat input (via the 

thermostat), and if Ucell> Utn excess heat is released to the environment (via the 

thermostat or by radiation, conduction or convection). However, the direction of the heat 

flow can be known: towards the system or towards the surroundings. 

In the scientific community there are two opposing points of view with regard to cell 

level. 

 One suggesting that it is possible to distinguish between reversible (i.e. provided 

by the surroundings or the thermostat (called Qinput)) and irreversible (i.e. heat 

released to the surroundings) sources. 

 One suggesting that it is not possible to distinguish between the two. 

The consequence of this disagreement explains (at least partly) the different definitions 

of the efficiency cases described below. 

The algebraic sign for Qcell shows the direction of the net heat flow. 

 Qcell = 0 (when Ucell = Utn), i.e. the cell operates isothermally without a net 

exchange of heat between the cell and the surroundings. 

 Qcell > 0 (when Ucell < Utn), heat is absorbed by the cell at low current intensity to 

keep T constant. 
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 Qcell < 0 (when Ucell > Utn), the excess heat produced at high current intensity is 

released from the cell and some external cooling may be needed to keep T 

constant. 

3.7.3. Energy efficiency definition: first approach 

As mentioned above, in the simplest case of a single electrolysis cell, the energy 

efficiency εcell of the electrolysis cell can be defined as the ratio between the theoretical 

amount of total energy Wt (J/mol) required to split one mole of water (i.e. the opposite 

of its enthalpy of formation ΔHf) and the actual amount of energy Wr (J/mol) used in the 

process. When liquid water is electrolysed (as in the case of PEM, alkaline and anionic 

membrane technologies), the reference energy consumption is that of liquid water 

(absolute value of the HHV of hydrogen combustion in oxygen). 

𝜀𝑐𝑒𝑙𝑙 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
=

𝑊𝑡  (𝐽. 𝑚𝑜𝑙−1)

𝑊𝑟 (𝐽. 𝑚𝑜𝑙−1)
                              [8] 

Hereafter, four different cases are presented as being state of the art with regard to 

the definition of energy efficiency, performed on the basis of different thermodynamic 

assumptions. 

 

 Energy efficiency — case 1 (constant reversible heat input 3.7.3.1.
based) 

The definition is as follows. 

In this first case, which takes into account all the energies (electrical and thermal) 

involved, the numerator of equation [8] (the energy requirement in reversible 

conditions) is defined as the necessary electrical work + the necessary heat flow 

(Qrev =T·S J.mol-1) associated with the entropy change. Therefore: 

Wt = Grev + Qrev = Hrev  Wt = n·F·Urev (electrical work) + n·F· (Utn-Urev) (reversible Q) 

Wt = n·F·Utn (J/mole) (total energy) 

The denominator of equation [8], the energy requirement in irreversible conditions, is 

defined as the actual electrical energy consumption (the necessary electrical work + the 

extra amount of electrical work which is dissipated internally into heat) + the necessary 

heat associated with the entropy increase. Therefore: 

Wr = Grev + Qrev + nFloss 

Wr = n·F·Urev (electrical work) +n·F·(Utn-Urev) (reversible Q) +n·F·(Ucell-Urev) (irreversible Q) 

Wr = n·F·(Utn + Ucell — Urev) (J/mole) (total energy). 

Therefore, the ‘energy efficiency coefficient’ in case 1 is given as: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒1 =
∆𝐻𝑟𝑒𝑣

∆𝐻𝑟𝑒𝑣+𝑛𝐹𝑙𝑜𝑠𝑠

 =  
∆𝐺𝑟𝑒𝑣+∆𝑄𝑟𝑒𝑣

𝑛𝐹𝑈𝑐𝑒𝑙𝑙+∆𝑄𝑟𝑒𝑣
=

𝑈𝑡𝑛

𝑈𝑡𝑛+𝑈𝑐𝑒𝑙𝑙−𝑈𝑟𝑒𝑣
  [9] 
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Under SATP conditions: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒1
0 =

𝑈𝑡𝑛
0

𝑈𝑡𝑛
0 +𝑈𝑐𝑒𝑙𝑙(𝑆𝐴𝑇𝑃)−𝑈𝑟𝑒𝑣

0  = 1        [10] 

 

as 𝑈𝑐𝑒𝑙𝑙(𝑆𝐴𝑇𝑃) = 𝑈𝑟𝑒𝑣
0 . 

Under any T,p conditions: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒1 =
𝑈𝑡𝑛(𝑇,𝑝)

𝑈𝑡𝑛(𝑇,𝑝)+ 𝑈𝑐𝑒𝑙𝑙(𝑇,𝑝)−𝑈𝑟𝑒𝑣(𝑇,𝑝)
 < 1    [11] 

The graphical analysis is as follows. 

Figure 6 shows the plot of equation [9], the energy efficiency coefficient cell compared 

with Ucell up to 2.0 V under SATP conditions (𝑈𝑡𝑛
0  = 1.48 V and 𝑈𝑟𝑒𝑣

0  = 1.23 V). Starting at 

Ucell = 𝑈𝑟𝑒𝑣
0 , this is a continuous decreasing function of Ucell. The plot is similar to the plot 

obtained for case 2 but the rate at which cell decreases with Ucell is slower (see the 

quantitative comparison of cases 1, 2 and 3 in Figure 12 below). 

 

Figure 6: Thermodynamic efficiency plot (case 1) 

Discussion 

Arguments in favour 

 The necessary fixed thermodynamic quantity Qrev (the reversible heat needed for 

the entropy increase of the water dissociation reaction) is provided only by an 

external heat source (air or thermostat) and not by internal dissipation of 

electrical work. The possibility that heat can be partly (when Urev < Ucell < Utn) or 

totally (when Ucell  Utn) produced in situ by internal dissipation and thus can vary 
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with Ucell (according to the exothermic or endothermic operating conditions) is 

disregarded. There is a constant external input of reversible heat to the cell under 

all operating conditions (exothermic and endothermic) and this is the only heat 

that is provided by the surroundings to the cell. 

Arguments against 

 Wr contains a constant heat input from an external source equal to Qrev under all 

operating conditions (any Ucell) including operation under strong exothermic 

conditions (Ucell > Utn) where excess heat is produced by the cell and not 

absorbed by an external source. 

 The heat balance in case 1 is not fully consistent with the temperature gradient 

between the cell and the surroundings and is therefore not consistent with non-

equilibrium thermodynamics. 

 It is not possible to differentiate between the heat arising from the thermostat 

and the heat arising from internal dissipation. Only the temperature gradient 

(non-equilibrium thermodynamics) determines the direction of Qrev (where Qrev 

heat comes from). 

 All the dissipated heat generated by additional electrical work inside the cell due 

to the irreversible process is reverted to the external temperature-control device 

and is not used inside the cell for the entropy increase. Therefore, none of the 

heat produced inside the cell by the dissipation of electrical work is used for the 

entropy increase of the reaction. 

 The energy input for a system is equivalent to the electricity input for the stack 

plus the electricity input for the auxiliaries (denominator). Thus, if Qrev is added 

at the denominator of the stack efficiency calculation, and stack and system 

efficiencies are compared, the power consumption of the auxiliaries will be lower 

than what can be effectively measured. 

 In addition, in case 1, the energy input is in part calculated instead of being 

simply measured, as usually occurs with the conversion efficiency of any process. 

 

 Energy efficiency — case 2 (free energy variation based) 3.7.3.2.

Definition 

In this second case, the numerator of equation [8] (the energy requirement under 

reversible conditions) is defined as the necessary electrical work only. The necessary 

heat flow (Qrev = T.S J.mol-1) associated with the entropy change (and that is 

transferred from the thermostat to the cell) is not taken into account. Therefore: 

Wt = Grev = n·F·Urev (electrical work) 

The denominator of equation [8], the energy requirement under irreversible conditions, 

is defined as the actual electrical energy consumption. This is the necessary electrical 

work + the extra amount of electrical work which is dissipated internally into heat. 

Therefore: 

Wr = Grev + nFloss 

Wr = n·F·Urev (reversible electrical work) + n·F·(Ucell-Urev) (irreversible Q) 

Wr = n·F·(Ucell) (J/mole) (total energy = total electrical work) 

 



 

EU HARMONISED TERMINOLOGY FOR LOW-TEMPERATURE WATER 
ELECTROLYSIS FOR ENERGY STORAGE-APPLICATIONS 

 

 

27 

Therefore, the ‘energy efficiency coefficient’ in case 2 (in the literature, in case 2 the cell 

definition is sometimes called the thermodynamic voltage efficiency) is given by: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒2 =
∆𝐺𝑟𝑒𝑣

𝑛𝐹𝑈𝑐𝑒𝑙𝑙
=

𝑛𝐹𝑈𝑟𝑒𝑣

𝑛𝐹𝑈𝑐𝑒𝑙𝑙
 =

𝑈𝑟𝑒𝑣

𝑈𝑐𝑒𝑙𝑙
     [12] 

Under SATP conditions: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒2
0 =

𝑈𝑟𝑒𝑣
0

𝑈𝑐𝑒𝑙𝑙(𝑆𝐴𝑇𝑃)
= 1    [13] 

 

since 𝑈𝑐𝑒𝑙𝑙(𝑆𝐴𝑇𝑃) = 𝑈𝑟𝑒𝑣
0  

Under any T,p conditions: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒2(𝑇, 𝑝) =
𝑈𝑟𝑒𝑣(𝑇,𝑝)

𝑈𝑐𝑒𝑙𝑙(𝑇,𝑝)
    [14] 

 

Graphical analysis 

Figure 7 shows the plot of equation [12], the thermodynamic voltage efficiency as a 

function of Ucell under SATP conditions. Starting at Ucell = Urev, this is a continuous 

decreasing function of Ucell. It can be seen that cell is 100 % when Ucell is equal to Urev = 

1.23 V. When the cell voltage is equal to the thermoneutral voltage (Ucell = Utn = 1.48 V 

under SATP conditions), the energy efficiency coefficient expressed in percentage is 

equal to 83.1 %. Regarding the heat balance, it should be noted here that when 

Urev < Ucell < Utn (i.e. the cell voltage is less than the thermoneutral voltage), there is a 

heat flux from the thermostat to the cell: this range of Ucell is called the endothermal 

mode of operation. When Ucell = Utn (i.e. the cell voltage is equal to the thermoneutral 

voltage), the heat flow between the thermostat and the cell is zero because all the 

necessary heat is produced in situ, inside the cell, by degradation of electrical work 

(second principle, dissipation associated with the transport of charged species). When 

Ucell > Utn (i.e. the cell voltage is higher than the thermoneutral voltage), there is a heat 

flux in the opposite direction, from the cell to the thermostat, because the amount of 

heat produced in situ by dissipation exceeds the cell requirements: this is the 

exothermal mode of operation. The sign for the temperature gradient (Tin-Tout) is 

negative in the endothermal domain, equal to zero at the thermoneutral point and 

positive in the exothermal domain. 

Under endothermic operations, Urev < Ucell < Utn, of relatively large thermally isolated 

cells where the water flow rate is relatively low, the outlet water temperature, Tout, is 

lower than the inlet water temperature, Tin. Under exothermic conditions Ucell > Utn Tout 

will be higher than Tin. 
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Figure 7: Thermodynamic efficiency plot (case 2) 

Discussion 

Arguments in favour 

 Equation [12] is homogeneous because only the electrical work is taken into 

account at the numerator and the denominator. 

 Heat flows are disregarded: this is acceptable for near-ambient-temperature 

electrolysis (PEM and alkaline) because the lack of reversibility at the anode 

makes the endothermal range very narrow (the thermoneutral point is reached at 

very low current densities such as 10-20 mAcm-2). 

 Corrections for operating conditions other than SATP conditions can be easily 

implemented. 

Arguments against 

 Equation [12] does not reflect the actual conditions and is not rigorous because it 

considers only the electrical work as useful energy output and not the total 

energy output. 

 In transient operation, with periodic cycles, the time spent in the endothermal 

domain may increase, and in such cases the heat flow should be taken into 

account. 

 Energy efficiency — case 3 (enthalpy based) 3.7.3.3.

Definition 

In this third case, the numerator of equation [8] (the energy requirement under 

reversible conditions) is defined as Hrev, as for case 1. Therefore: 

Wt = Grev + Qrev = Hrev  Wt = n·F·Urev (electrical work) + n·F· (Utn-Urev) (reversible Q) 

Wt = n·F·Utn (J/mole) (total energy) 

The denominator of equation [8], the energy requirement under irreversible conditions, 

takes into account the detailed heat balance. Therefore, the expression of the 
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denominator depends on the value of Ucell. There are three situations: (i) 

Urev < Ucell < Utn; (ii) Ucell = Utn; (iii) Ucell > Utn. Therefore the following applies. 

When Urev < Ucell < Utn: endothermal range of operation 

Wr = electrical work from DC source + heat from DC source resulting from electricity 

dissipation + complementary heat from the thermostat to keep cell temperature 

constant. Therefore: 

Wr = n·F·Urev (electrical work) + n·F (Ucell-Urev) (internal heat dissipation) + n·F· (Utn-Ucell) 

where n·F (Utn-Ucell) = Qcell. This is the net heat input (Qinput) since part of the heat is 

already supplied via the irreversible reaction (internal heat dissipation). 

