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Zusammenfassung

Es ist das Ziel dieser Arbeit, die Aktivierung und Regulation des schnellen Brassino-
steroidsignalwegs in Arabidopsis thaliana und dessen Rolle bezüglich Zellelongation mit-
hilfe computergestützter, integrativer Modellierung zu analysieren. Brassinosteroide sind
pflanzliche Steroidhormone, die an einer Vielzahl von physiologischen and entwicklungs-
biologischen Prozessen beteiligt sind. Einer dieser Prozesse ist Zellelongation, welche für
den Großteil des Wachstums von pflanzlichen Organen verantwortlich ist.
Als sessile Organismen müssen sich Pflanzen neue Ressourcen durch Wachstum er-
schließen. Da Wachstum jedoch ein Prozess ist, der viel Energie benötigt, muss dies
auch streng reguliert werden. Daher ist es notwending, die Aktivierung und Steuerung
der schnellen Brassinosteroidantwort zu verstehen. In dieser Arbeit analysierte ich diese
Aspekte der schnellen Brassinotsteroidantwort mithilfe Computer-gestützter Modellierung
auf unterschiedlichen Ebenen, die vom Molekül zum Organ reichen.
Zum einen analysierte ich, wie Modelle aus gewöhnlichen Differentialgleichungen auf Än-
derungen in Zellform und -größe reagieren, wenn Prozesse, die meherere Kompartimente
betreffen, auf unterschiedliche Weisen beschrieben sind. Diese Studie zeigt, dass es tat-
sächlich notwendig sein kann, die Membrane als Kompartiment im Modell zu beschreiben,
um das korrekte Modellverhalten zu beobachten. Dies ist abhängig von dem modellierten
System.
Des Weiteren studierte ich die Interaktionen zwischen Rezeptor, Co-Rezeptor und nega-
tivem Regulator auf Basis ihrer zytoplasmatischen Domänen. Hier zeigen die simulierten
Komplexe, dass der negative Regulator präferentiell an die katalytische Domäne des Co-
Rezeptors bindet und ihn so an der Teilnahme am Signalweg hindert.
Als dritten Aspekt modellierte ich den schnellen Signalweg der Brassinosteroidantwort
mithilfe eines Modells aus gewöhnlichen Differentialgleichungen. Die Parameter dieses
Modells wurden basierend auf dosisabhängigen Daten der Membranpotentialänderung
geschätzt. Neben der Membranpotentialänderung beschreibt das Modell auch die Zu-
nahme des Zellwandvolumes, welche ebenfalls von Brassinosteroiden stimuliert werden.
Ich habe das Modell bezüglich des Verhaltens in der meristematischen Zone und in der
Mutante eines negativen Regulators getestet, was durch die Kooperationspartner experi-
mentell überprüft wurde. Aufgrund des Modellverhaltens und der Daten zur Proteinquan-
tifikation stellen wir die Hypothese auf, dass die zelluläre Antwort der schnellen Brassi-
nosteroidantwort von der lokalen Konzentration der H+-ATPasen abhängt.
Als letzten Themenblock in dieser Arbeit erweiterte ich das Modell des schnellen Brassi-
nosteroidsignalwegs aus gewöhnlichen Differentialgleichungen, sodass es auch Zellelon-
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gation beschreibt. Das vorläufige Modell kann das Elongationsverhalten einer Epider-
miszelle von der meristematischen Zone bis zur endgültigen Zelllänge in der Differen-
zierungszone beschreiben. Dieses Modell kombinierte ich mit einem agentenbasierten
Modell der Wurzelspitze, was einen integrativen Einblick in Zellelongation in der Wurzel
ermöglicht. Bislang beschreibt dieses Modell lediglich das Verhalten von Epidermiszellen
bis zu einer Zelllänge von 25µm. Selbst dieses reduzierte Modell zeigt aber, dass dies
eine valide Herangehensweise ist um Wurzelwachstum zu modellieren.
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Summary

It is the aim of this thesis to analyze the initiation and regulation of the fast brassinosteroid
response pathway Arabidopsis thaliana and its role for cell elongation in an integrative
fashion using mathematical modeling. Brassinosteroids are plant steroid hormones that
mediate various physiological and developmental processes. One of these processes is
cell elongation, which is the major mechanism for organ growth in plants.
As sessile organisms, plants have to rely on growth to open up new resources. How-
ever, growth is an energy consuming process that has to be tightly regulated. Therefore,
it is necessary to understand the activation and regulation of the fast brassinosteroid re-
sponse. The computational modeling and analysis of the fast brassinosteroid signaling
focused on several different aspects.
Because of the importance of compartmentalization in biological systems, I first studied
the different modeling approaches to describe multi-compartment processes in models
consisting of ordinary differential equations and how these modeling approaches react to
changes in cell morphology. This analysis shows that including the membrane as inter-
action area can be crucial to proper modeling behavior depending on the modeled system.
Second, I used molecular modeling to clarify the interactions between receptor, co-receptor
and a negative regulator of the fast brassinosteroid response. Here, the simulated com-
plexes show that the negative regulator acts by blocking the catalytic domain of the co-
receptor, which is then unable to participate in propagating the signal.
Third, I used a dynamic model consisting of ordinary differential equations to simulate the
fast brassinosteroid response on a cellular scale. The parameters of this model were fit-
ted to dose-response data of the membrane potential change. Furthermore, this model
includes the BR-induced increase in cell wall volume. I validated this model with respect
to the behavior in the meristematic root zone and the behavior in a deletion of a nega-
tive regulator. Based on the model behavior and the quantification of model species, we
hypothesize that H+-ATPase levels in the different root zones determine the response to
brassinosteroid stimulation in the fast response pathway.
Finally, I expanded the ordinary differential equation model for the fast brassinosteroid
response to include the process of cell elongation. This model can describe the experi-
mentally observed elongation behavior of an epidermis cell from the meristematic zone to
the final cell length in the maturation zone. I combined this model with an agent-based
representation of the root. This model provides an integrative view on cell elongation.
While this multi-scale model is currently limited to one cell type and a maximal cell length
of 25µm, this shows that it is a valid approach to modeling root elongation.
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1 | Introduction

It is the aim of this thesis to analyze the initiation and regulation of the fast brassinosteroid
(BR) respone pathway in the plasma membrane of Arabidopsis thaliana (A. thaliana) and
its role in cell elongation by integrative computational modeling. Here, the computational
models of the fast BR response pathway are used to analyze the properties of the system
as a whole as well as the role of individual components of the pathway. BRs are plant
steroid hormones that fulfill various functions in plant physiology and development [1]. In
particular, BR hormone functions concern processes that range from pollen tube elon-
gation [2] to senesence [3, 4, 5] (Fig. 2.1). Without functional BR signaling, A. thaliana
shows a significantly reduced growth [6], highlighting the crucial role of BRs for normal
plant development.
As sessile organisms, plants have to rely on growth to tap new resources or to adapt to
varying environmental stimuli (such as wind or frost). Due to the central role of growth in
plant development and physiology, understanding the activation and regulation of growth
is crucial.
Plant organ growth is determined to a large part by cell expansion [7]. Cell division also im-
pacts organ growth, though this effect is by determining the number of cells that elongate
[7]. In order for cell growth to occur, the cell wall needs to be acidified [8, 9]. This increases
the flexibility of the cell wall [10]. In the plant root, this happens in one specific region, the
elongation zone. In the root, cells elongate from an initial length of about 8µm to a final
length of up to 220µm, depending on the cell type [11]. Cell wall loosening is achieved by
enzymes called expansins, which are activated upon cell wall acidification [9, 12]. The in-
creased proton concentration is caused by the activation of the proton pumps Arabidopsis
H+-ATPases 1 and 2 (AHA1 and AHA2), after hormone stimulation [13].
The fast BR response pathway [14, 15, 16], which is analyzed by computational modeling
in this thesis, is one hormonal pathway that can induce cell wall acidification [17, 18, 19,
20], which results in BR-induced cell elongation [2, 17, 21].
BRs are detected on the cell surface by the receptor brassinosteroid-insensitvite 1 (BRI1)
[3, 22], which then associates with the co-receptor BRI1-associated kinase (BAK1) [23,
24, 25]. The activity of both, receptor and co-receptor, is strictly regulated by a number
of inhibitors: BRI1 kinase inhibitor (BKI1) [26, 27] and Botrytis-induced kinase 1 (BIK1)
[28] act on the receptor BRI1, while BAK1-interacting receptor like kinase (BIR3) primarily
regulates the co-receptor BAK1 [29, 30]. After a series of transphosphorylation events
[31], membrane hyperpolarization and cell wall acidification are induced by activating the
proton pumps AHA1 and AHA2 [14, 15, 16], which results in cell wall swelling preceding
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cell elongation [14]. However, while the individual proteins are known, the dynamics of the
system as a whole are not completely understood.
Here, computational modeling can provide an additional perspective on the signaling path-
way. Computational modeling is a powerful tool to understand the behavior of a system
as a whole as well as the emergent properties of the system. Modeling can also aid in
outlining the experimental information and highlighting gaps in the available knowledge
that need to be investigated.
Just as there are different scales that need to be considered in a biological system (pro-
teins, cells, tissues and organs), there are different modeling scales that can be employed
in understanding a system: Molecular modeling allows for i.e. the computation of interac-
tions of 3D protein structures [32]. Dynamic models of signaling and metabolic pathways
can provide insight into emergent properties, initiation and regulation of the particular
model system [33]. Furthermore, tissue dynamics emerging based on cellular behavior
can be analyzed by agent-based models (ABMs) [34]. This represents but a small sample
of what is possible with computational modeling.
Notwithstanding how useful computational models are, there are currently few published
plant models [33]. Among the curated biochemical models on the biomodels database
[35] (last accessed: 24.05.2018), only 30 out of 699 models concern plants, with the vast
majority (27) being specific to A. thaliana. Nonetheless, there are four published compu-
tational models of BR signaling at the time of writing this thesis. The qualitative properties
of the BR signaling pathway have been examined using a logic-based model [36]. A small
dynamic ODE model has aided in understanding the dynamics of an transcription factor
in response to BR stimulation [37]. A steady state model links the receptor occupancy to
root and hypocotyl growth [38, 39, 40]. Finally, a dynamic model of the gene-regulatory
pathway explores the possible behavior patterns that can emerge based on the available
experimental information [41].
It is the primary aim of this thesis to analyze the initiation and regulation of the fast BR
response pathway by computational modeling. To provide a comprehensive analysis of
the fast BR response, I employed several different modeling methods that range from an-
alyzing the molecular interactions, cellular dynamics and the root as an organ.
For one, as growth influences the size of cellular compartments, I analyzed the impact of
changes in cell morphology on the behavior of ODE models with different modeling ap-
proaches to describing multi-compartment processes (Chapter 4). In these cases it can
actually be a necessary prerequisite to scale processes between compartments with the
interaction area instead of a compartment volume. Since inducing cell elongation is one
function of BR [2, 17, 21], the accurate description of the signaling pathway in the model
requires the inclusion of the membrane both as interaction area for scaling and as com-
partment for receptor and co-receptor.
To analyze the complex formation of the receptor BRI1, the co-receptor BAK1 and the
negative regulator BIR3, I used molecular modeling to compute potential complexes be-
tween the cytoplasmic domains these proteins (Chapter 5). In the case of BR signaling,
the detection of the ligand by the receptor BRI1 [42, 43] as well as the interaction with
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the co-receptor BAK1 has been of special interest [25, 44, 45]. After the discovery of
the negative regulator BIR3 that acts on the co-receptor BAK1 [46, 30], the interaction of
all three proteins needed to be defined. The interactions of the ectodomains have been
characterized recently [47], but the precise mode of interaction for the cytoplasmic do-
mains is still unclear. Computationally, this question can be addressed by the molecular
docking of 3D protein structures computing either fully docked or encountered complexes
[48, 49, 49, 50, 51, 52]. By sampling and clustering the potential interactions it is possible
to obtain a complex that is close to the native state of interaction between the proteins of
interest. The analysis of these interactions shows that the negative regulator BIR3 and
the receptor BRI1 compete for the same interaction site of BAK1 and that the energetic
landscape favors the interaction of BIR3 and BAK1.
Furthermore, I analyzed an ODE model that comprises the known components and steps
of the fast BR signaling module. The dynamic ODE model of the fast BR response path-
way yields insight into the pathway’s response in the different root regions as well as the
deciding factors for the model’s reaction to hormone stimulation (Chapter 6). This model
describes BR-induced cell wall acidification, membrane hyperpolarization and cell wall
swelling, which makes processes involving more than one compartment a central aspect
of this model. The analysis of this model determined the important proteins and reactions
for the model’s response and thereby aided in the understanding of the fast BR response
in A. thaliana.
As BRs initiate cell elongation [2, 17, 21], the next step was to include actual cell growth in
the ODE model by implicitly including pH activated elongation (Chapter 7). This elongating
cell model represents the chance to analyze BR-induced cell elongation in silico. By link-
ing this model to an agent-based representation of the root, this extends the scope of this
project from analyzing single cell behavior to visualizing the growth of an organ. Much like
ODE models show the emergent behavior of a system by considering the individual pro-
teins and reactions, agent-based models show the tissue dynamics based on the behavior
rules of the cellular agents. The modeling software of choice, EPISIM [53, 54], allows not
only for the simulation of cell behavior and biomechanical aspects, but also enables the
inclusion of intracellular ODE models. This allows the link between the physiological re-
sponse to hormonal stimulation and the growth observed in the organ of interest, the A.
thaliana root.
All computational models rely heavily on the availability of experimental data. For one,
kinetic parameters are estimated based on experimental data. Second, model set up de-
pends on what kind of experimental data is available. If detailed, temporally resolved data
on the individual phosphorylation states are available, it is reasonable to include these
species in the model individually. If such data are not available, including the different
phosphorylation states would introduce a source of uncertainty in the model. Lastly, com-
putational models are tested by comparing the model’s prediction to experimental data.
This is the final step in model development as it demonstrates the validity of the model.
The reliance on experimental data is also the case for the computational models presented
in this thesis. Experimentally, this project was supported by the work of Dr. Friederike
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Wanke and Nina Glöckner in the research group of Prof. Dr. Klaus Harter at the Cen-
ter for Molecular Biology in Plants (ZMBP) at the University of Tübingen. Furthermore, I
collaborated with Sarina Schulze in the research group of Dr. Birgit Kemmerling (ZMBP,
University of Tübingen) to specify the role of BIR3 as negative regulator in BR signaling.
Dr. Stefan Scholl in the group of Prof. Dr. Karin Schumacher (Centre for Organismal
Studies (COS)) provided measurements of the proton leak for the ODE model.
For some aspects of my thesis, I worked in collaboration with colleagues or external ex-
perts for that particular field. To specify the role of BIR3 in the signaling pathway by
molecular modeling, I was advised by Dr. Anna Feldman-Salit (Bioquant, COS, Heidel-
berg University). Here, we also consulted with Prof. Dr. Rebecca Wade and Dr. Neil
Bruce at the Heidelberg Institute for Theoretical Studies (HITS) and the Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg University. For the analysis of multi-
compartment rate laws, I collaborated with Pascal Holzheu (Bioquant, COS, Heidelberg
University). Finally, the multi-scale, agent-based model of the elongating root was built
in close collaboration with Erika Tsingos (research group of Prof. Dr. Joachim Wittbrodt,
COS, Heidelberg University).



2 | Biological and Theoretical Background

2.1 Brassinosteroid Signaling

BRs fulfill a diverse range of functions in plants (Fig. 2.1). Notably, BRs regulate cell
elongation in root and hypocotyl with an activating low concentration and an inhibiting
high concentration [11]. However, the concentration at which that effect is achieved differs
greatly between different tissues [11]. While a concentration around 100 nM has a positive
effect on hypocotyl elongation, such a concentration is already in the inhibitory range for
root elongation [11].
BRs are detected on the cell surface by membrane receptors [3, 22]. BR signaling oc-

curs on two levels; the fast membrane-associated response [14, 15, 16] and the slower
gene-regulatory pathway [1, 56], both of which will be introduced here. The two pathways
have serveral components in common: the receptor, the co-receptor and the regulatory
elements that act on both.
The receptors that detect BRs on the cell membrane belong to one family: brassino-
steroid-insesitive 1 (BRI1) [3, 22] and BRI1-like receptors (BRL1-3) [57, 58]. All of these
receptors follow the same basic structure; a cytoplasmic kinase domain, a transmembrane
domain and extracellular leucin-rich repeats (LRRs) [57]. Within the LRR domain, there
is the island domain, which is responsible for ligand binding [59]. In the absence of the
ligand, this domain is very flexible and cannot be resolved structurally [42]. Upon ligand
binding, the island domain stabilizes and forms a binding pocket around the hormone
molecule [42, 43]. Ligand binding and the stabilization of the binding pocket then facilitate
the association of the co-receptor BRI1-associated kinase 1 (BAK1) [23, 24, 60, 25, 45].
The co-receptor BAK1 is a membrane associated kinase that acts as a co-receptor in sev-
eral signaling pathways. In addition to BR signaling, BAK1 is also involved in mediating
cell death control [61] and plant pathogen-associated molecular pattern (PAMP)-triggered
immunity, where it acts as a co-receptor for several receptors [62]. While the co-receptor
occurs with a lower density than BRI1 thoughout the root [11], BAK1 is not a limiting factor
[63]. In BR signaling, the existence of preformed complexes consisting of BRI1 and BAK1
has been discussed with experimental evidence supporting this hypothesis [64, 65]. Inter-
estingly, biochemical interaction studies have shown that both the hormone and an acidic
cell wall pH are necessary for the LRR domains of the receptors to interact [25, 44, 45].
Furthermore, structural biology and computational analysis have demonstrated that the
ligand acts as glue between the LRR domains, stabilizing the receptor complex [66].
To prevent unspecific signaling activity in the absence of BRs, there are several nega-

5



6 CHAPTER 2. BIOLOGICAL AND THEORETICAL BACKGROUND

Figure 2.1: Overview of brassinosteroid functions with the respective area of effect.
Red arrows indicate a stimulating effect, blue arrows denote inhibitory effects. Figure from
[55]

tive regulators that fine-tune the signaling response. In particular, the interaction between
BRI1 and BAK1 is regulated by the BAK1-interacting kinase (BIR3) [29, 30], which pre-
vents the formation of an active signaling complex when the hormone is absent [47]. For
one, this is achieved by the stable interaction of the ectodomains of BIR3 and BAK1, which
requires BR-bound BRI1 to compete with BIR3 for the interaction with BAK1 [47]. Second,
BIR3 blocks the kinase domain of BAK1 from interacting with the kinase domain of BRI1
(this thesis). In order for BRI1 and BAK1 to interact in the presence of BIR3, the hormone
needs to be present and stabilize the interaction of the extracellular domains [47].
Additionally, BRI1 kinase inhibitor (BKI1) [27] and botrytis-induced kinase 1 (BIK1) [28]
inhibit the activity of the receptor. Once BR binds to the receptors, both inhibitors are
phosphorylated and released from the cytoplasmic domain of the receptor [28, 27], which
can now transfer the signal to the fast response pathway [14, 15, 16] (see section 2.1.1)
and the gene-regulatory pathway [1, 56] (see section 2.1.2).

2.1.1 Fast Response Pathway

BRs stimulate a fast, membrane-associated pathway in the plasma membrane of A. thaliana
[14, 15, 16]. The computational analysis of the activation and regulation of this pathway as
a system and the individual components is the focus of this thesis. The fast response path-
way comprises the receptor Brassinosteroid-insensitive 1 (BRI1), the co-receptor BRI1
associated kinase (BAK1), the negative regulator BAK1-interacting kinase 3 (BIR3), the
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inhibitor BRI1 kinase inhibitor 1 (BKI1), the inhibitor botrytis-induced kinase (BIK1) as well
as the Arabidopsis H+-ATPases 1 and 2 (AHA1/2) [14, 15, 16].
In the inactive state, as depicted in Figure 2.2 A, there is only the basal activity of the
H+-ATPases AHA1 and AHA2 counteracting a proton leak across the membrane and thus
maintaining pH homeostasis. BRI1 and BAK1 form complexes with the negative regulator
BIR3 [30] and there is no signaling activity.
Upon stimulation with the ligand, BR binds to the receptor BRI1. Subsequently, BRI1 au-
tophosphorylates [67] and recruits the co-receptor BAK1 [23, 24]. BRI1 and BAK1 then
phosphorylate each other [31] and then activate the H+-ATPases AHA1 and AHA2 by an
as of yet unknown mechanism (Fig. 2.2 B) [14, 15, 16]. A recent phosphoproteomics
study revealed that AHA1 and AHA2 might be phosphorylated by casein kinases (CKs) in
response to BR stimulation [68]. The increased activity of the H+-ATPases then results in
the acidification of the apoplast and the hyperpolarization of the plasma membrane [14].
Concomitantly, the cell wall expands [14]. This is understood to be one of the initial steps
of expansive cell growth.
H+-ATPases have been long been implicated to be involved in growth in what is typically
called the acid-growth theory [13]. Not only brassinosteroids but also auxin and the pep-
tide growth hormone PSY1 as well as phytosulfokine (PSK) can activate proton pump
activity [13, 69, 70, 71].
H+-ATPase activity is generally regulated via the C-terminal regulatory domain function-
ing as an autoinhibitor of pump activity [72, 73, 74]. This inhibition can be released by
phosphorylation at several residues, such as threonine 948 [75, 76]. These phosphoryla-
tions induce the association of 14-3-3 proteins [75, 76] that release the inhibition by the
C-terminal regulatory domain [77, 78]. However, in the case of BR signaling experiments
have shown the activation of the H+-ATPases to be independent of the threonine 948 ph-
sophorylation [15].
Currently, signal termination is not fully characterized. BRI1 slowly autophosphorylates in
the glycine-rich loop at serine 891, which inhibits BRI1 function and therefore BR signal-
ing activity [79]. Interestingly, the time-scale of these phosphorylations is extremely slow:
Upon stimulation with 100 nM BL the levels of pS891 increases steadily over the course
of 12 h [79]. The dephosphorylation rate of that particular phosphorylation site is even
slower. Even after 4 d of treatment with brassinazole (Brz), an inhibitor of BR synthesis,
the phosphorylation of S891 has not yet vanished completely [79].
One potential mechanism to restore the receptor to the initial state has been identified:
the serine/threonine-protein phosphatase 2A (PP2A) can interact with BRI1 in vitro [80].
PP2A dephosphorylates BRI1 in vitro [80], which might be one mechanism to reset BR
signaling [81].
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Figure 2.2: Overview of the fast BRI1 associated response pathway in the plasma mem-
brane of Arabidopsis thaliana. A: Inactive state of the fast BRI1 associated response path-
way in the plasma membrane. BIR3, a negative regulator of the signaling pathway interacts
with both BRI1 and BAK1 to prevent signaling without the ligand. Basal activity of the proton
pumps AHA1 and AHA2 ensures pH homeostasis. B: Active state of the fast BRI1 associ-
ated response pathway in the plasma membrane. The ligand brassinolide (BL) binds to the
receptor BRI1 and induces its interaction with the co-receptor BAK1. The receptor complex
then stimulates AHA1/2 pump activity to induce membrane hyperpolarization and cell wall
acidification.
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2.1.2 BR-Regulated Gene Expression

In addition to the fast response pathway, BRs also affect gene expression [1, 56] (Fig.
2.3). In particular, BRs control the expression of enzymes responsible for BR synthesis,
the receptor BRI1, expansins and auxin response elements [82]. In the inactive state, this
signaling pathway prevents the transport of transcription factors into the nucleus by phos-
phorylation and subsequent degradation (Fig. 2.3).
Upon stimulation with BRs, the initial steps of the signaling pathways that result in the
active form of the receptor are identical to the fast response pathway. The active re-
ceptor complex then phosphorylates the brassinosteroid signaling kinases (BSKs) [83]
inducing the activation of the BRI1 supression protein 1 (BSU1) [84], which in turn de-
phosphorylates brassinosteroid-insensitive 2 (BIN2) [85, 86]. Dephosphorylated BIN2 is
no longer able to phosphorylate the transcription factors BRI1-ems-surpressor 1 (BES1)
and brassinazole-resistant 1 (BZR1) [86]. BES1 and BZR1 are then dephosphorylated by
serine/threonine-protein phosphatase 2A [87] and can now diffuse into the nucleus, where
it affects the expression of BR-repressed and BR-induced genes [86]. Among the BR-
repressed genes, there are the receptor BRI1 and enzymes for BR synthesis [82]. This
means that on the long term, BR signaling inactivates on its own by reducing both receptor
and hormone concentration.

2.2 Computational Modeling

Computational modeling has been a widely used approach in biology in the last decades
resulting in an increasing number of models being published [33]. However, models of
plant systems have been widely lacking [33]. Successful examples include the auxin
model of Vernoux et al. [88], where the dynamics of auxin in the shoot apex of A. thaliana
was analyzed. Another successful example is the detailed analysis of auxin transport in
the A. thaliana root that revealed that the auxin pattern in the root requires both influx and
efflux carriers to be present in order to be reproduced computationally [89].
Just like biological systems have different scales ranging from proteins to whole organ-
isms, there are different scales in computational modeling (Fig. 2.4). While modeling
an organisms is only possible in a much reduced way (e.g. pharmaco-kinetic modeling
and genome-scale models), other scales can be investigated in much more detail. On
a molecular level, protein structures can be modeled based on homology and potential
complexes between 3D protein structures can be computed by molecular docking analy-
sis (see p. 12). On a cellular scale, detailed models (e.g. ODE models, stochastic models,
spatial models, logic-based models) of metabolic systems or signaling pathways provide
insight into the emerging properties and important components of the system of interest
(see p. 13). Finally, on a tissue scale, agent-based models show how tissues arise from
the interactions of cellular agents (see p. 14).
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Figure 2.3: Overview of the BR gene-regulatory pathway. BR are detected in the plasma
membrane by the receptor BRI1. Without the ligand, BRI1 is inhibited by BKI1, BIK1 and
PP2A. Upon ligand binding BRI1 then autophosphorylates and associates with the co-receptor
BAK1. After a number of transposphorylations the active form of the receptor complex is
achieved, which phosphorylates BSKs. BSKs interacts with BSU1, which dephosphorylate
BIN2. Unphosphorylated BIN2 can no longer phosphorylate transcription factors BES1 and
BZR1. PP2A dephosphorylates BES1 and BZR1, which can now diffuse into the nucleus and
affect gene expression.

.
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Figure 2.4: Overview of modeling approaches in this thesis. Throughout this thesis sev-
eral modeling approaches were applied; molecular modeling to compute potential complexes
between proteins, ODE modeling to study single-cell dynamic behavior and agent-based mod-
eling linked with a cellular ODE model to study the behavior on organ-scale.
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2.2.1 Molecular Modeling

Molecular modeling comprises various different computation methods for computing and
analyzing the interactions of proteins, DNA and RNA molecules. In particular, molecular
modeling allows for the modeling of protein structures based on sequence homology and
the computational complex formations between proteins as well as proteins and DNA. In
this case, comparative modeling and molecular docking analysis were employed to study
the interactions of the receptor BRI1, the co-receptor BAK1 and the negative regulator
BIR3.
As there are not always 3-dimensional structures available for the proteins of interest, a
number of methods have been developed to allow for the comparative modeling of a pro-
tein, based on the experimentally determined structure of a closely related protein [90, 91].
This modeling approach is based on the fact that proteins sharing a high percentage of
sequence identity also have similar structures. While a high degree of sequence identity
is always favorable, proteins with as little as 35% sequence identity can provide useful
structural information [92].
Furthermore, comparative modeling can also be used to fill gaps in the experimentally
determined structures. In particular, flexible loops in protein structures are often a source
of uncertainty and thus are represented as gaps in the experimental structures. As these
gaps are often of limited length and have a defined start and end point, potential solutions
of the structurally unresolved loops can be computed by comparative modeling [91].
Comparative modeling yields an ensemble of potential structures that need to be evalu-
ated based on their quality. Here, the simplest approach is to analyze the torsion angles
of the peptide bonds. Experimentally, the ranges of the torsion angles have been stud-
ied in great detail leading to the definition of favoured, allowed, generously allowed and
disallowed regions for both α helices and β sheets in Ramachandran plots [93, 94]. This
can be done by using i.e. the PROCHECK software [95, 96]. A more elaborate scoring
mechanism such as QMEAN evaluates a number of different aspects [97, 98]. Instead of
determining the torsion angle of a single amino acid bond, QMEAN evlautes the torsion
angle in a three amino acid region, which yields more reliable results [97]. In addition, the
solvation potential and the interaction potential between Cβ are considered [97].
Molecular modeling also allows for the computational docking of proteins. This model-
ing approach requires detailed protein structures and environmental conditions to define
the reaction space. Potential interactions between the proteins of interest can then by
computed by simulating the diffusional association by Brownian dynamics (e.g. webSDA
[99, 48]) or by extensive sampling of potential conformations (e.g. ClusPro [49, 49, 50,
51, 52]). In the simulated diffusional association, the proteins start out in different spatial
orientations to each other and are docked based on their electrostatic potential (Fig. 2.5).
Here, one protein - typically the larger one - is stationary (blue), while the other is mobile
(red) and moves around and towards the stationary protein. The potential complexes are
then calculated based on the electrostatic energy, electrostatic desolvation and non-polar
desolvation energy, in the case of webSDA [48]. By sampling several hundred complexes
it is thereby possible to determine likely complexes between the analyzed proteins. Meth-
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Figure 2.5: Principle of molecular docking analysis by Brownian dynamics. Potential
complexes between two proteins are calculated by docking a mobile protein (red) to a sta-
tionary protein (blue) considering the elctrostatic binding, the electrostatic desolvation and the
nonpolar desolvation energy.

ods that rely on sampling alone, first generate a large pool of potential interactions and
filter them based on a scoring function.
There are several webServers that allow the calculation of encountered and docked com-
plexes. In webSDA simulations, encountered complexes are calculated by rigid body dock-
ing that keeps both backbones and side chains immobile [48]. Another tool, ClusPro, al-
lows for the computation of fully docked complexes as amino acid side chains are allowed
to react to the complex formation by changing their orientation in an additional step [52].

2.2.2 ODE Modeling

Ordinary differential equation (ODE) models describe the evolution of species over one
variable, typically time (d[S]dt ) or space (d[S]dx ). Models consisting of ODEs are versatile
tools to understand the dynamic behavior of systems up to a certain model size. ODE
models have been successfully used to study specific metabolic and signaling pathways
in a myriad of organisms: human erythrocytes [100], Sacharomyces cerevisiae [101], Es-
cherichia coli [102] and Streptococcus pyogenes [103] to name but a few examples.
A tool frequently used to set up and analyze ODE models is the COmplex Pathway Simula-
tor (COPASI) [104]. COPASI provides an intuitive user-interface to construct and simulate
ODE models based on biochemical reactions while taking into account the compartment
information provided by the user. COPASI allows for the analysis of ODE models using,
e.g. time-course simulations, sensitivity analysis, steady state analysis and metabolic con-
trol analysis.
Some model analysis methods, such as metabolic control analysis are used to analyze
the steady state properties of an ODE model. This method is therefore most useful for
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metabolic systems that have a meaningful steady state. Signaling pathways, however,
are only in steady state if the signal is absent or when the response reaches a plateau at
constant, continuous stimulation. In these cases, sensitivity analysis is instead a suitable
tool to determine the important factors of the model’s response to a signal.
When modeling a biological system, the ODEs are constructed based on the system’s
biochemical reactions. Each reaction has a corresponding rate law that defines the speed
of the reaction. Ideally, these rate laws comprise detailed information on enzyme speed,
reaction mechanism and regulatory elements. However, this is often limited by the lack of
detailed experimental data.
Most commonly, reaction rate laws are defined using convenience kinetics [105] and the
overall speed of the reactions scales with the size of the compartment, in which the reac-
tion occurs. This is fine as long the reaction occurs in one compartment. However, if the
reaction involves more compartment, scaling the speed of the reaction with a compartment
volume is thermodynamically wrong [106]. Therefore, in the Systems Biology Markup Lan-
guage (SBML) [107] and in COPASI [104], these reactions are not automatically scaled
with an compartment volume. Instead, it is left to the user to decide the scaling of these
reactions. I examine the practical implications of this for ODE models of cellular systems
in Chapter 4.

2.2.3 Agent-based modeling

Agent-based models (ABMs) are computational models that allow for the analysis of tis-
sue dynamics. Just as ODE models serve to understand a system as a whole based on
the interactions of the involved proteins, an ABM provides a view on the tissue dynamics
that emerge based on the cellular interactions. ABMs consist of an cell behavior model
(CBM), where cells are modeled as autonomous agents, and a biochemical model that
determines how the cellular agents interact with each other.
Several platforms are available to model ABMs in different organisms, using different ap-
proaches, e.g. VirtualLeaf for plant tissue [108, 109]. Here, we used EPISIM as plat-
form for the ABM [53]. EPISIM supports both lattice-based and off-lattice simulation ap-
proaches to ABMs. The off-lattice, center-based approach to ABMs incorporates ellipsoid
cell shapes and allows a more realistic representation of the mechanical interaction forces
between cells [110]. In particular, this means that there is no underlying lattice and that
cells are defined by their center and a set radius. EPISIM has been successfully applied
to study epidermis organization [53] to the extend of barrier formation and hydration [110].
A particularity of EPISIM is the fact that it is possible to import a cellular COPASI model
[54]. Typically, agent-based models in EPISIM consist of several aspects:

• The mechanical model determines the overall shape and mechanic properties of the
agent-based model.

• The cell behavior model includes the different cell types and dynamics.
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• The (optional) ODE model provides a detailed simulation of intracellular processes
that occur on a faster time-scale.

By linking these scales it is possible to obtain a more detailed picture of the process of
interest as a whole. It allows the examination of processes that occur on a much faster
time-scale than the simulation step size of an agent-based model. In the context of organ
growth in plants, this integrative approach is crucial as the signaling pathways that initiate
growth respond within minutes [14], while noticeable growth requires several hours [7].
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3 | Materials & Methods

3.1 Collaborations

The computational models presented in this thesis rely on the experimental data provided
by the collaborators. To a large extend, the experiments were conducted by Friederike
Wanke and Nina Glöckner in the research group of Prof. Dr. Klaus Harter at the Center for
Molecular Biology of Plants (ZMBP) at the University of Tübingen. Nina Glöckner quanti-
fied the H+-ATPase AHA2 as well as the negative regulator BIR3 in relation to the receptor
BRI1 (see section 3.3.5). She also measured the pH change in response to hormonal stim-
ulation in the different root zones using HPTS according to a protocol established recently
[111] (see section 3.3.5). Dr. Friederike Wanke measured the interaction of BIR3 with both
BAK1 and BRI1 using Förster Resonance Energy Transfer (FRED) - Fluoresence Lifetime
Imaging Microscopy (FLIM) to validate the results of the molecular modeling (see section
3.2.5). The molecular modeling project also relied on the initial information provided by
Sarina Schulze and Dr. Birgit Kemmerling (ZMBP, University of Tübingen). Furthermore,
I consulted with Prof. Dr. Rebecca Wade (HITS gGmbH, IWR, Heidelberg University).
Finally, Dr. Stefan Scholl in the research group of Prof. Dr. Karin Schumacher (Centre for
Organismal Studies (COS), Heidelberg University) provided data for the proton leak into
the cell after inhibiting the ATPases by vanadate (see section 3.3.5).
The description of experimental data in this section is meant to provide some background
information to the experimental data that were used in combination with the computational
modeling. Since I did not conduct the experiments myself, these descriptions are not
meant to represent precise protocols but rather help with the understanding of the context.

3.2 Molecular Modeling

3.2.1 Structure / Template Selection

Special care was taken in the structure and template selection for the structural modeling.
The Protein Data Bank1 [112] was used to obtain the template structures. The complete-
ness and overall structure quality were considered in selecting the structure for used for
the docking analysis. If an apo structure of sufficient quality was available, that structure
was chosen. In the case of BIR3, a template for comparative modeling was chosen based

1https://www.rcsb.org/

17
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on maximal sequence identity. Several indicators were used for structure evaluation that
are described in the following sections: structure comparison as well as scoring factors for
structure quality and structure flexibility.

Structure Comparison

In the case where no apo structure of sufficient quality was available, the potential struc-
tures of that protein were evaluated based on similarity (conservation of structure and
root mean square distance (RMSD) of the Cα atoms in the amino acid backbone), com-
pleteness, and the structure quality evaluation available as part of the protein entry in the
Protein Data Bank2 [112, 113].
The structure comparison was done using the MatchMaker and Match→Align tools in
Chimera [114, 115]. In particular, in the MatchMaker tool, a structure based alignment
was generated using the Needleman-Wunsch algorithm and the BLOSUM62 matrix [116].
A gap opening penalty of 12 and a gap extension penalty of 1 were applied to the align-
ment. In the Match→Align tool an alignment was created by superposition, where residues
at a distance exceeding 5Å were no longer considered for superposition.

QMEAN

The structures were evaluated based on the QMEAN (Qualitative Model Energy ANaly-
sis) score [97, 98] using the QMEAN server3. Generally speaking, the closer the QMEAN
score is to zero, the better is the evaluated structure. A QMEAN score below −4 is a sign
of a low quality structure (see SWISS-MODEL documenation4).

B-Factor

Structures were also evaluated based on the flexibility throughout the structure. A measure
for this is the B-Factor B, also called temperature or Debye-Waller factor [117]. The B-
Factor represents an estimate of how much atoms oscillate from their calculated, average
position [117, 118]. In protein structures it describes the the mean squared displacement
u2 of the individual atoms and calculated according to the following equation [118]:

B = 8π2u2 (3.1)

The B-factor is part of every protein structure file deposited in the Protein Data Bank and
required no additional computational effort.

2https://www.rcsb.org/
3available at http://swissmodel.expasy.org/qmean
4https://swissmodel.expasy.org/docs/help, last accessed 30.05.2018

https://www.rcsb.org/
http://swissmodel.expasy.org/qmean
https://swissmodel.expasy.org/docs/help
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Multiple Sequence Alignment

The multiple sequence alignment of the cytoplasmic domains of BAK1, BRI1, BIR2 and
BIR3 was done using the Multiple Sequence Alignment tool Clustal Omega of the Euro-
pean Bioinformatics Institute5 [119, 120, 121]. The standard settings were used.

3.2.2 Comparative Modeling

Comparative modeling was used to generate a structure for BIR3 and to fill the structurally
unresolved parts in the structures of BRI1. The comparative modeling was conducted
with Modeller v9.16 [91]. The pdb files were downloaded from the Protein Data Bank6

[112]. The structure of BIR3 (At1g27190) was modeled based on the structurally resolved
parts of the cytoplasmic domain of BIR2 (Uniport ID Q9LSI9, PDB ID 4l68, Arabidopsis
thaliana, expressed in Escherichia coli) [122]. BRI1 was modeled based on an existing
structure of the BRI1 cytoplasmic domain (BRI1 - Uniprot ID O22476, PDB ID 5lpw, Ara-
bidopsis thaliana, expressed in Escherichia coli [123]), where comparative modeling was
employed to fill the gaps in the structure.
As a first step, all modified residues were removed from the templates and replaced with
the respective unmodified residue. An alignment of the amino acid sequence and the
structurally resolved parts was generated using the algorithm implemented in Modeller
version 9.16 and the code listed in the Supplementary Information on p. 177. On the basis
of these alignments and with a resolution of 2 Å, a total of 20 structures were generated
for each protein (see Supplementary Information p. 179).
The structures were evaluated based on the QMEAN4 score (see p. 18). If two or more
modeled structure shared the same QMEAN4 score, both structures were chosen for fur-
ther modeling.

3.2.3 Docking

Electrostatic Potential

The electrostatic surface potential of the proteins was checked to determine the relevance
of phosphorylated residues in the structures of BAK1, BRI1 and BIR3. To this end, a pqr
file of the charge distribution at pH 7.2 was generated using the PDB2PQR server7 [124].
This pqr file was then opened in Chimera, a visualization and analysis tool for protein
structures [114, 115]. Here, the pqr file was used to generate a grid file of the charges us-
ing the ABPS (Adaptive Poisson-Boltzmann Solver) tool that accesses the ABPS server.
The webserver was directly accessed using Chimera [125]. Based on the generated elec-
trostatic potential map file, the surface was colored accordingly.

5https://www.ebi.ac.uk/Tools/msa/clustalo/
6https://www.rcsb.org/
7http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.rcsb.org/
http://nbcr-222.ucsd.edu/pdb2pqr_2.1.1/
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webSDA

The “Webserver for Simulation of Diffusional Association 1.0” (webSDA)8 of the Heidelberg
Institute for Theoretical Studies gGmbH [48], served as platform for running the molecu-
lar docking analysis [99, 126, 127, 128]. Using webSDA, 500 potential complexes of the
gap-filled structures were computed in 500 SDA runs based on the electrostatic interac-
tion [125, 129], electrostatic desolvation [130] and non-polar desolvation [131] at an ionic
strength of 150mM and a pH of 7.2.
The docking of BRI1 and BAK1 had an allowed center to center distance of 45Å between
the proteins to prevent the formation of complexes blocking the N- or C-termini. The dock-
ing of BAK1 and BRI1 with BIR3 was not subjected to a center-to-center constraint to get
an unbiased estimate of the energetic landscape. The complexes were selected based on
the criteria listed in section 3.2.4.

ClusPro

In addition to webSDA we used ClusPro to generate fully docked complexes of the proteins
of interest [49, 132, 50, 51, 52]. For the docking between BIR3 and either BAK1 and BRI1,
the standard settings were used and no distance criterion was imposed. The complexes
were evaluated based on the scoring function describing van der Waals and electrostatic
forces.
To reproduce the settings of webSDA for the docking of BAK1 and BRI1, I included a con-
straint in the form of JSON (JavaScript Object Notation). This constraint limits the distance
between the residues at the centers of the structures to a maximum of 45 Å. The JSON
constraints were generated using the web tool, which is available as part of ClusPro9

and are included in the supplementary information (see Supplementary Information B.2.1
p. 180). As the scoring function based on van der Waals and electrostatic forces consis-
tently yielded no feasible complexes within the criteria, the balanced scoring function was
used instead to evaluate this docking run.

3.2.4 Complex Selection

Not all of the complexes computed by docking analysis were biologically feasible. To se-
lect the biologically relevant complexes a series of criteria was developed. The failure to
meet one of the criteria resulted in the exclusion of a complex from further analysis.

• All structures used during the docking analysis are truncated at both N- and C-
termini. Therefore, the following constraints were added:

– Neither N- nor C-terminus was allowed to be part of the interaction surface. To
specify this criterion I introduced the "minimal distance criterion" below.

8available at http://mcm.h-its.org/webSDA
9https://cluspro.org/generate_restraints.html

http://mcm.h-its.org/webSDA
https://cluspro.org/generate_restraints.html
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– The C-terminus was not allowed to extend to where the membrane would
be. If the C-terminus was as close or closer to the approximate location of
the membrane than the N-termini of both proteins, this was considered to be a
clash (Fig. 3.1).

– The N-terminus had to be allowed to extend to where the membrane would
be.

• Assuming that the extracellular or transmembrane domains are also involved in the
interaction between proteins, the N-termini of the proteins have to be oriented in
approximately the same direction. Therefore, proteins were not allowed to interact
by C-terminal and N-terminal (membrane proximate) domains or by their C-terminal
domains along the longitudinal axis.

To specify the first criterion a "minimal distance" was introduced, more precisely a minimal
distance for the N- and C-terminus of one protein from the surface of other protein in the
complex. This minimal distance was defined by sampling the complexes computed for
the proteins interest at the interaction surface and measuring the distance between amino
acid backbones in Pymol [133] (sample size n = 100). The resulting distribution approxi-
mately follows a normal distribution (Fig. 3.2). Using a threshold of x+ 2σ, where x is the
mean and σ is the standard deviation of the sample, we expect to cover 97.8% of potential
clashes. Different thresholds were applied for ClusPro complexes and for webSDA com-
plexes since one yields docked complexes and the other yields encountered complexes.
The distribution of distances between proteins for complexes computed by webSDA (Fig.
3.2 A) yielded a mean distance of x = 9.403 and a standard deviation of σ = 1.733 , which
results in a threshold of 11.136 Å. In comparison, the distribution of complexes computed
by ClusPro (Fig. 3.2 B) has a mean of x = 6.447 and a standard deviation of σ = 1.478 ,
which results in a threshold of 9.403 Å. The complexes were rendered in Chimera [114].
As the number nK of complexes within a cluster K is an indicator for the energetic land-
scape of the observed cluster [52], the complexes were evaluated based on the relative
cluster size. The relative cluster size f was defined as

f = nK/Ntotal observed complexes , (3.2)

where the number of complexes in a cluster nK is scaled with the total number of observed
complexes Ntotal observed complexes in that docking run. This was done to allow for the com-
parison of webSDA and ClusPro results, as the two methods record and cluster a different
number of complexes per docking run.

3.2.5 FRET-FLIM Measurements

To validate the result of the molecular docking analysis, Friederike Wanke conducted a
FRET-FLIM experiment and measured the occurrence of the complexes between BIR3,
BAK1 and BRI1. To this end, C-terminal fusions of GFP (BIR3) and mCherry (BAK1
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Figure 3.1: Definition of a membrane clash in potential complexes. A, B: The C-terminus
of one protein in the complex clashes with the membrane. A clash occurs if the C-terminus
is as close or closer to the membrane than the line defined by both N-termini and if the C-
terminus continues in the direction of where the membrane would be. A & B show different
orientations for the same complex. C: Example of a complex that is close to be considered a
membrane clash but is considered feasible according the the analysis parameters.
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Figure 3.2: Density of sampled distances between amino acid back bones in protein
complexes. A: Distribution of distances in complexes computed by webSDA. B: Distribution
of distances in complexes computed by ClusPro. Sampled were the distances between amino
acid backbones in protein complexes at the interaction surface between the proteins (n = 100).

and BRI1) [134, 135] were expressed in combination with a gene silencing suppressor,
transformed into Agrobacterium tumefaciens strain GV3101 and infiltrated into Nicotiana
benthamiana leaves.
The FRET-FLIM measurements were performed 2 days after infiltration. The lifetime τ [ns]
was measured with a pulsed laser as excitation light source of 470 nm and a repetition
rate 40MHz. The lifetime τ of the donor only serves as control for the measurements. All
measurements were repeated for three different biological replicates consisting of at least
seven cells. The GFP fluoresence lifetime was determined by data processing using the
SymPhoTime software and bi-exponential curve fitting, while correcting for the instrument
response function (IRF) and using a fitting range from channel 90 to channel 1400.
To ensure the statistical significance of the results, Nina Glöckner ran a Steel-Dwass test
on the FRET-FLIM data using JMP version 13.1 (SAS Institute Inc., Cary, NC, 1989-2007).
As the samples displayed significantly different variances, the application of an analysis of
variance (ANOVA) test was not possible.

3.3 ODE Modeling of the Fast BR Response

3.3.1 Model Setup

The model was built in the COmplex PAthway SImulator (COPASI) version 4.23 build 184
[104] running on WINDOWS 8. COPASI allows for the definition of multiple compartments,
species, global quantities and events to model a system based on biochemical reactions
that are used to construct an ODE model. The ODEs are generated automatically using
the rate laws of the individual reactions.
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Units The units of the model were chosen such that the units of volume and area com-
partments were compatible: dm3 (l) for volumes and dm2 for areas. The model time was
measured in s and the concentrations in nmol.

Compartments COPASI build 184 is the first version that allows for two-dimensional
compartments. Therefore, the membrane was actually included as an area instead of us-
ing a three-dimensional compartment and treating it as if it were two-dimensional. Cell
wall and cytosol were defined as three-dimensional compartments.

Reactions The model reactions were defined by indicating substrate and product. The
reversibility of the reaction was indicated by the symbol,→ for an irreversible reaction and
= for a reversible reaction.

Rate Laws The velocity vi of reaction ri was defined in the rate law. Since most of the
reactions between the signaling components concern processes occurring within a protein
complex, there can be no saturation. Therefore, these reactions were described by mass
action kinetics:

vi = ki · [substrate] (3.3)

Here, the reaction rate is defined by k1 and [substrate] is the transient substrate concentra-
tion. Reactions occurring between proteins, which were not in a complex, were described
by a simple saturation kinetics:

vi =
Vmax · [substrate]
[substrate] +Km

, (3.4)

where Vmax is the maximum reaction velocity and Km defines the substrate concentration
where 1

2Vmax is reached. More precise, Vmax is defined as the product of the enzyme
concentration [E] and the enzyme’s turnover number kcat.
For the reactions with known regulators, the appropriate term was included in the respec-
tive rate law. Based on the currently available experimental knowledge, only inhibitors are
known to act on the fast BR response. Here, the denominator of the rate law was multi-
plied with (1 + [inhibitor]

Ki
) indicating a non-competitive inhibitory mechanism [105].

3.3.2 Parameter Estimation

Not all parameters of the model are experimentally determined and, therefore, had to be
estimated. This is achieved by minimizing the least-squares function, which is a measure
for the difference between model behavior and experimental data:

E(P ) =
∑
i,j

wj(xi,j − yi,j(P ))2 , (3.5)
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where E(P ) is the difference function for the parameter set P , wj is the weighting factor
of the data set, xi,j are the data points i of the data set j and yi,j(P ) is the model value
corresponding to the data point xi,j for the parameter set P . The weighting factor wj is
used to scale between different orders of magnitude of individual parameter sets. Since
wj is not squared automatically, any weight applied needs to be squared by the user.
For this project, different strategies were applied to parameter estimation. The initial pa-
rameter estimation was done by switching between particle swarm [136], a global opti-
mization method, and Hooke-Jeeve’s algorithm [137], a local optimization method, all as
implemented in COPASI. To explore the parameter space, 50 parameter estimations with
randomized starting values were set up on the computing cluster with the particle swarm
algorithm.
Wherever possible, experimental data were used to define the allowed range for parame-
ters during parameter estimation. If no data were available at all the range was set to 10−6

and 106.

Local Methods

Local parameter estimation methods generally utilize the gradient of the objective func-
tion. Here, the Hooke-Jeeves algorithm was used, which has a slightly different approach
to determining the new parameter values: Instead of merely using the gradient, it checks
for patterns in the development of the objective functions and follows these until the (local)
minimum is reached [137].

Global Methods

Global parameter estimation methods take a different approach to optimization. For one,
several parameter sets are evaluated per function evaluation, thus spanning a wide range
of the parameter space. It is therefore more unlikely for global optimization methods to
become stuck in a local minimum. Some global parameters also contain a stochastic ele-
ment. For example, both the genetic algorithm [138, 139, 140, 141] and the particle swarm
algorithm [136] can introduce changes in a parameter set ("mutations").
The ODE models in this thesis have been fitted using the particle swarm algorithm. For
the fits running on the computing cluster, 15, 000 generations with a population of 100 pa-
rameter sets and the random number generation turned on. Local fits were run switching
between particle swarm (100 generations, 100 parameter sets, random number generation
on) and Hooke-Jeeves (see previous paragraph) to speed up the estimation process.
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3.3.3 Model Simulation

Time-Course Simulations

For this model, time-courses were simulated deterministically using the LSODA solver as
implemented in COPASI. The LSODA solver switches automatically between integration
methods for stiff and non-stiff systems [142].

Sensitivity Analysis

To determine the importance of the individual model parameters, the scaled sensitivities
were calculated as defined in COPASI build 184. Generally speaking, sensitivites are
defined as the change of a model quantity X resulting from a change in model paramter
P :

sensitivity =
δX

δP
(3.6)

These unscaled sensitivities have the drawback that even within one model it is impossible
to compare the numerical values of the sensitivities due to different parameter values.
Thus, the scaled sensitivities were used here:

scaled sensitivity =
δX

δP
· P
X

=
δln(X)

δln(P )
(3.7)

Scaled sensitivities are normalized with the actual paramter values of X and P allowing a
comparison of sensitivity values within one model.

Parameter Scan

To determine the dose-response of the model to the negative regulator BIR3, a parameter
scan was set up of time-course simulations for the factor describing the BIR3 expression
level. By scanning the factor from 0 to 100 in 99 non-logarithmic intervals, the respon-
siveness of the model after 30min was characterized from the bir3 deletion to the overex-
pression level assumed for the 35S promotor in the overexpression experiments done by
Imkampe et al. (2017) [30].

3.3.4 Visualization

Plotting The simulation results of the ODE models in this thesis were visualized by plot-
ting in R 10 [143].

Movies To illustrate the results of the elongating cell model, I combined the plots of the
cellular dimensions into a movie using ImageJ [144].

10https://r-project.org

https://r-project.org
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3.3.5 Experimental Data

Membrane Potential Change

Caesar et al. (2011) measured the membrane potential change in response to 10, 50 and
100 nM BL and showed that a fluorescence lifetime change in BRI1-GFP (FLT) can serve
as a readout for this change [14]. As I knew that the response to BL exceeds the 20min

and that the FLT changes by −0.007 nsmin−1 for 30min after stimulation with BL (Prof. Dr.
Klaus Harter, personal communication), I extrapolated the membrane potential change
for the BL response to up to 30min. Here, I increased the range of the extrapolated BL
response according to the standard deviation originally measured at 20min. Based on
the standard deviations from the mean membrane potential change, I reconstructed three
time series for each dose of BL.
To ensure that the model also shows the correct dynamics for the resting membrane po-
tential, I included several data points of the resting membrane potential at different time
points up to model stimulation. The data used for fitting are included in the supplementary
information (see Section C.4 p. 187).

Protein Quantification

To increase the amount of experimental data in the model, the proteins AHA2 and BIR3
were quantified in relation to the receptor BIR1, which has been quantified experimentally
in great detail by van Esse et al. (2011) [11]. This was done by both Western blotting of
the whole root and fluoresence microscopy of single roots.

Batch Experiments For the protein quantification by the Western blotting, four plates of
seedlings were prepared for each of the following transgenic lines: Col-0, pBRI1::BRI1-
GFP, pBIR3::BIR3-GFP and pAHA2::AHA2-GFP. Shoot and root were separated before
protein extraction. After gel electrophoresis and transfer, BIR3-GFP, AHA2-GFP and BRI1-
GFP were detected in Western Blotting by an anti-GFP antibody.

Single Plants Nina Glöckner further quantified the negative regulator BIR3 and and the
H+-ATPase AHA2 by fluoresence microscopy. The following plants were used for the
analyis: Col-0 pBRI1::BRI1-GFP, pBIR3::BIR3-GFP and pAHA2::AHA2-GFP. The quantifi-
cation was done my measuring and adding up the fluorescence in a 50µm times 50µm
area. The BIR3-GFP and AHA2-GFP were then quantified in relation to BRI1-GFP after
subtracting the background and the signal by free GFP.

Microelectrode Ion Flux Estimation (MIFE)

Microelectrode Ion Flux Estimation (MIFE) is a non-invasive method that uses a micro-
electrode to measure the ion movement at the root surface. By measuring the voltage of
the solution in comparison to the liquid ion exchanger in the electrode tip at two different
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distances from the cell surface, it is possible to determine the direction of ion flux. Let U1

be the current closer to the root and U2 the current further away from the root. Then, if
∆U > 0 there is a net influx, and if ∆U < 0 there is net extrusion of ions from the root.
The MIFE experiments were conducted with Col-0 and bri301 plants at different distances
from the root tip with 10 nM brassinolide and with DMSO serving as control.

pH Measurements

The pH measurements were done using the water-soluble dye 8-Hydroxypyrene-1,3,6-
trisulfonic acid trisodium salt (HPTS). HPTS has recently been applied to measure auxin
induced pH changes in the root [111]. The protonated and unprotonated forms of HPTS
occur in a pH-dependent manner and have different absorption and emission spectra. To
measure the extracellular pH, 4 day old seedlings were transferred to solid growth medium
with 1 mM HPTS and imaged after incubation using a Zeiss 710 confocal microscope with
a 405 nm and a 458 nm laser. The ratiometric image is calculated by dividing the signal
intensities of the two channels.

Proton Leak Measurements

An estimate of the proton leak was provided by Dr. Stefan Scholl (research group of Prof.
Dr. Karin Schumacher, COS, Heidelberg University) by measuring the pH change in the
cell wall after treatment with vanadate, which inhibits P-type ATPases but not V-type AT-
Pases. The seedlings stably expressed SYP122-pHusion. SYP122 is located in the cell
membrane [145], with the pHusion molecule being located in the cell wall. pHusion is a
combination of mRFP and eGFP, the latter of which is pH sensitive [146]. The ratio of the
fluorescent signal after excitation at 488 nm and 561 nm yields quantitative data of the pH
between 4.8 and 7. The plants were treated with 500µM ortho-vanadate and the pH was
measured after 30min and 60min based on the fluorescent ratio of mRFP and eGFP in the
elongation zone. The measurements were conduted for n = 30 seedlings. Plants treated
with normal medium were taken as control. The calculations are listed in the Supplemen-
tary Information (p. 181).

3.4 Agent-Based Modeling

The agent-based modeling was done using the platform EPISIM [53] running on Windows
8. The ABM consisted of a biochmechamical model (see section 3.4.1), a cell behavior
model (see section 3.4.2) and a cellular ODE model (see section 3.4.3).
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3.4.1 Biomechanical Model

The biomechanical model describes both biomechanical forces and initial settings for the
ABM, which are encoded in java and loaded into the cell behavior model. The underlying
biomechanics in this agent-based model are based on a center-based 2D approach. As
basis for the root biomechanical model, Erika Tsingos adapted an existing center-based
2D model in the EPISIM code [53] to the root tip. This means that pressure and adhesive
force act between the centers of two neighbouring cells a and b, which are at a distance
of d(a, b) (according to [110]):

F (a, b) = Fpr(a, b) + Fadh(a, b) (3.8)

Here, the pressure force Fpr scales with the degree of overlap between the cells. As long
as the overlap is between 15% and 50% a linear dependency of the pressure force and
the degree of overlap is assumed to follow a spring like dynamic. Exceeding that threshold
of 50% the pressure force becomes exponential.
The adhesive forces between cells are also modeled by spring dynamics that correlate
with the interaction area between cells a and b. However, adhesion only occurs if cells are
within 1.3 ·dopt(a, b). The optimal distance dopt(a, b) is calculated depending on the centers
of the cells a and b.
Erika Tsingos and I adapted an existing center-based 2D model, which was part of the
EPISIM simulator code, to account for particularities in the root tip. Notably, cell division
does not occur in all direction equally, but rather in a transverse direction such that the new
cells are placed along the longitudinal axis [147]. Instead of generating a completely new
position for the daughter cell, the position along the x-axis was inherited from the mother
cell. The details of all changes are explained in the corresponding results section.

3.4.2 Cell Behavior Model

The cell behavior model (CBM) of the agent-based model was setup using the EPISIM
Modeller, which is part of the EPISIM platform [53]. The network describing the behavioral
rules of the CBM were defined using sub-models, transitions, states and edges as pre-
defined in EPISIM [53] (Fig. 3.3). Global parameters were introduced to describe division
rate and cell height. The division rate was adjusted from the experimentally observed
values (in cell−1 h−1) [7] to the time step of the cell behavior model (in cell−1 10min−1) [7].

3.4.3 Cellular ODE Model

The cellular ODE model was constructed in COPASI v4.23 (build 184). To prepare the
model for integration in EPISIM, the model was simulated for 24 h to allow for the complex
formation between BIR3, BAK1 and BRI1 and to update the species concentrations. The
dose of BL was set to 10 nM BL and the model was exported in SBML. This SBML model
was then loaded in the CBM and linked by referring to the sbml entities as loaded by
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Figure 3.3: Components of the cell behavior model. A cell behavior model in EPISIM
[53] consists of transition choiches (green), transition probabilities (orange), state changes
(red), transition conditions (grey), submodels (blue) as well as a start and end point of the
simulations.

EPISIM. The ratio of simulation steps was determined by trial and error: One simulations
step in the CBM is equivalent 2100 simulation steps in the ODE model. Thus, the scale
was set accordingly. Notably, EPISIM simulates one instance of the ODE model per cell
simulated in the cell behavior model.

3.4.4 Model Simulations

Model simulations were run using the EPISIM Simulator [53]. One simulation step rep-
resents a duration of 600 seconds. During the simulations, one snapshot was taken per
simulation step. These snapshots were later converted into a movie using ImageJ [144].



4 | Multi-Compartment Rate Laws

BRs affect cell morphology in a number of different ways. For one, BRs induce cell swelling
by hydration [14], which is preceded by cell wall acidification [17, 18, 19, 20]. Second, BR
signaling is involved for cell elongation [2, 17, 21]. Both processes change the cellular
dimensions, which in turn is crucial for the choice of modeling approach.
In ODE models it is generally assumed that all species exist in well mixed containers, the
compartments. By assuming a uniform distribution of species within a compartment, it is
possible to ignore the spatial aspect to reactions and instead analyze the purely temporal
dynamics of species. Based on this assumption, the speed of reactions is generally scaled
with the volume of the compartment, where the reaction occurs. This is not the case for
reactions that span more than one compartment, as these scale with the area between
compartments [106]. Here, it is wrong to scale the rate laws of these reactions with the
volume of a compartment. Some software still scale the rates of these reactions with the
compartment volume (e.g. PottersWheel [148]). However, both COPASI [104] and SBML
[107] do not presume any automatic scaling. Instead, it is the responsibility of the user to
define the reaction rates correctly.
As long as neither cell shape nor cell size change throughout the course of a simulation,
it is possible to create an equivalent model using a volume-scaling or one compartment
model. It does, however, require careful treatment of the parameter values and information
content. As soon as the model is transferred to a different setting (different cell shape or
size) all parameters of multi-compartment reactions need to be readjusted.
Differences in cell shape can indeed have an impact on how a system reacts to certain
stimuli. For example, signal-modulated negative regulators have different dynamics de-
pending on the cell shape in a spatial partial differential equation (PDE) model of the β-
adrenergic receptor response [149]. Experimentally, the controlling influence of cell shape
and morphology is well documented [150, 151, 152, 153]. For computational models, the
general impact of cell shape and size had been demonstrated for spatial PDE models
[154, 155].
Here, I examine how different approaches to model multi-compartment processes in ODE
models react to changes in cell morphology. As BR signaling affects both cell size and
cell shape, it was crucial that I analyzed the impact of this in order to describe all multi-
compartment reactions correctly. The inclusion of two-dimensional compartments is not
common in ODE models. If the membrane is included as compartment in the ODE model
[156, 149, 157], this model often serves as basis for constructing a PDE model, where the
spatial impact is analyzed [149, 157].

31



32 CHAPTER 4. MULTI-COMPARTMENT RATE LAWS

Figure 4.1: Toy models used to analyze the importance of multi-compartment rate laws.
A: Transport model. B: Receptor model. The reaction numbers are indicated in the reaction
icon. This scheme was created using VANTED [158] according to the SBGN standard [159].

To analyze the impact of cell shape and morphology in ODE models, I will examine the
practical aspects of the following modeling approaches - multiple compartments with in-
teraction area, multiple compartments without an interaction area (COPASI default) and
one universal compartment. In the last approach, species that normally exist in different
compartments are instead differentiated by name (i.e. cytosolic calcium ions Ca2+cyt and
endoplasmic calcium ions Ca2+ER).
I examined the impact of the different modeling approaches in two ways. For one, I ana-
lyzed the behavior of simple toy models to determine the effect of the different modeling
approaches on model behavior. Here, I also determined the information content of the pa-
rameters that describe the reactions between multiple compartments. Next, I collaborated
with Pascal Holzheu (research group of Prof. U. Kummer, Bioqant, Heidelberg University)
to check the behavior of published biochemical models.

4.1 Toy Models

Starting with the analysis of the toy models allows a first, simplified view into how the
different modeling approaches impact model behavior and the information content of the
individual parameters. To this end, I studied two models - a transport model (Fig. 4.1
A) and a simple receptor model (Fig. 4.1 B) - to ascertain the informational content of
individual parameters in each model. The scenarios examined for the toy models were
chosen to represent a physiologically relevant situation.
To determine how much the modeling strategy can impact the model response depending

on the choice of model structure, I chose different spatial conformations to model that
represent relevant biological scenarios (Fig. 4.2). As cell sizes differ greatly between the
different root zones [11], the first set of simulations concerns the transport of a substance
from the cell wall into an epidermis cell in each root zone. Here, I considered an epidermis
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Figure 4.2: Overview of modeled situations for the transport and receptor toy models.
A. Represented root regions highlighted in color. Rosa: meristematic zone; green: elongation
zone; blue: maturation zone. Cell dimensions were taken from a representative epidermis cell
of that region [11]. B-D: Modeled scenarios with the interaction area highlighted in red. B:
Transport into a cell from the cell wall. C: Horizontal transport between two cells. D: Vertical
transport between two cells. C & D concern cells of identical cell type in the same root region.

cell in the meristematic zone, in the elongation zone and in the maturation zone (Fig. 4.2
B).
Furthermore, I considered directional transport both horizontally (Fig. 4.2 C) and vertically
(Fig. 4.2 D) between two cells of the same cell type and root region. Using these spatial
conformations, I analyzed the behavior of the transport model for all modeling approaches.

4.1.1 Transport Model

The transport model only comprises the reversible transport of the model species, X1,
from compartment V1 into another compartment V2, where it is denoted as X2. Thus, the
whole system is described in one reversible reaction:

X1
v1−−⇀↽−−
v−1

X2 , (4.1)

where v1 and v−1 describe the transport rate of X1 and X2, respectively. To address a bio-
logically relevant situation, I used the information on plant epidermis cells across the differ-
ent root regions [11] and looked at how the transport across the membrane might change
(Tab. 4.1). In particular in plant roots, transport patterns of auxin have been analyzed and
shown to have a deciding impact on root growth and development [89]. Therefore, I also
checked the horizontal and vertical transport between cells of the same cell type and root
region. To determine the impact of the different modeling approaches on model behav-
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Table 4.1: Overview of compartment sizes used in the toy model simulations. * Cell wall
volume was calculated according to membrane area and the experimentally determined cell
wall thickness [11].

Root Zone Cell Wall* V1 [µm3] Membrane A [µm2] Cytosol V2 [µm3]

meristem 302.965 767 847
elongation 2082.835 5273 5803
maturation 5054.025 12 795 16 367

ior in changing spatial conformations, I modeled the different transport model structures
without adjusting the parameters in between as described earlier. One adjustment was
made to allow for an easier comparison of the different model approaches: In the model
consisting of only one compartment, the initial particle number of X1 was adjusted to be
the same as in the other two modeling approaches. By having the identical number of
particles at the beginning of the simulation, the time-scales can be compared more easily.

Multi-Compartment, with Area-Scaling

The transport between two three-dimensional compartments scales with the interaction
area between these compartments. Therefore, the mathematical description of inter-
compartment transport should read like the following equation:

d([X1] · V1)
dt

= −d([X2] · V2)
dt

= Ainteraction · (−k1 · [X1] + k−1 · [X2]) , (4.2)

where the change of X1 and X2 in the different compartments depends on the interaction
area, Ainteraction, and the transport rate constants, k1 and k−1. A larger interaction area
between the compartments or a more permeable membrane result in a faster equilibrium
between the compartments V1 and V2.
The distinction between membrane and interaction area is intentional, as transport can
occur with a set direction that limits the interaction area to a subset of the membrane area,
e.g. during the directional transport of auxin between cells in the A. thaliana root [160].
Here, the parameters k1 and k−1 have the units dm s−1 and describe the translocation rate
constants of X1 and X2 across the membrane.

Multi-Compartment, without Area-Scaling

In this modeling approach, reactions involving multiple compartments are not scaled with
any volume or area. This means that this information is implicitly contained in the respec-
tive reaction parameters. As this approach does not presume any automatic scaling, this
is the approach used by both COPASI [104] and SBML [107].
By omitting the membrane in the model, this changes Equation 4.2 to the following ODE:

d([X1] · V1)
dt

= −d([X2] · V2)
dt

= −k1 · [X1] + k−1 · [X2] (4.3)
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Here, it is assumed that the parameters k1 and k−1 already contain the information of the
interaction surface between the two volumes, over which X1 and X2 diffuse. This means
that the apparent values of k1 and k−1 (in dm3 s−1) are the product of the actual permeabil-
ity parameters p1 and p−1 (in dm s−1) and the interaction surface (in dm2). Accordingly, the
parameters k1 and k−1 are only valid for one specific interaction area. Any change in cell
shape or growth that results in a changed interaction area, necessitates an adjustment of
the parameters k1 and k−1. Therefore, this kind of model is only valid for one specific set
up regarding cell shape and size.

One Compartment

In some cases, one universal compartment is used to model multi-compartment pro-
cesses. Here, species are distinguished by their names instead of the allocated com-
partment. In the transport model, using only one compartment changes equation 4.2 to:

d([X1] · V )

dt
= −d([X2] · V )

dt
= V · (−k1 · [X1] + k−1 · [X2]) (4.4)

The omission of one of the compartments means that the species can only be distin-
guished by different names, X1 and X2 in this case. It also means that the information
about the interaction area and potential differences in compartment sizes need to be in-
cluded in the kinetic parameters k1 and k−1. This kind of model is therefore only valid for
one unique setting. Any change in compartment volume or interaction area requires the
careful adjustment of the kinetic parameters.