The following equation: 

Wr = n·F·Urev + n·F·loss + (Qrev — n·F·loss) 

can be modified to: 

Wr = n·F·Urev + Qrev = n·F·Urev + nF (Utn-Urev) 

Wr = n·F·Utn 

Therefore, if the heat input is an exact match for n·F (Utn-Ucell) = Qcell, the ‘energy 

efficiency coefficient’ in case 3 when Urev < Ucell < Utn is given by: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 =
𝑊𝑡

𝑊𝑟
=

𝑛·𝐹·𝑈𝑡𝑛

𝑛·𝐹·𝑈𝑡𝑛
= 1 𝑓𝑜𝑟 𝑈𝑟𝑒𝑣 < 𝑈𝑐𝑒𝑙𝑙 < 𝑈𝑡𝑛   [15] 

When Ucell = Utn: thermoneutral point of operation 

Wr = electrical work from DC sources only. Therefore: 

Wr = n·F·Urev + n·F· (Utn-Urev) = n·F·Utn 

Then the ‘energy efficiency coefficient’ in case 3 when Ucell = Utn is given by: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 =
𝑊𝑡

𝑊𝑟
=

𝑛·𝐹·𝑈𝑡𝑛

𝑛·𝐹·𝑈𝑡𝑛
= 1 𝑓𝑜𝑟 𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑡𝑛   [16] 

This applies if there is no external heat input to the cell. Using a thermostat means that 

there is an external heat input hence case 4 for the condition of Ucell = Utn must be used. 

When Ucell > Utn: exothermal range of operation 

This is the usual mode of operation of PEM and alkaline technology. In this field the 

process is exothermic, thus no heat is supplied from the surroundings to the cell. As a 

result, Qinput ~ 0; and based on these other assumptions: 

 the cell is thermally insulated; 

 the energy needed for cooling the water in order to keep the temperature 

constant (balance of plant) is disregarded. 

Wr = electrical work from power source only (zero heat from thermostat). 

Wr = n·F·Urev + n·F loss= = n·F·Ucell 

with n·F loss > Qrev 
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which means the heat produced internally in the exothermic process is greater than the 

required reversible heat associated with the entropy variation of the process and thus no 

external heat is absorbed by the cell (therefore cooling may be needed). 

With Wt = n·F·Utn 

the ‘energy efficiency coefficient’ in case 3 when Ucell > Utn (sometimes called the 

enthalpy efficiency in the literature) is given by: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 =
𝑊𝑡

𝑊𝑟
=

𝑛·𝐹·𝑈𝑡𝑛

𝑛·𝐹·𝑈𝑐𝑒𝑙𝑙
=

𝑈𝑡𝑛

𝑈𝑐𝑒𝑙𝑙
<  1     [17] 

Summary 

The ‘energy efficiency coefficient’ in case 3 is given by the following two sets of 

equations: 

{
𝑤ℎ𝑒𝑛 𝑈𝑟𝑒𝑣 <  𝑈𝑐𝑒𝑙𝑙 ≤  𝑈𝑡𝑛: 𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 = 1 

𝑤ℎ𝑒𝑛 𝑈𝑐𝑒𝑙𝑙 >  𝑈𝑡𝑛 : 𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 = 𝑈𝑡𝑛
𝑈𝑐𝑒𝑙𝑙

< 1
     [18] 

Under SATP conditions: 

{
𝑤ℎ𝑒𝑛 𝑈𝑟𝑒𝑣

0 <  𝑈𝑐𝑒𝑙𝑙(𝑆𝐴𝑇𝑃) ≤  𝑈𝑡𝑛
0 : 𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 = 1 

𝑤ℎ𝑒𝑛 𝑈𝑐𝑒𝑙𝑙(𝑆𝐴𝑇𝑃) >  𝑈𝑡𝑛
0 : 𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3

0 =
𝑈𝑡𝑛

𝑈𝑐𝑒𝑙𝑙
< 1

    [19] 

Under any T,p conditions: 

{
𝑤ℎ𝑒𝑛 𝑈𝑟𝑒𝑣  (𝑇, 𝑝) <  𝑈𝑐𝑒𝑙𝑙(𝑇, 𝑝) ≤  𝑈𝑡𝑛(𝑇, 𝑝): 𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 = 1 

𝑤ℎ𝑒𝑛 𝑈𝑐𝑒𝑙𝑙(𝑇, 𝑝) >  𝑈𝑡𝑛 (𝑇, 𝑝): 𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒3 =
𝑈𝑡𝑛 (𝑇,𝑝)

𝑈𝑐𝑒𝑙𝑙 (𝑇,𝑝)
< 1 

   [20] 

Graphical analysis 

Figure 8 shows the plot of the energy efficiency cell versus Ucell calculated up to 2.0 V in 

case 3 (using equations 15, 16 and 17). 

Figure 8: Thermodynamic efficiency plot (case 3) 
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Discussion 

Arguments in favour 

 Case 3 is close to physical reality: when Ucell < Utn, the heat associated with the 

entropy increase is provided by the external temperature-control device and by 

internal dissipation. This is the reason why the efficiency is conventionally 

assumed constant for Urev < Ucell < Utn, since only the exact amount of heat 

needed is provided by external + internal sources. When Ucell > Utn, the cell does 

not receive any heat from the thermostat (Qinput = 0); Qcell becomes < 0 because 

the excess heat produced by internal irreversibility is released outside the cell. 

Each mole of water inside the cell receives from outside exactly the amount of 

heat needed (from internal dissipation + a fraction from the thermostat). 

 The heat balance in case 3 is consistent with the temperature gradient between 

the cell and the surroundings and is therefore consistent with non-equilibrium 

thermodynamics. 

 Case 3 definition of cell and stack efficiency is perfectly homogeneous with the 

system efficiency definition. This is the equation reported in almost all 

publications. 

Arguments against 

 Equation [17] is not valid when Ucell < Utn, because it gives εcell > 1. However, 

assuming that the correct definition is given by the sum of equations [15], [16] 

and [17], then εcell  1 regardless of the Ucell. 

 The definition of Qrev = 0, implies that either T = 0 or S = 0, which is 

impossible above zero Kelvin. A differentiation has to be made between Qrev, 

which is the necessary heat required by the reaction, and the origin of that heat. 

In case 3, the origin of the necessary heat Qrev depends on the temperature 

gradient (non-equilibrium thermodynamics): it can originate partly from the 

thermostat and partly from internal dissipation when (Tcell – Tout) < 0 (in the 

endothermal mode  Ucell < Utn) or only from internal dissipation (in the 

exothermal mode  Ucell > Utn). 

 With this definition it is not possible to distinguish between the part of the heat 

arising from the reversible heat (i.e. from the surroundings or the thermostat) 

and that coming from irreversible losses (i.e. heat released to the surroundings) 

in the total balance. 

 Energy efficiency — case 4 (electricity and heat input based) 3.7.3.4.

In a more general approach when the heat is supplied by an external source, this 

heat source should be taken into account in the efficiency equation. 

In this case, Qcell = Qinput >0. Consequently Qinput must be measured and reported in the 

efficiency equation: 

𝜀𝑐𝑒𝑙𝑙,𝑐𝑎𝑠𝑒4,𝑔𝑒𝑛𝑒𝑟𝑎𝑙  =  
𝐻𝑟𝑒𝑣

𝑛𝐹𝑈𝑐𝑒𝑙𝑙+𝑄𝑖𝑛𝑝𝑢𝑡
=

𝑛·𝐹·𝑈𝑡𝑛

𝑛𝐹𝑈𝑐𝑒𝑙𝑙+𝑄𝑖𝑛𝑝𝑢𝑡
   [21] 

This equation is largely applicable in cases where T is measurable with adequate 

accuracy such as in large single cells, short stacks and stacks. 

If the external heat is supplied by heating the water at the inlet, for example to bring the 

temperature of the water to the desired operating temperature, Qinput can be determined 

as follows: 
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Qinput=thermal power·time=Pthermal (J/s)·t (s). 

Pthermal = water flow · water thermal capacity·T. 

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑚̇𝐻2𝑂 ∙ Cp · t 

𝑚̇𝐻2𝑂 is provided in (g/s). 

Water heat capacity under standard conditions Cp = 4.186 J/(g·K). 

T = Tout, cell –Tin,cell (K). 

Tin = water temperature at the inlet of the cell. 

Tout = water temperature at the outlet of the cell.  

This approach can give information on the effective heat exchange between the cell and 

the surroundings. If T < 0 the reaction inside the cell is endothermic and the heat 

provided to the cell must be considered in the efficiency equation. Thus, when the 

effective heat supplied to the process is properly taken into account for Urev < Ucell < Utn, 

the resulting efficiency is below 100 %. 

Graphical analysis 

 

Figure 9: Thermodynamic efficiency plot (case 4) 

3D-plot
of  vs. nFEcell

and Qinput

Endothermic operation
I≠0 for Urev < Ucell ≤ Utn → 

Qinput + Qirreversible≥TS
nFUcell≥G

Ucell≥Urev

Exothermic operation
I≠0 for Ucell > Utn → 

Qinput=0

Ucell>Utn

→ Qinput=0 and 

Two different conditions



 

EU HARMONISED TERMINOLOGY FOR LOW-TEMPERATURE WATER 
ELECTROLYSIS FOR ENERGY STORAGE-APPLICATIONS 

 

 

33 

A reaction can only occur if n·F·Ucell ≥ G and Qinput + Qirr ≥ TS and the efficiency is a 

function of both electrical and thermal energy input as per equation [21]: 

 

Figure 10: Thermodynamic efficiency plot (case 4) 

 

Figure 11: Thermodynamic efficiency plot (case 4) 

When Qinput is zero, the bi-dimensional plot is equal to that reported above for 

case 3, see Figure 8. 

The efficiency is 1 when total energy input (heat and electricity) is 285.84 KJ mol-1. This 

minimum energy requirement can be supplied as electricity + heat or electricity only. 
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 Water electrolysis efficiency case comparison 3.7.3.5.

A comparison of the energy efficiencies for cases 1, 2 and 3 presented above is shown in 

Figure 12. For any given Ucell, it is evident that case 3 provides a higher efficiency value 

compared to cases 1 and 2, with a difference of around 15-17 %, while between case 1 

and case 2, the difference of efficiency ranges from 0 % at Urev to 5 % at 2.0 V. 

 

Figure 12: Plots of the energy efficiency versus Ucell for cases 1, 2 and 3 

 

3.7.4. Energy efficiency as a function of operating temperature 

Absolute temperature (T) and pressure (p) are the two main physical variables used to 

define the state of the electrolysis cell. All thermodynamic functions of interest used to 

define the energy efficiency coefficient are functions of (T,p). Therefore, it is necessary 

to provide an expression of these thermodynamic functions under any (T,p) operating 

conditions of interest in order to be able to calculate the efficiency of the electrolyser 

(cell, stack or system level) under such conditions. 

Simplified expression of the efficiency versus T at p = 1 bar (105Pa) 

For PEM and alkaline electrolysis, in a first approximation, the enthalpy change of the 

water-splitting reaction H(T,p) can be considered as constant over the limited 

temperature range of interest (0-100 °C). This is shown in Figure 13. H(T,p) is 

equal to the standard enthalpy change ∆𝑯𝟎
 = 𝒏𝑭 𝑼𝒕𝒏

𝟎 .  Hence, the energy efficiency 

coefficient cell of a water electrolysis cell or stack can be approximated over this 

temperature range by using the SATP reference values for U: 

𝑼𝒓𝒆𝒗
𝟎 =1.23 V and 𝑼𝒕𝒏

𝟎  = 1.48 V 
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Figure 13: Thermoneutral voltage evolution versus liquid water temperature 

Expression of the efficiency versus T at p = 1 bar without simplifying 

assumption 

For a more accurate energy efficiency calculation, it is necessary to take into account the 

effect of the operating temperature. Empirical polynomial expressions for the calculation 

of the thermodynamic voltage Urev(T,p), based on Gibbs free energy change, and the 

thermoneutral voltage Utn have been reported in the literature (9). For liquid water 

conditions, in the 0 to 100 °C range and p =1.013 105 Pa = 1.013 105 bar and up to 
200 °C with p = 1.824∙105 Pa = 1.824 bar, the expressions are: 

𝑈𝑟𝑒𝑣(𝑇, 1𝑎𝑡𝑚) = ∆𝐺(𝑇)/2𝐹 = 1.5184 − 1.5421 ∙ 10−3 ∙ 𝑇 + 9.523 ∙ 10−5 ∙ 𝑇 ∙ 𝐿𝑛(𝑇) + 9.84 ∙ 10−8𝑇2  [22] 

𝑈𝑡𝑛(𝑇, 1𝑎𝑡𝑚) = ∆𝐻(𝑇)/2𝐹 = 1.485 − 1.49 ∙ 10−4 ∙ (𝑇 − 𝑇0) − 9.84 ∙ 10−8 ∙ (𝑇 − 𝑇0)2 [23] 

where T is expressed in Kelvin in both cases and T0 = 273.15 K. It should be noted here 

that these two equations are valid for p = 1 atm, and not p = 1 bar. The difference in 

pressure is 1 %. Therefore, equations [22] and [23] can be used when the pressure is 

1 bar. 

The example of the corrected thermoneutral voltage value, 𝑈𝑡𝑛 , as a function of the 

reaction temperature, at atmospheric pressure, is described in Figure 13 (water in the 

liquid state). Its value changes from 1.481 V at 25 °C to 1.469 V at 100 °C (a variation 

of only 0.82 % that confirms the above assumption that temperature effect can be 

neglected in a first approximation). A similar linear behaviour applies to the variation of 

the cell voltage under reversible conditions, 𝑈𝑟𝑒𝑣, but with a relatively larger change of 

around 5 % being Urev 1.229 V at 25 °C and 1.167 V at 100 °C. 

3.7.5. Energy efficiency as a function of operating pressure 

Dry and ideal gas conditions 

It should first be noted that only the Gibbs free energy change of the water dissociation 

reaction (G) changes with pressure. The enthalpy change (H) is constant because the 

effect of pressure on the free energy and the entropy changes cancel each other out. 

Therefore, there is a need to provide a definition of the role of pressure in the reference 
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case (the numerator of equation [8]) only for case 2 (H is used at the numerator for 

cases 1 and 3). 