Model Behavior

To analyze the impact of cell size and shape in the different ODE modeling approaches, I
looked at the transport of a species X1 from the cell wall into the cytoplasm (Fig. 4.3 A).
The test case here was to follow transport across different root regions for an epidermis
cell. To determine the effect of not adjusting the parameters between settings, I deter-
mined the correct parameters for the meristematic zone and kept them unchanged for the
simulations in the elongation and maturation zones (Tab. A.1 on p. 173). It is noteworthy
that the divergence of cell surface and cell membrane does not have a strong effect on the
steady state concentrations since plant cells gain volume mostly by taking up water into
the vacuole [161]. Therefore, the cytoplasm changes on a slightly different scale than the
cell surface [11].
In this context, it is not surprising that the dynamics of X1 and X2 do not change much
in the different root zones in the multi-compartment model with area-scaling (Fig. 4.3 B).
While the speed remains constant between the different root zones, the model reaches a
different equilibrium in the maturation zone (Fig. 4.3 B, blue and light blue).
In contrast to this, the multi-compartment model without area-scaling shows noticeable
differences in transport speed (Fig. 4.3 C). Here, the equilibrium is reached at a later time
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Figure 4.3: Overview of the transport model behavior with varying compartment vol-
umes. A: The exchange of the species X1 was modeled from the cell wall into an epidermis
cell in the different root zone. B: Behavior of the area-scaling model. C: Behavior of the multi-
compartment model without area-scaling. D: Behavior of the one compartment model. Red
and orange: meristematic zone, light green and dark green: elongation zone; light blue and
dark blue: maturation zone.
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in the elongation zone (green) and the maturation zone (blue). Nonetheless, the correct
equilibrium is reached.
Finally, there is the one compartment model to be considered. To have the same parti-
cle numbers in each model, the initial number of X1 was adjusted to be the same as the
models presented in Fig. 4.3 A and B. As the one compartment model consists only of
the compartment, V2 (here: cytoplasm), the apparent concentration of X1 is lower than the
one observed for the other models. Besides this adjustment, this model behaves much like
the area-scaling model. The reason for this lies in the fact that plants mainly increase their
cell volume by water uptake into the vacuole instead of increasing the cytoplasm [161].
Therefore, the ratio between cell surface and cell compartment does not change as much
as it would in another model organism.
Since directed transport plays a crucial role in organ development in plants [160], looking
at vertical and horizontal transport is equally important as looking at the different root re-
gions. Here, I looked at the transport between cells of identical cell type and root region
and simulated both vertical (Fig. 4.4) and horizontal (Fig. 4.5) transport. The precise in-
teraction areas for the vertical and horizontal transport in the different root zones are listed
in the Supplementary Information Table A.2, p. 173.
Figure 4.4 summarizes the simulation results of the vertical transport. Considering that
plant cells mostly increase in length during growth, the vertical interaction area between
two cells only changes to a small degree. Nonetheless, the cytoplasmic volume does
increase. Therefore, more particles need to be transported across the membrane while
the interaction area remains almost unchanged. This explains why the area-scaling multi-
compartment model reaches the equilibrium at a later time in the elongation and matura-
tion zones compared to the meristematic zone (Fig. 4.4 B).
This effect is even more pronounced in the multi-compartment model without area scaling.
Here, the modest increase in interaction area is not represented by the model, resulting
in much slower transport rate constants for the elongation and maturation zones (Fig. 4.4
C).
Finally, the different settings have no impact at all on the ODE model comprising only one
compartment (Fig. 4.4 D). Here, the time-course simulations of the different root zones
are identical. While the amount of X1 increases from meristematic to maturation zone,
so does the volume that is used to scale the rate law. Therefore, all time-courses look
identical irrespective of the precise setting.
As a final situation for the transport model, I analyzed the behavior of the toy model dur-
ing horizontal transport between cells of the same root zone (Fig. 4.5 A). In this case, cell
growth has a greater impact as cells mostly grow along the longitudinal axis. This becomes
evident in the time-course simulations of the multi-compartment model with area-scaling
(Fig. 4.5 B). The transport in the meristematic zone is slowest (orange/red), while the
transport in elongation zone (green) and maturation zone (blue) occur at a faster rate.
The multi-compartment model without area-scaling behaves in the completely opposite
way (Fig. 4.5 C). Here, the exchange between cells in the meristematic zone is the fastest
(orange/red). The transport in the elongation (green) and in the maturation zones (blue) is
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Figure 4.4: Vertical transport between root cells A: Legend and model setting. B: Hori-
zontal transport between root cells in the area-scaling multi-compartment model. C: Behavior
of the multi-compartment model without area-scaling. D: One compartment model. Red and
orange: meristematic zone, light green and dark green: elongation zone; light blue and dark
blue: maturation zone.

progressively slower as more particles diffuse according to a constantly small rate.
Lastly, the one compartment model does not change its behavior throughout the different
root zones considered here (Fig. 4.5 D). Instead the time-course simulations of elongation
(green) and maturation zones (blue) resemble the simulations of the meristematic zone
(orange/red), which fits the behavior of this model for the vertical transport (Fig. 4.4 D).

4.1.2 Receptor Model

In addition to the transport model, I looked at the behavior of a simple receptor model.
This model comprises three reactions: the reversible association of the ligand L to the
receptor R

L+R
v1−−⇀↽−−
v−1

LR , (4.5)

the production of the intracellular messenger M

v2−→M ;LR , (4.6)

and the degradation of the intracellular messenger

M
v3−→ . (4.7)
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Figure 4.5: Horizontal transport between root cells. A: Legend and model setting. B: Hor-
izontal transport between root cells in the area-scaling multi-compartment model. C: Behavior
of the multi-compartment model without area-scaling. D: One compartment model. Red and
orange: meristematic zone, light green and dark green: elongation zone; light blue and dark
blue: maturation zone.
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The reversible association and dissociation of the ligand L to the receptor R occurs with
the rates v1 and v−1 and the rate constants k1 and k−1, respectively. To keep this model as
simple as possible, I used mass action kinetics for all reactions. The second messenger
M is produced by the ligand-receptor complex LR at the rate v2 and a rate constant of
k2. The final reaction concerns the degradation of the second messenger M , which is
formulated as a mass action kinetics with a rate of v3 and a rate constant of k3.
The multi-compartment versions of this model comprise three different compartments: ex-
tracellular space, membrane area and cytosol. The extracellular space is defined as the
cell wall volume in this case.

Mutli-Compartment, with Area-Scaling

In the version of the receptor model with area-scaling, there are two reactions that scale
with the membrane - the ligand-receptor interaction and the production of the second mes-
senger M that depends on the amount of ligand-receptor complex LR.

d([L] · Vextracellular)
dt

=

d([R] ·Amembrane)
dt

=

−d([LR] ·Amembrane)
dt

=−Amembrane · (k1 · [L] · [R]− k−1 · [LR])

d([M ] · Vcytosol)
dt

= Amembrane · k2 · [LR]− Vcytosol · k3 · [M ]

The degradation of the second messenger M is the only reaction that scales with the cel-
lular volume Vcytosol. This model here is not specific to one spatial configuration. Since the
kinetic parameters are independent of cell volume or cell surface, different cell morpholo-
gies can be modeled without adjusting the parameters.

Multi-Compartment, without Area-Scaling

As with the transport model, this modeling approach does not scale the reaction rate laws
spanning multiple compartments either with a volume or with an area but rather considers
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them as particle fluxes:

d([L] · Voutside)
dt

=

d([R] ·Amembrane)
dt

=

−d([LR] ·Amembrane)
dt

=− k1 · [L] · [R] + k−1 · [LR]

d([M ] · Vcytosol)
dt

= k2 · [LR]− Vcytosol · k3 · [M ]

All reactions that are recognized as involving multiple compartments do not scale with a
compartment automatically. Here, the user has to include that information in the kinetic
parameters k1, k−1 and k2, which are the product of the actual permeability parameters
and the interaction area. This means that this kind of model is specific to one spatial
configuration. If the model is transferred to another cell type or cell morphology, the pa-
rameters for multi-compartment reaction need to be adjusted.

One Compartment

In many signaling models, the receptor and often also the ligand are placed in the cy-
toplasm to avoid complicating the model by using several different compartments, i.e.
Kholodenko et al. (1999) [162] and Brown et al. (2004) [163]. In this case, the set of
ODEs look like the following set of equations:

d([L] · Vcytosol)
dt

=

d([R] · Vcytosol)
dt

=

−
d([LR] · Vcytosol)

dt
=− Vcytosol · (k1 · [L] · [R] + k−1 · [LR])

d([M ] · Vcytosol)
dt

= Vcytosol · (k2 · [LR]− ·k3 · [M ])

In this model there are several simplifications from what would be a realistic representa-
tion. For one, both receptor and receptor-ligand-complex exist within a volume instead
of a surface. Hence, the units of these species are different than they are in reality:
mol per volume instead of mol per area. Depending on the model units and the sizes of
the compartments the nominal concentrations can be very different, even if the particle
number is identical. This makes the concentrations of membrane proteins in this model
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meaningless.
Further differences concern the informational content of the parameters k1 and k−1. These
parameters now also contain the ratio of the cell surface Amembrane to the extracellular vol-
ume Vextracellular and the cytosolic volume Vcytosol, respectively. Furthermore, depending
on the ratio of extracellular to cellular volume, the concentration of the ligand [L]t=0 will
have to be adjusted to ensure an identical initial amount of particles in both the model
and the experimental setting. Otherwise, a different steady state receptor occupancy level
would be reached.
The parameter k2 can be kept constant compared to the model with area-scaling, since
the production of messenger molecules scales with the number of occupied receptors LR.
While the ligand-receptor complexes are located in the membrane, the modeler has as-
signed them to the cytoplasm making the standard approach of scaling this ODE with the
cell volume mathematically correct as long as the correct amount of particles was included
in the initial settings.

Model Behavior

To analyze the impact of cell morphology and modeling approach on a signaling model, I
simulated the receptor model for an epidermis cell located in different root regions. The
compartment sizes were chosen as listed in Table 4.1. To facilitate the comparison be-
tween the modeling approaches, the initial particle numbers for ligand and receptor were
chosen to be identical in all modeling approaches: 10, 000 ligand particles L0 and 100, 000

receptor particles R0. The parameters were chosen such that all models show identical
behavior in the meristematic zone (Tab. A.3). No parameters were adjusted for the simu-
lations in the elongation or maturation zone to show the effects of the different modeling
approaches.
Figure 4.6 illustrates the simulation results for all modeling approaches regarding the mes-
senger particle numbers. In the meristematic zone (Fig. 4.6 A) all models respond iden-
tically to the stimulation with the ligand. The simulations of the elongation and maturation
zone show that in these cases the one compartment model deviates less from the multi-
compartment model with the membrane compared to the one without the membrane. The
discernible differences are a slightly faster response in both elongation and maturation
zone (Fig. 4.6 B,C) and a slightly higher steady state concentration of the second mes-
senger in the maturation zone (Fig. 4.6 C). In comparison to this, the multi-compartment
model without the membrane shows great differences in in steady state messenger levels
in both root zones (Fig. 4.6 B, C) and a delayed response in the maturation zone (Fig. 4.6
C).
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Figure 4.6: Overview of the receptor toy model behavior in different settings. A: Mod-
eling setup. B-D: Signaling output as determined by the messenger concentration in the
cytoplasm according to modeling approach in an epidermis cell of different root regions. B:
Meristematic zone. C: Elongation zone. D: Maturation zone. Blue: One compartment model;
red: multi-compartment model with area scaling; yellow: multi-compartment model without
area scaling. The behavior of the other species is shown in the Supplementary Information
A.2 on p. 175.
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4.2 Example Models

While the behavior of the toy models can help to get an idea of the importance of multi-
compartment rate-laws, the toy models are not as complex as models of biological systems
and, therefore, yield only a simplified picture. Therefore, together with Pascal Holzheu,
I also analyzed published biological models. First, we categorized the curated models
in the biomodels database [35] (https://wwwdev.ebi.ac.uk/biomodels/, last accessed:
24.05.2018) into several subcategories:

1. models comprising only one compartment

2. multi-compartment models

(a) compartments have an arbitrary volume of 1 l (or 1ml)

(b) model compartment volumes describe the ratio between the biological com-
partment volumes

(c) compartments are of realistic volumes

(d) compartment volumes do not matter since the ODEs are written in a way that
the volumes cancel out

(e) pharmaco-kinetic or organ-scale models

We considered only those models as examples, where the model comprises multiple com-
partments with realistic size and where the formulation of the ODEs does not cancel out
the compartments. We further limited our selection to models that describe cellular pro-
cesses instead of pharmacokinetic or organ-scale models.
This leaves only a few of the curated models listed in the biomodels database [35]: Out of
the 699 curated models 474 are one compartment models. Of the 225 multi-compartment
models, 147 have arbitrary volumes in the range of 1 l or 1ml per cell. A further 32 contain
the ratio between compartments while having a compartment volume in the range of liters.
This kind of model is only valid for one specific cell size and morphology as any change in
either of these would require careful adjustment of the model paramters. Only 22 models
have several compartments with realistic volumes (Tab. 4.2). Of these, only three also
contain the plasma membrane as a compartment and interaction area [156, 149, 157].
Neves et al. even considered the impact of cell size and shape on the signaling behavior,
though this analysis was limited to PDE model [149]. One particular model by Fridlyand
et al. considers the membrane implicitly by defining a total membrane capacitance to cal-
culate the membrane potential [164]. Another model defines the plasma membrane as
interaction volume instead of an interaction area [165]. Finally, five models were built us-
ing the VirtualCell software that allows for PDE simulations [166] and an additional seven
were organ-scale or pharmacokinetic models.
All of the models in Table 4.2 comprise multiple compartments that have realistic com-

partment sizes according to the cell or organelle size. Only three include the membrane as
reaction compartment [156, 149, 157]. However, the aim of these models was to represent
a basis for spatial PDE modeling. Here in this chapter, it is the aim to analyze the impact

https://wwwdev.ebi.ac.uk/biomodels/
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Table 4.2: Curated multi-compartment models in the biomodels database. Listed are
only those models with realistic compartment sizes with biomodel number (#) [35] (https:
//wwwdev.ebi.ac.uk/biomodels/, last accessed: 24.05.2018). The chosen example model
is highlighted in bold font. Models built in Virtual Cell [166] are marked by VC.

# Description Reference
16 Circadian oscillations in the drosophila period protein (PER) [167]
19 Dynamics of the MAP kinase cascade activated by surface

and internalized EGF receptors
[168]

59 Ca2+ flux in pancreatic beta-cells: role of the plasma mem-
brane and intracellular stores

[164]

122, 123 NFAT and NFκB activation in T lymphocytes [169]
161
(VC)

Compartment-specific feedback loop and regulated traffick-
ing can result in sustained activation of Ras at the Golgi

[170]

162
(VC)

Modeling and analysis of calcium signaling events leading
to long-term depression in cerebellar Purkinje cells.

[157]

173 Smad nucleocytoplasmic shuttling as a dynamic signal-
interpreting system

[171]

192 Ran-driven cargo transport and the RanGTPase system [101]
182
(VC)

Cell shape and negative links in regulatory motifs together
control spatial information flow in signaling networks.

[149]

250 Ligand-specific c-Fos expression [172]
342 Transient and sustained transforming growth factor-β sig-

naling
[173]

399 Thermodynamically consistent model calibration in chemi-
cal kinetics

[174]

407 Heterogeneity reduces sensitivity of cell death for TNF-
stimuli

[175]

474 Regulation of insulin signaling by oxidative stress [176]
505, 506 Fatty acid β-oxidation [177]
547 Arsenic transport, distribution and detoxification in yeast [178]
557 Pseudophosphatase STYX modulates cell-fate decision

and cell migration
[179]

638 Yeast GPCR signaling reflects the fraction of occupied re-
ceptors

[165]

699, 702 Regulation of Tem1 by the GAP complex in Spindle Position
Checkpoint

[180]

https://wwwdev.ebi.ac.uk/biomodels/
https://wwwdev.ebi.ac.uk/biomodels/
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Figure 4.7: Schematic representation of the RanGDP/GTP shuttling model. The reactions
were depicted according to the model file on the biomodels data base. Reactions involving
more than one compartment are indicated in green. The model scheme was rendered using
VANTED [158] according to the Systems Biology Graphical Notation (SBGN) standard [159].

of cell size and morphology in ODE models. Therefore, I selected one of the remaining
ODE models in Table 4.2 for this section.

4.2.1 RanGTP Transport

The model of RanGTP nuclear shuttling by Görlich et al. (2003) serves as the example
for situation, where area-scaling can be crucial for the correct model behavior [101]. This
model describes RanGDP/GTP transport cycle between nucleus and cytosol (Fig. 4.7). Of
the nine reactions in the model, two involve more than one compartment: nucleoplasmic
and cytoplasmic transfer of RanGDP and RanGTP, respectively (as highlighted by the
green arrows in Fig. 4.7).
In the original model, the transport reactions between nucleus and cytosol scale with the

nuclear volume. In reality, these reactions scale with the area of the nuclear envelope or
- more precisely - with the number of nuclear pores. Assuming an uniform distribution of
nuclear pores this number can be approximated by the nuclear envelope area. Thus, these
reactions were rewritten to include the nuclear surface as approximated by assuming a
spherical nucleus. To reproduce the behavior of the original model (Fig. 4.8 A), I adjusted
the permeability parameters by calculating the area-scaling transport rate karea based on
the volume-scaling transport rate kvol, the nuclear volume Vnucleus and the nuclear area
Anucleus (Tab. 4.3):

karea = kvol ·
Vnucleus
Anucleus

(4.8)
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Table 4.3: Parameter overview of the RanGTP example model. Shown are the parameters
of the multi-compartment reactions concerning cytosolic and nuclear transfer. *Volume-scaling
models.

Cytosolic Transfer Nuclear Transfer
original model* 0.03 s−1 0.12 s−1

area-scaling 1.429× 10−6 dm s−1 5.714× 10−6 dm s−1

wild-type* 0.483 002 s−1 1.932 01 s−1

sch9 -/-* 0.575 887 s−1 2.303 55 s−1

Figure 4.8 A illustrates that the same behavior can be simulated with different modeling
approaches. The only changes concern the parameter values and units of the kinetic
parameters for the reactions that involve more than one compartment (i.e. nucleoplasmic
and cytoplasmic transfer).

Model Behavior

To illustrate the relevance of area-scaling I considered the RanGTP transport model by
Görlich et al. (2003) [101]. Interestingly, Saccharomyces cerevisiae (S. cerevisiae) has
a near constant volume ratio of nucleus to cytosol at 7% independent of the genotype
[181]. To analyze how this might effect RanGTP transport, I transferred the model from
the HeLa cell, which is the original setting [101], to S. cerevisiae. First, I reproduced the
behavior of the volume-scaling model with the area-scaling model (Fig. 4.8 A). Both of
these models are then changed from representing a HeLa cell to S. cerevisiae (Fig. 4.8
B). The simulation results of these models illustrate the importance of adjusting the model
parameters. In this case, this is a rather trivial situation: As the model organisms are
different between Figure 4.8 A and B, adjusting the parameters is a reasonable step.
Finally, I also simulated the behavior of a S. cerevisiae mutant (Fig. 4.8 C). The protein
sch9 is a serine-threonine kinase involved in growth regulation [182]. In sch9-/- cells, the
cellular volume is approximately 60% of the wild-type volume. Here, I simulated three
different versions of the model. For one, I modeled the behavior of the area-scaling model
(light blue). Second, I simulated the model with the adjusted parameters representing the
wild-type of Figure 4.8 B. Finally, I adjusted the parameters of the volume scaling model
to represent the setting of the sch9 mutant. For all of these parameter sets, there is only
a small difference between the area-scaling model and the volume-scaling models (Fig.
4.8 C). This demonstrates that it may not be necessary to use the area-scaling modeling
approach in every situation.

4.3 Summary

It was the aim of this chapter to provide insight into how the description of processes span-
ning multiple compartments processes can affect simulation results in ODE models. Both
the toy models as well as the analysis of the example model demonstrate that the choice
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Figure 4.8: Transferring the example RanGTP transport model from HeLa cells to S.
cerevisiae. A: The original model behavior can be reproduced using the area-scaling model
that includes the nuclear envelope. B: Dynamics of the S. cervisiae wild-type. C: Dynamics of
the S. cervisiae sch9 deletion mutant. Blue: volume-scaling model before parameter adjust-
ment. Light blue: area-scaling model. Red: volume-scaling model with corrected parameters.

of modeling approach very much depends on the modeling question. In plant cells, where
cells can elongate from an initial length of 8µm to a final length of up to 220µm, the correct
scaling with the membrane area can be crucial for the correct model behavior. Even if the
model is only simulated in the different root regions, the parameter adjustment alone is a
easy source for error. If, however, cell growth is included in some form in such a model, it
is a necessary prerequisite for correct simulation results.
The example model, which I analyzed in this chapter, however, demonstrates that small
changes in cell volume do not necessarily require a change in model structure or even
parameter adjustment. Here, the volume-scaling model with the parameterization of the
S.cerevisiae wild-type behaves similar to the area-scaling model in S.cerevisiae sch9-/-.
The elongating cell model that I present in chapter 7 falls into the first category, where
area-scaling is crucial. As I simulate an epidermis cell from the meristematic zone to the
elongation zone, the compartments change constantly which would require a constant ad-
justment of the parameters throughout the simulation. As this is overly complicated and
would require the abundant use of assignments and global quantities in COPASI, using an
area-scaling approach is the most practical one.
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BIR3 is a negative regulator of BR signaling that acts by interacting with the co-receptor
BAK1 [29, 30]. Extensive experimental studies have revealed several aspects to the role
of BIR3. For one, BIR3 interacts with both the receptor BRI1 and the co-receptor BAK1
[30]. Overexpressing BIR3 inhibits BR signaling to the point, where the plants resemble
bri1 -/- mutants [30]. The additional overexpression of BRI1 restores BR signaling so that
the plants look like the wild type Col-0 in terms of growth [30]. Lastly, there is evidence for
a constitutive interaction of BAK1 and BRI1 [14, 64, 65].
Furthermore, Imkampe et al. (2017) used a bridge yeast two hybrid assay [183] to test a
potential tripartite interaction [30]. In particular, they used both BIR3 and BAK1 as bridge
between bait- and prey-constructs. Both scenarios yielded weak S. cerevisiae growth in-
dicating that if a trimeric complex exists, it is likely due to independent interaction sites.
Recently, Hohmann and colleagues investigated the interactions of the ectodomains of
BIR3, BAK1 and BRI1 [47]. This study demonstrated that the ectodomains of BAK1 and
BIR3 interact with a high affinity and that BL-bound BRI1 is required to compete with BIR3
for the interaction with BAK1 [47]. However, this study did not show evidence of BIR3 and
BRI1 interacting based on the respective ectodomains [47], suggesting that cytoplasmic
and transmembrane domains play a role in the experimentally observed interactions of
the full length proteins [30] (and section 5.2.2). At the very least, the cytoplasmic domains
have to interact transiently in order for transphosphorylation events to occur [31].
To specify the role of BIR3 in BR signaling even further, I employed molecular modeling
to test the complex formation between the cytoplasmic domains of BAK1, BRI1 and BIR3
computationally. For this part of my thesis, I was advised by Dr. Anna Feldman-Salit
(research group of Prof. Dr. Ursula Kummer, BioQuant, Centre for Organismal Studies
(COS), Heidelberg University). At a later stage of this project, we consulted with Prof.
Dr. Rebecca Wade and Dr. Neil Bruce (Heidelberg Institute for Theoretical Studies (HITS
gGmbH), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg).
As it was the aim of this project to specify the role of BIR3, the first step was to define the
state of the interaction between BAK1 and BRI1 without BIR3 (see section 5.2.1) before
looking at the interactions of BAK1 and BIR3 as well as BRI1 and BIR3 (see section 5.2.2).
Finally, I investigated a potential trimeric complex based on the results of the previous sec-
tions (see section 5.2.3). To validate the computational results our collaborators Friederike
Wanke and Nina Glöckner (research group Prof. Dr. Klaus Harter, Centre for Molecular Bi-
ology of Plants (ZMBP), Tübingen University) analyzed the interactions of BIR3 with BAK1
and BRI1 via FRET-FLIM (see section 5.2.2).

49
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5.1 Obtaining the Structures for Docking Analysis

Before potential complexes could be computed by docking analysis, I had to obtain suitable
structures for BAK1, BRI1 and BIR3. Wherever possible, I used a experimentally deter-
mined structure from the Protein Data Bank1 [112, 113]. As these structures sometimes
contain gaps due to flexible loop regions, these gaps were filled by comparative modeling.
If no crystal structure was available for a protein, I used the structure of a closely related
protein as a template for comparative modeling (see section 5.1.1).

5.1.1 Structure Selection

In general, the protein template structures were selected according to their completeness
and quality. If it was possible within this set of criteria, an apo structure was selected.
In the case of BAK1 and BRI1, there were several structures available for the cytoplasmic
domains of each protein. In particular, for BRI1 there was a monomeric apo structure of
good quality: A. thaliana BRI1, structure ID 5lpw, expressed in Escherichia coli [123] (Fig.
5.2 A and Tab. 5.1). This structure has three gaps that need to be filled by comparative
modeling (Tab. 5.1, Fig 5.2, sequence alignment Fig. B.1 on p. 178).
The structure selection for BAK1 was more complicated: three structures with resolutions
between 2.2Å and 2.6Å were available: 3ulz [184], 3uim [184] and 3tl8 [185]. The apo
structure 3ulz and the related structure 3uim crystallized with an ATP derivate, have very
bad wwPDB metrics [113]: 10.8 and 16% Ramachandran outliers, 11.8 and 26.4% side
chain outliers and a high clash score of 47 and 81. The final structure of cytoplasmic BAK1,
3tl8, shows better metrics but was crystallized with the inhibitor AvrPtoB [185]). AvrPtoB
(uniprot ID Q8R9Y1) is a viral inhibitor that impacts plant immunity signaling [186].
To check if 3tl8 is a suitable structure for BAK1, I first compared all three structures of
BAK1 by aligning them in Chimera [114] using the MatchMaker and Match→Align tools
[115]. The most notable difference is the fact that the gap in 3ulz and 3uim is resolved in
3tl8 (residues E322 to G326) (Fig. 5.3 A, B, gap highlighted by an arrow).
The structure of 3tl8 was co-crystallized with an inhibitor. The binding site of the inhibitor
is easily recognizable in the rendering of the B-factor of 3tl8 (Fig. 5.3 C). The B-factor rep-
resents a measure of how much atoms fluctuate around their average position [117]. The
binding of the inhibitor AvrPtoB has a stabilizing effect on the respective residues (blue).
Figures 5.3 E and F illustrate that the differences between the structures are in the N-
terminal helix and in loops that have a higher flexibility as indicated by the higher B-Factor
(orange, red). This means that the differences at those positions can be explained by the
increased flexibility.
To further ensure the suitability of 3tl8 as template, I evaluated the structures based on
their QMEAN scores (Fig. 5.3 G, H). Here, both 3uim and 3ulz have bad QMEAN scores
of −8.09 and −6.75, respectively (Fig. 5.3 H). In comparison to this the four chains of

1http://www.rcsb.org

http://www.rcsb.org
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the 3tl8 structure show QMEAN scores in the range of −0.74 to −1.5 (Fig. 5.3 G). The
closer the QMEAN score is to zero the better is the evaluated structure. Furthermore, by
computing the QMEAN score, the structures of interest are also automatically compared
to the QMEAN scores of a non-redundant set of reference PDB structures (Fig. 5.3 I).
As a final check, I analyzed the crystal structures of BIR2 (Fig. 5.2 B) and BRI1 (Fig. 5.2
A) to check if the alpha-helix in 3tl8 residues E322 to G326 is potentially an artifact of
the crystallization with the inhibitor AvrPtoB. BRI1 and BAK1 belong to the same group of
protein kinases and share 36.11% sequence identity as evident in the sequence identity
matrix computed by Clustal Omega2 [119, 120, 121] (for the multiple sequence alignment
see Supplementary Information p. 178):

BAK1 BRI1 BIR2 BIR3

BAK1 − 40.96 36.22 36.11

BRI1 40.96 − 43.02 42.66

BIR2 36.22 43.01 − 66.06

BIR3 36.11 42.66 66.06 −

Therefore, it also stands to reason that the structures are quite similar [92]. In the struc-
tures of BIR2 and BRI1, it becomes apparent that the α-helix is not necessarily an artifact
of BAK1 binding the inhibitor AvrPtoB. Therefore, 3tl8 was chosen as template and the
chain with the best QMEAN score was used for docking analysis (chain A).
There was no experimentally determined structure for BIR3, specificially. However, there
was a structure for a closely related protein that shares 66 % sequence identity with BIR3
(see Fig. 5.1 and Tab. 5.1) - A. thaliana BAK1-interacting receptor-like protein 2 (BIR2)
[122] (Uniprot ID Q9SLI9, PDB ID 4l68, expressed in Escherichia coli). In this case, com-
parative modeling had to be employed to get a structure for BIR3 (see subsection 5.1.1).
In the crystal cell of the 4l68 structure, there were two different chains that showed a very
different structural conformation for the residues G467 to Y479. To check, which one of
these chains was suitable as a template, I analyzed the structures of related proteins.
Notably, BIR2, BIR3, BAK1 and BRI1 all share at least 36% sequence identity with each
other (see identity matrix above). Therefore, it is reasonable that the structures are also
similar [92]. As apparent in the structural alignment in Fig. 5.2 part (B) of 4l68 (chain A)
with BAK1 (3tl8, chain D), the loop in question in chain A resembles the spatial orientation
of the corresponding region in BAK1 (3tl8, chain D). This means that the conformation of
chain A is the more likely one and was therefore used for the subsequent docking analysis.

Comparative Modeling

We used molecular modeling to generate a structure for BIR3 based on the template
structure of BIR2 (4l68) [122] and to fill the gaps in the BRI1 structure selected for dock-
ing analysis (5lpw) [123]. To account for the uncertainty introduced by the gaps in both

2https://www.ebi.ac.uk/Tools/msa/clustalo/

https://www.ebi.ac.uk/Tools/msa/clustalo/
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Table 5.1: Characteristics of the protein crystal structures from the Protein Data Bank
[112] used during this analysis. Listed are the protein name, the UniProt identifier, the se-
quence segment expressed for crystallography, the PDB ID, the structurally resolved residues,
the resolution (Res.) and the crystallographic unit.

Protein UniProt Sequence PDB ID Residues Res. Unit
BRI1 O22476 865-1160 5lpw

[123]
867-871,
873-973,
975-1086,
1095-1160

2.43Å monomer

BAK1 Q94F62 250-590 3tl8
[185]

273-576 2.5Å hetero-dimer

BIR2 Q9LSI9 266-605 4l68
[122]

272-456,
568-509,
515-600

2Å monomer

Figure 5.1: Sequence alignment of BIR3 with the structurally resolved parts of BIR2.
The template has two gaps of 11 and 6 residues, starting at residue 457 and at residue 513,
respectively. The three residue mismatch between BIR3 and BIR3 at residue 396 as well as
the three starting from 510 are caused by an insertion in BIR3. Overall, the sequence identity
of BIR3 with BIR2 in the region of interest is 62.25%.
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Figure 5.2: Template structures for BIR3 and BRI1. A:Template structure for BRI1: A.
thaliana BRI1 - 5lpw [123]. B: Template structure of BIR3: A. thaliana BIR2 - 4l68 [122] chains
A (bright green) and B (dark green). C: Alignment of BIR2 chain A and BAK1 structure 3tl8
chain D.

structures, we generated a set of 20 individual structures using the Modeller tool v. 9.16
[91]. Modeller uses the backbone of the template structure to map the sequence of the
protein of interest. In the case of gaps, Modeller computes possible solutions of these
loops. To validate the computed structures, I used the QMEAN4 score, which is a more
reliable measure than using torsion angles [97, 98].
Comparative modeling yielded two structures with equally good QMEAN4 scores with dif-
ferent solutions of the structurally unresolved loops in the template structure (Fig. 5.4).
As it requires little computational power to compute additional complexes, both structures
were used for the docking analysis by webSDA and ClusPro.

Phosphorylated Residues

The experimentally determined structures of BAK1 [185] and BRI1 [123] were phosphory-
lated at several residues (see Tab. 5.2). To assess if these phosphorylations are relevant
for the docking analysis, I investigated both the structural information and the available
experimental data.
Experimental studies have shown that threonine phosphorylations are greatly dependent
on stimulation with the hormone in the case of BRI1 [187]. For BAK1, phosphorylations
depend on both the hormone and BRI1 [187]. Accordingly, the authors found no or almost
no residual phosphorylations for BAK1 and BRI1 in the absence of brassinolide (BL), re-
spectively [187]. Furthermore, extensive substitution studies were conducted for BAK1
that showed that substituting T446, T449 and T450 at the same time does not change the
interaction with BRI1 [188]. Some experimental evidence even suggests that BAK1 and
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Figure 5.3: Structure comparison of BAK1 cytosolic domains of 3tl8 and 3uim. A: Chain
A of 3tl8 [185]. B: D: Structure of 3uim [184]. Gap from E322 to G326 is highligted by the
arrow. C: B-factor of 3tl8, chain A. D: B-Factor of 3uim. E: Conserved structural orientation
between 3tl8 (chain A) and 3uim. F: Mean displacement of the Cα atoms between 3tl8 (chain
A) and 3uim. G,H: QMEAN4 Z-scores. Shown is both the overall score (QMEAN4) as well as
the individual components that are used to calculate the QMEAN4 score. G: QMEAN4 scores
of 3tl8 (chain A). H: QMEAN4 scores of 3uim. I: Comparison of the QMEAN4 score with the
score of other non-redundant structures as computed by the web server. G-I were generated
as part of the QMEAN4 output. I is a combination of the results for 3uim and 3tl8.
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Figure 5.4: Modeled structures of BIR3 based on the template of BIR2 [122]. A: First
structure computed for BIR3 by comparative modeling. B: Second structure computed for
BIR3 by comparative modeling. C: Alignment of both structures. Residues that are not con-
served between the structure are highlighted in red. The structure alignment was generated
with the Match→Align tool in Chimera [114, 115].

Table 5.2: Phosphorylated residues in the template structures for BAK1 and BRI1. Listed
are the phosphorylated residues for BRI1 (5lpw [123]) and BAK1 (3tl8 [185]) along with the
experimental information and reference.