Assuming that the product streams (H2 and O2) at the exhaust of the electrolyser are dry 

and ideal gases, the minimal electrical energy required to evolve 1 mole of hydrogen 

Wt = ΔGrev(T,p,I=0) (in J/molH2) can be determined by introducing the variation ΔUcell of 

the cell voltage with the pressure of the reacting species (𝑝𝐻2𝑂) and products (𝑝𝐻2
 and 

𝑝𝑂2
), as follows: 

𝑛𝐹 𝑈𝑟𝑒𝑣(𝑇, 𝑝) =  ∆𝐺𝑟𝑒𝑣(𝑇, 𝑝𝜃) + 𝑅𝑇 ln [ (
𝑝𝑂2

𝑝𝜃 )
1

2 (
𝑝𝐻2

𝑝𝜃 ) / (
𝑝𝐻2𝑂

𝑝𝜃 )]  =  𝑛𝐹 (𝑈𝑟𝑒𝑣(𝑇, 𝑝𝜃) + ∆𝑈𝑐𝑒𝑙𝑙) [24] 

with: 

∆𝑈𝑐𝑒𝑙𝑙  =  𝑈𝑟𝑒𝑣(𝑇, 𝑝) −  𝑈𝑟𝑒𝑣(𝑇, 𝑝𝜃) =  
𝑅𝑇

2𝐹
ln [ (

𝑝𝑂2

𝑝𝜃 )
1

2 (
𝑝𝐻2

𝑝𝜃 ) / (
𝑝𝐻2𝑂

𝑝𝜃 )]    [25] 

The different pressures (expressed in bar) in equations [24] and [25] have the following 

meanings: 

I 𝑝𝑂2
 = oxygen partial pressure, 

I 𝑝𝐻2𝑂 𝑝𝜃⁄ = 𝑎𝐻2𝑂 = 1 for PEM and AWE (where aH2O is the water activity), 

I 𝑝𝐻2
 = hydrogen partial pressure, 

I 𝑝𝜃 = reference pressure at the working temperature. 

In each cell compartment, the total pressure p is the sum of partial pressures: 

I 𝑝 =  ∑  𝑝𝑖  =  𝑝𝑂2
+  𝑝𝐻2

+ 𝑝𝐻2𝑂, 

I pA = pressure of the anodic compartment = p, including the presence of some H2 

(hydrogen leakage through the separator) and water vapour, 

I pC = pressure of the cathodic compartment = p + p, assuming a differential 

pressure p between the two compartments. 

Water saturated and ideal gases 

Since gases produced during electrolysis are usually saturated with water vapour, 

equations [24] and [25] need corrections. 

For ideal wet gases: 

𝑛𝐹𝑈𝑟𝑒𝑣(𝑇, 𝑝𝜃) =  ∆𝐺𝑟𝑒𝑣(𝑇, 𝑝𝜃) + 𝑅𝑇 ln [ (
𝑝𝐴−𝑝𝐻2𝑂

𝑠𝑎𝑡

𝑝𝜃 )
1

2 (
𝑝𝐶−𝑝𝐻2𝑂

𝑠𝑎𝑡

𝑝𝜃 ) / (
𝑝𝐻2𝑂

𝑠𝑎𝑡

𝑝𝜃 )] = 2𝐹(𝑈𝑟𝑒𝑣(𝑇, 𝑝𝜃) + ∆𝑈𝑐𝑒𝑙𝑙)   [26] 

∆𝑈𝑐𝑒𝑙𝑙  =
𝑅𝑇

2𝐹
 ln [ (

𝑝𝐴−𝑝𝐻2𝑂
𝑠𝑎𝑡

𝑝𝜃 ))
1

2 (
𝑝𝐶−𝑝𝐻2𝑂

𝑠𝑎𝑡

𝑝𝜃 ) / (
𝑝𝐻2𝑂

𝑠𝑎𝑡

𝑝𝜃 )]             [27] 

where Urev(T,p) is the cell voltage at reference pressure 𝑝𝜃  and temperature T, and 

𝑝𝐻2𝑂
𝑠𝑎𝑡 (𝑇) = water saturation pressure at an operating temperature T. 

Equi-pressure operation 

For pressure values identical at both electrodes (pA = pC = p = 𝑝𝜃), and assuming there 

are no gas leakages through the separator, it is possible to use a simplified expression 

of equation [27] to take into account the effect of pressure on the cell voltage Urev 

derived from the Nernst equation. This simplified expression is given by equation [28]. 
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∆𝑈𝑐𝑒𝑙𝑙 =  𝑈𝑟𝑒𝑣(𝑇, 𝑝) −  𝑈𝑟𝑒𝑣(𝑇, 𝑝𝜃) =  
𝑅𝑇

2𝐹
ln [ (

𝑝−𝑝𝐻2𝑂
𝑠𝑎𝑡

𝑝𝜃
)

1

2]     [28] 

Real and wet gases 

Finally, to take into account the fact that real gases are produced instead of ideal gases 

(large operating pressures above 100 bars), it is necessary to use appropriate state 

equations that pertain to real gases (not considered here). 

3.7.6. Energy efficiency stack 

The energy efficiency of a liquid water electrolysis stack operating at temperature T and 

pressure p is equal to the mean energy efficiency of the individual cells, multiplied by the 

number N of cells in the stack. The energy consumption of auxiliaries (Waux) is not taken 

into account. In other words, a stack is equivalent to a single cell having a mean cell-

voltage value of Ucell = Ustack/N. Therefore, all the previous equations used to define the 

energy efficiency coefficient prevail. The only thing to be done is to replace Ucell with 

Ustack/N, whenever necessary, in these equations. 

NB: It is also possible to calculate the energy efficiency coefficient of the jth cell in a 

stack of N cells by setting: 

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑐𝑒𝑙𝑙
𝑗𝑡ℎ

                   [29] 

In cases where Ustack is used, the corresponding efficiency equations are as follows. 

Case 1: 

𝜀𝑠𝑡𝑎𝑐𝑘,𝑐𝑎𝑠𝑒1 =
𝑁·𝑈𝑡𝑛(𝑇,𝑝)

𝑁·𝑈𝑡𝑛(𝑇,𝑝)+ 𝑈𝑠𝑡𝑎𝑐𝑘(𝑇,𝑝)−𝑁·𝑈𝑟𝑒𝑣(𝑇,𝑝)
            [30] 

Case 2: 

𝜀𝑠𝑡𝑎𝑐𝑘,𝑐𝑎𝑠𝑒2 =
𝑁·𝑈𝑟𝑒𝑣(𝑇,𝑝)

𝑈𝑠𝑡𝑎𝑐𝑘(𝑇,𝑝)
                [31] 

Case 3: 

when Ucell > Utn  𝜀𝑠𝑡𝑎𝑐𝑘,𝑐𝑎𝑠𝑒3 =
𝑁·𝑈𝑡𝑛

𝑈𝑠𝑡𝑎𝑐𝑘
     [32] 

when Urev < Ucell ≤ Utn 𝜀𝑠𝑡𝑎𝑐𝑘,𝑐𝑎𝑠𝑒 3 =
𝑁·𝑛·𝐹·𝑈𝑡𝑛

𝑁·𝑛·𝐹·𝑈𝑡𝑛
= 1    [33] 

Case 4: 

𝜀𝑠𝑡𝑎𝑐𝑘,𝑐𝑎𝑠𝑒 4 =
𝑁·𝑛·𝐹·𝑈𝑡𝑛

𝑁·𝑛·𝐹·𝑈𝑡𝑛+𝑄𝑖𝑛𝑝𝑢𝑡
= 1             [34] 

With Ustack = N ·  [Ucell(T,p,I) + ΔUcell] and Qstack the heat balance at stack level as 

derived from equation[7], i.e.: 

Qstack = N· n·F· (Utn — Ucell) = n·F· (N· Utn — Ustack)    [35] 
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3.7.7. Energy efficiency system 

At system level, the energy consumption of all the necessary ancillary equipment (e.g. 

AC/DC conversion, water purification, water preheating, pumps for water circulation, 

hydrogen purification, hydrogen drying, process monitoring, etc.) used to operate the 

electrolyser are added to the denominator of the equations used for the definition of the 

energy efficiency coefficient. This term (Waux for auxiliary equipment in J.mol-1) is added 

to the energy requirement under irreversible (I  0) conditions. 

The efficiency equation for the system is the following: 

𝑁 ·𝑈𝑡𝑛(𝑇,𝑝)

𝑈𝑠𝑡𝑎𝑐𝑘+ 𝑊𝑎𝑢𝑥 (𝑛𝐹)⁄
        [36] 

The heat balance equation for the system is the following: 

Qsystem =n·F· (N· Utn – Ustack) + Waux      [37] 

3.7.8. Current efficiency 

 Current efficiency losses 3.7.8.1.

In an ideal water electrolysis cell where membranes/separators are assumed to be 

impermeable to gases, the current efficiency ε is equal to 100 %. However, the 

materials (polymer electrolyte for PEM or diaphragm for alkaline) are not fully 

impermeable. Mass transport of hydrogen and/or oxygen across the cell separator, 

especially when the cell is operated under pressure, is an issue that raises both safety 

and current-efficiency problems. Depending on the characteristics of the materials used 

in the cells, a fraction of the gases transported across the cell separator can react 

chemically or electrochemically. In conclusion, in a water electrolysis cell, the current 

efficiency is less than 100 % due to gas crossover or permeation effects. 

It is usually difficult to measure the gas flow rates accurately (in moles per second) for 

gases permeated through the membrane separator, 𝑛̇𝐻2_𝑙𝑜𝑠𝑠
 and 𝑛̇𝑂2_𝑙𝑜𝑠𝑠

, because the 

hydrogen flow rates could be relatively small (in single cell and short-stack laboratory 

tests), containing water vapour residues, and as already mentioned, due to the 

crossover and permeation effects, some hydrogen and oxygen can react together and 

produce water before the measurement procedure. 

 Current efficiency — single cell 3.7.8.2.

Fraction of the electric current passing through an electrochemical cell which 

accomplishes the desired chemical reaction. For a set of cell components and for a given 
cell design, the current efficiency 𝛈𝐈 is mainly a function of the operating temperature T, 

operating pressure p and operating current density. 

η𝐼(𝑇, 𝑝, 𝐼) = 1 −
2∙ 𝐹

𝐼𝐷𝐶
∙ [𝑛̇𝐻2_loss

(𝑇, 𝑝, 𝐼) + 2𝑛̇𝑂2_loss
(𝑇, 𝑝, 𝐼)]            [38] 

where 𝑛̇𝑖  is the molar flow of component (i) permeated through the membrane separator 

in moles per second, 2 is the number of Faraday per mole of H2 and 4 per mole of O2, 

and IDC the direct current provided, expressed in amperes. 
In an ideal water electrolysis cell, 𝑛̇𝐻2_𝑙𝑜𝑠𝑠

= 𝑛̇𝑂2_𝑙𝑜𝑠𝑠
= 0 and η

𝐼
(𝑇, 𝑝, 𝐼) = 1, independently of 

the operating conditions (T,p,I). 

In a real water electrolysis cell, 𝑛̇𝐻2_𝑙𝑜𝑠𝑠 ≠ 𝑛̇𝑂2_𝑙𝑜𝑠𝑠
≠ 0 and η

𝐼
(𝑇, 𝑝, 𝐼) < 1. 
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Under practical conditions, it is easier and more accurate to measure the hydrogen or 

the oxygen flow rates at the exhaust of the electrolyser instead of measuring H2 and O2 

cross-permeating flows, which are in many cases extremely small. Equation [39] (for 

hydrogen production) or equation [40] (for oxygen production) will then apply: 

𝜂𝐼
𝐻2 =

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐻2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐻2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 =  

2∙ 𝐹 ∙𝑛̇𝐻2 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝐷𝐶
              [39] 

𝜂𝐼
𝑂2 =

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑂2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 =  

4∙ 𝐹 ∙𝑛̇𝑂2 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝐷𝐶
              [40] 

The measurement of the relevant outlet gas, hydrogen or oxygen should be performed 

using a properly dimensioned and highly accurate mass flow meter located after the 

water-removal steps designed to remove more than 99.9 % of gas water content. The 

concentration of hydrogen in oxygen should be measured by gas chromatographic 

analysis or via other analytical techniques with a similar detection limit after a gas-

drying step. The molar fraction of the components in the outlet gases should be also 

measured, but under normal conditions it is assumed that traces of oxygen and water 

vapour in hydrogen or hydrogen and water vapour in oxygen are minor and thus usually 

negligible. In the event of high differential pressures and thin membranes (50 to 90 µm), 

current efficiency of about 98 % or even lower can instead be observed. Nevertheless, 

safety sensors to monitor the oxygen level in the hydrogen outlet or the hydrogen level 

in the oxygen outlet are strongly recommended to detect dangerous situations due to 

gas crossover of the separator. 

 Current efficiency — stack 3.7.8.3.

Stack current efficiency at the operating temperature and pressure that is defined as the 
ratio between the flow rate of the hydrogen produced, 𝑛̇𝐻2

, expressed in moles per 

second multiplied by the Faraday constant, and the direct current provided, 𝐼𝐷𝐶 , 

expressed in amperes multiplied by the number of cells, N. It is expressed as follows: 

𝜂𝐼 𝑠𝑡𝑎𝑐𝑘
𝐻2 =

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐻2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐻2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 =  

2∙ 𝐹 ∙𝑛̇𝐻2 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑁 𝐼𝐷𝐶
             [41] 

𝜂𝐼 𝑠𝑡𝑎𝑐𝑘
𝑂2 =

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑂2 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 =  

4∙ 𝐹 ∙𝑛̇𝑂2 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑁 𝐼𝐷𝐶
             [42] 

 Coulombic and faradic efficiencies  3.7.8.4.

These expressions have the same meaning as current efficiency. 