Protein Residue Experimental Information Reference
BRI1 T1039 dependent on hormone stimulation [187]

S1042 transphosphorylation target by BAK1 [189]
S1044 required for BRI1 activation [187]
S1060 not a known phosphorylation site

BAK1 T324 not a known phosphorylation site in vivo or in vivo
T446 substitution with A does not change interaction [188]

substitution has no effect on plant phenotype [31]
T449 substitution with A does not change interaction [188]

substitution has no effect on plant phenotype [31]
T450 substitution with A does not change interaction [188]

substitution has a small effect on plant phenotype [31]

BRI1 phosphorylations are completely dependent on each other [188].
While the experimental information suggests that the phosphorylations are not the decid-

ing factor for the interaction between BAK1 and BRI1, I inspected the surface electrostatic
potential of all relevant structures, nonetheless. In the case that there are regions with a
strong positive charge these can be impacted by phosphorylations. Here, I used the ABPS
tool in Chimera [125, 114] to calculate the electrostatic map based on the charged protein
state at pH 7.2 (see Fig. 5.5).

Figure 5.5 shows that the cytoplasmic domain of BRI1 is the only structure with large
region of strong positive potential. However, this region does not overlap with the region of
interest that inlcudes the catalytic domain and the activation loop. Furthermore, the N- and
C-terminus of the structure are in that region. As all structures in this analysis are trun-
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Figure 5.5: Electrostatic surface potential of the structures of BAK1, BRI1 and BIR3.
A: Electrostatic potential of BIR3 (structure modeled based on BIR2 - PDB ID 4l68 [122]). B:
Electrostatic potential of BRI1 (PDB ID 5lpw [123]). C: Electrostatic potential of BAK1 (PDB ID
3tl8 [185]). Shown are front and back of the proteins with the N-terminus being at the top of the
structure. The electrostatic sufrace potential was calculated using PDB2PQR as integrated in
webSDA at a pH of 7.2.
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cated at N- and C-termini, any complex docking at this position will cause a clash between
the artificial ends of the protein structures and will be excluded from the list of feasible com-
plexes (see Materials & Methods, section 3.2.4 on the criteria for complex selection, p. 20).

5.2 Docking Analysis

5.2.1 Interaction of BAK1 and BRI1

Before I could specify the role of the negative regulator BIR3 in the early events of BR
signaling, I had to determine how the cytoplasmic domains of the receptor BRI1 and the
co-receptor BAK1 interact. Furthermore, it is also a question if the cytoplasmic domains
of BRI1 and BAK1 can interact at all without the hormone inducing the interaction of the
extracellular domains first.
Therefore, I used both webSDA to calculate a possible complex of the two cytoplasmic
domains. To substantiate the results of webSDA analysis, I used ClusPro for futher valida-
tion. Both webSDA and ClusPro calculate potential complexes between the two proteins
by sampling the interaction space and clustering the results. In general, docking meth-
ods yield either encountered complexes, which were computed by rigid body docking, or
docked complexes, which have an additional step of flexible side chain adjustment. web-
SDA uses rigid body Brownian dynamics to calculate encountered complexes between the
proteins [99, 48]. This way, the actual process of diffusional association is approximated
computationally. The 500 encountered complexes with the lowest complex energies are
stored and clustered into a predefined number of clusters [99, 48]. For each cluster, a rep-
resentative complex is selected. The representative complex is the complex, which has
the least RMSD from all other complexes in the cluster [99].
In contrast to this, ClusPro uses extensive sampling by first creating 70 000 potential in-
teractions [132, 49, 52, 51]. Of these, only the 1000 complexes with the lowest scoring
energies are considered for further structure refinement and clustering. Unlike webSDA,
ClusPro has an additional computational step, where the amino acid residues are allowed
to adjust their orientation in the complex. Therefore, in summary both proteins are closer
to each other in the resulting complex than any complex obtained from webSDA based
on the sampled distances of the amino acid backbones (see Materials & Methods section
3.2.4). Similar to webSDA, the cluster representative is the complex with the lowest RMSD
to the other complexes in the cluster [52].
As the docking simulations allow more degrees of freedom than the actual membrane-
associated receptor and co-receptor, I used a number of constraints to filter the results
after docking. For one, all of the structures I analyzed for this chapter have structurally
unresolved residues at N- and C-termini. Therefore, neither N- nor C-terminus of either
protein is allowed to be part of the interaction surface between the proteins. For this crite-
rion, I introduced a "minimal distance criterion" that serves as a threshold for the allowed
distance between N- and C-terminus and the other protein. Furthermore, the N-terminus
of both proteins have to be allowed to extend towards the membrane, while the C-terminus
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is not allowed to clash with the membrane.
The complexes that pass all of these criteria, I evaluated based on the number of com-
plexes in the cluster instead of the average cluster energy. The number of complexes per
cluster is a measure of the energetic landscape for each cluster [52]. A cluster with a
favorable energetic landscape will therefore have a high number of recorded complexes
per cluster. As every method uses different ways of calculating the cluster energy, com-
paring these values is not a trivial issue. Furthermore, Kozakov et al. (2017) show
that the probability of encountering a cluster Pk is proportional to the number of com-
plexes Nk within a cluster. Therefore, I used the relative number of complexes per cluster
f = Nk/Ntotal recorded complexes as criterion to evaluate the computed complexes.
For the cytoplasmic domain of BAK1 and BRI1 (Fig. 5.6 A, B), the docking analysis was
additionally limited by a center to center distance of 45Å to prevent complexes from block-
ing either N- or C-termini of the proteins. Here, webSDA analysis yielded one potential
complex (Fig. 5.6 C). Based on the number of complexes in this cluster NBAK1BRI1 = 4

out of a total of 500 recorded complexes (fBAK1BRI1 = 0.008), this particular interaction
has an unfavorable energetic landscape. In this complex, BAK1 and BRI1 interact with
their catalytic domains and activation loops facing each other. Therefor, this complex car-
ries the risk of unwanted transposphorylation events between the cytoplasmic domains of
BAK1 and BRI1, which normally occur after the stimulation with BR [31].
This complex fits into the current understanding of the interaction between the cytoplasmic
domains of BAK1 and BRI1. Bojar et al. have shown that the inhibitor BKI1 binds to BRI1
at a region that involves D1139 (Fig. 5.6 C, highlighted in cyan) [123]. Furthermore, the
authors showed that BKI1 binding prevents BRI1 from interacting with BAK1 [123] mean-
ing that this region is involved in the interaction with BAK1. A mutation at D1139N is the
underlying cause of the BRI1 missense allele bri1-117 [190] highlighting the importance
of that region.
The corresponding ClusPro docking results, yields a similar complex (Fig. 5.6 D). Notably,
this complex was not observed for the complexes based on the scoring function of van
der Waals and electrostatic forces, but rather with the balanced scoring function that also
uses Decoys As the Reference State (DARS) [191]. Here, structural compatibility is also
weighted into the scoring function, which yields near native docking results but shows poor
discrimination of complexes for proteins other than enzyme-inhibitor and antigen-antibody
complexes [191].
In summary, the docking of the cytoplasmic domains of BAK1 and BRI1 shows that, though
energetically unfavorable, the cytoplasmic domains can interact. This interaction includes
the activation loops and catalytic domains of both proteins. Therefore, this complex carries
the risk of phosphorylation events in the absence of the hormonal ligand.

5.2.2 Interaction of BIR3 with BAK1 and BRI1

I further investigated the interactions of the cytoplasmic domain of BIR3 with both BAK1
and BRI1. Here, I addressed the question of how BIR3 can impact BAK1 activity. First,
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Figure 5.6: Modeling complexes between the cytoplasmic domains of BAK1 and BRI1.
A: Cytoplasmic domain of BAK1 (3tl8, chain A). The catalytic loop (orange) and activation
loop (purple) were annotated according to Yan et al. (2012) [184]. B: Gap-filled structure of
BRI1 based on the template structure 5lpw [123]. The catalytic loop (yellow) and activation
loop (blue) were annotated according to Bojar et al. (2014) [123]. C: Encountered complex
between the cytoplasmic domains of BAK1 and BRI1 as calculated by webSDA. BAK1 and
BRI1 are color coded according to parts A and B. D1139 on BRI1 is highlighted in light blue.
D: Docked complex bewteen the cytoplasmic domains of BAK1 and BRI1 as calculated by
ClusPro. Color code as before.
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I computed potential complexes between the cytoplasmic domains of BIR3 and BAK1 by
webSDA and ClusPro. To allow for a later comparison of the docking results of the dif-
ferent docking methods, I did not impose a distance criterion on the modeled complexes.
Furthermore, I evaluated the ClusPro results based on the scoring function for van der
Waals and electrostatic forces as this scoring function is closest to the scoring used by
webSDA [125, 129, 130, 131]. I then evaluted the complexes based on the criteria listed
in the section Materials & Methods (p. 20).
For the docking of BAK1 and BIR3, these complexes revealed that BIR3 preferentially
binds to the catalytic domain and the activation loop of BAK1. This in turn means that
these domains are not accessible for the substrates. Therefore, BAK1 cannot phosphory-
late any substrate (other than possibly BIR3).
The precise orientation of the cytoplasmic domains of both BAK1 and BIR3 varies to a
small degree between the individual complexes (Fig. 5.7). However, both webSDA and
ClusPro are sampling processes that filter computed complexes based on a scoring func-
tion and combine them into clusters based on RMSD. Both structures select the represen-
tative complex for each cluster by the lowest RMSD to the other complexes in the cluster.
In combination, this explains some variations between the precise complex orientation.
I further tested the interaction between the cytoplasmic domains of BRI1 and BIR3 (Fig.
5.8). Here, there are feasible complexes for both BIR3 structures though these complexes
vary more in orientation than the ones observed for BIR3 and BAK1. Furthermore, the
complexes in Figure 5.8 occur with a notably lower frequency than the ones observed in
the corresponding docking analysis betwen BIR3 and BAK1 (Fig. 5.7). In general, the
complex of BIR3 interacting with BAK1 is 1.8 to 3.8-times more frequent compared to the
complex of BIR3 interacting with BRI1. This is based on the fact that the number of com-
plexes per cluster correlates with the probability of encountering an complex [52].

Analysis of Interaction Sites of BIR3

To ensure that the results of docking BAK1 and BIR3 are consistent between the docking
methods webSDA and ClusPro, I analyzed the interaction sites on BIR3 and BAK1 (Fig.
5.9). Therefore, I aligned the favored complexes computed by webSDA and by ClusPro to
BAK1 (to study the interaction site of BAK1) and to BIR3 (to study the interaction site of
BIR3). Here, I used the Match→Align tool in Chimera to generate the alignments to BAK1
and BIR3, respectively [114, 115].
Figure Fig. 5.9 illustrates that the domains, which are involved in the interaction between
BAK1 and BIR1 in the different docking methods, overlap to a high degree. There is some
variation in the precise orientation of the cluster representative. However, this can be
attributed to the fact that both ClusPro and webSDA are sampling methods that rely on
clustering the computed complexes into representative clusters. The respective cluster
representative is chosen to be the complex with the least RMSD to all other complexes
in the cluster. Therefore, some variation in the orientation of representative complexes
is to be expected. Nonetheless, Figure 5.9 highlights the fact that the binding sites are
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Figure 5.7: Modeled complexes between the cytoplasmic domains of BIR3 and BAK1.
The results of both BIR3 structures and both docking methods, webSDA and ClusRro show
high agreement with respects to the computed complexes. The relative size of the clusters is
inidcated for each computed cluster.
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Figure 5.8: Modeled complexes between the cytoplasmic domains of BIR3 and BRI1.
Shown are the results of both BIR3 structures and both docking methods, webSDA and Clus-
Rro. The relative size of the clusters is inidcated for each computed cluster.
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consistent between docking methods, which substantiates our computational results.

Experimental Validation by FRET-FLIM

To validate the results of the docking analysis regarding the complexes of BIR3 with BAK1
and BRI1, Friederike Wanke measured the interaction of the proteins of interest in planta
by Förster Resonance Energy Transfer (FRET) Fluorescence Lifetime Imaging Microscopy
(FLIM) (see Materials & Methods p. 21). By measuring the decrease in fluorescence
lifetime τ (FLT) it is possible to get a measure of the degree of interaction between the
proteins. A more prominent decrease in τ does not indicate a stronger interaction but
rather a larger frequency of encountering an interaction. It is therefore, much like the
number of docked complexes per cluster, a measure of the energetic landscape and how
favorable the interaction is.
Here, full length BIR3-GFP was expressed in Nicotiana benthamiana either alone or in
combination with BRI1-mCherry or BAK1-mCherry (Fig. 5.10 A). The measurements of
BIR3-GFP alone served as control. When expressed in combination with BRI1-mCherry,
the FLT of BIR3-GFP decreases significantly indicating that the proteins interact to some
degree (Fig. 5.10 B). In comparison, the decrease in FLT is more pronounced in the the
plants expressing both BIR3-GFP and BAK1-mCherry (Fig. 5.10 B). The observed ∆τ is
significantly lower than both the control and the FLT observed for BIR3-GFP and BRI1-
mCherry. This indicates that BIR3 is more often in a complex with BAK1 than with BRI1,
which fits the results of the computational modeling.

5.2.3 BRI1 can interact with BIR3-complexed BAK1

Finally, I checked if BRI1 can still interact with BIR3-complexed BAK1. Several experi-
ments have indicated that there might be a trimeric complex consisting of all three proteins
[30] and that BRI1 and BAK1 might exist in preformed, albeit inactive complexes in the A.
thaliana membrane [14, 64, 65]. As the extracellular domains of BAK1 and BRI1 only in-
teract in an acidic environment as long as the hormone is present [60, 44, 25, 64, 192],
this interaction has to be due to the transmembrane or cytoplasmic domains of BAK1 and
BRI1 [44].
Therefore, I tested if the cytoplasmic domain of BRI1 can bind to the BIR3-complexed
BAK1 by ClusPro analysis. Here, webSDA analysis was not possible as the PDB2PQR
server [124], which is used to compute the charged states of the proteins, could not pro-
cess dimeric structures. This created an error during webSDA analysis. Therefore, I relied
on ClusPro alone to run the trimeric docking. Nonetheless, I included the complexes be-
tween BIR3 and BAK1 that had been computed by webSDA in this analysis to have a
larger sample size.
This docking analysis reveals that BRI1 can indeed interact with BAK1 while the co-
receptor is in complex with BRI1 (Fig. 5.11). Here, BRI1 binds to the back of BAK1,
which is on the opposite site of the catalytic domain and the activation loop. Therefore,
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Figure 5.9: Comparison of interaction sites between BIR3 and BAK1. Figures were gen-
erated by alternately aligning the complexes computed for BAK1 and the different BIR3 struc-
tures to either BIR3 or BAK1 using the Match→Align tool in Chimera [114, 115]. The alignment
consists of the favored complex computed by webSDA and by ClusPro.
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Figure 5.10: Experimental validation of the structural modeling results by FRET-FLIM.
BIR3 interacts with BAK1 and BRI1 in the plasma membrane of Nicotiana benthamiana. A:
The indicated fusion constructs of conding sequence and fluoresence dye were transiently
expressed in tobacco epidermal leaf cells and collocalized in the membrane. B: Fluorescence
lifetime (FLT in ns) of BIR3-GFP alone (control) and in combination with BAK1-mCherry and
BRI1-mCherry. The values are the mean ± SD of three biological replicates with at minimum
7 cells. The statistical significance was tested by the Steel-Dwass-Test. (**) p-value < 0 01.
Figures A and B were kindly provided by Friederike Wanke. The statistical analysis of the data
in Fig. B was done by Nina Glöckner.

this complex carries no risk for unintentional phosphorylation events between receptor and
co-receptor in the absence of the hormone. Also, the observed frequency of these com-
plexes is quite low ranging from 0.03 to 0.04 indicating an unfavorable energetic landscape
for this interaction.
Only the docking analysis of the second BIR3 structure in complex with BAK1 (originally
computed by ClusPro) did not yield a feasible trimeric complex within the criteria set for
complex selection. Here, either it was not possible for all N-termini of the proteins to
continue to the membrane or a clash between a N- or C-terminus and another protein
structure occurred. This shows that the occurrence of a trimeric complex is indeed quite
unfavorable based on the energetic landscape.

5.2.4 Assessing the Implications of Unresolved Residues in the Template
Structures

In the first step of this analysis, I selected structures from the Protein Data Bank [112, 113]
to serve for the molecular docking analysis. For BAK1 there was a structure of the cyto-
plasmic domain without any gaps (3tl8 [185]). In contrast to this, the available structures
for the receptor BRI1 contain gaps, where flexible loops could not be resolved structurally
(5lpw [123]). While I was able to compute potential solutions for these gaps by compar-
ative modeling, they represent a source of uncertainty. This is mitigated to some degree
as I have employed the QMEAN4 score to evalute the qualities of the structures, which
combines several different criteria for structure validation [97, 98]. I further used ClusPro
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Figure 5.11: Putative trimeric complexes consisting of the cytoplasmic domains of
BRI1, BAK1 and BIR3. The potential complexes were computed by ClusPro based on the
complexes between BIR3 and BAK1 of the ClusPro and webSDA docking runs. The relative
size of the clusters is inidcated for each computed cluster.
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to substantiate the results of the webSDA analyses. Unlike webSDA, ClusPro includes an
additional step, where amino acid side chains can adjust to complex binding [52].
Furthermore, the negative regulator BIR3 has not been resolved structurally at this time.
Here, I used the structure of a closely related protein, BIR2 (4l68 [122]), to model a struc-
ture for BIR3. This is at all possible as proteins with high sequence identity also share
a high degree of structural similarity [92]. With more than 60% of sequence identity to
BIR3, BIR2 is a suitable template for BIR3. Interestingly, the subsequent evaluation of
the structures based on their quality by the QMEAN score yielded two BIR3 structures of
equal quality. As it takes little effort to compute the additional interactions of the second
BIR3 structure, both were used for the docking analysis, which also aids in substantiating
the results of the computational analysis.
Therefore, I considered the position of the modeled segments in the protein structures for
BRI1 and BIR3:

• In the complexes computed between BRI1 and BAK1 (Fig. 5.12 A) as well as the
BIR3 structures with BAK1 (Fig. 5.12 B,C), the modeled segments are at the pe-
riphery of the interactions surface - if they are part of the interaction surface at all.
Only in Figure 5.12 B, the small modeled segment of three amino acids is part of the
interaction surface.

• In the complexes computed between BRI1 and BIR3 the position of the modeled
segments is more varied. They can be apart from the interactions surface (Fig. 5.12
F) to at the periphery of the interaction surface (Fig. 5.12 D, E) to interacting directly
(Fig. 5.12 G).

• In the computed trimeric complexes, BRI1 does not dock to BAK1 by its modeled
segments, which are facing away from the interaction surface between BRI1 and
BAK1 (Fig. 5.12 H-J).

This shows that for the most part, the modeled segments are not central to the interaction
surface. Even if they are, longer and shorter segments need to be treated differently:
Modeled segments are defined by their start, their end and their length. A short modeled
segment like the three amino acid gaps in BRI1 and BIR3 are therefore well defined and
only a minor source of uncertainty in the complexes. Longer modeled segments like the
remaining ones of BRI1 and BIR1 are a more uncertain as these loops have more impact
on the overall protein shape. However, I mitigated this in two different ways: For one, I
used the QMEAN4 score, which is a reliable measure for 3D structure quality [97, 98].
Second, I used ClusPro in combination with webSDA to compute the complexes between
the receptor BRI1, the co-receptor BAK1 and the negative regulator BIR3. ClusPro has an
additional computational step, where amino acid residues adjust to the complex formation
to remove steric clashes that occurred during rigid docking [52].
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Figure 5.12a: Location of modeled segments due to unresolved loops in the tem-
plate structures. Modeled segments where the respective template structures contained
sturcturally unresolved amino acids are highlighted in magenta. A: Computed complexes
between BAK1 and BRI1 are aligned according to the position of BRI1 in the complex. B:
Complexes between the first BIR3 structure and BAK1. C: Complexes between the second
BIR3 structure and BAK1. D: Complex between BRI1 and the first BIR3 structure as calcu-
lated by webSDA. E: Complex between BRI1 and the second BIR3 structure as calculated by
webSDA. F: Complex between BRI1 and the first BIR3 structure as calculated by ClusPro. G:
Complex between BRI1 and the second BIR3 structure as calculated by Cluspro. H: Putative
trimeric complex calculated by docking BRI1 to BIR3-complexed BAK1.
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Figure 5.12b: Location of modeled segments due to unresolved loops in the template
structures (continued). Modeled segments where the respective template structures con-
tained sturcturally unresolved amino acids are highlighted in magenta. I: Putative trimeric
complex calculated by docking BRI1 to BIR3-complexed BAK1. J: Putative trimeric complex
calculated by docking BRI1 to BIR3-complexed BAK1.
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5.3 Summary

The structural analysis of the cytoplasmic domains of the receptor BRI1, the co-receptor
BAK1 and the negative regulator BIR3 provided insight into the interactions between these
proteins. Based on the computational results, BIR3 preferentially binds to BAK1 at its cat-
alytic domain and activation loop. BAK1 is therefore unable to interact with its substrates
and to phosphorylate them. BIR3 can also form a complex with BRI1 based on my com-
putational modeling. However, this interaction appears to be less favorable than the one
between BAK1 and BRI1. This result was validated experimentally in planta by Friederike
Wanke. Finally, I show that based on the computational results, a trimeric complex con-
sisting of BRI1 - BAK1 - BIR3 is theoretically possible but has a unfavorable energetic
landscape based on the number of complexes in that cluster.



6 | Modeling the fast BR response

This chapter comprises my work on analyzing the fast BR response pathway focusing on
initiation and control of the signaling pathway using ODE models. The model comprises
the known components and steps of the fast BR response and describes the physiolog-
ically observed responses of membrane hyperpolarization and cell wall acidification (see
Introduction section 2.1.1 on p. 6). Furthermore, the ODE model also includes the BR-
induced cell wall expansion by hydration [14]. I used this model to analyze the dynamics
of the proteins in the fast BR response pathway and which model components control the
response to BR stimulation.
To analyze the fast BR response pathway computationally, I fitted the model parameters
to dose-response data of the change in membrane potential Em to stimulation with brassi-
nolide (BL) and the qualitative overexpression behavior of BIR3 and BIR3&BRI1 plants
(section 6.2). To address parameter non-identifiability, I generated an ensemble of 50

models that describe the data equally well (section 6.2.3). After analyzing the impact of
the different model parameters on the membrane potential change by sensitivity analysis
(section 6.2.4), I predicted the model’s behavior in the meristematic zone and in a bir3
mutant. This behavior was validated experimentally (section 6.3).
The experimental data shown in this chapter are the results of experiments done by our
collaborators in the research group of Klaus Harter at the Center for Plant Molecular Bi-
ology (ZMBP) at the University of Tübingen. In particular, Nina Glöckner quantified the
negative regulator BIR3 and the ATPase AHA2 in relation to the receptor BRI1 (for the
experimental procedure see Materials & Methods 3.3.5). She also validated the model
experimentally by measuring the proton flux at the root surface by non-invasive MIFE and
pH measurements using HPTS (see section 6.3.1).

6.1 Model Structure

In this section I describe the model structure including the involved compartments, species,
reactions, global quantities and events. The model was built in COPASI version 4.23 build
184 running on Windows 8.

71
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Table 6.1: Compartments of the ODE model in the different root zones. Values were
taken from van Esse et al. (2011). (*) The cell wall volume listed here is only the initial cell
wall volume as the model includes cell wall swelling. The initial cell wall volume was calculated
based on the cell membrane area and the cell wall thickness [11].

Root zone Compartment Size
Meristematic zone cytosol 8.47× 10−13 dm−3

membrane 7.67× 10−8 dm2

cell wall* 3.03× 10−13 dm3

Elongation zone cytosol 5.8× 10−12 dm3

membrane 5.27× 10−7 dm3

cell wall* 2.08× 10−12 dm3

6.1.1 Compartments

The proteins involved in the fast BR response pathway are predominantly located in the
plasma membrane of A. thaliana. Furthermore, the fast BR response affects cell wall
volume by initiating cell wall hydration [14]. As multi-compartment rate laws are very im-
portant in such cases (see Chapter 4), I took special care to consider the information on
cell morphology for the signaling pathway in the computational model. Therefore, I mod-
eled three compartments - cell wall, plasma membrane and cytoplasm. The information
on the size of the compartments was taken from van Esse et al. [11], who measured cell
dimensions across the different root zones.
The ODE model includes the cell wall swelling, which is one of the steps preceding cell

elongation [8, 9]. Therefore, the initial cell wall volume Vcell wall is defined by the cell sur-
face Acell surface and cell wall thickness cell wall thickness(t). The latter is defined to be
variable allowing the description of experimentally observed cell wall swelling [14].

Vcell wall(t) = Acell surface · cell wall thickness(t) (6.1)

6.1.2 Species

The ODE model comprises the known components of the fast BR response pathway (see
section 2.1.1). Wherever experimental data were available, I used this information to de-
fine the initial concentration of the species. If no experimental information was available, I
made an effort to have a realistic estimate. As the model starts in the inactive state of the
signaling pathway, the initial concentration of all phosphorylated species is 0 nmol dm−2 or
0 nmol dm−3, respectively.

BRI1 The receptor BRI1 has been quantified in detail by van Esse et al. (2011). In an epi-
dermis cell in the elongation zone there are an average of 11 receptor molecules per µm2. As
this concentration changes in the different root zones and cell types [11], I used a number
of global quantities to define the initial receptor concentration BRI1 concentration based
on the number of receptor molecules per µm2 (see section 6.1.4). The initial species con-
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Table 6.2: Overview of species in the ODE model with the appropriate identifiers. Pro-
teins are specfied by their UniProt identfier [193] and gene identifier and chemicals are speci-
fied by the ChEBI (Chemical Entities of Biological Interest) identifier [194]

Name Model Name ID Gene ID
Brassinolide BL 28277
Proton H+ 24636
Brassinosteroid insensitive 1 BRI1 O22474 At4g39400
BRI1-associated kinase 1 BAK1 Q94762 At4g33430
BRI1 kinase inhibitor 1 BKI1 Q9FMZ0 At5g42750
Botrytis-induced kinase 1 BIK1 O48814 AT2g39660
BAK1-interacting receptor-like kinase 3 BIR3 At1g27190
P-type Arabidopsis H+-ATPase 1 AHA1 P20649 At3g18960
P-type Arabidospis H+-ATPase 2 AHA2 P19654 At4g30196

centration of the receptor is then defined by multiplying the calculated initial concentration
and an expression factor:

[BRI1]t=0 = BRI1 concentration · expression factor (6.2)

The expression factor was used to change the expression level of the receptor for the
overexpression data (see section 6.2.2).

AHA1 and AHA2 Thanks to the work done by Nina Glöckner on quantifying important
model species, I was able to define the initial concentrations for BIR3 and AHA2 using
experimental data in the model. Based on the quantification of BRI1 by van Esse et al.
[11] (Fig. 6.1 D), she measured the abundance of BIR3-GFP and AHA2-GFP in relation
to BRI1-GFP using both microscopy and Western blotting.
The Western blotting experiments revealed that ATPase levels are 2 to 5-times the con-
centration of BRI1 throughout the whole root (Nina Glöckner, personal communication) (an
exemplary result of the Western blot protein quantification is shown in Fig. C.1, p. 181).
The fluorsecence microscopy data support the higher concentration at 5-times the amount
of BRI1 (Fig. 6.1 A). As the receptor has a concentration of 2 proteins per µm2 [11], this
translates into an overall concentration of 10 proteins per µm2 (Fig. 6.1 D). Microscopical
analysis further showed that H+ ATPase pumps have far lower concentrations of around 2

to 4 proteins per µm2 in the meristematic zone (Fig. 6.1 B). Interestingly, the images have
also shown that ATPase levels increase as cells start to elongate (Fig. 6.1 C, blue arrows).
Cells that elongate at a later time have lower ATPase levels (Fig. 6.1 C, yellow arrow).
In the model, the amount of AHA2 is defined by the following equation:

[AHA2]t=0 = BRI1 concentration · ratioAHA2:BRI1 , (6.3)

which comprises the global quantities BRI1 concentration and ratioAHA2:BRI1.
The H+-ATPase AHA2 is not the only ATPase in the root. Rather AHA2 acts in concert with
the H+- ATPases AHA1 [68]. Here, there were no protein quantification data available. In-
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stead, I relied on the RNA expression data on the eFP server1 [195]. Assuming that AHA1
and AHA2 are translated at the same rate and have similar turnover rates, I approximated
AHA1 protein levels based on the expression ratio of AHA1 and AHA2 according to the
eFP server. In the elongation zone epidermis, AHA1 is expressed at approximately 1.1-
times the amount of AHA2.
As there is no knowledge about a differential role of AHA1 and AHA2 in the fast BR sig-
naling pathway at the time of writing this thesis, AHA1 and AHA2 are combined into one
species in the model. The initial concentration of [AHA]t=0 is simply the sum of AHA1
and AHA2 concentrations. The same holds true for the initial concentration of the AHA
C-terminus.

BIR3 In contrast to the H+ ATPases, the BIR3 concentration does not change as much
throughout the root. Here, both fluorescence microscopy (Fig. 6.1 B) and Western blot-
ting (Nina Glöckner, personal communication) have shown the BIR3 concentration to be
around 1.3 to 1.4-times the amount of BRI1. The initial concentration of BIR3 is defined
by the global quantity BRI1 concentration that is multiplied with the ratioBIR3 : BRI1

and the expression factor factorBIR3. The latter was used to model the overexpression
behavior (see section 6.2.2).

BAK1 Finally, van Esse et al. (2011) also quantified the co-receptor BAK1. Here the
experiments have shown that BAK1 has around 5 proteins per µm2 [11]. Despite the low
concentration of the co-receptor, experiments have shown that is not rate limiting [63].

pH In addition to the quantification of protein species in the model, there exist some in-
formation on the initial proton concentrations in the cytoplasm and in the cell wall. For one,
the intracellular pH is very stable around pH 7.2 [196, 197] and was fixed in the model. In
the elongation zone, the extracellular pH starts out at pH 5.4 [111].

BL The model is stimulated by brassinolide (BL), which is the biologically most active
form of brassinosteroids. The dose was defined according to the experimental setup for
measuring the membrane potential change [14].

BKI1 and BIK1 For the final species in the model, BKI1 and BIK1, I had to estimate the
initial concentrations. As both proteins act as inhibitors of the receptor BRI1 [26, 27, 28]
and silencing or deletion has a positive effect on the response to BR stimulation [26, 28],
I estimated their concentrations to be slightly higher than the initial concentration of the
receptor. To be precise, I set the initial concentrations of [BKI1]t=0 and [BIK1]t=0 to be

1http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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Figure 6.1: Experimental quantification of important model species. A: Quantification of
AHA2-GFP in the root and below the hypocotyl by fluoresence microscopy. B: Quantification
of BIR3-GFP and AHA2-GFP in relation to BRI1-GFP in the meristematic zone. C: Example
image of AHA2-GFP expressing seedlings in the meristematic zone (cortex). Cell collumns
with higher ATPase concentration (blue arrows) start to elongate earlier than cell collumns with
lower concentration (yellow arrow). D: Concentrations of the receptor BRI1, the co-receptor
BAK1, the ATPase AHA2 and the negative regulator BIR3 in the different root zone based on
the experimental data by van Esse et al. (2011) [11] and the measurements by Nina Glöckner.
Figures A-C were kindly provided by Nina Glöckner (University of Tübingen). The colors of
panel A were adjusted for easier understanding.
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1.2 ·BRI1 concentration.

6.1.3 Reactions

In this section I describe the processes taking place without the hormone, the signal trans-
duction and the dephosphorylation and dissociation processes of the fast BR response
(see Fig. 6.2). The actual ODEs of the model species can be found in the supplementary
material for this chapter (see section C.3 on p. 183). Wherever possible, I used experi-
mentally determined data ranges for the model parameters or for the parameter ranges for
the fitting process (see Supplementary Information Tab. C.5, p. 189).
COPASI automatically generates the ODEs of the species based on the chemical reactions
that are part of the model. If a reaction involves only one compartment, the speed of that
reaction is scaled with the respective compartment volume. In case of multi-compartment
rate laws, the scaling of the reactions has to be defined by the user. In the model de-
scribed here, this was the case for reactions occurring between the membrane and the
neighboring compartments (r01, r02, r5, r6, rd1, rd2, rd3, rd4, rd5).

BR-Independent Processes

The model is formulated such that an equilibrium is reached in the absence of the hor-
mone. This is not a physiological situation that would occur in a living cell as proteins
are constantly produced and degraded, which is currently not a part of the model. Fur-
thermore, the model does not comprise metabolism nor is the ATP consumption by the
H+-ATPases AHA1 and AHA2 included in the model. As the model is a closed system
without the hormone (rs1 and rs2 in Fig. 6.2) and only consists of for reactions (r01 to r04),
the system can only reach a zero-flux state, an equilibrium. I specifically designed the
model to reach this equilibrium as to allow the model to adjust to the in silico overexpres-
sion BIR3 and BIR3 & BRI1 before stimulation with the hormone (see section 6.2.2).
In this state, only some of the reactions of the model take place; the P-type ATPase pump
activity (r01), the proton leak (r02), the interaction of BIR3 and BAK1 (r03) and the inter-
action of BIR3 and BRI1 (r04). The basal pump activity of the P-type ATPases AHA1 and
AHA2 is modeled by an expanded mass action rate law. This was possible, as the intra-
cellular proton concentration [H+

in] is fixed at a pH of 7.2.
Experimental studies have demonstrated that ATPase activity is regulated by the C-terminus
[72, 73, 74]. Furthermore, detailed expression studies in yeast revealed that removing the
C-terminus of AHA2 increases the activity by a factor of up to 7.78 [73]. A phenomenolog-
ical describtion of this inhibition is included in the rate laws by including the following term:

·
(

[AHA]

[AHA] + inhibitionAHAC terminus · [AHAC terminus]

)
(6.4)

In the beginning of the simulation, none of the AHA C-termini is phosphorylated and
the inhibition is in full effect. The strength of the inhibition is described by the factor
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inhibitionAHA,C terminus, which was defined as a global quantitiy in the ODE model. The
strength of the inhibition by the C-terminus was fitted within the minimal and maximal ef-
fect found in that study [73]. If every single C-terminus in the model is phosphorylated,
this term becomes 1, which releases the inhibition.
The ATPase pump activity counters the proton leak into the cell (r02 in Fig. 6.2). While
biological membranes represent a barrier to most substances, protons can diffuse over
the membrane. Therefore, I have formulated the proton leak reaction to scale with the me-
brane area. Thanks to the experimental measurements by Stefan Scholl (research group
of Prof. Dr. Karin Schumacher (COS)), I was able to estimate the time scale of the proton
leak rate. The calculations are included in the supplementary material for this chapter (see
section C.1.2 on p. 181).
The last two reactions that occur without the hormone being present are the interactions
of BIR3 with BAK1 (r03) and BRI1 (r04). Both of these reactions use the respective Kd and
the association rate k to define the dissociation rate koff . Based on the communications
with Dr. Birgit Kemmerling and Sarina Schulze and my own work (Chapter 5 on p. 49), I
knew that the interaction between BIR3 and BAK1 is more favorable than the one between
BIR3 and BRI1. I integrated this information in the model by setting the parameter ranges
for the respective Kd correspondingly (see Supplementary Information Tab. C.5, p. 189).

Signal Transduction

The signal transduction is initialized by hormone stimulation in both the model and in the
plant cell. In the model, hormone stimulation is triggered by an event (see p. 83). This
event enables two reaction, which were not allowed to occur previously (Fig. 6.2):

• ligand binding r05

• hormone influx rs1 (see p. 79)

The process of ligand binding has been well studied experimentally using both biochem-
ical studies and structural assays [1, 59, 198, 25, 44, 45]. In particular, the affinity of
the receptor BRI1 to the ligand BL has been characterized by several different groups
and ranges from 7.4 nM to 55 nM [1, 59, 198, 45]. Recently, a study by Hohmann et al.
(2018) reaffirmed these values by measuring a KD value of 11.0 nM [45]. In addition, this
study also includes a measured association rate of the ligand to the receptor ka [45]. All
of this information was used in the rate law for this reaction. Since the receptor BRI1 is
membrane-associated, this reaction scales with the membrane area.
The ligand bound receptor BLBRI1 now catalyzes of several reactions, the phosphory-
lation of BKI1 r06, the phosphorylation of BIK1 r07 and the receptor itself r08 (Fig. 6.2).
All of these reactions are inhibited by the unphosphorylated species BKI1, BIK1 and
BLBRI1, which was modeled using a non-competitive inhibition mechanism. The reac-
tions r07 and r08 occur within the membrane and do not involve other compartments. In
contrast, reaction r06 involves not only the membrane but also the cytosol, as the phos-
phorylated form of BKI1pY 211 is released from the membrane. Nonetheless, all three
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reactions are scaled with the membrane area.
Once the inhibition by BKI1, BIK1 and the BRI1 C-terminus is released, the receptor BRI1
associates with the co-receptor BAK1 (r09). In reaction r10, BRI1 and BAK1 transphospho-
rylate each other resulting in the active form of the receptor complex BAK1pBRI1ppBL.
Since no experimental data for the individual phosphorylations were available, all transpho-
sphorylation events between BAK1 and BRI1 were lumped into one reaction. In this state
the receptor can activate the P-type ATPases by releasing the inhibition of the C-terminus
by phosphorylation (r11).
Finally, the active receptor complex autophosphorylates at S891 (r12) at a slow rate [79].
This phosphorylation inactivates the receptor [79] and represents the only mechanism of
signal termination in this model version.

Dephosphorylation Reactions

All phosphorylated species in the model also have a reaction describing the dephospho-
rylation of the species. This ensures that the model can return to a steady state after the
hormone is removed from the system. For the receptor species, the dephosphorylation
also includes the dissociation of the ligand from the receptor.
Wherever possible, I used experimental data to estimate the dephosphorylation rate. The
speed for the dephosphorylation rate of BLBRI1p is the same as the dissociation rate of
the ligand from the receptor in reaction r05. Hohmann et al. (2018) have measured the
dissociation rate of the ligand from the receptor [45]. I used this information as the upper
bound for the reactions rd2 and rd3, where BL dissociates from the receptor/co-receptor
complex. Similarly, I defined the upper and lower bounds for reaction rd4 based on the fact
that residual phosphorylations remain after five days of inhibiting BR [79].

Reactions for BL Stimulation

Due to the fact that the cell wall volume is not constant in the model, special care had to
be taken to ensure a constant concentration of BL. If the concentration of BL was simply
fixed in the model, there would be a steady dilution of the hormone due to the cell wall
swelling. Thus, I introduced to reactions producing and consuming BL, where the ratio of
these reactions defines the dose of BL in the model:

rs1−−→ BL
rs2−−→ (6.5)

BL is produced by a constant flux in reaction rs1 that only occurs if the event for BL stim-
ulation has been triggered. The flux through this reaction is defined by a production flux
and the dose of BL. To avoid an accumulation of BL exceeding the target dose, BL is re-
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moved from the system in reaction rs2. The parameters for the reactions rs1 and rs2 were
chosen such that the effective dose of BL is described in the model. Furthermore, I set
the production and consumption rate constants such that they are fast enough to ensure
that BL levels remain approximately constant throughout the simulations.

6.1.4 Global Quantities

In addition to the biochemical reactions I used several global quantities to define some of
the signaling components, such as the amount of transported charges across the mem-
brane and the membrane potential itself. I used further global quantities to calculate the
amount of BRI1 based on the numbers of receptor per µm and to define reaction parame-
ters that were used by more than one reaction.

Calculating Protein Concentrations

Several model species are defined in relation to the concentration of the receptor BRI1.
The concentration of the receptor itself, BRI1 concentration (in nmol dm−2), is calculated
based on the number of receptor molecules per µm2, scaling factors from µm2 to dm2 (1010)
and from mol to nmol (109) as well as the Avogadro constant:

BRI1 concentration =
molecules perm2 · 1010 · 109

Avogadro constant
(6.6)

The resulting receptor concentration is then used in combination with protein expression
ratios to determine the amount of AHA2, BIR3, BKI1 and BIK1 by calculating the product
of ratioprotein:BRI1 and BRI1 concentration. Indirectly, it is also used to define the amount
of AHA1 in the model as AHA1 is expressed in relation of AHA2.

Expression Factors

As some of the experimental information used for parameter estimation concerns the
overexpression behavior of the negative regulator BIR3 and the receptor BRI1 [30], I in-
cluded expression factors that allow for an easier parameter estimation. Therefore, the
initial species concentration is defined as the product of the normal concentration and the
expression factor. I introduced the factors for BIR3 and BRI1 as these are the ones that
were overexpressed by Imkampe et al. (2017) [30].

Transported Charges

This global quantity calculates the net charges transported across the membrane. In the
current version of the model, only protons are transported across the membrane in the
pump activity of the ATPase r01 and in the proton leak reaction r02.
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netto charge change =

(Fluxr02 proton leak − Fluxr01 ATPase pumpactivity) ·
Faraday constant︷ ︸︸ ︷
96485.3365 · 10−9︸︷︷︸

mol to nmol

(6.7)

Membrane Potential

The membrane potential change is calculated based on the transported charges, the
membrane area and the specific membrane capacitance. This means that, since different
cell sizes are modeled throughout the root, the membrane potential for those cell sizes
differs even if the cell wall pH and all other parameters are identical.
According to the experimental data, the initial membrane potential was set to −121mV in
the elongation zone [14]. The data for the initial membrane potential was included in the
parameter estimation at 0 nM.

membrane potential change =
netto charge change

specificmembrane cpacitance · surface · scaling factor
(6.8)

The specific membrane capacitance of A. thaliana is 8.1mFm−2 [200]. To scale between
the specific capacitance of the membrane (in mFm−2) and the surface (in dm2), I included
the scaling factor.

Stimulation

The hormonal stimulation is mediated by an event in this model (see sectoin 6.1.5). There-
fore, I defined this global quantity to enable reactions depending on the hormonal stimula-
tion. The initial value of the global quantity stimulation is 0. Once the event is triggered,
the transient value is overwritten with a value of 1, which switches on the reactions for
hormonal signal transduction and allows processes like cell wall expansion to occur.

Proton Readout

The cell wall instability is described depending on the extracellular pH. To have a descrip-
tion of the cell wall instability that depends on the model itself, I included the global quantity
of the extracellular proton concentration at the time of BR stimulation.

Cell Wall Thickness

As BR signaling induces cell wall swelling, the thickness of the cell wall is not constant. In-
stead, I used an ODE to describe the change in volume. The membrane potential changes
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according to the cell wall instability and the current cell wall thickness:

d (cell wall thickness)

d t
= cell wall instability · cell wall thickness(t) (6.9)

Cell Wall Instability

To ensure that the cell wall volume does not increase indefinitely, I used a combination of
two logistic functions: The first describes the activating effect of cell wall pH on cell wall
swelling. The second logistic function comprises the inhibiting effect of the cell wall width
getting closer to the maximal thickness.
Logistic functions are sigmoid curves defined by the steepness k and the midpoint x0 of
the curve:

f(x) =
L

1 + e−k(x−x0)
, (6.10)

Here, L is the maximal value the function can assume and x is the independent variable.
The parameters k, L and x0 were chosen such that the the maximal thickness of the cell
wall was at double the initial thickness:

cell wall instability = 20 · stimulation

·
(

1

1 + e−0.001·([Hout]−4·proton readout)

− 1

1 + e−5,000,000·(cell wall thickness−6.525 10−6)

)
To prevent the cell wall from expanding while the model reaches an equilibrium, the cell
wall instability is only allowed to occur after hormone stimulation. I achieved this by includ-
ing the global quantity stimulation in the description of cell wall instability.

Kinetic Parameters

Finally, I defined kinetic parameters that were used by more than one reaction by introduc-
ing global quantities. For one, this concerns the inhibitory constants Ki for BKI1, BIK1 and
the BRI1 C-terminus. As all three inhibitors affect any reaction that phosphorylates one of
these inhibitors (r06, r07, r08), the same Ki is used for each inhibitor in these reactions.
Furthermore, the dissociation constants KD for the the ligand BL from BRI1, BAK1 from
BRI1, BAK1 from BIR3 and BRI1 from BIR3 are defined by global quantities. The KD of
BL is also used to define the dissociation rate koff by multiplying the association rate kon
in r05 with the KD.

6.1.5 Events

The stimulation with the hormonal ligand BL is mediated by an event. This was done to
allow the model to reach a steady state in the respective in silico overexpressions before
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triggering the actual signaling pathway. Otherwise, the observed behavior would represent
a combination of signaling activity and the model reacting to the different protein concen-
trations. In particular in the case of simulating overexpressions, the event is necessary to
allow the model to adjust to the changed initial conditions.
Here, the model was simulated for one day (86 400 s), before the stimulation is triggered by
changing the value of the global quantity stimulation from 0 to 1. This allows the reactions
for BL influx and ligand association to proceed. Also, the cell wall becomes susceptible to
the extracellular pH allowing the swelling of the cell wall to occur.

6.2 Model Behavior

Even though there are experimental information for several of the model components and
reaction parameters available (see section 6.3), a number of parameters had to be esti-
mated. Here, I used the available dose-response behavior [14] and the information on the
behavior of the overexpression of BIR3 and BIR3 in combination with BRI1 to estimate
the remaining parameters (Sarina Schulze, research group Dr. Birgit Kemmerling, ZMBP
Tübingen) [30].
As the behavior of some model species could not be fitted to experimental data (e.g. all
phosphorylated receptor species), there is a non-negligible issue of parameter identifi-
ability (see section 6.2.3 for further detail). Therefore, I generated an ensemble of 50

independent parameter sets and analyzed the behavior and predictions for the whole en-
semble [201].
Since some of the data used to fit the model concerned overexpression data, I simulated
the model for 24 h before triggering the stimulation with BR by an event. Most importantly,
the complex formation between BIR3, BAK1 and BRI1 had to be in an equilibrium. Oth-
erwise, the complexes of BIR3 with BAK1 and BRI1 would start with a concentration of
0 nmol dm−2 and the observed model behavior would arise from too much free receptor
and co-receptor (see Discussion 6.10, p. 92). Therefore, I checked that all of the models
in the ensemble are in a chemical equilibrium before the stimulation with BR (Fig. 6.3 and
Fig. C.3, p. 191).The time-course of all BIR3-related species in the model clearly shows
that all of these species are in an equilibrium before the model is stimulated with BL. The
precise amount of the individual complexes varies between parameter sets but the qualita-
tive behavior is clear: BIR3 interacts more frequently with BAK1 compared to BRI1, which
fits the experimental observations [30].

6.2.1 Dose-Response Behavior

First, I fitted the model to dose-response data of the membrane potential for 10, 50 and
100 nM BL of wild-type A. thaliana [14] (see Materials&Methods 3.3.5). Figure 6.4 sum-
marizes the behavior of all 50 model parameterizations for the different doses of BL. The
range of the experimental data is indicated by the colored area, while each model of the
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Figure 6.3: Model behavior before stimulation with 10 nM BL after 24h. Green: Parti-
cle numbers of BIR3. Blue: Particle numbers of BIR3BAK1. Red: Particle numbers of
BIR3BRI1.

model ensemble is represented by a line in the plot.
First, Figure 6.4 illustrates how consistent the model behavior is for all parameter sets.
Furthermore, the fitted time-courses describe the membrane potential change of 10 and
100 nM very well (Fig 6.4 A, C). For 50 nM BL, the model overestimates the response to
BL stimulation slightly. Considering the fact that the experimentally determined average
change in membrane potential at 50 nM BL is identical to the one observed at 10 nM BL,
this not surprising.
Interestingly, the time-course particle numbers of BAK1pBRI1ppBL vary between the

different model parameterizations (Fig. 6.5 A) at 10 nM BL. While most models show a
particle number around either 500 or 800, at least one model is in the range of 1000 active
receptor molecules. This shows that the different parameterizations are in fact not identi-
cal but are different parameter combinations describing the final output of the change in
membrane potential equally well.
Finally, Figure 6.5 B summarizes the behavior of the cell wall volume at 10 nM BL. During
the simulated 30min the cell wall shows a modest increase in size that falls slightly below
the range of the experimentally observed cell wall hydration [14]. Experimentally, an aver-
age expansion of 35 ± 10% has been observed for the cell wall in response to 10 nM BL
[14]. The definition of cell wall expansion in the model represents a compromise between
describing the experimentally observed expansion rates and an artificially fast dilution of
the extracellular proton concentration [H+

out].

6.2.2 in silico BIR3 Overexpression

I knew from my communications with Sarina Schulze in the research group of Dr. Birgit
Kemmerling at the University of Tübingen that the overexpression of BIR3 reduces BR
signaling to such an extend that the plants resemble bri1-/- mutants [30]. Furthermore,
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Figure 6.4: Fitted dose-response behavior of the membrane potential change. A: 10 nM
BL. B: 50 nM BL. C: 100 nM BL. Shown are the ranges for the experimental data, with the
measurements by Caesar et al. (2011) indicated by the points with standard deviation. The
plots summarize the behavior of all 50 models of the model ensemble.
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Figure 6.5: Time course simulations of active receptor molecules and cell wall volume.
A: Time course of active receptor molecules BAK1pBRI1ppBL for all 50 models. B: Time
course of the cell wall volume for all 50 models.

the additional overexpression of BRI1 restores the activity of BR signaling such that the
plants resemble wild-type Col-0 Arapdiopsis plants in terms of growth (Fig. 6.7 B).
I used this information in addition to the dose-response data to fit the parameters of the
ODE model. To this end, I translated the qualitative information of the overexpression
behavior into information that could be utilized to fit parameters of the ODE model. This
means that stimulating the model with BL in the BIR3 overexpressing model should result
in no membrane potential change. Also, the model overexpressing both BIR3 and BRI1
should show a response close to the wild-type levels after 20min of stimulation with 10 nM

BL.
Imkampe et al. overexpressed BIR3 and BIR3&BRI1 using the 35S promotor [30], which
has a high activity. Consequently, both proteins should be overexpressed to the same
level in the BIR3&BRI1 overexpressing plants. Therefore, I estimated an overexpression
factor of 100 for BIR3 and 130 for BRI1. As the normal concentration of BIR3 is 1.3 times
the amount of BRI1, this ensures that BRI1 is overexpressed to the same amount (not the
same factor) as BIR3.
To test if this level of overexpression exceeds the available surface area of the cell, I esti-
mated the occupied membrane area by all membrane proteins for each genotype. Here,
I used the structural information of the proteins in this signaling pathway: I downloaded
the structures from the Protein Data Bank [112] and approximated the protein diameter in
the membrane using PyMOL [133]. Assuming a circular shape of the proteins (Fig. 6.6),
I then calculated the occupied membrane area for the wild-type, the BIR3 overexpressing
plants and the BRI3&BRI1 overexpressing plants (Tab. 6.4). The resulting percentages
of the overexpression lines show that the signaling pathway occupies at most 8.2% of the
available cell surface area. While this is a relatively high degree, the overexpression using
the 35S promotor is very strong.
In fact, Imkampe and colleagues checked the expression levels of BIR3 of two indepen-
dent 35S-BIR3 overexpressing lines by quantitative and showed that the relative BIR3
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Figure 6.6: Estimating the membrane area occupied by the proteins of the signaling
pathway. A: Scheme of the involved proteins. B: Projection of the occupied space onto the
membrane.

expression is at least 100-times higher than the wild-type levels (Supplenental Figure 4 in
[30]). The average BIR3 overexpression is in fact 150-times higher compared to the wild
type. Since this quantification is based on the mRNA levels, this only approximates the
actual protein concentration, as translation still has to occur.

I have previously examined the role of BIR3 in the fast BR response by molecular mod-
eling. Here, I provide more context to the dynamics of the interactions by analyzing the
behavior of the ODE model. The model behavior shows that all 50 models can describe
the qualitative BIR3 and BIR3&BRI1 overexpression behavior (Fig. 6.7 A). Here, the model
shows only a minute change in the membrane potential in the BIR3 overexpressing model.
In turn, the additional overexpression of BIR3 restores the model response to the level of
the wild-type.
The behavior of BIR3 as well as BIR3&BRI1 overexpression plants can be explained by
the principle of Le Chatelier. The principle of Le Chatelier states that a system in steady
state will react to a perturbation such that the effects of that perturbation are reduced. In
the case of the BIR3 as well as BIR3&BRI1 overexpression plants this results in the ob-
served growth phenotypes [30].
In wild-type plants, BIR3 will interact and form complexes with both BRI1 and BAK1 (Fig.
6.8 A). The addition of the hormone, perturbs that system by inducing the interaction be-
tween BAK1 and BRI1.
The strong overexpression of BIR3 under the control of a 35S promotor shifts the equilib-
rium of these reactions towards the formation of the complexes consisting of BAK1, BRI1
and BIR3 (Fig. 6.8 B). In this case, the addition of the hormone to the system is not
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Table 6.4: Esitamed membrane area occupied by the proteins of the signaling pathway.
Molecule counts were based on an epidermis cell in the elongation zone as measured by
van Esse et al. (2011) and Nina Glöckner. Note: 1µm2 = 1, 000, 000nm2, the surface area
occupied by each protein was approximated by using a circular shape - in the case of the
extracellular domain of BRI1 this results in an overestimation of the occupied surface area. *
BIR3 was approximated based on the cytoplasmic structure of BIR2 [122].

Protein PDB ID molecules µm−2 area per protein Col-0 BIR3 BIR3
nm2 & BRI1

BIR3* 4l68
[122]

14 13.8 192.2 19 320 19 320

BRI1 4m7e
[25]

11 43 473 473 61 490

BAK1 3tl8
[185]

5 13.8 69.5 69.5 69.5

AHA1 5ksd
[202]

11 38.5 434 434 434

AHA2 5ksd
[202]

10 38.5 385 385 385

total 1553.7 20 681.5 81 698.6
0.16% 2.1% 8.2%

Figure 6.7: Behavior of the in silico overexpression of BIR3 as well as BIR3 & BRI1.
A: Modeled behavior. B: Plant phenotypes. Two independent 35S-BIR3 overexpression lines
(top) show a much reduced growth. The additional overexpression of BRI1 (middle) restores
growth to the point that plants are close to the wild-type Col-0 (bottom) in this aspect. Plant
pictures adapted from [30].



90 CHAPTER 6. MODELING THE FAST BR RESPONSE

Figure 6.8: Mechanism behind BIR3 overexpression behavior. A: Reactions betweeen
receptor and co-receptors in wild-type plants. B: Overexpressing BIR3 shifts the reactions
towards the formation of BAK1BIR3 and BRI1BIR3 complexes. C: The additional over-
expressiong of BRI1 shifts the reactions strongly towards the complex consisting of BRI1 and
BIR1, therefore "freeing" BAK1 to interact with BRI1.

enough to overcome the strong overexpression of BIR3 as neither BAK1 or BRI1 are free
to interact with each other and induce downstream signaling. This explains the growth
phenotype of the BIR3 overexpression plant that resemble bri1-/- mutants.
The additional overexpression of BRI1 shifts the system again, this time towards the for-
mation of the complex consisting of BRI1 and BIR3 (Fig. 6.8 C). In turn, BIR3 interacts
less with BAK1. If the hormone is added to the system in this state, BAK1 is free to interact
with BRI1. BAK1 and BRI1 can now activate downstream signaling, which restores growth
to near normal levels, as the respective plants resemble the wild type [30].

6.2.3 Parameter Space

To explore the parameter space I did not limit the parameter estimation to a single run.
Instead, I conducted 50 parameter estimations with randomized start values for all param-
eters that needed to be fitted. Wherever possible, I used experimental information to limit
the range of allowed parameter values (see Tab. C.5 on p. 189).
What becomes evident when analyzing the distribution of the parameters is that only some
parameters are identifiable (see Fig. 6.9). For example, while there was no experimental
information of the proton pump activity, this parameter is well defined due to the measure-
ments of the proton leak (Supplementary Information p. 181).
I have tried to remove as many structural non-identifiablities in the model as possible. For
one, once it was clear that there would be no detailed phosphorylation data on either re-
ceptor or co-receptor, I lumped all phosphorylation events between the two proteins into
one reaction. Furthermore, as the intracellular proton concentration in the model is fixed, I
was able to describe the ATPase pump activity by a modified mass action kinetics instead
of a saturation kinetics.
Still, several other parameters such as most of the dephosphorylation reactions show a
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Figure 6.9: Overview of the model parameter values. Shown are the parameter values of
all 50 models. The box represents upper and lower quartile, with the median indicated by the
line. The extreme values are indicated by the outer lines with outliers represented by points.

broader range in parameter values (see Fig. 6.9). Here, several aspects come together:
For one, there is no quantitative information on any phosphorylated species currently avail-
able. Second, the information on the inactivation of the signaling pathway is sparse. This
facts results in less identifiable model parameters regarding all dephosphorylation reac-
tions.
Furthermore, the strength of the inhibition by the BRI1 C-terminus, BKI1 and BIK1 varies
between parameter sets. Similarly, the phosphorylations rates for BIK1 and the receptor
vary by four orders of magnitude.

After a first set of parameter estimations, I observed a number of models, where the
model behavior described a situation completely beyond what is physiologically feasible.
For example, if the parameters for the AHA C-terminus phosphorylation were left uncon-
strained (with an interval between 1× 10−6 s−1 to 1× 106 s−1), I obtained a good fit of the
membrane potential change with less than 50 active receptor complexes (Fig. 6.10 A,
B). While another computational model has suggested that even at signaling saturation
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Figure 6.10: Parameter fit with low active receptor numbers in response to 10 nM BL.
A,B: Model with the low number of active receptors. A: Particle numbers of the complex
BIR3BAK1. B: Membrane potential change over 30 min of the same model parameterization
as A. C,D: Model with slow association of BIR3 and BAK1. C: Active receptor numbers. D:
Membrane potential change over 30 min in response to 10 nM. The model has the same
parameters to the model in C.

less than 15 % of the receptor BRI1 is active [38, 39, 40], observing the experimentally
measured membrane hyperpolarization with less than 50 receptors is highly unlikely. It be-
comes even more unlikely when considering the fact that there are over 55, 000 receptors
in the membrane of an epidermis cell [11]. Therefore, by limiting the speed of the phos-
phorylation of the AHA C-terminus by the active receptor complex BAK1pBRI1ppBL,
the parameter estimation results in more realistic receptor numbers. The bounds for the
affinity Km and the rate of the reaction k were chosen such that approximately 500 (around
1%) of the receptor BRI1 is active when the model is stimulated with 10 nM BL.
An additional issue arose with the complex formation between BAK1 and BIR3. Origi-

nally, the speed of association between the two proteins was left completely open between
1× 10−6 dm2 nmol−1 s−1 to 1× 106 dm2 nmol−1 s−1. For some parameter estimation results,
this yielded a very slow association of BAK1 and BIR3 so that the model was not in an
equilibrium state before stimulation with BR (Fig 6.10 C,D). Therefore, I set the boundaries
for the association rates of BIR3 to both BAK1 and BRI1 to 1 and 1× 106 dm2 nmol−1s−1.
This ensures that the complex formation for both sets of proteins is fast enough that the
model is in an equilibrium state before stimulation with BL (see 24 h simulations before BL
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stimulation Fig. 6.3, p. 85).
The issue of parameter non-identifiability will be examined in more detail in the discussion
(p. 129). I have included an exemplary parameter set in the Supplementary Information
(p. 190). A summary of all parameter estimation results is further provided on the attached
CD.

6.2.4 Sensitivities

To determine the model components that share control over the model output, I calculated
the scaled sensitivities of the membrane potential with respect to the model parameters.
By analyzing not only one parameter set but a whole model ensemble of independent pa-
rameter sets, this yields some insight into which model species or parameter contributes
to the model’s response.
Figure 6.11 summarizes the sensitivities for all parameter sets. The color code of the
figure is scaled in such a way that blue represents a positive impact on membrane hyper-
polarization and red a negative impact. White means that the model parameter has no
impact on membrane hyperpolarization in that specific parameter set.
In particular, there are some model parameters and quantities that are crucial for the
membrane potential change in any model parameterization. The highest control over the
models’ response is shared by the rate of the proton leak and the AHA pump activity.
Furthermore, the receptor concentration as well as the amount of AHA1 and AHA2 have
a positive impact on membrane hyperpolarization. The inhibition of the AHA pump activ-
ity by the AHA C-terminus has a lesser degree of influence on the membrane potential
change. Similarly, the affinity of the active receptor for the AHA C-terminus as well as
the dephosphorylation rate of the C-terminus have a negative impact on the model’s re-
sponse.
Here, it is worth mentioning that while the number of receptor molecules per µm2 have
a positive impact on the model response, the expression factor of BRI1 has no or very
little control over the membrane hyperpolarizaton. The reason for this lies in the fact that
several other model species are defined based on their ratio to the receptor and the global
quantity BRI1 concentration. As the latter is calculated based on the receptor density, it
stands to reason that this model quantity has a large control over the overall model re-
sponse.
In contrast to this, the expression factor of BRI1 is only used to adjust the initial concen-
tration of the receptor alone. Therefore, this quantity describes the actual impact of the
receptor levels on the model response. In light of the general dynamics of the signaling
pathway, this is unsurprising. Even though the signaling pathway is almost saturated at a
response of 10 nM, there are only 500 to 1000 active receptor molecules. With a total of
over 50, 000 BRI1 molecules, it stands to reason that small changes of the initial concen-
tration of BRI1 will have little effect on the actual number of active receptors and therefore
the model response.
Finally, some model quantities that are not directly involved in the transport of protons



94 CHAPTER 6. MODELING THE FAST BR RESPONSE

Figure 6.11: Sensitivities of the membrane potential change to parameter changes.
Color code is scaled such that values close to 0 are indicated in white, red represents a
negative impact and blue a positive impact of the model parameter on the membrane potential
change.

across the membrane have an impact on the model response. The affinity of the receptor
for BL as well as the rate of dissociation of the ligand-receptor-co-receptor complex have
some control over the membrane hyperpolarization. Both of these parameters impact the
amount of active receptor molecules in the system. Last, the amount of the negative co-
receptor BIR3 has a negative impact on the membrane potential change.
Taken together, this shows that model quantities that are directly or indirectly involved
in the transport of protons across the membrane have the highest impact on the mem-
brane potential change. It also illustrates that the qualitative behavior of the sensitivities
is consistent, even though not all model parameters are equally important in the different
parameter sets. Furthermore, this demonstrates that even though not all parameters are
identifiable in the given model structure, a prediction regarding the model behavior is pos-
sible.
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6.3 Model Validation

To test the validity of the model, I made several predictions regarding the model behavior
in different scenarios. For one, based on the sensitivity analysis the ATPases AHA1 and
AHA2 seem to play a crucial role in the models response to hormonal stimulation. As the
protein quantification has shown that the concentration of the ATPases increases from the
younger tissue to the older tissue (Fig. 6.1), we decided to test the model behavior in the
meristematic zone of the root. Furthermore, I predicted the behavior of the model with
respect to a bir3 deletion.

6.3.1 Model Response in the Meristematic Zone

Based on gene expression data (Arabidopsis eFP server2 [195]) and the protein quantifi-
cation by Nina Glöckner, I knew that the ATPase levels change along the root axis. Based
on this and the sensitivity of the membrane potential to ATPase concentration, I used the
model to predict the behavior of the fast BR response in the meristematic zone.
Figure 6.13 A shows the behavior of all 50 parameterized models in the meristematic
zone. The time-course behavior of the models shows that for one the membrane potential
before hormonal stimulation changes from −0.121V to −0.11V due to the lower ATPase
concentration and the changed cell surface area. After stimulation with 10 nM BL the
model reacts to the presence of the hormone by membrane hyperpolarization but not as
strongly as the model in the elongation zone. This supports the role of the ATPase in the
process of cell elongation as meristematic cells, which express the ATPases at a much
reduced level, show only a basal rate of elongation [7].
Nina Glöckner tested this prediction experimentally using two different methods. First,
she measured the ion flux at the root surface by MIFE experiments (Fig. 6.13 B). In the
wild-type col-0 there is a notable difference in the average net ion flux between the meris-
tematic zone and the elongation zone. This means that proton influx is more dominant
in the young tissue and that proton extrusion increases along the root axis. This fits the
model prediction, where the elongation zone reacts more strongly to the stimulation with
BL than the meristematic zone.
Furthermore, the response to BL stimulation was also tested by measuring the extracellu-
lar pH via the pH sensitive salt HPTS. Figure 6.13 B shows the response to 10 nM BL in
the elongation zone with Fusicoccin as positive control (Fig. 6.13 A) and DMSO as neg-
ative control (Fig. 6.13 C). These fluoresence microscopy images show that BL strongly
induced the acidification of the cell wall.
The more extensive measurements along the root axis at lower BL concentrations shows
that the response to the hormone indeed changes: In the younger tissue the cell wall pH
is less acidic than in the tissue including the elongating cells (Fig. 6.13 D-F).

2http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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Figure 6.12: Validation of the fast BR response pathway in the meristematic zone. The
net ion flux at the root surface was measured by MIFE at different positions from the root
tip for the wild type Col-0 and the bri301 mutant. The figure was provided by Nina Glöckner
(University of Tübingen) and adapted for easier understanding.

6.3.2 bir3 Deletion

I further tested the model by predicting the behavior of a bir3 inactive mutant. Here, the
model behavior shows a minor change as it responds a bit faster than the model repre-
senting the wild type. After that, the slope of the membrane potential change is identical
between wild type (black) and bir3 deletion (red) (Fig. 6.14 A). This is reflected in the
phenotype of the bir3-1 and bir3-2 plants that resemble the wild type Col-0 (Fig. 6.14 B).
The slight increase in membrane hyperpolarization also fits the experimental observations
as bir3 mutants show a slight hypersensitivity to BR stimulation [30].
To investigate the model behavior in response to changes in BIR3 concentrations further, I

scanned the membrane potential change after 30min depending on the amount of BIR3 in
the system. Here, I scanned the BIR3 concentration from the bir3 deletion to the modeled
overexpression concentration for all 50 model parameterization. The results of this scan
are summarized in Figure 6.15. The normal model concentration of BIR3 is highlighted
in red. Figure 6.15 illustrates that the normal BIR3 concentration is in the range where
changing the BIR3 concentration impacts the change in membrane potential. This shows
that BIR3 does indeed exert a controlling influence of BR signaling in the model.
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Figure 6.13: Validation of the fast BR response pathway in the meristematic zone by pH
measurements in the cell wall. HPTS was used to dye the roots and fluoresence microscopy
was used to measure the cell wall pH. A-C: Extracellular pH measurements after 1 h for 10
nM BL including positive (Fusicoccin) and negative (DMSO) control. A: Positive control using
5 mM Fusicoccin. B: 10 nM BL. C: Negative control using DMSO. D-F: pH measurements
along the root axis after 30 min prestaining and 1 h incubation with BL. D: 1 nM BL. E: 0.1
nM BL. F: Negative control using DMSO. The images were kindly provided by Nina Glöckner
(University of Tübingen).
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Figure 6.14: Validation of the bir3 overexpression behavior. A: Model prediction. The
behavior of the wild-type is indicated in black. The behavior of the bir3 deletions of all 50 model
parameterizations is plotted in red. B: Experimentally determined behavior. Plant pictures:
[30].

Figure 6.15: Scan of the membrane potential at different BIR3 concentrations. The
BIR3 concentration was scanned from 0 to the 100-fold concentration of BIR3 used for the
overexpression scenario. The normal BIR3 concentration is indicated by the red dot.
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6.4 Summary

The ODE model of the fast BR response pathway that I presented in this chapter com-
prises the known components and steps of this pathway. This model can describe the ex-
perimentally observed dose-response behavior and the overexpression behavior of BIR3.
Furthermore, I included the response of cell wall swelling in the model. I validated the
model behavior with respect to the behavior of the signaling pathway in the meristematic
zone and in a bir3 mutant, which was tested experimentally by the collaborators.
An exploration of the parameter space has shown that while some parameters are not
identifiable, the model behavior is consistent. This holds true not only with respect to the
response to BL stimulation, but also the qualitative aspects analyzed by sensitivity analy-
sis and the model predictions.
A detailed model analysis of the model behavior suggests a fine-tuning role of BIR3 in the
system. Furthermore, it seems that the response to BR stimulation in the fast response
pathway is determined to a large part by the expression of the H+-ATPases AHA1 and
AHA2.
The current version of the model contains only sparse information on the inactivation of
the signaling pathway. This is reflected in the parameters of dephosphorylation and dis-
sociation reactions, which are not well determined. To address this, longer measurements
of the extracellular pH in response to different BL concentrations are planned.
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7 | Modeling Root Elongation

In the previous chapter, I introduced an ODE model that describes the more immediate
effects of BR signaling concerning membrane hyperpolarizatoin as well as cell wall acidi-
fication and swelling on a cellular level. Ultimately, the activation of BR signaling results in
cell elongation [2, 17, 21]. Therefore, I expanded the ODE model to include BR-induced
cell elongation and combined it with an agent-based representation of the root to analyze
cell elongation on an organ-scale. The resulting multi-scale model links the observed be-
havior of root elongation to the physiological effects of hormone stimulation. The current
model version comprises only the behavior of one cell type but serves as proof of concept
nonetheless.
Generally speaking, this multi-scale model consists of several different scales that need
to be modeled individually and linked within the agent-based modeling (ABM) software.
These scales are:

• the biomechanical model describing the interaction forces of the cells as well as the
initial settings of the agent-based model (see pp. 102),

• the cell behavior model (CBM) describing the actions of the cellular agents like cell
division (see pp. 103),

• the ODE model describing intracellular processes such as the physiological effects
of BR stimulation (see pp. 108).