3.7.9. Total efficiency — single cell and stack 

Total efficiency, ηω , that is defined as the product of energy efficiency and current 

efficiency values. It can be applied at single cell or stack level: 

𝜂𝜔
𝑐𝑒𝑙𝑙 = 𝜀𝑐𝑒𝑙𝑙 ∙ 𝜂𝐼

𝑐𝑒𝑙𝑙                [43] 

𝜂𝜔
𝑠𝑡𝑎𝑐𝑘 = 𝜀𝑠𝑡𝑎𝑐𝑘 ∙ 𝜂𝐼

𝑠𝑡𝑎𝑐𝑘               [44] 
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3.7.10. Energy efficiency definition: industry viewpoint 

 Energy efficiency coefficient 3.7.10.1.

As already discussed earlier in this document (Section 3.7.1), the reference energy state 

used by the industry sector to define the energy efficiency coefficient of a water 

electrolysis cell, stack or system is different from the reference case used by the 

academic community. The general definition is: 

𝜂𝑐𝑒𝑙𝑙 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠
=

𝑊𝑡 (𝐽.𝑚𝑜𝑙−1)

𝑊𝑟 (𝐽.𝑚𝑜𝑙−1)
      [B] 

The energy content of products used at the numerator of the equation is usually the 

hydrogen heating value in oxygen (not in air), which is by definition the opposite of the 

standard enthalpy of the formation of one mole of water having HHV = ΔH0 = 

285.8 kJ mol-1. There are potentially different practices that will inevitably lead to 

different values of the energy efficiency coefficient. In order to facilitate comparison, it is 

necessary to list these different practices, as follows. 

 Some authors use the heating value of hydrogen combustion in air instead of 

oxygen. 

 Some authors use the HHV of hydrogen combustion in oxygen/air (leading to the 

formation of liquid water) and others use the LHV of hydrogen combustion in 

oxygen/air (leading to the formation of gaseous water). 

 Authors use different (T,p) conditions to calculate the energy content of their 

product. 

 The usual practice in industry is not to calculate the efficiency coefficient in 

percentage (as in the academic community) but instead to calculate the specific 

energy consumption of a system (e.g. in kWh/kgH2 or in kWh/Nm3
H2). 

The reason for such discrepancies is clear: the reference state is not unique but dictated 

by the applications. Therefore, the same electrolyser, when used for different 

applications, can have different efficiencies. Hence, there is a need to provide clear 

specifications to allow comparisons. 

The main issue is to specify the (T,p) conditions under which the reference energy 

content of hydrogen is calculated. These (T,p) conditions could be considered at the 

exhaust of the electrolysis cell stack or the (T,p) conditions at the exhaust of the plant, 

after gas treatment (oxygen removal, drying and possibly compression). 

Specifically, the instantaneous hydrogen production efficiency (based on the HHV) is 

defined as the ratio between the flow rate of the produced hydrogen, 𝑛 ̇H2, expressed in 

moles per second multiplied by the HHV expressed in joules per mole of hydrogen, and 

the total thermal and electric power provided to the system expressed in watts, i.e.: 

η𝐻𝐻𝑉 =
𝐻𝐻𝑉 ∙𝑛̇𝐻2

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙+𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙
               [45] 

Equation [45] provides a practical and general (energy + current) value of the efficiency. 

An integral form of equation [45] is needed to determine the specific energy 

consumption in kWh/kgH2. When the system is operated under stationary conditions, the 

expression (over a given time interval t) is simply: 

η𝐻𝐻𝑉 =
𝐻𝐻𝑉∙𝑛̇𝐻2∙t

𝑊𝑒+𝑄𝑐𝑒𝑙𝑙+𝑄𝐻2𝑂
 =  

𝐻𝐻𝑉∙𝑁𝐻2  

𝑊𝑒+𝑄𝑐𝑒𝑙𝑙+𝑄𝐻2𝑂
           [46] 
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where: 

 𝑛̇𝐻2
 is the number of moles of hydrogen produced over time (molar flow rate); 

 𝑁𝐻2
 is the number of moles of hydrogen produced over the time period t in 

question; 

 We = nF Ucell is the electrical energy input; 

 Qcell is the difference between the entropy change (TΔS) and the heat Qirrev 

associated with irreversible losses due to overvoltages of the electrochemical 

reactions and the joule effect in the internal resistance; 

 QH20 is the thermal energy input of the additional heat exchanger (external to the 

system) for further water heat-up. 

 Overall component efficiency 3.7.10.2.

Component efficiency for the HHV is defined as the ratio between the flow rate of the 

hydrogen produced, ṅH2
, expressed in moles per second multiplied by the HHV expressed 

in joules per mole, and the total thermal and electric power provided to the 

component expressed in watts as follows: 

η𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝐻𝐻𝑉 =

𝐻𝐻𝑉

𝑃𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑒𝑥𝑡𝑒𝑟𝑛
∙ 𝑛̇𝐻2

               [47] 

 Overall system efficiency 3.7.10.3.

At system level (stack + balance of plant), it is necessary to take into account the 

energy consumption of all the necessary ancillary equipment. System efficiency for the 

HHV is defined as the ratio between the flow rate of the hydrogen produced, ṅH2
, 

expressed in moles per second multiplied by the HHV expressed in J.mol-1, and the total 

thermal and electric power supplied to the system, for the operation of all ancillary 

equipment, expressed in watts. It is expressed in percentage as: 

η𝑠𝑦𝑠𝑡𝑒𝑚
𝐻𝐻𝑉 =

𝐻𝐻𝑉

𝑃𝑠𝑦𝑠𝑡𝑒𝑚 𝑒𝑥𝑡𝑒𝑟𝑛
∙ 𝑛̇𝐻2

           [48] 

 Other expressions of practical interest 3.7.10.4.

Some authors also calculate the energy efficiency coefficient of the system by 

multiplying the stack efficiency (assuming there is a current efficiency of 1) by the 

AC/DC conversion efficiency (in this case, the reference case is the enthalpy change of 

the reaction = case 3 of the definition used in the academic community, and the 

efficiency of gas conditioning is not taken into account): 

𝜀𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑁 · 𝑈𝑡𝑛(𝑇, 𝑝)

𝑈𝑠𝑡𝑎𝑐𝑘
 

This definition contains the same equation [32] as in case 3 under exothermal operation, 

which, multiplied by the AC/DC conversion efficiency, gives: 

𝜀𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑁·𝑈𝑡𝑛(𝑇,𝑝)

𝑈𝑠𝑡𝑎𝑐𝑘 
(
𝐴𝐶/𝐷𝐶

1+
)            [49] 

In equation [49],  is the ratio between parasitic power and net power consumed by the 

electrolyser due to the energy consumption by the auxiliaries. 
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AC/DC = efficiency of the AC/DC converter, DC/DC voltage regulator or power 

conditioner. 

Another equation of practical interest is obtained from equation [49] by taking into 

account the hydrogen current efficiency (10): 

𝜀𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑁·𝑈𝑡𝑛(𝑇,𝑝)

𝑈𝑠𝑡𝑎𝑐𝑘
·

2∙ 𝐹 ∙𝑛̇𝐻2

𝐼𝐷𝐶∙𝑁
·  (

𝐴𝐶/𝐷𝐶

1+
)           [50] 

3.7.11. Exergy analysis 

 Exergy definition 3.7.11.1.

In general terms exergy can be defined as the maximum work that can be extracted 

when a system is brought into equilibrium with its surroundings without incurring any 

losses (11). The efficiency of a process is defined as the exergy outflow used divided by 

the exergy inflow used. The term yield is brought together with exergy to replace the 

term efficiency, to avoid confusion between energy and exergy efficiency descriptors. 

Field of application 

The water-splitting reaction (chemical reaction) is analysed under constant (T,p,I) 

conditions only. The transformation takes place in a thermostatic reactor. The heat 

needed to bring tap water up to the operating temperature of interest is not taken into 

account in the efficiency calculation and the reaction products (H2 and O2) are considered 

under the same (T,p) conditions. 

The water electrolysis cell (device) is also analysed under constant (T,p,I) conditions, but 

the heat needed to bring tap water up to the operating temperature of interest is taken 

into account in the efficiency calculation and the (T,p) of product gases may differ from 

those of the reaction. 

The water electrolysis cell, stack and plant are thermodynamically open systems 

operating under either stationary or non-stationary conditions. The exergy balance can 
be established in integral form (J) or in power (J·s-1) or in specific power (J·s-1

·m-2). The 

exergy yield relates the exergy output to the exergy input. Due to internal irreversible 

degradation (mainly dissipation at cell and stack levels), the exergy output is less than 

the exergy input and the exergy yield is less than unity. To calculate the exergy yield, it 

is necessary to take into account the different exergy contributions, as follows. 

• The work or work power received from the DC power source (the exergy content of 

1 joule of electricity is equal to 1 joule). 

• The heat exergy (the heat exergy power or flow rate) associated with heat transfers 

(the exergy content of 1 joule of heat is modulated by the associated Carnot factor). 

• The transformation exergy (the transformation exergy power or flow rate) 

associated with the chemical reaction. This is the co-enthalpy balance of the water-

splitting reaction: 

∆𝑘 = ∑ 𝜈𝑖[(ℎ − ℎ𝑖
0) − 𝑇𝑒𝑛𝑣(𝑠𝑖 − 𝑠𝑖

0)]𝑖             [51] 

where: 

𝜈𝑖 = generalised stoichiometric reaction number; 

ℎ = enthalpy under operating conditions; 
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ℎ𝑖
0 = enthalpy under reference conditions; 

𝑇𝑒𝑛𝑣  = ambient temperature; 

𝑠𝑖 = entropy under operating conditions; 

𝑠𝑖
0 = entropy under reference conditions. 

The exergy yield can be defined on the basis of the overall efficiency formula used in the 

industry, equation [45], which takes into account the energy content of the hydrogen 

production, and the electrical and thermal energy inputs as (7): 

𝜁𝐻𝐻𝑉 =
𝐸𝐻𝐻𝑉∙𝑛̇𝐻2

𝐸̇𝑒+𝐸̇𝑞,𝑐𝑒𝑙𝑙(1−
𝑇𝑒𝑛𝑣
𝑇𝑐𝑒𝑙𝑙 

)+𝐸̇𝑞,𝐻2𝑂(1−
𝑇𝑒𝑛𝑣
𝑇𝑐𝑒𝑙𝑙 

)
               [52] 

where: 

ζHHV is the exergy yield of the water splitting reaction; 

EHHV in J/mole is the molar exergy value associated with the hydrogen production under 

(Tcell,Pcell) conditions (based on the HHV reaction because liquid water is electrolysed in a 

PEM water electrolysis cell) — the value is very close to the energy content; 

ṅH2
 in mol/s is the molar hydrogen flow; 

Ėe in J/s is the electricity exergy input from the DC power source; 

Ėq,cell in J/s is the exergy input to the PEM cell for the reaction; 

Tenv in K is the environment (ambient) temperature; 

Tcell in K is the operating temperature of the electrolysis cell; 

Ėq,H2O  in J/s is the exergy content of input water that is heated up from ambient 

temperature to operating temperature. 

 Relationship between energy efficiency and exergy yield 3.7.11.2.

Since PEM, AEM and AWE cells operate under near-ambient operating conditions, the 
exergy content of the heat flows (Ėq,cell and Ėq,H2O) is small because Tcell ≈ Tenv. Under 

these conditions, when an electrolyser operates in exothermic mode, the only thermal 

energy needed is for the heating of water added to the system to replace the one which 

is converted into hydrogen and oxygen. Therefore, the main type of energy supplied to 

the system is electrical, and as electricity has 100 % exergy content, the energy 

efficiency and exergy yield are similar. 

Also, the heat produced by a water electrolysis plant operating under near-ambient 

conditions has a low exergy value and cannot be used for work production. It is 

considered as a loss and can only be used for heating purposes. 

This is why an energy analysis is considered sufficient to determine the characteristics of 

a water electrolysis cell or stack operating in such near-ambient conditions. The situation 

is different for a high-temperature water electrolysis cell, but this analysis is not 

considered in this document. At system level, it is important to evaluate the exergy yield 

contribution by the different balance of plant components in order to obtain the total 

exergy yield of the system. 
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3.7.12. Equation summary tables 

The following tables provide a summary of the various efficiency equations presented in 

this document. 

Table 2: Energy efficiency 

ENERGY EFFICIENCY — 𝜺 

Single cell Note Equation No 

𝑼𝒓𝒆𝒗
𝟎

 
 = ΔG0/(n F) 1.229 V under SATP [3] 

𝑼𝒓𝒆𝒗(𝑻, 𝟏𝒂𝒕𝒎) = 𝟏. 𝟓𝟏𝟖𝟒 − 𝟏. 𝟓𝟒𝟐𝟏 ∙ 𝟏𝟎−𝟑 ∙ 𝑻 + 𝟗. 𝟓𝟐𝟑
∙ 𝟏𝟎−𝟓 ∙ 𝑻 ∙ 𝑳𝒏(𝑻) + 𝟗. 𝟖𝟒 ∙ 𝟏𝟎−𝟖𝑻𝟐 

Urev in the 0-100 °C 

temperature range 
[22] 

𝑼𝒕𝒏
𝟎

 
 = ΔH0/(n F) 1.481 V under SATP [4] 

𝑼𝒕𝒏(𝑻, 𝟏𝒂𝒕𝒎) = 𝟏. 𝟒𝟖𝟓 − 𝟏. 𝟒𝟗 ∙ 𝟏𝟎−𝟒 ∙ (𝑻 − 𝑻𝟎) − 𝟗. 𝟖𝟒
∙ 𝟏𝟎−𝟖 ∙ (𝑻 − 𝑻𝟎)𝟐 

Utn in the 0-100 °C 

temperature range 
[23] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟏 =
𝑼𝒕𝒏

𝑼𝒕𝒏 +  𝑼𝒄𝒆𝒍𝒍 − 𝑼𝒓𝒆𝒗
 

Case 1 

Constant heat 

input-based 

definition 

[9] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟏 =
𝑼𝒕𝒏(𝑻, 𝒑)

𝑼𝒕𝒏(𝑻, 𝒑) +  𝑼𝒄𝒆𝒍𝒍(𝑻, 𝒑) − 𝑼𝒓𝒆𝒗(𝑻, 𝒑)
 

Case 1 

For any T,p 

conditions 

[11] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟐 =  
𝑼𝒓𝒆𝒗

 𝑼𝒄𝒆𝒍𝒍
 

Case 2 

Free energy-based 

definition 

[12] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟐(𝑻, 𝒑) =
𝑼𝒓𝒆𝒗(𝑻, 𝒑)

𝑼𝒄𝒆𝒍𝒍(𝑻, 𝒑)
 

Case 2 

For any T,p 

conditions 

[14] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟑 =
𝒏 · 𝑭 · 𝑼𝒕𝒏

𝒏 · 𝑭 · 𝑼𝒕𝒏
 

Case 3 𝜀 = 1 

When Urev < Ucell 

≤ Utn 

[15] 

[16] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟑 =
𝑼𝒕𝒏

𝑼𝒄𝒆𝒍𝒍
 

Case 3 

Enthalpy-based 

definition when 

Ucell>Utn 

[17] 
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𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟑 =
𝑼𝒕𝒏 (𝑻, 𝒑)

𝑼𝒄𝒆𝒍𝒍 (𝑻, 𝒑)
 

Case 3 when 

Ucell>Utn 

For any T,p 

conditions 

[18] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟒 =
𝒏 · 𝑭 · 𝑼𝒕𝒏

𝒏 · 𝑭 · 𝑼𝒄𝒆𝒍𝒍 + 𝑸𝒊𝒏𝒑𝒖𝒕
 Case 4 [21] 

∆𝑼𝒄𝒆𝒍𝒍  =
𝑹𝑻

𝟐𝑭
 𝐥𝐧 [ (

𝒑𝑨 − 𝒑𝑯𝟐𝑶
𝒔𝒂𝒕

𝒑𝜽
)

𝟏
𝟐 (

𝒑𝑪 − 𝒑𝑯𝟐𝑶
𝒔𝒂𝒕

𝒑𝜽 )

/ (
𝒑𝑯𝟐𝑶

𝒑𝜽 )] 

Water saturated 

and ideal gas 

pressure correction 

voltage 

 

[27] 

 

Qcell = n·F·(Utn — Ucell) 

Cell heat balance 

Qcell < 0 rejected 

Qcell > 0 absorbed 

[7] 

Stack   

𝜺𝒔𝒕𝒂𝒄𝒌,𝒄𝒂𝒔𝒆𝟏 =
𝑵 · 𝑼𝒕𝒏(𝑻, 𝒑)

𝑵 · 𝑼𝒕𝒏(𝑻, 𝒑) +  𝑼𝒔𝒕𝒂𝒄𝒌(𝑻, 𝒑) − 𝑵 · 𝑼𝒓𝒆𝒗(𝑻, 𝒑)
 Case 1 [30] 

𝜺𝒔𝒕𝒂𝒄𝒌,𝒄𝒂𝒔𝒆𝟐 =
𝑵 · 𝑼𝒓𝒆𝒗(𝑻, 𝒑)

𝑼𝒔𝒕𝒂𝒄𝒌(𝑻, 𝒑)
 Case 2 [31] 

𝜺𝒔𝒕𝒂𝒄𝒌,𝒄𝒂𝒔𝒆 𝟑 =
𝑵 · 𝑼𝒕𝒏

𝑼𝒔𝒕𝒂𝒄𝒌
 

Case 3 when: 

Ucell> Utn 
[32] 

𝜺𝒔𝒕𝒂𝒄𝒌,𝒄𝒂𝒔𝒆𝟑 =
𝑵·𝒏·𝑭·𝑼𝒕𝒏

𝑵·𝒏·𝑭·𝑼𝒕𝒏
 = 1 

Case 3 when: 

Urev < Ucell ≤ Utn 
[33] 

𝜺𝒄𝒆𝒍𝒍,𝒄𝒂𝒔𝒆𝟒 =
𝒏 · 𝑭 · 𝑼𝒕𝒏

𝑵 · 𝒏 · 𝑭 · 𝑼𝒄𝒆𝒍𝒍 + 𝑸𝒊𝒏𝒑𝒖𝒕 𝒔𝒕𝒂𝒄𝒌
 

Case 4 when: 

Urev < Ucell < Utn 
[34] 

 

Qstack = n·F·(N·Utn — Ustack) 

Stack heat balance: 

Qstack < 0 rejected 

Qstack > 0 absorbed 

[35] 

System   

𝑵
 𝑼𝒕𝒏(𝑻, 𝒑)

𝑼𝒔𝒕𝒂𝒄𝒌 +  𝑾𝒂𝒖𝒙 (𝒏𝑭)⁄
 System efficiency [36] 

Qsystem = n·F·(N ·Utn — Ustack) + Waux Heat balance [37] 
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Table 3: Current efficiency 

 

  

CURRENT EFFICIENCY — 𝜼𝑰 

Single cell Note Equation No 

𝛈𝑰(𝑻, 𝑷, 𝑰) = 𝟏 −
𝟐 ∙  𝑭

𝑰𝑫𝑪

∙ [𝒏̇𝑯𝟐_𝐥𝐨𝐬𝐬
(𝑻, 𝒑, 𝑰) + 𝟐𝒏̇𝑶𝟐_𝐥𝐨𝐬𝐬

(𝑻, 𝒑, 𝑰)] 

General formula 

(academic viewpoint) 
[38] 

𝜼𝑰
𝑯𝟐 =

𝟐 𝑭 𝒏̇𝑯𝟐 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

𝑰𝑫𝑪
 

Hydrogen production 

efficiency 

(industry viewpoint) 

[39] 

𝜼𝑰
𝑶𝟐 =

𝟒 𝑭 𝒏̇𝑶𝟐 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

𝑰𝑫𝑪
 

Oxygen production 

efficiency 

(industry viewpoint) 

[40] 

Stack   

𝛈𝑰𝒔𝒕𝒂𝒄𝒌
𝑯𝟐 =

𝟐 ∙  𝑭 ∙ 𝒏̇𝑯𝟐

𝑰𝑫𝑪 ∙ 𝑵
 

Hydrogen production 

efficiency 

(industry viewpoint) 

[41] 

𝛈𝑰𝒔𝒕𝒂𝒄𝒌
𝑶𝟐 =

𝟒 ∙ 𝑭 ∙ 𝒏̇𝑶𝟐 

𝑰𝑫𝑪 𝑵
 

Oxygen production 

efficiency 

(industry viewpoint) 

[42] 
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Table 4: Overall efficiency 

 

OVERALL EFFICIENCY — 𝛈𝛚 

Single cell Note Equation No 

𝜼𝝎
𝒄𝒆𝒍𝒍 = 𝜺𝒄𝒆𝒍𝒍 ∙ 𝜼𝑰

𝒄𝒆𝒍𝒍  
Total efficiency 

(academic viewpoint) 
[43] 

𝛈𝑯𝑯𝑽 =
𝑯𝑯𝑽 ∙

𝑷𝒕𝒉𝒆𝒓𝒎𝒂𝒍 + 𝑷𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍
∙ 𝒏̇𝑯𝟐

 
Instantaneous cell 

efficiency 

(industry viewpoint) 

[45] 

𝛈𝑯𝑯𝑽 =
𝑯𝑯𝑽 ∙ 𝒏̇𝑯𝟐

∙ 𝐭

𝑾𝒆 + 𝑸𝒄𝒆𝒍𝒍 + 𝑸𝑯𝟐𝑶
 

Integral form of cell 

efficiency (stationary 

operating conditions) 

[46] 

Stack   

𝜼𝝎
𝒔𝒕𝒂𝒄𝒌 = 𝜺𝒔𝒕𝒂𝒄𝒌 ∙ 𝜼𝑰

𝒔𝒕𝒂𝒄𝒌  
Total efficiency 

(academic viewpoint) 
[44] 

Component   

𝛈
𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕
𝑯𝑯𝑽 =

𝑯𝑯𝑽

𝑷𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝒆𝒙𝒕𝒆𝒓𝒏

𝒏̇𝑯𝟐
 Component efficiency [47] 

System   

𝛈
𝒔𝒚𝒔𝒕𝒆𝒎
𝑯𝑯𝑽 =

𝑯𝑯𝑽

𝑷𝒔𝒚𝒔𝒕𝒆𝒎 𝒆𝒙𝒕𝒆𝒓𝒏

∙ 𝒏̇𝑯𝟐
 System efficiency 

(industry viewpoint) 
[48] 

𝜺𝒔𝒚𝒔𝒕𝒆𝒎 =
𝑵 · 𝑼𝒕𝒏(𝑻, 𝒑)

𝑼𝒔𝒕𝒂𝒄𝒌 
(


𝑨𝑪/𝑫𝑪

𝟏 + 
) 

System efficiency 

excluding faradic 

efficiency 

(industry viewpoint) 

[49] 

𝜺𝒔𝒚𝒔𝒕𝒆𝒎 =
𝑵 · 𝑼𝒕𝒏(𝑻, 𝒑)

𝑼𝒔𝒕𝒂𝒄𝒌
·

𝟐 ∙  𝑭 ∙ 𝒏̇𝑯𝟐

𝑰𝑫𝑪 ∙ 𝑵
·  (

𝑨𝑪/𝑫𝑪

𝟏 + 
) 

System efficiency 

including faradic 

efficiency 

(industry viewpoint) 

[50] 
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Table 5: Exergy yield (3) 

 

3.7.13. Reversible potential (Erev) 

Minimum necessary cell voltage needed to start water electrolysis as in equation [3]. 

Note 1 to entry: under SATP conditions it is expressed as E° and its value is 1.229 V 

3.7.14. Reversible voltage (Vrev) 

See reversible potential. 

3.7.15. Thermoneutral potential (Etn) 

Voltage at which an electrolysis cell/stack/system operating at a given temperature can 

operate without producing excess heat. See equation [4]. 

Note 1 to entry: under SATP conditions it is expressed as Etn
0  and its value is 1.481 V. 

3.7.16. Thermoneutral voltage (vtn) 

See thermoneutral potential. 

 Electrical power 3.8.

3.8.1. Cell electrical power density 

Input power per cell cross section. 

Note 1 to entry: it is expressed in W/m2. 

3.8.2. Electrical power — apparent 

Square root of the sum of the squares of the active and reactive powers (4). 

3.8.3. Electrical power — reactive 

For sinusoidal quantities in a two-wire circuit, the product of the voltage, the current and 

the sine of the phase angle between them. In a multiphase circuit, the sum of the 

reactive powers of the phases (4). 

                                           

 

(3) Exergy yield expressions for components and systems are not covered in this report. 

EXERGY YIELD — 𝜻𝑯𝑯𝑽 

Single cell Note Equation No 

𝜻𝑯𝑯𝑽 =
𝑬𝑯𝑯𝑽 ∙ 𝒏̇𝑯𝟐

𝑬̇𝒆 + 𝑬̇𝒒,𝒄𝒆𝒍𝒍 (𝟏 −
𝑻𝒆𝒏𝒗

𝑻𝒄𝒆𝒍𝒍 
) + 𝑬̇𝒒,𝑯𝟐𝑶(𝟏 −

𝑻𝒆𝒏𝒗

𝑻𝒄𝒆𝒍𝒍 
)
 

 [52] 
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3.8.4. Electrical power — real 

For sinusoidal quantities in a two-wire circuit, the product of the voltage, the current and 

the cosine of the phase angle between them. In a multiphase circuit, the sum of the 

active powers of the individual phases (4). 

3.8.5. Electrical power factor 

Ratio of the total active power in watts to the total apparent power in volt-amperes (the 

product of root-mean-square voltage and root-mean-square current). 

Leading. A designation of the relative instantaneous direction of the currents to the 

voltages (angle is 0 to – 90°). 

Lagging. A designation of the relative instantaneous direction of the currents to the 

voltages (angle is 0 to + 90°) (4). 

3.8.6. Electrical power input rated or nominal 

Maximum continuous electrical power input that a device is designed to achieve under 

normal operating conditions specified by the manufacturer. 

Note 1 to entry: it is expressed in W, kW. 

3.8.7. Parasitic load 

Power consumed by auxiliary machines and equipment such as balance of plant 

necessary to operate an electrolyser system (2). 

Note 1 to entry: it is expressed in W, kW. 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.8.8. Power system capacity — rated 

Maximum capacity of the system, in terms of power, as rated by the manufacturer. 

Note 1 to entry: it is expressed in kW or MW. 

3.8.9. Power stack capacity — rated 

Maximum stack capacity, in terms of electrical DC power, as rated by the manufacturer 

(kW direct current). 

Note 1 to entry: it is expressed in kW or MW. 

3.8.10. Power supply range 

Functional range of an electrolysis system between its minimum power operating value 

and 100 % (full-scale) rated power DC charge. 

3.8.11. Rated power 

Value stated on the device’s nameplate. It is the power to be provided at the input 

terminals of a component or piece of equipment that is operated in compliance with the 

manufacturer’s performance specifications (4). 
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 Gas crossover 3.9.

Gas permeation through the separation membrane leading to the transport of hydrogen 

to the oxygen side and vice versa, leading to safety and efficiency-reduction issues. 

This phenomenon is due to various transport mechanisms: differential pressure, 

diffusion, electro-osmotic drag and ion flux densities. 

 Gas leakage 3.10.

Sum of all gases leaving the electrolyser module except the intended exhaust gases (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Gas tightness 3.11.

System characteristic that ensures that no exchange of fluids and gases between two or 

more compartments of a device occurs, i.e. between anode and cathode or the 

surrounding space (4). 

 Grid or electricity network 3.12.

Plant and apparatus that are connected for transmitting or distributing electricity (3). 