In this chapter, I describe both the cell-behavior and the biomechanical model. Further-
more, I list the changes made to the ODE model and show that the experimental data can
still be described by the adapted ODE model. Finally, I show the behavior of the multi-
scale model, which links the ABM framework of the root tip to the cellular processes of the
ODE model.
For this project, I worked in close collaboration with Erika Tsingos (research group of Prof.
Dr. Wittbrot, Centre for Organismal Studies (COS)). We used the agent-based modeling
software EPISIM [53] as framework to build the biomechanical model of the root tip. This
project was further supported by Dr. Frank Bergmann (research group of Prof. Dr. Kum-
mer, BioQuant (COS)), who updated the software links between EPISIM and COPASI.
Furthermore, he provided a special version of COPASI that allowed the correct export of
the ODE model in the SBML (Systems Biology Markup Language) [107] format before the
release of COPASI build 184.

101
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7.1 Biomechanical Model

In EPISIM, the biomechanical model fulfills three roles: For one, it contains the description
of the interactive forces for the cellular agents. Second, it is also the place where the initial
settings of the ABM are defined. Last, a number of general parameters for the visualization
and simulation are defined in the biomechanical model, the size of the simulation space,
the length of one simulation step as well as general characteristics of the root tip (such as
root height and width). Due to this fact, the biomechanical model is part of the EPISIM
simulator code. A compiled version of the biomechanical model is further loaded into the
cell behavior model to allow the link between the two different models.

Initial Settings

The initial settings described in the biomechanical model include the placement of the first
set of cells that are modeled in the ABM. Erika Tsingos and I chose this placement such
that the cells follow the morphology of the root cap: In total, there are 14 columns of cells
in the root. To reproduce the root cap, the number of cells is reduced by one on each
side per row resulting in the scheme depicted in Figure 7.1. The corresponding code is
listed in the Supplementary Information, section D.1.1 on p. 193). The initial dimensions
of the cells are defined in the cell behavioral model in the quantities widthdefault and
heightdefault, which are accessed by the EPISIM simulator while placing the first set of
cells in the simulation space. At the beginning, all cells share the default cell type. In the
first simulation step, cell types are defined based on the positioning of the cells along the
longitudinal y-axis (see Fig. 7.3 in subsection 7.2).

Biomechancis

In general, the biomechanical parameters were taken form a previously published agent-
based center-based 2D model constructed in EPISIM [110]. Thus, only a brief description
of these parameters is included in the Materials & Methods section. Here, I present a
description of the changes in the definition of cell division.
The biomechanical model was changed to account for the direction of cell divisions. Pre-
viously, cell division was modeled such that the direction of cell divisions is random. In the
root, cell division occurs in a transverse manner so that the new cells are placed along the
longitudinal axis [147]. Therefore, we changed the definition of the daughter cell to inherit
the position along the x-axis of the mother cell.
To allow for an easier adjustment of the parameters for cell division we introduced global
parameters in the cell-behavior model that are used by the biomechanical model to cal-
culate the position of the daughter cell. The initial position of the daughter cell along the
y-axis is calculated by adding a small offset to the position of the mother cell for both x- and
y-axis: biasx and biasy. The respective code is listed in the Supplementary Information,
section D.1.2 on p. 194. The new cell is generated in the cell behavior model but does
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Figure 7.1: Scheme of the initial cell placement in the agent-based model. Cells are
placed in 14 columns and 14 rows. The number of cells per row is decreased by two per
row towards the tip to represent root morphology. The corresponding code is listed in the
Supplementary Information, section D.1.1 on p. 193.

not participate the calculations in that time step. Instead, it undergoes the calculations
of the biomechanical model before being included in the simulations of the cell behavior
model. Therefore, a small offset along the y-axis is sufficient to place a new cell in the
agent-based model and to avoid an extremely high overlap between mother and daughter
cell in the simulations.

General Parameters

The general simulation parameters are also defined in the biomechanical model. This
means that the simulation space and time step size need to be defined before starting the
simulations. Furthermore, the EPISIM simulator needs to be restarted after changing any
of these parameters.
For the initial simulations, the simulation space was set to be 230µm wide and 350µm high.
The time steps were limited to 10min to constrain the amount of cell elongation per time
step.

7.2 Cell Behavior Model

The CBM describes the actions of cells within the root tip. This model contains several
submodels describing the definition of cell types, cell division, cell elongation, cell death
and the color code for the simulations. The sequence of submodels is defined in the top
hierarchical model.
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Figure 7.2: Top submodel in the cell behavior model that defines the sequence of the
other submodels. Green boxes signify filters with the filtered model entity indicated in bold
font. White boxes with a blue bar signify submodels.

As mentioned in the previous section, all cells have the default cell type at the initiation
of the model. Therefore, the first step in the CBM is the definition of cell types (Fig. 7.3).
This submodel is only active in the first simulation step, as the default cell types exists
only in the initial conditions. After this submodel is cleared, the actual processes of cell
elongation (Fig. 7.4) and cell division (Fig. 7.5) are considered. Last, the color code is
defined for cell types, membrane potential and elongation rate (Fig. 7.6).

Cell Type Submodel

The cell type submodel (Fig. 7.3) is used to assign cell types to the cells in the initial setup
as defined by the biomechanical model. This model currently only plays a role in the first
simulation step of the cell behavior model, since the default cell types is unique to the
initial stage.
Cell types are defined depending on the cells’ location along the y-axis. A y-coordinate
lower than the lower bound codes for a columella cell. In this CBM, columella cells have
no function beyond the fact of providing a more complete picture of the root tip. Cells
with y-coordinates between the two bounds are classified as cells that divide and supply
the rest of the tissue. Above the upper bound, cells are assigned to the epidermis cell type.
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Figure 7.3: Submodel to specify cell types in the CBM. Cell types are assigned based on
the cells’ position along the y-axis. All cells with a y-coordinate lower than the lower bound are
assigned to the cell type "columella cell". Cells with y-coordinates between the bounds are
defined as dividing cells that are the only kind of cell with cell division activities. The SBML
model for these cell types is turned off. All cells with a y-coordinate above the upper bound
are classified to the "epidermis cell" type. Here, The SBML model is simulated. Grey boxes
are conditions with the condition string indicated in bold fond. Red octagons indicate state
changes of model entities.

Figure 7.4: Submodel describing cell elongation in epidermis cells. As long as cells are
no longer than a set maximal cell length, the cell height in the cell behavior model is updated
according to the cell length modeled by the SBML model. If the maximal cell length is reached,
cells die to limit the total numbers of cells simulated by the agent-based model and to optimize
computing time. Grey boxes are conditions with the condition string indicated in bold fond.
Red octagons indicate state changes of model entities.
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Figure 7.5: Submodel describing cell division in the stem cells. Stem cells have a proba-
bility initiating cell division in each simulation step. Once cell division is initiated, a new cell is
placed in the simulation area. In the current simulation step, this is a placeholder cell that will
only participate in the cell-behavior model in the next simulation step after the biomechanical
model updates the cell position. Green boxes are filters with the condition string indicated in
bold fond. Red octagons indicate state changes of model entities. Orange hexagons represent
probabilities.

Epidermis Submodel

This submodel describes the cell elongation of epidermis cells (Fig. 7.4). Currently, epi-
dermis cells are the only cell type explicitly represented in both cell behavior model and
ODE model. Cell elongation occurs until the maximal cell length is reached. To this end,
the cell height in the ABM is updated according to the simulated cell length in the ODE
model, here denoted by sbml_cell length. Since the cell length is defined in dm in the ODE
model, the value has to be scaled to µm by multiplying with a factor of 105.
Once cells exceed the maximal cell length, cells die to limit the total number of simulated
cells, which reduces the computation time. For the proof of concept, the maximal cell
length was set to 25µm to prevent long simulation times. A second reason for the limita-
tion is the fact that the fast elongation rates beyond this point cause strong repulsive forces
between the cells. Without a stabilizing framework by placeholder dummy cells this would
cause a deterioration of the root shape.

Cell Division Submodel

This submodel describes cell division in the stem cells (Fig. 7.5). To ensure that this only
occurs in the correct cells, a filter is applied at the beginning of the submodel. Any other
cell type but the stem cell proceeds directly to the end of the submodel. Every stem cell
has a chance of initiating cell division in every simulation step that is defined by the divi-
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Figure 7.6: Submodel for color coding the agent-based model during simulations. Three
color codes are enabled: default - cell types, 1 - membrane potential sbml_Em, 2 - elongation
rate sbml_er. Green boxes are filters with the condition string indicated in bold fond. Red
octagons indicate state changes of model entities.

sion rate. The cell division rate was set according to the experimentally measured value
[7]. I adjusted the measured rate of 0.04 cell−1 h−1 to the simulation step of 10min in the
agent-based model, which results in a cell division rate of 0.0066 cell−1 10min−1.
Once cell division is triggered in the cell behavior model, a new epidermis is initiated with
an initial height of 8µm. The cell is initially placed just 0.005µm above the mother cell. This
cell is at first not simulated in the cell behavior model. Only in the next simulation step of
the cell behavior model, when the cell location has been calculated in the biomechanical
model. As the new cell is an epidermis cell, the simulation of the ODE model is switched
on and one instance of the ODE model is simulated for this cell.

Color Code Submodel

In this submodel, the color code for the simulations in the EPISIM simulator are defined
(Fig. 7.6). Currently, three coloring modes are enabled. In the default mode, cell types are
color coded with the columella cells in grey, the dividing cells in green and the epidermis
cells in blue. Coloring mode 1 encodes the membrane potential, here sbml_Em. Finally,
the elongation rate (sbml_er) is coded in mode 2.
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7.3 Elongating Cell ODE Model

To describe the intracellular processes that occur on a faster time-scale than the processes
of the CBM, I created an ODE model that describes the BR-induced cell elongation. In this
section, I enumerate the changes to the ODE model and show that this model still follows
the behavior of the model presented in the previous chapter.

7.3.1 Changes in the ODE Model Structure

The elongating cell model is based on the model introduced in the previous chapter. Sev-
eral changes had to be made to facilitate the modeling of cell elongation. All of these
changes, I will list and explain in the following sections.

Compartments

In contrast to the model introduced in the previous chapter, all compartments in the elon-
gating cell model are variable necessitating a change in compartment definition. The
cytosol is now defined as a fraction of the space enclosed by the cellular dimensions. In
approximation, a factor of 0.35 was used to account for the presence of the vacuole:

Vcytoplasm = 0.35 · cell width2 · cell length (7.1)

This simplification was possible as only two model species occur in the cytosol; the phos-
phorylated form of the inhibitor BKI1p and protons H+

in, the latter of which is kept con-
stant.
Similarly, the definition of the membrane area is now defined by cell width and length.
Again, this is not quite a realistic representation but rather an approximation as cells are
not of a perfect cuboid shape.

Amembrane = 2 · cell width2 + 4 · cell width · cell length (7.2)

Species

There are some species in the model, where the concentrations change along the root
axis. The most notable one here is the ATPase, which changes from an average of
4molecules per µm2 to 10molecules per µm2 (see Fig. 6.1, p. 75). I integrated this concentra-
tion change for both the initial concentration and the synthesis rate of the ATPase and of
the ATPase C-terminus in the model presented here.
Other species show only a small change in concentration at least when transitioning from
meristematic to transtition to elongation zone. Here, the receptor density changes from
12molecules per µm2 to 11molecules per µm2. The ratio of the negative regulator BIR3 in
relation to the receptor BRI1 changes from 1.4 to 1.3 and the ratio of AHA1 to AHA2
changes from 1.4 to 1.1. Currently, these smaller concentration changes are not included
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in the model. As the model parameters are fitted in the elongation zone, I used the protein
concentrations of that root zone.

P-type ATPases AHA1&2 The experimental data of our collaborators show that the AT-
Pase expression changes along the root axis. In the meristematic zone, there are ap-
proximately 4 molecules of AHA2 per µm2. In the root overall, there are 10 molecules per
µm2 as Nina Glöckner measured by both microscopy and Western blotting (see Fig. 6.1,
p. 75).
For the elongating cell model, this means that the initial amount of ATPases has to be
adapted to the different root zones. Here, I used a logistic function to describe the ratio of
AHA2 to BRI1 along the root axis:

ratioAHA2:BRI1 = 0.9 · 1

1 + e−8800·(cell length[dm]−0.00016 dm)
(7.3)

This ratio is used to describe both the initial level and the expression rate of the H+ P-type
ATPase AHA2 along the root axis. The parameters were chosen such that the experimen-
tally determined expression level of AHA2 in the meristematic zone is matched. Starting
at a cell length of 10µm, the AHA2 concentration increases throughout the transition zone
and continues to rise in the elongation zone that starts at 35µm cell length (Fig. 7.7 A).
The maximal initial concentration is reached at approximately 75 to 85µm, towards the end
of the elongation zone at 100µm and the beginning of the maturation zone. The concen-
tration of AHA1 is still defined in relation to AHA2. Furthermore, the initial concentration
of the AHA C-terminus is defined in the same way. This results in the following description
of AHA as well as AHA C-terminus expression levels:

[AHA]t=0 = (1 + ratioAHA1:AHA2) ·BRI1 concentration · ratioAHA2:BRI1 (7.4)

It is the purpose of this model to represent cell elongation. Therefore, proteins also have
to be produced to avoid dilution during time-course simulations. The production rate of the
ATPases and the ATPase C-terminus is currently described in an almost identical way as
the initial concentration (Eq. 7.3):

translation rateAHA = (1 + ratioAHA1:AHA2) ·BRI1[molecules µm−2] · ratioAHA2:BRI1
(7.5)

When simulating this model for an epidermis cell from the meristematic zone to the matu-
ration zone in the presence of 10 nM BL, this results in the concentration profile illustrated
in Figure 7.7 B. As the "old" tissue with the lower ATPase concentration is inherited from
the previous time step, this results in an underestimation of ATPase levels throughout the
root.
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Figure 7.7: Description of AHA expression along the root. A: Initial AHA1/2 concentration
along the root axis (green). B: Transient concentration of AHA1/2 along the root axis (blue).
The model was simulated for 24 h with 10 nM BL.

Reactions

Protein Synthesis To prevent the dilution of model species by the increasing cell volume
and membrane area, I had to introduce synthesis reactions producing the ATPase, ATPase
C-terminus, BRI1, BAK1, BIR3, BKI1 and BIK1. All of these reactions follow the same rate
law:

v = scaling factor ·molecules per µm2 (7.6)

The scaling factor is calculated based on the membrane expansion rate as described in
Equation 7.9. It describes the conversion from proteins per µm2 to nmol per dm2.

Constant Intracellular pH Similar to the situation with the hormonal ligand BL in the
previous ODE model, I had to ensure that the intracellular proton concentration was not
diluted due to the cell expansion. This would have caused an artificially high gradient
across the membrane and, thus, a distortion in model behavior. Here, the intracellular
proton concentration is not defined as constant but is rather produced and consumed
such that the intracellular concentration remains constant:

v−→ H+
in

k1−→ (7.7)

I chose the parameters v and k1 such that the ratio of the two results in a steady state
concentration of intracellular protons [Hin] at 63nM , where v = 6300nmol l−1 s−1 and
k1 = 100 s−1. The inclusion of this reaction means that this model reaches a steady state
while the hormone is absent unlike the ODE model presented in the previous chapter,
which reaches an equilibrium state (see section 6.1.3, p. 76).
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Figure 7.8: Mathematical description of the experimentally observed expansion rates.
Experimental data are indicated by the blue dots. The inhibitory function is indicated in red, the
activating function in grey. The combined elongation rate of inhibitory and activating function
is shown in cyan. 1: meristematic zone; 2: transition zone; 3: elongation zone; 4: maturation
zone.

Global Quantities

Cell Length To describe the cell elongation I changed the definition of the cell length to
an ODE that follows the experimentally determined expansion rates [7]. The elongation
rates were measured depending on the cells position along the root axis. Using the infor-
mation on the size of the different root zones and cell sizes [11], I translated these data to
elongation rates depending on cell size (specific for an epidermis cell) (Fig. 7.8). These
data can be described nicely by combining two logistic functions - one for the activating
effect of extracellular pH (grey) and one for the inhibitory effect of approaching the maxi-
mal cell length (red).
The activating term of the cell length ODE describes the dependence of cell elongation

on the cell wall pH. It is well documented that there are enzymes in the cell wall called
expansins that are activated by acidic cell wall pH [9, 12]. These expansins make the cell
wall flexible enough for cell turgor driven cell expansion [203]. The inhibitory term of the
cell length ODE describes the negative feedback by the cell wall and long-term activation
of BR signaling to reduce the cellular response [82]. This ensures that the model does not
exceed the maximum cell length observed in experiments. I combined all of these terms
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into one equation:

d (cell length)

d t
= stimulation · 0.01 · cell length·(
0.00112︸ ︷︷ ︸

basal elongation rate

+
0.0102

1 + e−0.07·([H+
out]−3100)︸ ︷︷ ︸

activating term

− 0.01132

1 + e−3000·(cell length−0.0012)︸ ︷︷ ︸
inhibition by cell length

)
(7.8)

Scaling from Proteins per µm2 to Concentrations To describe the protein synthesis
properly, I required a measure of the actual expansion rate of the membrane. For this
model I assumed a cuboid cellular shape. Since the cell width remains constant, this
simplifies the description of the membrane expansion rate. I then used this expansion rate
to define the scaling factor for the protein synthesis from molecules per µm2 to nmol per
dm2:

scaling factor =

expansion of the membrane area︷ ︸︸ ︷
4 · ratecell length · cell width ·

mol to nmol︷︸︸︷
109 ·

µm2 to dm2︷︸︸︷
1010

6.023 · 1023︸ ︷︷ ︸
Avogadro number

·Amembrane
(7.9)

Elongation Rate Readout In order to directly compare the elongation rate in the model
with the experimentally observed rates [7], I introduced the readout of the elongation rate
as global quantity in the ODE model:

elongation rate readout =
ratecell length
cell length

· 100 (7.10)

This quantity describes the elongation rate in % s−1, which allows for an easy compar-
ison to the data measured by Beemster and Basking in 1998 [7].

7.3.2 Model Behavior

To ensure that the changes introduced in the ODE model did not change the qualitative
behavior of the model, I checked that model predictions still fit the experimentally vali-
dated behavior. This means, that at a initial cell length of 75µm the model describes the
dose-response data by Caesar et al. (2011) [14] (Fig. 7.9 A). Furthermore, the qualitative
behavior of BIR3 and BIR3 and BRI1 overexpressions is still the same as with the model
described in the previous chapter (Fig. 7.9 B). At the moment, I have only determined the
model behavior for one parameter set. The parameter values are listed in the Supplemen-
tary Information D.3 on p. 197.
Finally, I tested if the model’s predictions regarding the behavior in the meristematic zone

and bir3 -/- deletion still hold. As Figure 7.10 illustrates, the model still shows the shift to-
wards higher membrane potential in the meristematic zone (Fig. 7.10 B) compared to the
elongation zone (Fig. 7.10 A) as well as the reduced response to hormone stimulation.
Furthermore, the bir3 deletion model shows a slightly faster response in the change of
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Figure 7.9: Fitted time-course behavior of the elongating cell model. A: Dose-response
behavior to the data of [14]. B: Overexpression behavior of BIR3 and BIR3&BRI1 overex-
pressing lines.

membrane potential but overall the response is close to the one of the wild type (Fig. 7.10
A, C). This shows that the elongating cell model still has the same characteristics as the
ODE model presented in the previous chapter.

Cell Elongation

Using the phenomenological description of the cell elongation rate on p. 111, I modeled
the behavior of the ODE model in different root zones. The first simulations were limited
to a window of 30min as this is the range of the experimental data used for parameter
estimation. The model parameters were fitted to the same experimental data as the ODE
model presented in the previous chapter at an initial cell length of 75µm.
As Figure 7.11 B illustrates, the model shows a fast but decreasing elongation rate for the
elongation zone (green), while still showing the correct response of membrane potential
(Fig. 7.11 A). Correspondingly, in the meristematic zone, the model shows a much re-
duced response in membrane hyperpolarization (Fig. 7.11 C). Here, only the basal rate of
cell elongation occurs (Fig. 7.11 D, highlighted by the arrow).
Cell elongation is a process that takes several hours [7]. Therefore, I decided to test the

elongating cell model and run simulations for several hours to see if the model was able to
show i) the proper cell elongation behavior over several hours and ii) the correct transition
behavior between root zones. To this end, I started the simulations in the meristematic
zone (cell lengtht=0 = 8µm2) and simulated for 24 h. Here, I simulated the model first
without the hormone and repeated the simulations with 10 nM BL. Finally, I performed an
in silico rescue experiment by adding the hormone after 12 h of simulations.
Figure 7.12 A shows that the elongation depends on the presence of the hormone. With-
out BL to induce the acidification of the cell wall, the transition from the basal elongation
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Figure 7.10: Validation of the elongating cell model. The behavior of a wild type epidermis
cell in the elongation zone is indicated in red. The behavior of the same model parameteri-
zation in the meristematic zone is indicated in blue. Finally, the behavior of the bir3 deletion
model in the epidermis cell is represented in red.

rate to the faster elongation rates does not occur within the simulated time-course of 24 h.
If the hormone is applied, the cells instead elongate according to the experimentally ob-
served elongation rate [7] (Fig. 7.12 B).
To illustrate this, I also plotted the cell dimensions of the epidermis throughout the simu-
lations (Fig. 7.13). This figure also shows the change in membrane potential (inner line)
and the pH in the apoplast (outer line) throughout the course of the 24 h of simulation.
Figure 7.13 A shows that the absence of the hormone means that extracellular pH and
membrane potential show almost no change. It also demonstrates that the hormone-
induced acidification of the cell wall is necessary to induce cell elongation.
Next, the simulations with 10 nM BL (Fig. 7.13 B) shows that the hormone-induced change

in membrane potential Em and in the extracellular pH induces cell elongation. Notably, in
the first 6 h almost no cell elongation occurs. Rather, the time window between 12 and
18 h contains the largest amount of cell elongation. During the last 6 h, cell elongation has
already started to decrease as the cell approaches the maximal cell length [11, 7].
As a final test for the role of BR regarding cell elongation in the model, I performed an in
silico rescue experiment. Here, I set the initial dose of BL to 0 nM and let the event for
hormone stimulation occur normally. The event for hormone stimulation sets the global
quantity stimulation to 1, which allow processes like cell elongation and cell wall swelling
to occur. In addition, I defined a second event that sets the dose of BL to 10 nM and that is
triggered 12 h after the first event. The simulation results are summarized in Figure 7.13 C.
Here, the model behavior resembles the simulation results of the model without the hor-
mone (Fig. 7.13 A). After the addition of BL after 12 h, the cell wall starts to acidify (18 h)
and elongates quickly during the last 6 h of simulation (24 h). The elongation behavior after
the delayed addition of the hormone is not identical to the simulations, where 10 nM of
BL is present from the beginning. This shows that the elongation at the basal rate, which
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Figure 7.11: Behavior of the elongating model in meristematic and elongation zone. A,
B: Elongation Zone. A: Membrane potential change. B: Elongation rate during the simulated
30 min (green). C, D: Meristematic zone. C: Membrane potential change. D: Elongation rate
during the simulated 30 min (green). Experimentally measured elongation rates are indicated
by blue points, the extrapolated elongation rate depending on cell length in cyan. The models
were simulated for 30min with 10 nM BL.
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Figure 7.12: Modelled cell elongation in the ODE model. A: No cell elongation occurs in
the model without brassinolide. B: Model behavior with 10 nM BL. The modeled cell elongation
behavior of the ODE model fits the experimentally reported behavior in the different root zones.

occurs during the first 12 h of simulation, is sufficient to impact the model behavior once
the hormone is added.

7.4 Simulating the Agent-based Model

To represent the elongation of the root tip, the ODE model described in the previous sec-
tion was combined with an agent-based model of the root tip creating a multi-scale model
of root elongation. The ABM contains the description of processes that concern the cellular
agents, while the ODE model describes the intracellular response to hormone stimulation.
The multi-scale model presented in this chapter is not a finalized representation of the
root. Rather, this simplified representation of the root is meant to show that this approach
to modeling root elongation is possible.
As the ABM currently lacks a stabilizing framework for the root cells, I applied a maximal
cell length. Therefore, all cells exceeding a length of 25µm die. I further limited the time-
frame of the simulations to 8 h to 10 h to avoid a complete rearrangement of the root cells
due to elongation and cell division. This means that currently only the lower rates of cell
elongation can be observed. The very fast cell expansion in the elongation zone is not
within the scope of the model at the moment.
Figure 7.14 shows the results of the ABM, where cells are colored according to their cell
type in the ABM. This simplified model currently contains three cell types that I assigned
based on the cell’s position along the longitudinal axis: root columella cells (grey) that
have no particular function beyond representing the shape of the root tip, dividing cells
(green) that divide stochastically and epidermis cells (blue) that elongate according to the
rate determined by the ODE model. During the 8 h of simulations cells elongate from an
initial length of 8µm to approximately 17µm. In this particular simulation there is only one
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Figure 7.13: BL induced elongation in the expanded ODE model. A: Without BL. B: With
10 nM BL. C: Simulaitons are started without BL. 10 nM BL is added after 12 h. One parameter
set was used for both simulations, the only difference being the BL concentrations. The cells
start out with a cell length of 8m and are simulated for 24 h. The cell wall pH is indicated by
the outer line; orange: high pH; green: low pH. The membrane potential Em is depicted by the
inner line; blue: high Em; red: low Em.
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cell division event occurring between 3 and 4 h of the simulation in cell column number
2. Since cell division is simulated stochastically, the actual number of cell division events
varies between simulations of the same model (Fig. 7.15 A,B).
I further repeated the simulations with color code for the membrane potential (Fig. 7.15
A) and for the elongation rate (Fig. 7.15 B). Since only one color code can be recorded at
a time, Figures 7.14 and 7.15 A and B stem from different simulations of the same model
and therefore show different numbers of cell division events.
Figure 7.15 A shows that all cells are colored according to the initial membrane potential
value (−0.109V ). However, only the elongating cells with the active ODE model change
color according to the hormone induced membrane hyperpolarization. The change in
membrane potential is depicted by the cell color shifting from a dark red to a brighter red.
The simulation also demonstrates that cells, which are created during the simulations by
cell division, start out with the initial membrane potential value of −0.109V (Fig. 7.15 A,
cell column 4).
Furthermore, Figure 7.15 B shows the elongation rate at different times throughout the
simulation. As with the color code of the membrane potential, all cells are initially colored
by the initial value of the elongation rate (purple). During the first hours of simulation, cells
elongate according to the basal elongation rate. The snapshot at 10 h shows that the cells,
which were present at the beginning of the simulation, start to show accelerated elonga-
tion (blue). The cells that were created by cell division later in the simulation show a lower
elongation rate.

7.5 Summary

In this chapter of my thesis I show that not only can growth processes be described by an
ODE model, but also that a multi-scale model of the elongating root tip is feasible. While
the model presented here is by no means a finalized representation of the root, it gives
first insight into what can be analyzed with such a model.
This simplified model also shows the aspects that need to be addressed for this model to
become a realistic representation of the root. For one, other cell types than the epidermis
need to be included in both the AMB and in the ODE model. This, in turn, requires the
careful adjustment of elongation parameters for each cell type since they show different
final cell lengths [11].
Currently, the model is not able to describe the fast elongation rates observed in the elon-
gation zone. Even now at these comparatively slow elongation rates, the cells overlap to a
high degree. This means that the number of time steps of the biomechanical model needs
to be increased for cells to reach a steady state of repulsive and adhesive forces between
simulation steps of the cell behavior model.
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8 | Disscusion

BRs play a crucial role in plant growth, development and environmental adaptation [1].
Therefore, understanding the dynamics and regulation of BR signaling is an important
aspect towards understanding these processes. Throughout this thesis, I analyzed the
initiation and regulation of the fast BR response pathway on different scales, ranging from
the interactions of proteins towards building an agent-based representation of the root.
As BRs affect cell morphology by initiating cell wall expansion and cell elongation [14, 2,
17, 21], I analyzed how changes of cell morphology can affect the model behavior in ODE
models with different ways of handling compartments (Chapter 4, pp. 31). The results of
this analysis served as theoretical basis for including cell wall swelling and later also cell
elongation in the ODE models of the fast BR response in this thesis.
By molecular modeling I specified the role of the negative regulator BIR3 (Chapter 5,
pp. 49). Here, the computational docking of the cytoplasmic domains of BIR3 with the
receptor BRI1 and the co-recepotor BAK1 shows that the interaction between BIR3 and
BAK1 is the one with the more favorable energetic landscape. As the interaction surface of
this complex includes the catalytic domain and the activation loop of BAK1, BIR3 prevents
BAK1 from participating in active BR signaling.
I further analyzed the dynamics and regulation of the fast BR response pathway by con-
structing an ODE model that comprises the known proteins and reactions (Chapter 6,
pp. 71). After estimating the parameters based on dose-response data and the behavior
during BIR3 and BIR3&BRI1 overexpression, I analyzed the impact of the different model
components on the membrane potential change by sensitivity analysis. As the H+-ATPase
concentration and pump activity played a central role in the response in the elongation
zone, one target for the validation of the model was the behavior in the meristematic zone.
Here, the concentrations of both H+-ATPases, AHA1 and AHA2, are much lower, which
reflects in the reduced response by the model. This was substantiated by the measure-
ments of the extracellular pH and the net H+ flux by the experimental collaborators.
Finally, I expanded the ODE model of the fast BR response to include cell elongation.
This necessitated some changes in the definitions of compartments and protein concen-
trations. Nonetheless, the model can still describe the dose-response data as well as the
predictions regarding the behavior in the meristematic zone and in the bir3 deletion. By
combining this model with agent-based model of the root tip, I created a first multi-scale
model of BR-induced root elongation (Chapter 7, pp. 101). This model currently only de-
scribes the behavior of one cell type, an epidermis cell, but represents an important step
towards modeling root elongation on the scale of an organ.
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8.1 Multi-Compartment Rate Laws

The analysis of the importance of multi-compartment rate laws was motivated by the fact
that most of the components of the fast BR response are located in the plasma membrane.
Furthermore, the response to BR stimulation comprises both cell wall swelling [14] and cell
elongation [2, 17, 21], both of which change the size of cellular compartments and cellular
morphology.
In 2008 Hofmeyr correctly stated that processes spanning mutliple compartments should
be scaled with the respective interaction area [106]. However, an analysis of the curated
models on the biomodels database1 [35] showed that the majority of models comprise
only one compartment. Out of the models that do comprise multiple compartments, most
have arbitrary compartment sizes or only consider the ratio of compartments. Merely 22
models have compartments with realistic compartment volumes - of these, only three ac-
tually comprise the membrane as 2D compartment [156, 149, 157]. Considering the fact
that compartments and their specific reaction environments are a key characteristic to eu-
karyotic metabolism, this is surprising.
While the curated models on the biomodels database represent but a sample of all avail-
able biochemical models, it already highlights the different modeling approaches to mod-
eling a cellular system: Often one universal compartment is used to model processes that
involve multiple compartments (e.g. [162, 163]). If different compartments are defined
in the model, they most often do not consider the membrane as individual compartment
or scaling factor. Notably, if the membrane is included in a model, it is often because the
ODE model serves as a basis for a spatio-temporal PDE model [149, 157]. All of the above
mentioned modeling approaches can describe the experimentally observed behavior, but
all but area-scaling models are limited to one unique cell shape.
The effects of cell morphology have so far only been analyzed in the case of spatial PDE
models [154, 153]. To determine the impact of changes in cell morphology on the behav-
ior of models that comprise different ways of describing multi-compartment processes, I
analyzed different biologically relevant examples. For one, I looked at the behavior of an
epidermis cell in different root zones along the A. thaliana root. Here, I analyzed not only
the diffusion from the cell wall into the cytoplasm but also vertical and horizontal transport
between epidermis cells. Second, I used a simple receptor model to study the signal trans-
duction to a second messenger in the cytoplasm. Finally, I analyzed an example model
from the biomodels database.
Interestingly, it is not always necessary to include the membrane in the model. Depend-
ing on the modeled system, changing the compartment sizes actually does not affect the
model behavior to a point where notable differences between the area-scaling model and
the other models can be observed. For example, the analysis of the simple receptor toy
model showed that using one compartment can actually yield a behavior that is closer to

1https://wwwdev.ebi.ac.uk/biomodels/, last accessed: 24.05.2018

https://wwwdev.ebi.ac.uk/biomodels/
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the area-scaling model compared to the behavior of the multi-compartment model with-
out area scaling. Furthermore, the analysis the example model demonstrated that small
changes in compartment volumes can have little impact on the time-course simulations at
least in this particular model of RanGTP shuttling [101].
I observed the most notable differences between the different modeling approaches in the
analysis of the diffusional transport model (see pp. 35). Here, for the vertical and hor-
izontal transport the speed of diffusion between the compartments changes a lot in the
area-scaling model. In contrast to this, the multi-compartment model without area-scaling
underestimates the transport rate in both the elongation zone and in the maturation zone,
while the one compartment model does not react at all to changes in the modeled setting.
This highlights that including the interaction area can be crucial to the correct model be-
havior at least when modeling the behavior of an epidermis cell along the root axis, where
the cells undergo large changes in cell morphology [11].
This is the case for the ODE model of the fast BR response that I presented in Chapter
6. Here, predicting the behavior of the meristematic zone would have been impossible if
the area had not been explicitly included in the model. Without the required adjustment of
the permeability parameters, the rate of proton leak would have been highly overestimated
resulting an even greater depolarizing shift in the membrane potential and an unrealistic
prediction.
It is worth mentioning that COPASI [104], which is a widely used modeling software2, has
only recently started to support 2D compartments with build 184. While it was possible to
model 2D compartments before by simply treating a 3D compartment as if comprised only
two dimensions, it was quite challenging to keep track of the deviating model parameter
units and protein concentrations. With COPASI now supporting 2D compartments, the
number of models that include the membrane as compartment might increase.