3.12.1. Balance regulation 

Balance regulation refers to the regulation actions taken in order to maintain the 

frequency and time deviation of the electricity grid in accordance with the established 

quality requirements. Regulation is also carried out for network reasons. 

3.12.2. Connection point 

Interface at which the power-generating module, demand facility and distribution system 

are connected to a transmission system, offshore network and distribution system, 

including closed distribution systems, as identified in the connection agreement between 

the relevant system operator and either the power-generating or demand facility 

owner (3). 

3.12.3. Control area 

Coherent part of the interconnected system operated by a single system operator and 

including any connected physical loads and/or generation units (5). 

[Source: ENTSO-E glossary] 

3.12.4. Control reserve 

Energy stock to be used to control the frequency of the power supply network in case of 

unpredictable variations in energy injection and withdrawal. 

The reserve can be either positive, in order to balance deficits of the network, or 

negative, in case of surplus balance. 

3.12.5. Distribution system 

Transport of electricity on high-voltage, medium-voltage and low-voltage distribution 

systems with a view to delivering it to customers, but does not include supply (5). 

[Source: ENTSO-E glossary] 
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3.12.6. Distribution network 

Electrical network, including closed distribution networks, for the distribution of electrical 

power from and to third parties connected to it, a transmission or another distribution 

network (5). 

[Source: ENTSO-E glossary] 

3.12.7. Distribution network operator 

Either a distribution system operator (DSO) or a closed distribution system operator (5). 

[Source: ENTSO-E glossary] 

3.12.8. Disturbance 

Unplanned event that may cause the transmission system to divert from its normal 

state (5). 

[Source: ENTSO-E glossary] 

3.12.9. Energy from renewable sources 

Energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, 

hydrothermal and ocean energy, hydropower, biomass, landfill gas, sewage treatment 

plant gas and biogases (5). 

[Source: ENTSO-E glossary] 

3.12.10. Energy-storage device 

Device being used for the storage of electrical energy and that can be used to balance 

the system (5). 

[Source: ENTSO-E glossary] 

3.12.11. Electrical time deviation 

Time discrepancy between synchronous time and coordinated universal time (5). 

[Source: ENTSO-E glossary] 

3.12.12. Electrical system frequency 

Electrical frequency of the system expressed in hertz that can be measured in all parts of 

the synchronous area under the assumption of a consistent value for the system within a 

time frame of seconds, with only minor differences between different measurement 

locations. Its nominal European value is 50 Hz (5). 

[Source: ENTSO-E glossary] 

3.12.13. Frequency control 

Capability of a power-generating module or high-voltage DC system to adjust its active 

power output in response to a measured deviation of system frequency from a set point, 

in order to maintain stable system frequency (3,5). 

 Load-frequency control area 3.12.13.1.

Part of a synchronous area or an entire synchronous area, physically demarcated by 

points of measurement at interconnectors to other load-frequency control (LFC) areas, 
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operated by one or more transmission system operators (TSOs) fulfilling the obligations 

of LFC (5). 

[Source: ENTSO-E glossary] 

3.12.14. Frequency-controlled normal operation reserve 

Momentarily available active power for frequency regulation in the range of 49.9-50.1 Hz 

and which is activated automatically by the system frequency. 

3.12.15. Frequency containment reserves 

Active power reserves available to contain system frequency after the occurrence of an 

imbalance (5). 

[Source: ENTSO-E glossary] 

 Frequency containment reserve full activation frequency 3.12.15.1.
deviation 

Rated value of frequency deviation at which the frequency containment reserve in a 

synchronous area is fully activated (5). 

[Source: ENTSO-E glossary] 

3.12.16. Frequency response deadband 

Interval used intentionally to make the frequency control unresponsive (5). 

[Source: ENTSO-E glossary] 

3.12.17. Frequency deviation 

Difference, which can be negative or positive, between the actual and nominal frequency 

of the synchronous area (5). 

[Source: ENTSO-E glossary] 

 Instantaneous frequency deviation 3.12.17.1.

Set of data measurements of the overall system frequency deviations for the 

synchronous area with a measurement period equal to or shorter than 1 second used for 

system frequency quality evaluation purposes (5). 

[Source: ENTSO-E glossary] 

 Maximum instantaneous frequency deviation 3.12.17.2.

Maximum expected absolute value of an instantaneous frequency deviation after the 

occurrence of an imbalance equal to or less than the reference incident, beyond which 

emergency measures are activated (5). 

[Source: ENTSO-E glossary] 

 Maximum steady-state frequency deviation 3.12.17.3.

Maximum expected frequency deviation after the occurrence of an imbalance equal to or 

less than the reference incident at which the system frequency is designed to be 

stabilised (5). 

[Source: ENTSO-E glossary] 
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 Steady-state frequency deviation 3.12.17.4.

Absolute value of the frequency deviation after the occurrence of an imbalance, once the 

system frequency has been stabilised (5). 

[Source: ENTSO-E glossary] 

3.12.18. Frequency restoration control error 

Control error for the Frequency Restoration Process (FRP) which is equal to the Area 

Control Error (ACE) of a Load Frequency Control (LFC) area or equal to the frequency 

deviation where the LFC area geographically corresponds to the synchronous area (5). 

[Source: ENTSO-E glossary] 

3.12.19. Frequency restoration process 

Process that aims at restoring the frequency to nominal and, for synchronous areas 

consisting of more than one LFC area, a process that aims at restoring the power 

balance to the scheduled value (5). 

[Source: ENTSO-E glossary] 

 Frequency restoration reserves 3.12.19.1.

Active power reserves available to restore the system frequency to nominal, and for 

synchronous areas consisting of more than one LFC area, to restore the power balance 

to the scheduled value (5). 

[Source: ENTSO-E glossary] 

 Automatic frequency restoration reserves 3.12.19.2.

Frequency restoration reserves that can be activated by an automatic control device (5). 

[Source: ENTSO-E glossary] 

 Automatic frequency restoration reserve full activation time 3.12.19.3.

Time period between the setting of a new set-point value by the frequency restoration 

controller and the corresponding activation or deactivation of automatic frequency 

restoration reserves (FRR) (5). 

[Source: ENTSO-E glossary] 

 Manual frequency restoration reserves 3.12.19.4.

Frequency restoration reserves that can be activated manually. 

 Manual frequency restoration reserve full activation time 3.12.19.5.

Time period between the set-point change and the corresponding activation or 

deactivation of manual FRR (5). 

[Source: ENTSO-E glossary] 

3.12.20. Frequency restoration range 

System frequency range to which the system frequency is expected to return in the 

Great Britain, Ireland/Northern Ireland and Nordic synchronous areas, after the 

occurrence of an imbalance equal to or less than the reference incident within the time 

to restore frequency (5). 

[Source: ENTSO-E glossary] 
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3.12.21. Frequency set-point 

Frequency target value used in the FRP, defined as the sum of the nominal system 

frequency and an offset value needed to reduce an electrical time deviation (5). 

[Source: ENTSO-E glossary] 

3.12.22. Full activation time 

Time period between the activation request by the TSO and the corresponding full 

activation of the product concerned (5). 

[Source: ENTSO-E glossary] 

3.12.23. Grid-connected operation 

Mode in which the system is operated while connected to a utility grid. 

3.12.24. Grid control 

In the event of a major load fluctuation such as a power station outage or other 

unpredictable variations in energy injection and withdrawal in the grid, a set of different 

control reserves, primary, secondary and tertiary, can be activated at different ramp 

rates and time steps, as described in Figure 14 below. 

 

Figure 14: Grid control sequence of activation 

 Replacement reserves 3.12.24.1.

Active power reserves available to restore or support the required level of FRR to be 
prepared for additional system imbalances, including operating reserves (5). 

[Source: ENTSO-E glossary] 



 

EU HARMONISED TERMINOLOGY FOR LOW-TEMPERATURE WATER 
ELECTROLYSIS FOR ENERGY STORAGE-APPLICATIONS 

 

 

55 

 Reserve replacement process 3.12.24.1.

Process to restore the activated FRR and, additionally for Great Britain and 

Ireland/Northern Ireland, to restore the activated frequency containment reserve (5). 

[Source: ENTSO-E glossary] 

 Primary control reserve 3.12.24.2.

This is the first and fastest control stock reserve to be used in the event of grid 

frequency disturbance. It is deployed automatically with a proportional regulation for the 

re-establishment of the network frequency balance between energy production and 

consumption as quickly as possible. The complete deployment time of primary control 

reserve  depends on the country. It is usually around 15-30 seconds (6). 

[Source: ENTSO-E, Supporting document for the network code on load-frequency control 

and reserves, 28 June 2013] 

 Primary reserve 3.12.24.3.

Reserve performing primary control by automatically changing the working points 

regulated by the frequency (6). 

Note 1 to entry: obsolete term replaced by frequency containment reserves. 

[Source: ENTSO-E, Supporting document for the network code on load-frequency control 

and reserves, 28 June 2013] 

 Secondary control reserve 3.12.24.4.

Stock which is deployed automatically in a selective manner in those control areas where 

network imbalance occurs for the re-establishment of the frequency setting of 50 Hz 

between energy production and consumption. 

It is started within 30 seconds of the imbalance and can last up to 15 minutes (6). 

Note 1 to entry: obsolete term replaced by FRR. 

[Source: ENTSO-E, Supporting document for the network code on load-frequency control 

and reserves, 28 June 2013] 

 Secondary control 3.12.24.5.

Secondary control is a centralised automatic function to regulate the generation in a 

control area based on secondary control reserves in order: to maintain its interchange 

power flow at the control program with all other control areas (and to correct the loss of 

capacity in a control area affected by a loss of production); and, at the same time (in the 

event of a major frequency deviation originating from the control area, particularly after 

the loss of a large generation unit), to restore the frequency in the event of a frequency 

deviation originating from the control area to its set value in order to free the capacity 

engaged by the primary control (and to restore the primary control reserves). In order 

to fulfil these functions, secondary control operates by the network characteristic 

method. Secondary control is applied to selected generator sets in the power plants 

comprising this control loop. Secondary control operates for periods of several minutes 

and is therefore dissociated from primary control (6). 

[Source: ENTSO-E, Supporting document for the network code on load-frequency control 

and reserves, 28 June 2013] 

 Tertiary control reserve 3.12.24.6.

Power which can be connected (automatically or manually) under tertiary control in 

order to provide an adequate secondary control reserve is known as the tertiary control 
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reserve or minute reserve. This reserve must be used in such a way that it will 

contribute to the restoration of the secondary control range when required. The 

restoration of an adequate secondary control range may take, for example, up to 

15 minutes, whereas tertiary control for the optimisation of the network and generating 

system will not necessarily be complete after this time (6). 

Note 1 to entry: obsolete term replaced by replacement reserves. 

[Source: ENTSO-E, Supporting document for the network code on load-frequency control 

and reserves, 28 June 2013] 

3.12.25. Grid current 

Rate at which the electric charge flows, measured by the root-mean-square value of the 

positive sequence of the phase current at fundamental frequency (5). 

[Source: ENTSO-E glossary] 

3.12.26. Grid standard frequency range 

Defined symmetrical interval around the nominal frequency within which the system 

frequency of a synchronous area is supposed to be operated (5). 

[Source: ENTSO-E glossary] 

3.12.27. Grid voltage 

Difference in electrical potential between two points measured as the root-mean-square 

value of the positive sequence phase-to-phase voltages at fundamental frequency (5). 

[Source: ENTSO-E glossary] 

3.12.28. Grid voltage control 

Manual or automatic control actions at the generation node, at the end nodes of the AC 

lines or high-voltage DC systems, on transformers, or other means, designed to maintain 

the set voltage level or the set value of reactive power (5). 

[Source: ENTSO-E glossary] 

3.12.29. Grid voltage stability 

Ability of a transmission system to maintain acceptable voltages at all nodes in the 

transmission system in the N-situation and after being subjected to a disturbance (5). 

[Source: ENTSO-E glossary] 

3.12.30. Grid time to recover frequency 

Maximum expected time after the occurrence of an imbalance less than or equal to the 

reference incident in which the system frequency returns to the maximum steady-state 

frequency deviation. This parameter is used in Great Britain and Ireland only (in larger 

synchronous areas it is not necessary to require power-generating modules to operate 

continuously within higher system frequency ranges) (5). 

[Source: ENTSO-E glossary] 
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3.12.31. Grid frequency recovery range 

System frequency range to which the system frequency is expected to return after the 

occurrence of an imbalance equal to or less than the reference incident within the time 

to recover frequency (5). 

[Source: ENTSO-E glossary] 

3.12.32. Time to restore frequency 

Maximum expected time after the occurrence of an instantaneous power imbalance less 

than or equal to the reference incident in which the system frequency returns to the 

frequency restoration range for synchronous areas with only one LFC area; and in the 

case of synchronous areas with more than one LFC area, the maximum expected time 

after the occurrence of an instantaneous power imbalance of an LFC area within which 

the imbalance is compensated for (5). 

[Source: ENTSO-E glossary] 

3.12.33. Grid frequency restoration range 

Range to which the system frequency should be restored after the time to restore 

frequency since the occurrence of a reference incident has elapsed (5). 

[Source: ENTSO-E glossary] 

 

Figure 15: Frequency quality parameters 

3.12.34. Grid-independent or isolated operation 

See island operation. 
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3.12.35. Island operation 

Independent operation of a whole network or part of a network that is isolated after 

being disconnected from the interconnected system, having at least one power-

generating module or high-voltage DC system supplying power to this network and 

controlling the frequency and voltage (3,5). 

[Source: ENTSO-E glossary] 

3.12.36. Metering grid area 

Physical area where consumption, production and exchange can be metered. It is 

delimited by the placement of meters for period measurement for input to and 

withdrawal from the area. It can be used to establish the sum of consumption and 

production with no period measurement and network losses (5). 

[Source: ENTSO-E glossary] 

3.12.37. Metering point 

Entity where energy products are measured or computed (5). 

[Source: ENTSO-E glossary] 

3.12.38. Network frequency 

See electrical system frequency. 

3.12.39. Offshore grid connection system 

Complete interconnection between an offshore connection point and the onshore system 

at the onshore grid interconnection point (5). 

[Source: ENTSO-E glossary] 

3.12.40. Offshore power park module 

Power park module located offshore with an offshore connection point (5). 

[Source: ENTSO-E glossary] 

3.12.41. Power-generating facility 

Facility that converts primary energy into electrical energy and which consists of one or 

more power-generating modules connected to a network at one or more connection 

points (3). 

3.12.42. Power-generating module 

This means either a synchronous power-generating module or a power park module (3). 

3.12.43. Renewable energy sources 

Renewable non-fossil energy sources (wind, solar, geothermal, wave, tidal, hydropower, 

biomass, landfill gas, sewage treatment plant gas and biogases) (5). 

[Source: ENTSO-E glossary] 
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3.12.44. Tertiary control 

Tertiary control is a change in the set-points of participating generations or loads, in 

order to guarantee the provision of secondary control reserves at the right time and 

distribute the secondary control power to the various generations in the best possible 

way (6). 

[Source: ENTSO-E, Supporting document for the network code on load-frequency control 

and reserves, 28 June 2013] 

3.12.45. Reserve provider 

Legal entity with a legal or contractual obligation to supply frequency containment 

reserves, FRR or replacement reserves from at least one reserve-providing unit or 

reserve-providing group (5). 

[Source: ENTSO-E glossary] 

3.12.46. Transmission system operator 

Natural or legal person responsible for operating, ensuring the maintenance of and, if 

necessary, developing the transmission system in a given area and, where applicable, its 

interconnections with other systems, and for ensuring the long-term ability of the system 

to meet reasonable demands for the transmission of electricity (5). 

[Source: ENTSO-E glossary] 

 Heating value 3.13.

Value of the heat of combustion of a fuel defined by the heat supplied to a thermal 

system by the entire reaction enthalpy of the exothermal combustion reaction under 

standard conditions (25 °C, 105 Pa) 

Note 1 to entry: it is expressed in kJ mol-1. 

Note 2 to entry: the heating value is thus the negative reaction enthalpy of the 

combustion reaction. 

3.13.1. Lower heating value 

Value of the heat of combustion of a fuel as measured by allowing all products of 

combustion to remain in the gaseous state. This method of measurement does not take 

into account the heat energy put into the vaporisation of water (heat of vaporisation). 

3.13.2. Higher heating value 

Value of the heat of combustion of a fuel as measured by reducing all of the products of 

combustion back to their original temperature and condensing all water vapour formed 

by combustion. This value takes into account the heat of vaporisation of water (4). 

 Hydrogen 3.14.

Chemical element with atomic number 1, naturally available as diatomic molecule H2, in 

highly flammable, colourless, odourless gaseous form. 

3.14.1. Hydrogen production rate 

Amount of H2 produced by an electrolysis cell/stack/system during a specified time 

interval at a rated power with a defined purity. 
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Note 1 to entry: it is expressed in kg/h or kg/day. 

 Nominal hydrogen weight capacity 3.14.1.1.

Nominal daily hydrogen production rate by weight. 

Note 1 to entry: it is expressed in kg/day. 

 Nominal hydrogen volume capacity 3.14.1.2.

Nominal hourly hydrogen production rate by volume. 

Note 1 to entry: it is expressed in Nm3/h. 

 Key performance indicator 3.15.

Metric parameter used to quantify the relevant process parameters for a specific 

task/process/system. 

 Operating conditions 3.16.

Test or standardised operating conditions that have been predetermined to be the basis 

of the test in order to have reproducible, comparable sets of test data (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Operational mode 3.17.

Any combination of operating conditions. 

3.17.1. Constant current operation 

Operational mode when the electrolyser is operated at a constant current (galvanostatic 

mode) (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.17.2. Cold state 

Non-operative state of a cell/stack/system when it is at ambient temperature with no 

power input or output (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.17.3. Nominal operation mode 

Operation of the device using the parameter setting defined to obtain the nominal 

performances as defined in the technical specifications. 

3.17.4. Regulation mode 

Mode of operation where the device is working using a variable power, i.e. provided by 

the network to compensate for grid imbalances. 

3.17.5. Regulation profile 

Variable power profile such as the grid power profile resulting from energy injection and 

withdrawal. This can be affected by renewable energy sources, energy fluctuations and 

network disturbances. 
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3.17.6. Shutdown 

Sequence of operations, specified by the manufacturer, that occurs to stop the system 

and all its reactions in a safe and controlled manner. 

 Emergency shutdown 3.17.6.1.

Control system actions, based on process parameters or manually activated, taken to 

stop the system and all its reactions immediately to avoid equipment damage and/or 

personnel hazards (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Scheduled shutdown 3.17.6.2.

Shutdown of a power system for routine matters. 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.17.7. Standby state 

System condition without hydrogen/oxygen output that allows a fast restart of the 

system. 

 Cold standby state 3.17.7.1.

Non-operating state of equipment turned off and ready for immediate start. 

 Warm standby state 3.17.7.2.

Operating state of equipment powered and warmed up at a temperature that allows a 

fast restart of the system. 

 Hot standby state 3.17.7.3.

Operating state of equipment powered and warmed up and ready for immediate service 

operation. 

3.17.8. Steady state 

State of a physical system in which the relevant characteristics/operating parameters 

remain constant over time (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Operational parameters 3.18.

3.18.1. Generating time 

Cumulative duration of the time intervals required for hydrogen generation. 

3.18.2. Initial response time 

Time needed after a set-point change of a parameter to begin changing the output. 

3.18.3. Total response time 

Time needed after a set-point change of a parameter to reach a new value. 

3.18.4. Operating profile 

Description of the system power profile versus operating time. 
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 Steady state profile 3.18.4.1.

Mode of operation of the system when electrical power consumed or produced is 

constant over time. 

 Intermittent profile 3.18.4.2.

Mode of operation of the system when electrical power consumed or produced is variable 

over time. 

3.18.5. Operating temperature 

Temperature at which the electrolyser (cell/stack/system) operates (8). 

3.18.6. Overload capability 

Overload capability is the ability of the electrolysis system to operate beyond the 

nominal operating and design point for a limited period of time, typically in the range 

of a few minutes to less than 1 hour. The overload capability is mainly used to provide 

greater flexibility in different grid-service applications (e.g. secondary control reserve). 

 Maximum overload capability 3.18.6.1.

Maximum power, expressed in percentage of nominal power, at which the electrolyser 

can operate for limited time periods in cases of operational peaks (8). 

3.18.7. Minimum partial load operation 

Minimum partial load operation at which the system is designed to operate, as a 

percentage of rated nominal capacity, in terms of power input. 

3.18.8. Minimum system power 

Minimum power at which the system is designed to operate, as a percentage of nominal 

power (%) (8). 

3.18.9. Reactivity 

Time required for the electrolysis system to change from 0 to 100 % of power (ramp-up) 

or from 100 % of power down to 0 % (ramp-down). 

3.18.10. Shutdown time 

Duration between the point at which the power supply is removed and the point at which 

shutdown is completed, as specified by the manufacturer (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.18.11. Stack 

Assembly of a number of repetitive cell production units. 

 Stack nominal capacity 3.18.11.1.

Individual stack capacity, as rated by the manufacturer (8). 

Note 1 to entry: it is expressed in kW direct current. 

 Stack nominal power capacity 3.18.11.2.

Individual stack power capacity, as rated by the manufacturer. 
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Note 1 to entry: it is expressed in kW direct current. 

 Stack arrays 3.18.11.3.

Number of stack arrays within the system that can be operated independently (8). 

 Stack cell number 3.18.11.4.

Number of cells per stack (8). 

3.18.12. Response time 

Time required for a power system to transfer from one defined state to another (4). 

 Start-up time 3.18.12.1.

Time required for starting the device from a cold state to nominal operating conditions. 

 Cold start time to nominal power 3.18.12.2.

The time required to reach nominal power when starting the device from cold standby 

mode (8). 

 Cold start time to nominal capacity 3.18.12.3.

Time required to reach the nominal hydrogen output rate operating capacity when 

starting the device from cold standby mode (8). 

 Warm start time to nominal power 3.18.12.4.

Time required to reach nominal power when starting the device from warm standby 

mode (8). 

 Warm start time to nominal capacity 3.18.12.5.

Time required to reach nominal capacity (in terms of H2 production rate) when starting 

the device from warm standby mode (system already at operating temperature). 

 Transient response time 3.18.12.6.

Average time to ramp up from 30 % to 100 % load at nominal power and operating 

pressure and temperature. 

Note 1 to entry: it is expressed in s. 

 Pressure 3.19.

Expression of force exerted on a surface per unit area. 

Note 1 to entry: it is expressed in Pa. 

3.19.1. Differential cell pressure 

Difference in pressure across the electrolyte membrane as measured from one electrode 

to the other (1). 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.19.2. Hydrogen output pressure 

Gas pressure measured on the cathode side at the outlet of the electrolysis cell/stack. 
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3.19.3. Maximum differential working pressure 

Maximum differential pressure between the anode and cathode sides, specified by the 

manufacturer, which the electrolyser cell can withstand without any damage or 

permanent loss of functional properties (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.19.4. Maximum operating pressure 

Maximum gauge pressure, specified by the manufacturer of a component or system, at 

which it is designed to operate continuously (1). 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.19.5. Operating pressure 

Pressure at which the electrolyser (stack) operates (8). metric 

 Purity of gas 3.20.

Metric used to indicate the amount of other gases in a particular gas. It is expressed as 

the molar or volumetric percentage of the gas, which is equal to 100 % minus the sum 

of the other gas impurities. There are different ways to express purity, as a percentage, 

for example 99.99 or with a grade, for example N4.0 for 99.99 %. 

The first digit of the grade classification indicates the ‘number of nines’ purity, for 

example. N4.0 = 99.99 % purity. 

The second digit is the number following the last nine, for example N4.6 oxygen has a 

guaranteed minimum purity level of 99.996 %. 

3.20.1. Hydrogen purity 

Allowable or tolerated amount of specific impurities (e.g. carbon monoxide) to define the 

hydrogen purity, which depends on the scope of use of the hydrogen produced. For fuel 

cell operation the hydrogen quality requirement is defined in ISO fuel quality 14687-

2:2012a 

3.20.2. Oxygen purity 

Allowable or tolerated amount of specific impurities in oxygen, which depends on the 

scope of use of the oxygen produced. 

 Reliability 3.21.

Ability of an item to perform a required function under stated conditions for a stated 

period of time (4). 

3.21.1. Rated system lifetime 

Period of time, expected or measured, for an item of equipment to be able to operate 

within specified process limit parameters, as rated by the manufacturer (8). 

3.21.2. Stack availability 

Ratio of the time that the stack is operated compared with the time that it was required 

to operate. 
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3.21.3. System availability 

Ratio of the time that the system operated compared with the time that it was required 

to operate. 

 Resistance (electrical) 3.22.

Material’s opposition to the flow of electric current, resulting in the loss of cell voltage, 

the so-called ohmic drop, due to charge carrier (electrons, ions) transport processes 

occurring in the components of the cell or stack (4). 

 Safeguarding 3.23.

Procedure for actions of the controlling system based on monitoring of the technical 

process in order to avoid process conditions which would be hazardous to personnel, the 

plant, the product or the environment (4). 

 Testing 3.24.

3.24.1. Acceptance test 

Contractual test to prove to the customer that the item meets certain conditions of its 

specifications (1). 

[Source: IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.24.2. Conditioning test 

Preliminary step that is required to properly operate an electrolyser cell or a stack and 

that is realised following a protocol specified by the manufacturer. 

3.24.3. Initial response time test 

Test to measure the time necessary to begin changing load, following a set-point 

change. 

3.24.4. Process and control test 

System test that is carried out before operation to verify the integrity of component 

performance and control function (2). 

3.24.5. Polarisation curve test 

Test to measure electrolyser performance that is carried out by applying a predefined set 

of currents (galvanostatic test) or electric potentials (potentiostatic test) to the 

electrolyser and measuring the voltage output or supplied current, respectively, as a 

function of input parameter during a period under steady-state conditions. 

3.24.6. Polarisation curve (I-V curve) 

Performance plot of the water electrolysis process incorporating thermodynamics and 

kinetic and electrical resistance effects. 

It is typically a plot of the output voltage of an electrolyser as a function of the input 

current at defined reactant conditions for galvanostatic tests or supplied current for 

potentiostatic tests. 

Note 1 to entry: the polarisation curve plot is expressed in V versus A∙cm-2. 
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3.24.7. Overpotential 

Amount of potential energy needed to overcome energy-barrier or voltage losses typical 

of electrical resistance processes occurring at the interface between electronic conductor 

and electrolyte, resulting in nonlinear behaviour of a polarisation curve. 

 Activation losses 3.24.7.1.

Overpotential contribution due to catalyst material electrodes properties and related 

activation energy requirements. 

 Bubble losses 3.24.7.2.

Overpotential contribution due to the reduction of the effective active area available for 

the electrolysis reaction where the produced gas bubbles remain in contact with 

electrodes' surfaces. A second phenomenon owing to the presence of gas bubbles is the 

reduction of electrolyte conductivity. 

3.24.7.2.1 Bubble coverage 

Percentage of the electrode active area covered by gas bubbles. 

3.24.7.2.2 Bubble void fraction 

Gas volume fraction present in the electrolyte solution. 

 Concentration losses 3.24.7.3.

See mass transport limitation losses. 

 Diffusion losses 3.24.7.4.

See mass transport limitation losses. 

 Exchange current density 3.24.7.5.