8.2 Specifying the Role of BIR3

The motivation for the molecular modeling was to specify the role and mechanism of the
negative regulator BIR3 in BR signaling by analyzing the role of the cytoplasmic domains
in the interactions. BIR3 is a inactive receptor kinase that interacts with both BRI1 and
BAK1 [30]. Extensive interaction studies have demonstrated that the interaction between
BIR3 and BAK1 is the more favorable one [30, 47]. In that particular interaction, the
ectodomains play a central role [47]. Furthermore, the ectodomains of BIR3 and BRI1
do not appear to interact [47]. Interestingly, this study by Hohmann and colleagues [47]
did not show the interaction of the kinase domains of BAK1 and BIR3, which has been
previously measured [30]. However, both the experiments done by our collaborators (see
section 5.2.2, p. 63) and by Imkampe et al. (2017) have shown the interaction of the full
length proteins. As the cytoplasmic domains have to interact at least on a transient level
in order for transphosphorylation to occur, the interactions of the cytoplasmic domains are

2http://copasi.org/Research/Map/

http://copasi.org/Research/Map/
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still of interest. Furthermore, the observation of the interaction between full length proteins
suggests that transmembrane and cytoplasmic domains contribute to these interactions.

8.2.1 Docking Methods

For this part of my thesis, I used two different docking methods to compute the potential
interactions of the cytoplasmic domains of BIR3, BAK1 and BRI1. First and foremost, I em-
ployed webSDA to compute potential complexes between proteins by rigid body docking
[48, 99]. I substantiated the results of the webSDA analyses by repeating the computa-
tions with ClusPro [49, 49, 50, 51, 52].
Docking analyses by webSDA yield only encountered complexes as side chains do not
adjust to the complex formation [48, 99]. webSDA uses Brownian Dynamics to simulate
the diffusional association between the proteins of interest [99]. This sampling process
is limited by the fact that protein structures are not allowed to overlap during diffusional
association. webSDA allows the specification of physiological parameters such as pH and
ionic strength of the solvent. By further using Brownian dynamics to compute potential
compelxes, webSDA does not need as large a sample as other methods. Here, only 500
complexes are sufficient to gain a good impression on the complex association and the
energetic landscape. Nonetheless, there are variations between SDA runs as this method
is based on Brownian dynamics.
In contrast to this, ClusPro uses extensive sampling of the interaction space by first com-
puting an initial number of 70000 and reducing this to 1000 complexes based on a scoring
function. Here, there are different options available that are optimized for enzyme-inhibitor
or anitgen-antibody interactions. As we were interested in the energetic landscape, we
primarily used the scoring function that describes electrostatic interactions as well as van
der Waals forces. Additionally, I did not impose any constraints on the docking runs be-
tween BIR3 with BAK1 and BRI1 to avoid introducing a bias in the selection process.
The situation was different for the docking of BRI1 and BAK1. Here, the unconstrained
docking does not yield any feasible complex within the selection criteria. As a first step,
I constrained the docking runs in webSDA and ClusPro to a center-to-center distance of
45Å. This did yield a feasible complex by the computations run with webSDA. However, the
ClusPro analyses did not yield a feasible complex based on the scoring function describing
electrostatic interactions as well as van der Waals forces. Here, I had to resort to the bal-
anced scoring function, which also considers the "Decoys as a Reference State" (DARS)
[191]. This scoring function is specifically optimized for enzyme-inhibitor and antibody-
antigen complexes that show a high degree of complementary structures [191]. As a
consequence for other protein interactions, while this scoring function will yield close to
native complexes, the discrimination between those complexes is poor [191]. Therefore,
while the complex shown for the ClusPro docking between BAK1 and BRI1 is the one with
the largest cluster population and therefore still likely close to the native complex [52], this
result does not yield as much information on the shape of the energetic landscape as the
webSDA results.
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Unlike webSDA, ClusPro first allows some degree of steric clashes between the docked
protein structures. These clashes are removed in an additional computational step, where
flexible side chains adjust to the complex formation. Therefore, ClusPro calculates docked
complexes instead of encountered complexes like webSDA. Due to this fact and the large
number of initially sampled complexes, the docking results are very consistent between
ClusPro runs.
In addition to different ways of computing potential interactions, ClusPro and webSDA em-
ploy different approaches to clustering. In webSDA, all recorded complexes start out as
their own cluster [99]. Then the clusters with the least RMSD from each other are identi-
fied an merged. This process is repeated until the designated number of clusters remains.
Here, I set the number of clusters to the maximal value of 10.
In contrast to this, ClusPro identifies the complex with the highest number of neighboring
complexes within 9Å interface root mean square distance (IRMSD) and assigns them to
the first cluster [52]. Then, the next complex with the highest number of neighboring com-
plexes among the unclustered interactions is identified. This process is repeated until up
to 30 clusters have been identified.
Considering that the two docking methods use different approaches to computing potential
complexes and different ways of clustering the observed clusters, the fact that the results
of both methods are so consistent underlines the validity of this approach and our compu-
tational results. However, this does not replace the need to verify the computational results
by experimental validation, as a number of assumptions have been made throughout this
analysis.

8.2.2 Assessing the Criteria for Cluster Selection

The docking of cytoplasmic domains of proteins that in reality also have ectodomains
and transmembrane domains raises several issues in filtering the results of the docking
analyses. In reality, the cytoplasmic domains of these proteins are greatly limited in their
association due to the anchor to the plasma membrane. Therefore, the cytoplasmic do-
mains of transmembrane proteins have less degrees of freedom in reality than they have
in computational docking analysis. I introduced a number of selection criteria for the com-
puted complexes to account for this fact (see Materials&Methods p. 20).
For one, all structures used for the analyses here in this thesis are truncated at N- and
C-termini. Therefore, N- and C-termini are not allowed to participate in the interaction
surface between the proteins. To have a clear threshold for what is considered to be an
interaction, I introduced a "minimal distance criterion". Once a N- or C-terminus has a
distance greater than this distance criterion it is not considered part of the interaction sur-
face. As the "minimal distance criterion" was defined by sampling the distances between
computed complexes of BAK1, BIR3 and BRI1 in both webSDA and ClusPro, the actual
threshold value is specific to these structures. Furthermore, as webSDA only computes
encountered complexes and ClusPro allows for the adjustment of amino acid residues, the
criterion is also specific to the computational method. These limitations need to be kept in



126 CHAPTER 8. DISSCUSION

mind when using this criterion.
An additional consequence of the structures being truncated at N- and C-termini affects
the orientation of the proteins in the complexes: The N-termini of both proteins have to be
able to extend towards the membrane, while the C-termini are not allowed to clash with
the membrane. Finally, I could not exclude the fact that transmembrane and extracellular
domains of the proteins can and do play a role in the interactions of the whole proteins
[47]. Therefore, the proteins were not allowed to interact by their C-terminal and N-terminal
domains along the longitudinal axis.
All of these criteria are meant to compensate for the facts that i) the proteins are truncated
at N- and C-termini and ii) the changed degrees of freedom by docking the free cytoplas-
mic domains. While this situation is far from ideal, there is little alternative until a docking
method is developed that allows the anchoring of protein domains at a membrane. I had
attempted to limit the center to center distance between the proteins to 45Å to prevent
complexes where the proteins interact along the longitudinal axis. However, this resulted
in docking runs where no allowed complex was detected, suggesting that this way of ad-
dressing the differing degrees of freedom can be too limiting. Considering the uncertainty
introduced by the gaps in the experimentally determined structures and the number of as-
sumptions made to account for the different situations in silico and in vivo, it is absolutely
necessary to validate the computational results experimentally, which was done for the
results of this analysis.

8.2.3 The Behavior of the Cytoplasmic Domains Reflects the Behavior of
the Ectodomains

Several studies have examined the interactions between the ectodomains of BAK1, BRI1
and BIR3 [44, 25, 45, 47]. For one, the ectodomains of BAK1 and BRI1 only interact when
the ligand is present [44, 25]. Correspondingly, our computational results have shown that
the cytoplasmic domains of BAK1 and BRI1 can interact per se but with a very unfavor-
able landscape supporting the weak interaction of the cytoplasmic domains of Bojar et
al. (2014) [123]. As this complex carries the risk of BR signaling in the absence of BR,
negative regulators such as BKI1 [26, 27, 123] and BIR3 [29, 30] are required to regulate
the interactions between receptor and co-receptor.
More recently, Hohmann and colleagues have demonstrated that the interaction between
BAK1 and BIR3 ectodomains is very stable and that the binding site of BIR3 on BAK1
overlaps with the binding site of BRI1 on BAK1 [47]. Therefor, BIR3 and BRI1 compete
for the interaction with BAK1 [47]. Finally, as the ectodomains of BRI1 and BAK1 interact
only in the presence of the hormonal ligand [25, 44], BRI1 needs to be in a complex with
the ligand to compete with BIR3 for the interaction with BAK1 [47].
These observations reflect the behavior we have seen for the cytoplasmic domains of
these proteins. Our computational analyses have demonstrated that the interactions of
BAK1 and BIR3 cytoplasmic domains is more favorable based on the energetic landscape
than the interaction between BAK1 and BRI1 as well as BIR3 and BRI1. In fact, in agree-
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ment with the competition for the binding site on the ectodomain of BAK1, the cytoplasmic
domains of BRI1 and BIR3 also compete for the binding site on the cytoplasmic domain
of BAK1. As this binding site contains both catalytic domain and the activation loop of
BAK1, BRI1 has to interact with that domain to facilitate the transphosphorylation events
and propagate signal transduction.
Interestingly, Hohmann and colleagues did not observe an interaction between the cyto-
plasmic domains of BIR2 and BAK1 as well as BRI1 in an isothermal titration calorimentry
assay [47]. This result is somewhat surprising as the interaction between BIR2 and BAK1
cytoplasmic domains has been shown before [46]. Furthermore, while this result is for
BIR2, this protein shares a high degree of sequence identity with BIR3. Therefore, these
results are even more puzzling as the interaction between BIR3 and BAK1 kinase domains
has been detected as well [30]. Furthermore, FRET-FLIM measurements have shown that
BAK1 and BIR2/3 are in close proximity to each other [46] (also: this thesis p. 63). This
has been substantiated by both split ubiquitin system assays [204], which tested the in-
teractions of full length BIR3 with both BAK1 and BRI1 [30]. Furthermore, a bimolecular
fluorescence complementation assay using YFP [205] for full length BIR3 and BRI1 ex-
pressed in N. benthamiana showed that these proteins exist in very close proximity to
each other [30]. Additionaly, as no interaction could be observed for BIR3 and BRI1 based
on their ectodomains [47], transmembrane and/or cytoplasmic domains likely play a de-
termining role in the observed interactions of the proteins as a whole [46, 30].

8.2.4 Implications of a Trimeric Complex

As final assay of the molecular docking analysis, I tested if a trimeric complex consisting
of all three proteins is possible computationally. Here, I docked BRI1 to the complexes
computed for BAK1 and BIR3 by both webSDA and ClusPro analysis. As it is currently not
possible to compute trimeric complexes using webSDA due to a failure in generating the
pqr files, I relied on ClusPro alone for this analysis.
Interestingly, I observed potential complexes for only three of the four docking runs. One
docking analysis failed to produce a cluster that passed all criteria for cluster selection. The
remaining three potential three complexes all have BRI1 interacting with BAK1 opposite to
its binding site with BIR3. This means that the two interactions are likely independent of
each other, which fits the experimental observations by Imkampe et al. (2017) [30].
The fact that this complex is computationally possible, is not completely unexpected. Dif-
ferent studies have indicated that BAK1-BRI1 hetero-oligomers might exist even when
BRs are absent [14, 64, 65]. In particular, Bücherl et al. determined that approximately
7% of the receptor exists in hetero-oligomers, which is already half of the amount receptor
activated during saturated signaling (15%) [38]. Nonetheless, there is no signaling activity
without the hormone. Consequently, this suggests that BRI1 has to be able to interact with
BAK1, while the co-receptor is in complex with BIR3.
The trimeric complexes computed by ClusPro show that it is indeed possible for BAK1 and
BRI1 to interact without any risk of signaling activity. For one, the catalytic domain and ac-
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tivation loop of BAK1 are part of the interaction surface with BIR3. Second, the activation
loop and the catalytic domain of BRI1 are not part of the interaction surface with BAK1.
This kind of complex fits to the above mentioned experimental observations.
Furthermore, preformed complexes allow for a fast switch from the inactive state to ac-
tive signal transduction. A recent study of the interactions between the ectodomains has
shown that the interaction between BAK1 and BIR3 is preferred here as well as the no
interaction could be observed of the ectodomains of BIR3 and BRI1 [47]. Hohmann and
colleagues further demonstrate that BR-bound BRI1 can compete with BIR3 for the in-
teraction with BAK1 [47]. If receptor, co-receptor and negative regulator indeed exist in
preformed nanoclusters, the close proximity of all components would allow for an almost
immediate transition to active signaling upon ligand binding. However, until this complex
can be observed in planta, the existence of such a complex is still a matter of discussion.
The existence of preformed receptor complexes is not a foreign concept to signaling path-
ways. For animals, this phenomenon has been shown to exist for example in bone morpho-
genetic protein receptor complexes [206] and in epidermal growth factor signaling [207].
In plants, these complexes occur in CLAVATA signaling, which mediates stem cell homeo-
statis [208].

8.3 Modeling the Fast BR Response

To examine and analyze the temporal dynamics of the fast BR response, I formulated
an ODE model using COPASI. Taking into account the information on the cellular com-
partments and considering the known biochemical reactions, I simulated the BR-induced
membrane hyperpolarization and cell wall swelling. Both of these processes are known to
precede expansive cell growth [14].
I specifically constructed the model in such a way that the model is first simulated for 24 h
without the hormone. This allows the complex formation of BIR3 with BAK1 and BRI1
and ensures that the resting membrane potential of −0.121mV is described by the model.
Due to the model structure, the model reaches an equilibrium state during these simulated
24 h. This is by no means a physiological state [209], as living cells constantly produce
and consume energy. Furthermore, proteins are constantly produced and degraded. As
neither process is included in the ODE model, the model does not reach a steady state
but rather an equilibrium.
Using this model I analyzed the importance of the different model species and parameters
to determine those with the greatest impact on the modeling output, the membrane hyper-
polarization. This analysis showed that the H+-ATPases AHA1 and AHA2 have a large
impact on the model’s response. Here, setting the modeled environment to the meris-
tematic zone, where there is less ATPase, greatly reduces the response (see p. 95). We
verified this behavior experimentally, thus affirming the validity of the model.
In order for functional BR signaling to occur, the receptor BRI1 requires the association
with the co-receptor BAK1 [23, 24]. Considering the central role of BAK1 in BR signaling,
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it is worth mentioning that BAK1 participates in several other signaling pathways. For one,
BAK1 regulates an BR-independent pathway mediating cell death [61]. Second, BAK1 is
involved in PAMP-triggered immunity, where it interacts with the receptor flagellin-sensitive
2 (FLS2) and elongation factor Tu receptor (EFR) [210]. Treating plants with the ligands
for these receptors, greatly reduces the observed level of growth, even if BR is applied
exogenously [210]. The cause of this lies in the PAMP-induced production of reactive oxy-
gen species [210], which increases cross-linking of cell wall components [211].
Interestingly, BAK1 is not a limiting factor between the BR-induced and PAMP-induced sig-
naling [63]. In fact, BRI1 and FLS2 mediated signaling pathways exist in different plasma
membrane nanodomains [212]. Therefore, BRI1 and FLS2 cannot compete over inter-
action with BAK1. It also potentially provides some context for why there are different
regulators of BAK1 for these signaling pathways: BIR3 regulates BAK1 activity in BR-
signaling [30] and BIR2 regulates BAK1 activity in FLS2 signaling [29, 46].
Currently, the model of the fast BR response contains very little information on signal ter-
mination. Only one mechanisms for signal termination is included in the model in the
form of the slow, inhibitory autophosphorylation of the receptor and the even slower de-
phosphorylation of that phosphorylation site [79]. However, this yields little information
on signal termination. There is experimental evidence of ubiquitination-mediated receptor
internalization, however this appears to be largely independent of the ligand [213]. Ubiqui-
tination is therefore more likely a mechanism for controlling the amount of receptor at the
plasma membrane [213]. Interestingly, receptor internalization appears to be an important
aspect for the genomic respose, as endosomal signaling of BRI1 increases the response
of this pathway [214] though it is not a requirement as BRI1 can signal form the plasma
membrane [215].
This lack of information is reflected in the uncertainty of the paramters for most dephos-
phorylation reactions (rd3 to rd7) and the inhibitory autophosphorylation (r12). To adress
the latter, we have designed longer measurments of the extracellular pH in response to
BR stimulation. These measurements will also occur at lower BL concentrations, as 10 nM

is already close to the saturating hormone concentration. However, these experiments
will do little in terms of defining the parameters of the dephosphorylation reactions. Here,
wash-out experiments would be needed to determine the rate of these reactions.

8.3.1 Assessing the Parameter Space

The complexity of a biological system is often not reflected in the amount of available ex-
perimentally determined parameters of kinetic, association and dissociation rates [216].
Therefore, parameters often have to be estimated based on experimental measurements.
Still, if there are insufficient data, this can yield more than one parameter set describing
the measurements [217].
In the case of the fast BR response, the initial settings in terms of protein concentrations
(this thesis and [11]) and the proton leak into the cell (Supplementary Information p. 181)
as well as the final output in form of the membrane hyperpolarization [14] are well defined.
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There are some experimental measurements for parameters in the signal transduction:
The affinity as well as the association rate of the ligand BL to the receptor are well studied
and defined [1, 45, 59, 198]. Beyond these data, there exist measurements for the phos-
phorylation rate of the inhibitor BKI1 [199] and the time-scale of the inhibitory autophos-
phorylation [79]. Currently, there exists no information on the rate of phosphorylation of
receptor and co-receptor in the model. Furthermore, most dephosphorylation rates with
the exception of the autoinhibitory phosphorylation of the receptor are completely unde-
fined, which is reflected in the uncertainty of these parameters.
To further limit the allowed parameter space, I used qualitative information to set interval
for parameters during parameter estimation. This was the case for the affinity of BIR3 to
BAK1 and BRI1, respectively, as I knew the interaction of BIR3 and BAK1 to be the more
stable one (this thesis and [30, 46].
While I used as much experimental information as possible to limit the allowed parameter
intervals, parameter non-identifiability is still an issue in the ODE model. The reason for
this lies in the aforementioned lack of phosphorylation data of the receptor complex and
the inactivation of the signaling pathway after removal of the hormone. To address the
issue of parameter non-identifiability, I generated a model ensemble with 50 independent
parameterizations. If the model behavior and predictions are consistent between param-
eter sets, it substantiates the modeling results [201], which is the case for the fast BR
response model presented in this thesis. However, even a model ensemble does not yield
a full picture of the parameter space, but instead represents a sample of the parameters,
which can describe the data. Therefore, the experimental validation of the model predic-
tions as done by the experimental collaborators is absolutely necessary to verify the model
behavior.

8.3.2 The Role of BIR3 in the ODE Model

The observed overexpression behavior of BIR3 already highlights the regulatory role of
BIR3 in BR signaling in general [30]. A secondary role of BIR3 appears to be the stabi-
lization of BAK1 [30]. Therefore, bir3 mutants show decreased levels of BAK1, which can
explain the weak phenotype of these plants [30]. Accordingly, the added expression of
BAK1 under the control of the native promotor causes the plants to be slightly more re-
sponsive to BR treatment [30]. This last effect is actually reflected in the ODE model of the
fast BR response pathway. Here, the in silico deletion of bir3 causes a slight increase in
membrane hyperpolarization but the overall behavior still closely resembles the behavior
of the wild-type (Fig. 6.14, p. 98).
In fact, a scan of the initial BIR3 concentration shows that the wild-type BIR3 concentra-
tion is in a range, where changes in BIR3 expression affect membrane hyperpolarization.
This means that plants should be able to adjust the responsiveness to BR stimulation by
adjusting BIR3 levels through changes in gene expression or translation rates. This sug-
gests that BIR3 function concerns the fine-tuning of the BR response.
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8.3.3 ATPase Levels Control the Response of Fast BR Signaling

The quantification of protein species in the model revealed that H+-ATPase concentrations
increase from the low concentrations in the meristematic zone to the higher concentrations
in transition and elongation zones. Combined with the high sensitivity of the membrane
potential changes to all parameters concerning ATpase pump activity, this suggests a
regulatory role of the ATPase concentration regarding the cellular responsiveness to BR
stimulation. This is supported by the model’s behavior in the meristematic zone, where
the response to BR is notably reduced. Furthermore, the experimental validation of this
behavior by both extracellular pH measurements (p. 96) and by measuring the net proton
flux at the root surface (p. 97) supports these results.
BR signaling is not limited to inducing cell elongation in the transition and elongation
zones. In the meristematic zone, BR regulate cell division of the quiescent center, which
is part of the stem cell niche in the root [37]. However, these cells do not react to BR
stimulation with cell wall acidification as our experiments have demonstrated (p. 97). This
is in agreement with the experimental observations that meristematic cells only elongate
at the basal rate [7] as cell expansion is facilitated by the pH-dependent activation of ex-
pansins [9, 12]. In consequence, this suggest that the changing H+-ATPases AHA1 and
AHA2 concentrations (see p. 75) are the determining factor in BR-induced cell elongation
[2, 17, 21].
Interestingly, the quantification of AHA2-GFP in the root showed columns of cells with
higher AHA2 concentrations that start cell elongation earlier than the neighboring columns
of cells. These epidermis cells are atrichoblasts and trichoblasts [218]. Trichoblasts
are root hair cells, atrichoblasts are non-hair cells. Even in the meristematic zone, atri-
choblasts are larger than trichoblasts and the difference remains as the cells elongate
[218]. The increased AHA2 amount in atrichoblasts supports the regulatory role of the
ATPases regarding BR-induced cell elongation growth [2, 17, 21].

8.3.4 Comparison to Published BR Models

At the time of writing this thesis several models of different aspects of BR signaling have
already been published. First, a logic model of the BR response analyzes the qualita-
tive aspects of the signaling pathway [36]. Here, a continuous transformation of the logic
based model showed that the system is able to oscillate given the model structure [36].
Second, a steady state model links receptor occupancy to root and hypocotyl elongation by
a phenomenological model [39, 40]. Furthermore, a dynamic model of the gene-regulatory
pathway considers the spatial aspects of diffusion from the membrane to the nucleus [41].
Last, a small ODE model aided in understanding the interactions of the transcription fac-
tors BES1 with brassinosteroid at vascular and organizing center (BRAVO) [37]. Here, the
model demonstrated a switch like response to BR stimulation, which provides a mecha-
nism for BR-controlled cell divisions in the quiescent center [37]. As the models presented
by van Esse et al. [38, 39, 40] and Allen & Ptashnyk [41] are closest in terms of research
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question and modeling approach to the models presented in this thesis, both will be ex-
amined in more detail below.

Steady State Model This steady state model describes BRI1 response in root and shoot
by linking the steady state receptor occupancy with root and shoot elongation [38, 39, 40].
The biochemical model used in this study describes the steady state receptor occupancy
defined by the concentration of [BRI1 BL] (Equation 8.1). Here, the receptor concen-
tration [BRI1], the ligand concentration [BL] and the affinity of the receptor to the ligand
Kd.

[BRI BL] =

Kd + [BRI1tot] + [BLtot]−
√

(Kd + [BRI1tot] + [BLtot])2 − 4 · [BRI1tot] · [BLtot]
2

(8.1)

The biochemical model in Equation 8.1 is used in combination with a phenomenological
model (Equation 8.2), which describes the root growth depending on the total receptor
concentration BRI1tot and the total ligand concentration BLtot. Specifically, root growth
R(BRI1tot, BLtot, t) is a combination of the response without BL, which is denoted by
R(0, 0, t) and the activating and inhibiting terms of BR signaling.

R(BRI1tot, BLtot, t) = R(0, 0, t)

+
Emax(t) · [BRI1 BL]

k1 + [BRI1 BL]

k2
k2 + [BRI1 BL]

k3
k3 + [BRI1 BL]

(8.2)

The term Emax(t) describes the time-dependent responsiveness of the root elongation
to the stimulation with BL, which is an unknown factor. Therefore it regarded as a free
parameter that is allowed to change between different time points [38]. In a biological
context, Emax(t) summarizes aspects such as the age of the seedling, the concentrations
of inhibitors and the concentration of the ATPases. One can indeed argue that because
Emax(t) summarizes so many different physiological effects, it has to be included as a free
parameter. It does, however, mean that only the shape of the modeled root length curve
is the actual modeling results as the curve can be scaled.
Interestingly, this model is still able to predict root growth in bri1 loss-of-function mutants
and for the weaker ligand 22-homobrassinolide (HBL) [38]. This demonstrates that phe-
nomenological models can yield some insight into complex biochemical processes such
as BR-induced root growth. However, it also limits the amount of informational output of
the model, as details that can be included in an ODE model, such as the model presented
in this thesis, cannot be captured by a phenomenological model.

Dynamic Model of BR-Regulated Gene Expression The dynamic model by Allen &
Ptashnyk [41] describes the gene-regulatory pathway with the concentration of unphos-
phorylated BZR as final output. Here, the signaling pathway is reduced to a few reactions
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Figure 8.1: Model of BR-regulated gene expression by Allen and Ptashnyk (2017). This
model comprises the binding of the ligand BL to the receptor, which releases BKI1 from the
complex. The amount of free BKI1 is then taken as output for the signaling pathway that affects
BR-regulated gene expression. Figure from [41]

considering ligand synthesis and degradation, ligand binding to the receptor and release
of the inhibitor BKI1, ligand dissociation from the receptor complex and binding of the in-
hibitor (Fig. 8.1). The dephosphorylation and activation of the transcription factor BZR is
catalyzed by BKI1 in the model, a stand in for the actual signaling cascade.
The model parameters were, if no experimentally determined parameters were available,

fitted to experimental data of relative gene expression. The model, while able to describe
the experimental gene expression data, was not tested by generating a model prediction
and testing it by additional experimental data. Instead, model validation was seen as pa-
rameter estimation to experimental data. This greatly reduces the informative value of the
model, as this final test for model quality is missing.
An exploration of the parameter space of the ODE model showed that the system is in
principle capable of oscillations [41], which affirms the results of the logic based model
[36]. Furthermore, a coupled ODE-PDE model considers the spatial dynamics of BR, the
inhibitor BKI1 and phosphorylated BZR along the distance between plasma membrane
and nucleus. This model exhibits oscillations with a reduced frequency but increased
amplitude, even for parameterizations where the ODE model no longer oscillates [41].
Surprisingly, this model does not comprise receptor internalization [213], which has been
shown to increase the response of BR-regulated gene expression [214]. Especially, in the
case of the coupled ODE-PDE model, analyzing the spatial distribution of the internalized
receptor would have been a highly interesting aspect to the model.

8.4 Root Model

As BRs also induce cell elongation, I expanded the ODE model described in Chapter 6
to include a description of cell elongation. Here, I linked the acidification of the cell wall
to cell elongation. This ODE model I then combined with an agent-based representation
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of the root tip creating a multi-scale model of the organ. Currently, the multi-scale model
is only a simplified and reduced version of the root tip: It comprises only the elongation
behavior of an epidermis cell and describes the cell elongation up to a length of 25µm.
There are several reasons for the latter limitation. While the ODE model is capable of de-
scribing the elongation of an epidermis cell from the meristematic zone to the maturation
zone, this is beyond the current capabilities of the ABM. In particular, the biomechanical
model will need to be adjusted at several points to accommodate the forces generated by
the fast elongation rates in the elongation zone and the beginning of maturation zone [7]
(see section 8.4.1). Furthermore, a stabilizing framework needs to be provided to maintain
the shape of the root during simulations.
Interestingly, agent-based modeling has already been applied to study the regulatory
mechanisms of growth in plant roots [219]. In this study, the author tested different reg-
ulatory mechanisms with respect to their capability of reproducing the experimentally ob-
served growth behavior [7]. This model model was constructed in VirtualLeaf [108, 109]
comprises rules for cell growth, cell division and the cellular transition between the differ-
ent root zones [7]. An additional example of agent-based models in VirtualLeaf concerns
tissue patterning in growth [108].
Unfortunately, VirtualLeaf does not support the integration of detailed intracellular ODE
models. This aspect is currently reserved to EPISIM, the agent-based modeling platform
used in this thesis [53, 54, 110], and CompuCell3D [220], which uses the BionetSolver to
integrate any number of ODE models [221]. However, CompuCell3D uses lattice-based
modeling, which models processes such as migration, cell division and cell death as jump-
type processes [34].

8.4.1 Biomechanical Model

For this relatively simplistic agent-based model, Erika Tsingos and I adapted an existing
center-based biomechanical 2D model implementation in EPISIM to the A. thaliana root.
However, center-based modeling has the disadvantage that large deviations from a spher-
ical or ellipsoid shape are not sufficiently supported [34]. Considering plant cells have
a cuboid shape, where the cell length can exceed the cell width quite drastically, this is
an issue. To address this, the definition of the interaction area between ellipsoid cells
has already been adjusted to mitigate the effects of cells deviating from a circular shape
[110]. Nonetheless, ideally the next step in refining the biomechanical model would be to
switch from the center-based model to a vertex-based model, a subclass of deformable
cell models that is used for example by the plant-specific agent-based modeling platform
VirtualLeaf [108, 109].
Deformable cell models have the advantage that cells are not only defined by their center,
width and height but also by the actual surface area of the membrane [34]. Generally,
the membrane area is segmented into triangles, for which affecting forces are calculated
[34]. Vertex models are a special case, where the cell surface area is instead defined by
polygonal tesselation [34]. This not only allows for a more realistic representation of cell
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shapes, but also for a more realistic computation of forces between cells. The latter is quite
important in thightly packed tissue, which is the point where center-based biomechanical
models run into problems [34]. A vertex-based approach further limits the number of cells
that can be computed. Center-based biomechanical model can compute up to 106 cells
reliably in contrast to around 1000 cells in vertex-based modeling approaches [34]. The
lower cell number of the vertex-based modeling approach is not problematic as the model
of the root tip only comprises a transection along the longitudinal axis. Unfortunately, this
biomechanical framework has yet to be implemented into EPISIM at the time of writing this
thesis and was not available for modeling. If implementing a vertex-based biomechanical
model is not possible, the alternative is to increase the number of simulation steps of the
biomechanical model between the simulation steps of the cell behavior model. This will
allow the cells to adjust to the repressive forces generated by the cell elongation.
Furthermore, the model is currently lacking a stabilizing framework around the cells of the
root tip. Considering the fast elongation rates in the elongation zone [7], the forces be-
tween cells can very well push cells apart so strongly that the root shape could potentially
deteriorate. Therefore, Erika Tsingos and I plan to define either a layer of dummy cells or
a basal lamella around the root tip that prevents the cells from deviating from the shape of
the root tip.
Finally, the inclusion of vascular and supporting tissues will also shift the setup of the initial
number of cells placed in the simulation space. These cell types have different dimensions
[11] and in particular the smaller width of these cell types will shift the initial setup. Also,
the number of cells per cell type in each column will vary due to the different cell lengths
in the meristematic zone [11]. One way to address this would be to let the biomechanical
model reach a steady state before the simulations of the cell behavior model initiate.

8.4.2 Cell Behavior Model

The cell behavior model describes the processes that the cells undergo in each simulation
step of the agent-based model. Currently, the processes of cell division, cell elongation
and cell death are included.
In plant roots, cells divide in a transverse way so that the new cells are placed along
longitudinal axis as illustrated by von Wangenheim et al. (2017) [147]. This is in fact rep-
resented in the model: The daughter cell is placed slightly above the mother cell to ensure
that the root expands along the y-axis. At the moment, only one layer of dividing cells is
included in the model. However, experiments show that there are several layers of dividing
cells [7, 147]. Adding this to the cell behavior model will also increase the numbers of cells
in the initial setup, which has to be coded into the biomechanical model.
Another detail that needs to be integrated into the cell behavior model is the fact that cell
division halves the volume of the mother cell. Currently, a mother cell produces a daugh-
ter cell of 8µm length without loosing any of its own volume. It might prove necessary to
include a criterion for the minimal cell length of the mother cell, at which cell division is
allowed to occur.
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Currently, cell division is modeled as a stochastic process (see p. 106). In the simulations
of the agent-based model, this can result in a non-uniform distribution of cell division (Fig.
7.15 A and B). In turn, this leads to differing numbers of cells in the individual columns,
which would result in very different elongation rates for these cell columns at a longer
time-scale [7]. While computational modeling has shown that cell elongation can cope
with small and short-term differences in the longitudinal strain rate [219], the behavior of
the agent-based model would violate the "Uniform Longitudinal Strain Rule" formulated by
the authors of that study [219]. Therefore, a change from a stochastic to a deterministic
mechanism is necessary to represent the cell division observed by von Wangenheim et
al. (2017) [147].
Finally, while the cell behavior model already contains three cell types, this number has
to be expanded. Currently, the model comprises columella cells, which only exist to rep-
resent the shape of the root cap, one layer of dividing cells, which will have to be greatly
adjusted, and the elongating epidermis cell type. In order for the agent-based model to
represent an accurate depiction of the A. thaliana root, the other cell types for vascular and
supporting tissue will have to be included in the model. This means that different initial cell
dimensions will have to be defined for each cell type and the submodel for the color code
will have to be adjusted.