Rate of oxidation or reduction at an equilibrium electrode expressed in terms of current 

density. At equilibrium potential, electron transfer processes continue at the electrode–

solution interface in both directions, meaning that the cathodic current is balanced by 

the anodic current, therefore the net current flow is zero. 

 Kinetic losses 3.24.7.6.

See activation losses. 

 Mass transfer limitation losses 3.24.7.7.

Overpotential contribution due to transport reactants or diffusion limitations. 

 Ohmic losses 3.24.7.8.

Overpotential contribution due to the properties of electrolysis cell materials, i.e. ionic 

conduction in the electrolyte, separator/contact resistance, electronic conduction and 

bubble effect. 

 Ohmic resistance 3.24.7.9.

Sum of the contribution of constituent materials to electrical resistance through the 

electrolytic cell. 

3.24.7.9.1 Ohmic resistance -- electrolyte 

Electrical resistance contribution due to the electrolyte, depending on its ionic 

concentration. 
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3.24.7.9.2 Ohmic resistance -- electronic 

Electrical resistance contribution due to electron conductive components, such as bipolar 

plates, end plates and current distributors. 

3.24.7.9.3 Ohmic resistance -- separator 

Electrical resistance contribution due to the separator present in the alkaline electrolyser. 

The resistance of the separator is constant due to its constant thickness and resistivity. 

 Reactant starvation losses 3.24.7.10.

See mass transfer limitation losses. 

3.24.8. Overvoltage 

The difference between the actual cell voltage at a given current density and the 

reversible cell voltage for the reaction (overpotential when referring to a single 

electrode). 

3.24.9. Routine control test 

Conformity test performed on each individual item during or after manufacture (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.24.10. Short-stack test 

Electrolyser stack test with a significantly smaller number of cells than the designed 

stack with rated power, but with a high enough number of cells to represent the scaled 

characteristics of the full stack. 

3.24.11. Single cell test 

Parametric tests for the assessment of performance and degradation behaviour 

performed on one single cell. 

3.24.12. Stack test 

Parametric tests for the assessment of performance and degradation behaviour 

performed on a stack. 

3.24.13. Test input parameter 

Process parameter value that can be modified in a controlled manner during an 

experiment. 

3.24.14. Test output parameter 

Measured value of a parameter that can change as a function of a modification to the 

operating conditions. 

 Thermal management system 3.25.

Subsystem intended to provide cooling and heat rejection in order to maintain thermal 

equilibrium within the electrolyser cell system and, if necessary, to effect the recovery of 

excess heat and to assist in heating during start-up (4). 
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 Voltage 3.26.

Potential difference between two points in an electrical circuit. 

3.26.1. Cell voltage 

Potential difference between the positive and negative electrodes. 

3.26.2. Maximum voltage 

Highest voltage at which an electrolyser module is able to produce hydrogen and oxygen 

continuously at its rated power or under maximum permissible overload conditions (2) 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.26.3. Minimum voltage 

Lowest voltage at which an electrolyser module is able to produce hydrogen and oxygen 

continuously at its rated power (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

3.26.4. Open circuit voltage 

Voltage across the terminals of an electrolysis cell or stack and in the absence of 

external current flow [units: V] (2). 

[Source: Modified from IEC TS 62282-1:2013, Fuel cell technologies — Part 1] 

 Water 3.27.

3.27.1. Water quality 

Required input water quality for the hydrogen production operations to fulfil the rated 

durability/lifetime. 

3.27.2. Water utilisation factor 

Dimensionless ratio of the flow of water converted into hydrogen and oxygen to the total 

water flow supplied to the stack. 

3.27.3. Water recirculation system 

Subsystem intended to provide treatment and purification of recovered or added water 

for use within the electrolyser unit. 

3.27.4. Water transport layer 

Porous transport layer to facilitate water diffusion at the anode and cathode 

compartment sides. 
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4. SYMBOLS 

Table 6: Definition of symbols used in the document 

Symbol Unit Description 

A m
2
, cm

2
 Active area of the cell  

Cp Jg
-1
K

-1
 Water heat capacity under standard conditions (Cp = 4.186 Jg

-1
K

-1
) 

E V Electrical potential 

F C mol
-1
 Faraday’s constant (F = 96485.3 C mol

-1
) 

G j mol
-1
 Gibbs free energy 

H j mol
-1
 Molar enthalpy 

LHV j mol
-1
 Lower heating value 

HH

V 

j mol
-1
 

Higher heating value 

I A Electrical current 

Imax A Maximum electrical current 

J J Energy unit (joules) 

M  Molar mass 

N  Number of objects in a series 

n  Number of electrons exchanged in the reaction for 1 mole of gas 

 𝑛̇  mol s
-1
 Molar flow rate 

p Pa, bar Pressure 

pθ Pa, bar Reference pressure 

pA Pa, bar Anodic pressure 

pC 
Pa, bar Cathodic pressure 

P W Electrical power 

Q j mol
-1
 Heat 

R Jmol
−1

K
−1

 Universal gas constant (R = 8.31446 J.mol
−1

.K
−1

) 

S j mol
-1
k

-1
 Entropy 

t s Time 

T K, °C Temperature 

Tx, y K, °C Temperature of cell fluid x at cell location y (inlet = in or outlet = out)  

Tenv K, °C Ambient temperature 

Tehs K, °C Temperature of an external heat source 

Tc K, °C Cell temperature 

U V Cell electrical potential 

V V Voltage measurement 

Vtn V Thermoneutral voltage 

i A/m
2
, mA/cm

2 

Current density (i = I / A) 

w j mol
-1
 Work, electrical energy needed to transform 1 mole of reactant  
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Symbol Unit Description 

Greek symbols 

𝛼   Charge transfer coefficient, dimensionless 

  Energy efficiency, dimensionless 

ζ  Exergy yield, dimensionless 

  Current efficiency, dimensionless 

 

 Ratio between parasitic power and net power consumed by the 

electrolyser due to the energy consumption by the auxiliaries, 

dimensionless 

  Quantity variation  
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6. LIST OF TERMS IN ALPHABETICAL ORDER 

 

A  

Acceptance test 65 

Activation losses 66 

Active area 11 

Anion exchange membrane 14 

Anode 13 

Area 11 

Automatic frequency restoration 

reserve full activation time 

53 

Automatic frequency restoration 

reserves 

53 

Axial load 11 

B  

Balance regulation 50 

Bipolar plate 12 

Bubble coverage 66 

Bubble losses 66 

Bubble void fraction 66 

C  

Catalyst 12 

Catalyst layer 12 

Catalyst loading 12 

Catalyst poisoning 12 

Catalyst-coated membrane 12 

Cathode 13 

Cell area 11 

Cell components 12 

Cell electrical power density 48 

Cell lifetime 17 

Cell voltage 68 

Cell voltage of the water 

electrolysis reaction 

22 

Cell-voltage degradation rate 17 

Clamping plate 13 

Cold standby state 61 

Cold start time to nominal 

capacity 

63 

Cold start time to nominal power 63 

Cold state 60 

Compression end plate 13 

Concentration losses 66 

Conditioning test 65 

Connection point 50 

Constant current operation 60 

Control area 50 

Control reserve 50 

Coolant 15 

Coulombic and faradic efficiencies 39 

Current 16 

Current density 16 

Current efficiency 38 

Current efficiency — single cell 38 
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Current efficiency — stack 39 

Current efficiency losses 38 

Current ramp rate 16 

D  

Degradation 16 

Degradation rate 16 

Differential cell pressure 63 

Diffusion losses 66 

Distribution network 51 

Distribution network operator 51 

Distribution system 50 

Disturbance 51 

Durability 17 

E  

Effective area 11 

Efficiency 19 

Efficiency degradation rate 17 

Electrical power 48 

Electrical power — apparent 48 

Electrical power — reactive 48 

Electrical power — real 49 

Electrical power factor 49 

Electrical power input rated or 

nominal 

49 

Electrical system frequency 51 

Electrical time deviation 51 

Electrocatalyst 12 

Electrocatalyst support 12 

Electrochemical surface area 11 

Electrode 13 

Electrode potential 13 

Electrolysis thermodynamics 

fundamentals 

21 

Electrolyte 13 

Electrolyte loss 13 

Electrolyte matrix 14 

Electrolyte migration 14 

Electrolyte molar conductivity 13 

Electrolyte reservoir 14 

Emergency shutdown 61 

End plate 14 

Energy efficiency — case 1 

(constant reversible heat input 

based) 

24 

Energy efficiency — case 2 (free 

energy variation based) 

26 

Energy efficiency — case 3 

(enthalpy based) 

28 

Energy efficiency — case 4 

(electricity and heat input based) 

31 

Energy efficiency as a function of 

operating pressure 

35 

Energy efficiency as a function of 

operating temperature 

34 

Energy efficiency coefficient 40 

Energy efficiency definition: first 

approach 

24 

Energy efficiency definition: 40 
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industry viewpoint 

Energy efficiency stack 37 

Energy efficiency system 38 

Energy from renewable sources 51 

Energy-storage device 51 

Equation summary tables 44 

Exchange current density 66 

Exergy analysis 42 

Exergy definition 42 

F  

Frequency containment reserve 

full activation frequency deviation 

52 

Frequency containment reserves 52 

Frequency control 51 

Frequency deviation 52 

Frequency response deadband 52 

Frequency restoration control 

error 

53 

Frequency restoration process 53 

Frequency restoration range 53 

Frequency restoration reserves 53 

Frequency set-point 54 

Frequency-controlled normal 

operation reserve 

52 

Full activation time 54 

G  

Gap 15 

Gas crossover 50 

Gas leakage 50 

Gas tightness 50 

Gasket 14 

General comments on efficiency 19 

Generating time 61 

Geometric electrode area 11 

Grid control 54 

Grid current 56 

Grid frequency recovery range 57 

Grid frequency restoration range 57 

Grid or electricity network 50 

Grid standard frequency range 56 

Grid time to recover frequency 56 

Grid voltage 56 

Grid voltage control 56 

Grid voltage stability 56 

Grid-connected operation 54 

Grid-independent or isolated 

operation 

57 

H  

Heat balance (Qcell) of the water 

electrolysis reaction 

23 

Heating value 59 

Higher heating value 59 

Hot standby state 61 

Hydrogen 59 

Hydrogen output pressure 63 
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Hydrogen production rate 59 

Hydrogen purity 64 

I  

Initial cell-voltage degradation 

rate 

17 

Initial response time 61 

Initial response time test 65 

Instantaneous frequency deviation 52 

Intermittent profile 62 

Ionomer solution 14 

Island operation 58 

K  

Key performance indicator 60 

Kinetic losses 66 

L  

Leakage current 16 

Liquid electrolyte leakage 13 

Liquid-/gas-diffusion layer 14 

Load-frequency control area 51 

Lower heating value 59 

M  

Manual frequency restoration 

reserve full activation time 

53 

Manual frequency restoration 

reserves 

53 

Mass transfer limitation losses 66 

Maximum differential working 

pressure 

64 

Maximum instantaneous 

frequency deviation 

52 

Maximum operating pressure 64 

Maximum overload capability 62 

Maximum steady-state frequency 

deviation 

52 

Maximum voltage 68 

Membrane 14 

Membrane electrode assembly 15 

Metering grid area 58 

Metering point 58 

Minimum partial load operation 62 

Minimum system power 62 

Minimum voltage 68 

N  

Network frequency 58 

Nominal current 16 

Nominal hydrogen volume 

capacity 

60 

Nominal hydrogen weight capacity 60 

Nominal operation mode 60 

O  

Offshore grid connection system 58 

Offshore power park module 58 

Ohmic losses 66 

Ohmic resistance 66 

Ohmic resistance -- electrolyte 66 

Ohmic resistance -- electronic 67 
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Ohmic resistance -- separator 67 

Open circuit voltage 68 

Operating conditions 60 

Operating pressure 64 

Operating profile 61 

Operating temperature 62 

Operational cell-voltage 

degradation rate 

17 

Operational mode 60 

Operational parameters 61 

Other expressions of practical 

interest 

41 

Overall component efficiency 41 

Overall system efficiency 41 

Overload capability 62 

Overload current 16 

Overpotential 66 

Overvoltage 67 

Oxygen purity 64 

P  

Parasitic load 49 

Performance degradation rate 17 

Polarisation curve (I-V curve) 65 

Polarisation curve test 65 

Porous transport layer 15 

Power stack capacity — rated 49 

Power supply range 49 

Power system capacity — rated 49 

Power-generating facility 58 

Power-generating module 58 

Pressure 63 

Primary control reserve 55 

Primary reserve 55 

Process and control test 65 

Proton exchange membrane 15 

Purity of gas 64 

R  

Rated current 16 

Rated power 49 

Rated system lifetime 64 

Reactant starvation losses 67 

Reactivity 62 

Regulation mode 60 

Regulation profile 60 

Relationship between energy 

efficiency and exergy yield 

43 

Reliability 64 

Renewable energy sources 58 

Replacement reserves 54 

Reserve provider 59 

Reserve replacement process 55 

Resistance (electrical) 65 

Response time 63 

Reversible potential (Erev) 48 
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Reversible voltage (Vrev) 48 

Routine control test 67 

S  

Safeguarding 65 

Scheduled shutdown 61 

Secondary control 55 

Secondary control reserve 55 

Separator plate 15 

Short-stack test 67 

Shutdown 61 

Shutdown time 62 

Single cell test 67 

Single electrolysis cell 15 

Spacer 15 

Specific current density 16 

Specific surface area 11 

Stability factor 18 

Stack 62 

Stack arrays 63 
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GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the 
address of the centre nearest you at: https://europa.eu/european-union/contact_en 
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service: 
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- by electronic mail via: https://europa.eu/european-union/contact_en 
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Online 
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website at: https://europa.eu/european-union/index_en 
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You can download or order free and priced EU publications from EU Bookshop at: 
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