8.4.3 ODE Model for BR-Induced Cell Elongation

Without my work on the multi-compartment rate laws and especially processes that in-
clude the membrane either as compartment or as interaction area, this model would not
have been possible. By including growth as a process in the ODE model all compartment
volumes change constantly throughout the simulation. This would make the adjustment of
parameters, which I describe in chapter 4, very complicated and error prone if not com-
pletely unfeasible.
The ODE model currently describes only the elongation behavior of an epidermis cell as
this was the cell type with the most data available. In order for the root model to be a
realistic representation of the organ, the other cell types forming vascular and supportive
tissue have to be included. As these cell types all have different final cell lengths [11], I
have to adjust the parameters for cell elongation for each cell type. In the end, this means
that there will be one ODE model per cell type that describes the elongation pattern of that
particular cell type.
Until then, there are some aspects of the ODE model that need to be revised and con-
sidered. The ODE model describing BR-induced cell elongation needs to contain reac-
tions that describe the synthesis of the signaling components. Otherwise, the continued
cell elongation would cause the model species to dilute until the signaling pathway is no
longer active. For the most part, including protein synthesis is a relatively simple process
of producing new proteins proportional to the newly created membrane area and the re-
spective number of molecules per µm2. This description works for the receptor BRI1, the
co-receptors BAK1 and BIR3, as well as the negative regulators BKI1 and BIK1.
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Only in the case of the ATPases AHA1 and AHA2 as well as the AHA C-terminus, the syn-
thesis of proteins required a more careful description as the expression levels along the
root. Here, I used a logistic function to increase the expression levels from the low meris-
tematic concentration to the higher levels in the elongation and maturation zones. Since
the position of the cell along the root zones is not described in the ODE model, I used the
cell length instead to determine the expression level of AHA1 and AHA2. As I have shown
in Fig. 7.7, the actual concentration of the ATPases is not identical to what should be and
instead underestimates the concentration of both ATPases and ATPase C-terminus.
This description of the variable levels of AHA1 and AHA2 means that while I have the
correct concentration of the proton pumps at the start of the simulations, this is no longer
the case once the BR-induced cell elongation begins. As the cell elongates in the model,
protein synthesis occurs proportional to the newly created membrane area. It does not
compensate for the already existing membrane area with the lower ATPase concentration.
This means that the longer a simulation runs, the more the actual concentration in the
model deviates from where it should be according to the description of the initial concen-
tration.
While most of the remaining concentration changes are minor, there is one species where
the concentration changes dramatically from elongation to maturation zone: The den-
sity of the receptor BRI1 changes from 11molecules per µm2 in the elongation zone to
2molecules per µm2 in the maturation zone [11]. The inclusion of this fact might make the
inhibition of cell elongation by the current cell length obsolete.
Currently, there is no description of cell age or an inhibition of cell elongation due to too
quick elongation rates. In planta, cell elongation is limited by the cell’s capability of produc-
ing new cell wall components. Including one of these mechanisms in the model can help
to refine the model’s response to higher BL concentrations and the lack of any hormone
in the model.
To be precise, the currently used dose of 10 nM BL already shows some inhibitory effect
on root growth [11]. The model is not able to represent that and instead shows the normal
elongation behavior observed at physiological concentrations around 0.1 nM to 1 nM BL.
Here, fitting the model to the planned measurements of the extracellular pH at lower BL
concentrations can yield a more realistic model behavior.
Also, the model shows no elongation behavior during the first 24 h of simulation as long
as the hormone is absent. However, it is theoretically possible that the basal elongation
rate will slowly increase the concentration of AHA1 and AHA2 such that the model will at
some point show cell elongation, which is not the case in the actual plant if BR signaling is
impaired. A description of cell age or distance from the root tip in terms of cell layers can
prevent this from happening.
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It was the aim of this thesis to analyze the initiation and regulation of the fast BR response
as well as its role in cell elongation by integrative computational modeling. Throughout this
thesis, I studied the fast BR response on several different scales. For one, I specified the
role of the negative regulator BIR3 by molecular modeling. Secondly, I employed an ODE
model of the fast response pathway to study the pathway’s behavior in different root zones
and determine important model components. Lastly, I combined an agent-based model of
the root tip with an ODE model describing the BR-induced cell elongation of an epidermis
cell.
In addition to analyzing the fast BR response pathway, I also investigated how changes
in cell morphology affect the behavior of ODE models, where different approaches to de-
scribing multi-compartment processes have been implemented (Chapter 4, pp. 31). Here,
I show that depending on the modeled system it can actually be crucial to include the in-
teraction area between the compartments in the model. In particular, this is the case in the
different root zones, where cell size and shape change fundamentally, the model behavior
changes a lot depending on the modeling approach.
Using molecular modeling I was able to compute potential complexes between the cy-
toplasmic domains of the negative regulator BIR3, the receptor BRI1 and the co-receptor
BAK1 (Chapter 5, pp. 49). First, I demonstrated that BRI1 and BAK1 can interact based on
their cytoplasmic domains alone. While this complex is energetically unfavorable, it carries
the risk of unwanted transphosphorylation events occurring. Furthermore, the computa-
tional analysis showed that BIR3 can interact with BAK1 and BRI1. Here, the interaction
between BIR3 and BAK1 is far more favorable compared to the one between BIR3 and
BRI1 as well as between BRI1 and BAK1. As the interaction surface between BIR3 and
BAK1 includes the catalytic domain and the activation loop of BAK1, the co-receptor is
unable to participate in BR signaling while interacting with BIR3. This sheds light into
the phenotype of BIR3 overexpressing A. thaliana plants, which resemble bri1-/- mutants.
Here, the concentration of BIR3 is so high that the addition of the hormone is not enough
to induce the interaction bewteen receptor and co-receptor and to overcome the energet-
ically more favorable interaction between BIR3 and BAK1. Finally, the docking analyses
revealed that a trimeric complex consisting of all three proteins can exist per se. This, in
turn, would provide a mechanism for cells to respond almost immediately to BR stimula-
tion as the proteins would only need to change their orientation within the complex.
To model the fast BR response on a cellular scale, I built a model consisting of ODEs in
COPASI (Chapter 6, pp. 71). Here, I ensured that the compartimental information was
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included correctly, as most proteins involved in the fast BR are located in the plasma
membrane and one early response to BRs is the hydration of the cell wall [14]. To account
for parameter non-identifiability, I generated a model ensemble of 50 independent model
parameterizations. The sensitivity analysis of the membrane potential revealed that the
ATPases AHA1 and AHA2 are crucial for the model response to hormone stimulation. In
combination with the protein quantification data by Nina Glöckner, this led us to the hy-
pothesis that the cells’ responsiveness to BR stimulation is mediated by AHA expression
levels. To test this hypothesis, we predicted the signaling response in the meristematic
zone, where AHA expression is much lower. The in silico predictions showed the model’s
response is indeed much reduced. We validated this experimentally by MIFE measure-
ments as well as pH measurements by fluorescence microscopy. Last, I validated the
model’s behavior in a bir3 deletion mutant, where the behavior resembles the one of the
wild-type, which fits the experimental observations.
Finally, I expanded this ODE model to include cell elongation and integrated it into an
agent-based representation of the root tip (Chapter 7, pp. 101). This model currently only
describes the behavior of one cell type and only models cell elongation up to a cell length
of 25µm. In order for this multi-scale model to be a realistic representation of the root,
other cell types have to be included in the simulations. Furthermore, the simulations will
have to be extended to comprise the final cell number and to model cell elongation to the
final cell length. Once finished, this model will represent a poweful tool for visualizing and
studying BR-induced cell elongation in silico.
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The computational modeling presented in this thesis has helped in understanding the ini-
tiation and regulation of the fast BR response pathway. It has also raised new areas to
study.
For one, BRs are not the only hormones that induces cell elongation by activating the H+

P-type ATPases AHA1 and AHA2. Ladwig et al. (2015) discovered that phytosulfokine
activate a signaling module in the plasma membrane by A. thalina that includes the co-
receptor BAK1 as well as the H+ P-type ATPases AHA1 and AHA2 [71]. This raises the
questions of how specificity is achieved between the two signaling pathways and if they
might act synergistically.
Here, several modeling approaches might provide useful information: For one, structural
modeling could be used to see how the phytosulfokine receptor 1 (PSKR1) cytoplasmic
domain can interact with the co-receptor BAK1. Furthermore, an ODE model of this sig-
naling module can provide insight into how the proteins act in this signaling pathway. This
model can later be combined with the model of the fast BR response pathway to study the
combined response of both pathways.
There is also evidence that both signaling pathways include a cation channel [71]. Cyclic
nucleotide gated channel 17 (CNGC17) is hypothesized to form a cation-transporting unit
with the ATPases AHA1 and AHA2 [71] and acts downstream of the receptors [71]. This
channel will have to be included in the models of these pathways to analyze the specific
and synergistic effects of both signaling pathways.
Until then, the ODE model of the fast BR response can still be improved by using long-term
pH measurements in response to hormone stimulation. This will provide important infor-
mation on the less immediate effects of BR stimulation and can give insight into signal ter-
mination. Currently, this information is only included by the inhibitory auto-phosphorylation
of the receptor BRI1 that occurs on an extremely slow time-scale [79].
For the elongating cell model, this information will also be important as the simulations are
much longer for this model. Here, it would also be interesting if cell wall integrity signaling
can be integrated. In planta, cell wall integrity signaling is intertwined with BR signaling
via the receptor-like protein 44 (RLP44) [222]. RLP44 presumably activates BR signaling
by directly interacting with BAK1 to prevent a loss of cell wall integrity [223].
Furthermore, BR signaling activity has a negative effect on the expression of the receptor
BRI1 [82]. This could actually be an important aspect to consider in the elongating cell
model as the model transitions from the meristematic zone through the elongation zone
to the maturation zone. During this time the receptor concentration changes from 12 and
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11molecules per µm2 in meristematic and elongation zone to 2molecules per µm2 in the mat-
uration zone and the rest of the root [11]. While the effect of the change in expression
levels does not impact the short term behavior of the ODE mode, it is important to con-
sider this effect in the ODE model describing BR-induced cell elongation.
Improving the ODE model describing BR-induced cell elongation will also improve the
ABM of the root tip, as this model is used to integrate the physiological induction of cell
elongation. However, the ODE model currently describes the elongation behavior of only
one cell type: an epidermis cell. The other cell types are not yet represented in either the
ODE model or the ABM. This means that in order for the multi-scale model of the elongat-
ing root tip to be a realistic representation of that organ, the different cell types need to be
integrated.
As the ODE model is quite responsive to changes in compartment size and particle num-
bers, integrating the different cell types requires careful adjustment of the cell elongation
parameters. Finally, this means that one ODE model per cell type will be linked to the CBM
in the mutli-scale model. There, new cell types will have to be created with specific division
rates to account for the different final cell lengths of each cell type. Without specific cell
division rates the tissue would grow unevenly, which is not the case in wild-type A. thaliana
roots, unless it is in response to a stimulus, i.e. a change in root orientation.
Potentially, changing the biomechanical model from a center-based to a vertex-based ap-
proach will improve the biomechanical representation of the forces between the cells in
the root. Center-based approaches contain a pair-wise description of the forces between
cells. This can generate artifacts at high cell densities [34]. Considering the fast elongation
rates in the root [7], this can indeed create problems when simulating the quickly elongat-
ing root cells. Therefore, Erika Tsingos and I are looking into integrating a vertex-based
approach in EPISIM. Vertex-based models are a subclass of deformable cell models [34].
Deformable cell models include a description of the cell boundaries, which can be used to
approximate the cell surface [34]. Vertex-based models use polygonal tesselation to de-
scribe the cell boundaries, which allows for a more precise description of forces between
cells [34].
To ensure that the ABM keeps the shape of the root, either dummy cells or a different kind
of boundary needs to be introduced. Otherwise, the forces created by cell elongation and
cell division will in the end lead to tissue disorganization due to the strong repulsive forces.
Finally, it might be interesting and worthwhile to build a spatial model of the fast BR re-
sponse. Bücherl et al. (2017) showed that the BRI1 receptor occurs in distinct membrane
nano-domains [224]. Especially considering that PSKR1 receptor has a similar function, it
would be interesting to find out if these modules occur in the same nano-domains. If that
is not the case, this spatial aspect has to be considered in any computational model that
considers both signaling pathways.
A different project of the CRC 1101 for specificity encoding in plants built a versatile mi-
croscope, that allows for single molecule tracking. Currently, this set-up is being used to
determine the diffusional constants of membrane proteins tagged to fluorescent proteins.
These measurements allow the distinction between freely diffusing proteins, actively trans-
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ported proteins and proteins that are kept in place. It also allows for the distinction of the
nano-domains that have been discovered recently [224]. With this information a detailed
model consisting of partial differential equations can be built. This could also shed light
into the double role of the phosphatase PP2A that inactivates BR signaling on the level
of the receptor BRI1 [80, 81] but activates it by promoting the dephosphorylation of the
transcription factors BES1/BZR1 that can then diffuse into the nucleus and affect gene-
expression [87].
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ABM Agent-based model; used to model the emergent behavior of independent cellular
agents.

ABPS Adaptive Poisson-Boltzman Server; used to compute the surface electrostatic po-
tential.

AHA1/2 H+ P-type ATPases.

ANOVA ANalysis of VAriance; statistical method to determine the significance of similar
measurements.

B-Factor Measure of how much atoms fluctuate around their average position in an
experimentally determined protein structure; values depend on structure resolution and
temperature.

BAK1 BRI1-associated kinase; acts as a co-receptor to BRI1 in the fast BR response
pathway.

BES1 BRI1-ems-surpressor 1; transcription factor of BR-regulated gene-expression.

BIK1 Botrytis-induced kinase 1; negative regulator of the receptor BRI1.

BIR3 BAK1-interacting receptor 3; inactive kinase that regulates BAK1 activity in BR
signaling.

BKI1 BRI1 kinase inhibitor; negative regulator of the receptor BRI1.

BL Brassinolide; biologically most active form of brassinosteroids.

BR Brassinosteroid; plant steroid hormone that regulates several growth and develop-
ment processes.

BRI1 Brassinosteroid insensitive 1; receptor of BR at the cell surface.

147



148 CHAPTER 12. ABBREVIATIONS

Brz Brassinazole; inhibitor of BR synthesis; needs to be applied for several days to be
effective.

BRZ1 Brassinazole-resistant 1; transcription factor of BR-regulated gene-expression.

CBM Cell behavior model; element of an ABM; contains the behavior rules for the cellular
agents.

COPASI COmplex PAthway SImulator; software for ODE modeling of biochemical path-
ways.

EPISIM Agent-based modeling platform developed by Sütterlin et al. [53, 54, 110].

FLIM Fluorescence Lifetime Imaging Microscopy

FRET Förster Resonance Energy Transfer.

FRET-FLIM Experimental technique that measures FRET by FLIM.

HPTS 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt; protonated and unprotonated
forms of HPTS occur in a pH-dependent manner and can be used to quantify cell wall pH.

IRMSD Interface Root Mean Square Derivation; used by ClusPro to cluster the com-
plexes into up to 30 clusters.

MIFE Microelectrode Ion Flux Estimation; non-invasive technique that measures ion
fluxes at the root surface.

MODELLER Software for comparative modeling of protein structures.

ODE Ordinary Differential Equations.

PDB Protein Data Base file; lists all atoms in a protein structure including the position
and B-Factor.

PDB2PQR Web server that calculates pqr files based on the pdb file.

PQR File format containing protein residues, their charge and the radius radius.

PROCHECK Software to check protein structure quality based on torsion angles in the
amino acid bonds.
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QMEAN Qualitative Model Energy ANalysis; scoring method for evaluating the quality
of protein structures. Uses the torsion angle over three amino acids, the accessibility to
solvent molecules and the interaction potential of Cα atoms.

SBGN Systems Biology Graphical Notation; standard the graphical representation of
models.

SBML Systems Biology Markup Language; standard language for the description and
annotation of biochemical models.
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[113] Peter W. Rose, Andreas Prlić, Ali Altunkaya, Chunxiao Bi, Anthony R. Bradley,
Cole H. Christie, Luigi Di Costanzo, Jose M. Duarte, Shuchismita Dutta, Zukang
Feng, Rachel Kramer Green, David S. Goodsell, Brian Hudson, Tara Kalro, Robert



162 BIBLIOGRAPHY

Lowe, Ezra Peisach, Christopher Randle, Alexander S. Rose, Chenghua Shao,
Yi Ping Tao, Yana Valasatava, Maria Voigt, John D. Westbrook, Jesse Woo,
Huangwang Yang, Jasmine Y. Young, Christine Zardecki, Helen M. Berman, and
Stephen K. Burley. The RCSB protein data bank: Integrative view of protein, gene
and 3D structural information. Nucleic Acids Research, 45(D1):D271–D281, jan
2017.

[114] Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gregory S. Couch,
Daniel M. Greenblatt, Elaine C. Meng, and Thomas E. Ferrin. UCSF Chimera -
A visualization system for exploratory research and analysis. Journal of Computa-
tional Chemistry, 25(13):1605–1612, oct 2004.

[115] Elaine C Meng, Eric F Pettersen, Gregory S Couch, Conrad C Huang, and
Thomas E Ferrin. Tools for integrated sequence-structure analysis with UCSF
Chimera. BMC Bioinformatics, 7(1):339, jul 2006.

[116] S Henikoff and J G Henikoff. Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences of the United States of America,
89(22):10915–9, nov 1992.

[117] Bertil Halle. Flexibility and packing in proteins. Proceedings of the National Academy
of Sciences of the United States of America, 99(3):1274–1279, feb 2002.

[118] Oliviero Carugo. How large B-factors can be in protein crystal structures. BMC
Bioinformatics, 19(1):61, feb 2018.

[119] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus,
Weizhong Li, Rodrigo Lopez, Hamish McWilliam, Michael Remmert, Johannes Söd-
ing, Julie D Thompson, and Desmond G Higgins. Fast, scalable generation of high-
quality protein multiple sequence alignments using Clustal Omega. Molecular sys-
tems biology, 7(1):539, oct 2011.

[120] Hamish McWilliam, Weizhong Li, Mahmut Uludag, Silvano Squizzato, Young Mi
Park, Nicola Buso, Andrew Peter Cowley, and Rodrigo Lopez. Analysis Tool Web
Services from the EMBL-EBI. Nucleic acids research, 41(Web Server issue):W597–
600, jul 2013.

[121] Weizhong Li, Andrew Cowley, Mahmut Uludag, Tamer Gur, Hamish McWilliam, Sil-
vano Squizzato, Young Mi Park, Nicola Buso, and Rodrigo Lopez. The EMBL-EBI
bioinformatics web and programmatic tools framework. Nucleic acids research,
43(W1):W580–4, jul 2015.

[122] Bärbel S. Blaum, Sara Mazzotta, Erik R. Nöldeke, Thierry Halter, Johannes Mad-
lung, Birgit Kemmerling, and Thilo Stehle. Structure of the pseudokinase domain
of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis. Journal of
Structural Biology, 186:112–121, 2014.



BIBLIOGRAPHY 163

[123] Daniel Bojar, Jacobo Martinez, Julia Santiago, Vladimir Rybin, Richard Bayliss, and
Michael Hothorn. Crystal structures of the phosphorylated BRI1 kinase domain
and implications for brassinosteroid signal initiation. Plant Journal, 78(1):31–43, apr
2014.

[124] Todd J Dolinsky, Jens E Nielsen, J Andrew McCammon, and Nathan A Baker.
PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics
calculations. Nucleic Acids Research, 32(WEB SERVER ISS.):W665–7, jul 2004.

[125] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon. Electrostatics
of nanosystems: Application to microtubules and the ribosome. Proceedings of the
National Academy of Sciences, 98(18):10037–10041, aug 2001.

[126] Michael Martinez, Neil J. Bruce, Julia Romanowska, Daria B. Kokh, Musa Ozboyaci,
Xiaofeng Yu, Mehmet Ali Öztürk, Stefan Richter, and Rebecca C. Wade. SDA 7:
A modular and parallel implementation of the simulation of diffusional association
software. Journal of Computational Chemistry, 36(21):1631–1645, aug 2015.

[127] Razif R. Gabdoulline and Rebecca C. Wade. Brownian Dynamics Simulation of
Protein–Protein Diffusional Encounter. Methods, 14(3):329–341, mar 1998.

[128] R.R. Gabdoulline and R.C. Wade. Simulation of the diffusional association of bar-
nase and barstar. Biophysical Journal, 72(5):1917–1929, may 1997.

[129] R. R. Gabdoulline and R. C. Wade. Effective Charges for Macromolecules in Sol-
vent. The Journal of Physical Chemistry, 100(9):3868–3878, jan 1996.

[130] Adrian H Elcock, Razif R Gabdoulline, Rebecca C Wade, and J.Andrew
McCammon. Computer simulation of protein-protein association kinetics:
acetylcholinesterase-fasciculin. Journal of Molecular Biology, 291(1):149–162, sep
1999.

[131] Razif R. Gabdoulline and Rebecca C. Wade. On the Contributions of Diffusion
and Thermal Activation to Electron Transfer between <i>Phormidium laminosum</i>
Plastocyanin and Cytochrome <i>f</i> : Brownian Dynamics Simulations with Ex-
plicit Modeling of Nonpolar Desolvation Interactions and Electron. Journal of the
American Chemical Society, 131(26):9230–9238, jul 2009.

[132] Stephen R Comeau, David W Gatchell, Sandor Vajda, and Carlos J Camacho.
ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids
Research, 32(Web Server):W96–W99, jul 2004.

[133] Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November
2015.

[134] Mansour Karimi, Dirk Inzé, and Ann Depicker. GATEWAY vectors for Agrobacterium-
mediated plant transformation. Trends in plant science, 7(5):193–5, may 2002.



164 BIBLIOGRAPHY

[135] A. Bleckmann, S. Weidtkamp-Peters, C. A.M. Seidel, and R. Simon. Stem Cell
Signaling in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane.
PLANT PHYSIOLOGY, 152(1):166–176, jan 2010.

[136] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pages 39–43. IEEE, 1995.

[137] Robert Hooke and T A Jeeves. "Direct Search" Solution of Numerical and Statistical
Problems*. Journal of the ACM, 8(2):212–229, 1961.

[138] Thomas Bäck and Hans-Paul Schwefel. An Overview of Evolutionary Algorithms for
Parameter Optimization. Evolutionary Computation, 1(1):1–23, mar 1993.

[139] T Bäck, D B Fogel, and Z Michalewicz. Handbook of Evolutionary Computation.
Evolutionary Computation, 2:1–11, jan 1997.

[140] Zbigniew Michalewicz. Evolution strategies and other methods. In Genetic algo-
rithms+ data structures= evolution programs, pages 159–177. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1996.

[141] Melanie Mitchell. An introduction to genetic algorithms. MIT Press, Boston, 1998.

[142] Linda Petzold. Automatic Selection of Methods for Solving Stiff and Nonstiff Sys-
tems of Ordinary Differential Equations. SIAM Journal on Scientific and Statistical
Computing, 4(1):136–148, mar 1983.

[143] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-
07-0.

[144] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. NIH Image to Im-
ageJ: 25 years of image analysis. Nature methods, 9(7):671–5, jul 2012.

[145] Pedro Silva, Reiaz Ul-Rehman, Cláudia Rato, Gian-Pietro Di Sansebastiano, and
Rui Malhó. Asymmetric localization of Arabidopsis SYP124 syntaxin at the pollen
tube apical and sub-apical zones is involved in tip growth. BMC Plant Biology,
10(1):179, aug 2010.

[146] Kisten Sisse Krag Gjetting, Cecilie Karkov Ytting, Alexander Schulz, and Anja Thoe
Fuglsang. Live imaging of intra-and extracellular pH in plants using pHusion, a novel
genetically encoded biosensor. Journal of Experimental Botany, 63(8):3207–3218,
may 2012.

[147] Daniel von Wangenheim, Robert Hauschild, Matyáš Fendrych, Vanessa Barone,
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A | Multi-Compartment Rate Laws

A.1 Model Parameters

A.1.1 Toy Models

Table A.1: Kinetic parameters and the scaling factors of the transport model in the
different modeling approaches. Shown are the permeability parameters k1 and k−1, their
values and the included scaling factor for the meristematic epidermis cell.

Parameter Value Units Scaling Factor
multi-compartment, k1 0.0001 dm s−1

with membrane k−1 0.0001 dm s−1

multi-compartment, k1 7.67 · 10−12 dm3 s−1 area
w/o membrane k−1 7.67 · 10−12 dm3 s−1 area

one compartment k1 25.3165 s−1 area
V1

k−1 8.75574 s−1 area
V2

Table A.2: Area of the membrane surface during vertical and horizontal transport. Listed
are the interaction area for horizontal and vertical transport in the different root zones.

Root Zone Direction of Transport Interaction Area
meristematic vertical 1.9208× 10−8 dm2

horizontal 1.5876× 10−8 dm2

elongation vertical 4.3803× 10−8 dm2

horizontal 2.22× 10−7 dm2

maturation vertical 5.0562× 10−8 dm2

horizontal 7.3617× 10−7 dm2
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Table A.3: Parameter overview of the receptor toy model. All parameters were chosen
such that the behavior in the meristematic zone was identical for all modeling approaches.

Parameter Value Units Scaling Factor
without k1 7.67 · 10−10 dm5mol−1 s−1 area
area-scaling k−1 7.67 · 10−10 dm2 s−1 area

k2 7.67 · 10−9 dm2 s−1 area
k3 0.01 s−1

with k1 0.01 dm3mol−1 s−1

area-scaling k−1 0.01 s−1

k2 0.1 s−1

k3 0.01 s−1

one k1 2531.65 dm3mol−1 s−1 area
Vcell wall

compartment k−1 905.549 s−1 area
Vcell

k2 0.1 s−1

k3 0.01 s−1

A.1.2 RanGTP Transport Model

Compartment Sizes

Table A.4: Compartment sizes of the RanGTP model. The surface area of the nuclear
envelope was approximated by assuming a spherical shape of the nucleus.

Model Version Nuclear Volume Cytosolic Volume Nuclear Area
original 1.2× 10−11 dm3 1.8× 10−11 dm3 2.53× 10−7 dm2

wild type 1.73× 10−15 dm3 2.6× 10−14 dm3 6.94 dm2

sch9-/- 2.91× 10−15 dm3 4.18 dm3 9.86× 10−10 dm2
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A.2 Additional Plots

A.2.1 Receptor Toy Model

Figure A.1: Simulated time-course behavior of the other species in the receptor model.
The figure summarizes the time-course simulations of the receptor, the ligand and the
receptor-ligand-complex for the respective root zone. The one compartment model is in-
dicated in blue, the multi-compartment model with area scaling is indicated in red and the
multi-compartment model without area-scaling is shown in yellow.
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A.3 Files

The COPASI model files used in this chapter are included in the attached CD. Here, I list
and describe the included files.

Toy Models

Model File Included Parameter Sets
transport model transport.cps meristematic zone, whole cell

elongation zone, whole cell
maturation zone, whole cell

transport_cells.cps meristematic zone, horizontal transport
meristematic zone, vertical transport
elongation zone, horizontal transport
elongation zone, vertical transport
maturation zone, horizontal transport
maturation zone, vertical transport

receptor model receptor.cps meristemtatic zone
elongation zone
maturation zone

Example Model

File Included Parameter Sets
volume-scaling BIOMD0000000192.cps original_model

wild-type, original parameters
wild type, corrected parameters
sch9 mutant, original parameters
sch9 mutant, unadjusted parameters
sch9 mutant, corrected parameters

area-scaling BIOMD0000000192_area.cps original_behavior
wild type
sch9 mutant



B | Structural Modeling

B.1 Comparative Modeling

B.1.1 Sequence Alignments

Code for Sequence Alignment

The basic code was kindly provided by Dr. Anna Feldman-Salit and adapted to the specific
proteins by me.

env = env i ron ( )
env . i o . a t o m _ f i l e s _ d i r e c t o r y = [ r ’ f i l e path ’ ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
# Alignment f i l e s p repara t ion #
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

aln = al ignment ( env )
mdl = model ( env )

# Load the template s t r u c t u r e
code = ’ template ’
mdl . read ( f i l e =code , model_segment =( ’ FIRST :@’ , ’END: ’ ) )
a ln . append_model ( mdl , a l ign_codes=code , a tom_f i l es=code )

# Load the amino ac id sequence
aln . append ( f i l e = ’ t a r g e t . a l i ’ , a l ign_codes= ’ t a r g e t ’ )

# A l ign sequences
aln . mal ign ( gap_penalt ies_1d = (−500, −300))
a ln . w r i t e ( f i l e = ’ ta rge t−template . a l i ’ , a l ignment_format= ’ PIR ’ )
a ln . w r i t e ( f i l e = ’ ta rge t−template . pap ’ , a l ignment_format= ’PAP ’ )
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Figure B.1: Sequence alignment of the structurally resolved residues in 5lpw and the
amino acid sequence of BRI1. This sequence alignment was generated using Modeller [91].

Figure B.2: Multiple sequence alignment of the cytoplasmic domains of BIR2, BIR3,
BAK1 and BRI1. The sequence alignment was generated using the alignment tool Clustal
Omega of the European Bioinformatics Institute [119, 120, 121]
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B.1.2 Comparative Modeling

The code listed here was used to generate the structure for BIR3 and to fill the gaps in the
structure of BRI1 using Modeller [91].

Comparative Modeling

The basic code was kindly provided by Dr. Anna Feldman-Salit and adapted to the specific
proteins by me.

# ! / b in / sh −v

# Homology model l ing by the automodel c lass

#from model ler impor t *
# Load standard Model ler c lasses
from model ler . automodel import * # Load the automodel c lass

log . verbose ( ) # request verbose output
env = env i ron ( ) # create a new MODELLER environment to b u i l d t h i s model i n

# d i r e c t o r i e s f o r i npu t atom f i l e s

env . i o . a t o m _ f i l e s _ d i r e c t o r y = [ r ’ f i l e path ’ ]

#env . i o . a t o m _ f i l e s _ d i r e c t o r y = [ r ’ . ’ ]
# Read i n HETATM records from template PDBs

# env . i o . hetatm = True

#−−−−−−−−−−−−−−
# MOLECULE 1
#−−−−−−−−−−−−−−

a = automodel ( env ,
a l n f i l e = ’ ta rge t_ temp la te . a l i ’ , # al ignment f i lename
knowns = ’ template ’ , # codes_templates
sequence = ’ t a r g e t ’ ) # code of the t a r g e t

a . s ta r t ing_mode l= 1 # index of the f i r s t model
a . ending_model = 1 # index of the l a s t model
# ( determines how many models to c a l c u l a t e )

# do the ac tua l homology model l ing
a . make ( )
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B.2 Simulaiton of Diffusional Association

B.2.1 ClusPro Constraints

The JSON constraints were used to limit the maximal distance between protein centers to
45Å and thereby reproducing the settings of the webSDA computations.

BRI1 and BAK1

{ " requ i red " : 1 , " groups " : [ { " requ i red " : 1 , " r e s t r a i n t s " : [ { " type " : " res idue " ,

"dmax " : 4 5 , " dmin " : 3 0 , " rec_chain " : " A" , " rec_ res id " : " 1 4 9 " ,

" l i g _ c h a i n " : " A" , " l i g _ r e s i d " : " 4 1 8 " } ] } ] }
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C.1 Additional Experimental Data

C.1.1 Western Blot Data

Figure C.1: Exemplary Western Blot result of the protein quantification in A.thaliana
roots. The negative regulator BIR3 and the ATPase AHA2 were quantified in relation to BRI1.
The figure was kindly provided by Nina Glöckner.

C.1.2 Calculations of the Proton Leak Rate

The boundaries for the proton leak reaction were calculated based on the experimental
measurements by Dr. Stefan Scholl. Based on Figure C.2 B, the proton leak is at least
from pH 5.5 to 7.0 and at most from pH 5.34 to 7.7. This translates to a difference in proton
concentration ∆H+

out between 3.06 10−6mol h−1 and 4.55 10−6mol h−1. The amount of
protons transported per second can now be calculated by:

transport[mol s−1] = ∆H+
out · Vcell wall[dm3] · 1

3600
(C.1)
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Figure C.2: Measurement of apoplast pH. A: Average pH of the apoplast in the elongation
zone. B: The plants were treated with 500µm ortho-vanadate and measurements were taken
by fluorescence microscopy. The apoplast pH was measured in comparison to plants treated
with pure medium as control. Figures are courtesy of Dr. Stefan Scholl.

The last factor is multiplied to scale from hours to seconds. Based on the rate law used to
describe the proton leak, it is now possible to estimate the rate for this reaction:

area · k · ([H+
out]− [H+

in]) = transport[mol s−1] (C.2)

k =
transport[mol s−1]

area · ([H+
out]− [H+

in])
(C.3)

Based on the intracellular pH of 7.2, the average extracellular pH in the elongation zone
of 5.4 C.2 A and the cell surface, the rate can now be calculated:

k =
transport[mol s−1]

(10−5.4[mol dm−3]− 10−7.2[mol dm−3]) · area
(C.4)

k =
transport[mol s−1] · 109

0.0021nmol dm−1
(C.5)

k =
transport[nmol s−1]

0.0021nmol dm−1
(C.6)

Based on these calculations k has a value between 0.84 10−9 dms−1 and 1.25 10−9 dms−1.
I used these values as boundaries for the proton leak reaction during parameter estima-
tion.
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C.2 Compartment Sizes

Cell Wall Volume

Vcell wall(t) = Acell surface · cell wall thickness(t)

C.3 Ordinary Differential Equations

BRI1

d([BRI1] ·Acell surface)
dt

=−Acell surface · (kon · stimulation · [BL] · [BRI1]− koff · [BRI1BL])

+Acell surface · koff · [BRI1pBL]

−Acell surface · (k · [BRI1] · [BIR3]− k ·KD · [BIR3BRI1])

+Acell surface · koff2 · [BAK1BRI1pBL]

+Acell surface · koff2 · [BAK1pBRI1ppBL]

+Acell surface · koff3 · [BAK1pBRI1pppS891BL]

BL

d([BL] · Vcell wall)
dt

=−Acell surface · (kon · stimulation · [BL] · [BRI1]− koff · [BRI1BL])

+Acell surface · koff · [BRI1pBL]

+Acell surface · koff2 · [BAK1BRI1pBL]

+Acell surface · koff2 · [BAK1pBRI1ppBL]

+Acell surface · koff3 · [BAK1pBRI1pppS891BL]

+ Vcell wall · stimulation · flux · doseBL
− Vcell wall · k · [BL]

BKI1

d([BKI1] ·Acell surface)
dt

=−Acell surface · k · [BRI1BL]

· [BKI1]

(Ki,BKI1 + [BKI1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

+Acell surface · k · [BKI1pY 211]
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BKI1pY211

d([BKI1] ·Acell surface)
dt

= +Acell surface · k · [BRI1BL]

· [BKI1]

(Ki,BKI1 + [BKI1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

−Acell surface · k · [BKI1pY 211]

BKI1

d([BKI1] ·Acell surface)
dt

=−Acell surface · k · [BRI1BL]

· [BKI1]

(Ki,BKI1 + [BKI1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

+Acell surface · k · [BKI1pY 211]

AHA C-terminus P

d([AHACTp] ·Acell surface)
dt

=−Acell surface · k · [AHACTp]

+Acell surface · k · [BAK1pBRI1ppBL] · [AHACT ]

[AHACT ] +K

AHA C-terminus

d([AHACTp] ·Acell surface)
dt

= +Acell surface · k · [AHACTp]

−Acell surface · k · [BAK1pBRI1ppBL] · [AHACT ]

[AHACT ] +K

BAK1

d([BAK1] ·Acell surface)
dt

=−Acell surface · (k · [BAK1] · [BIR3]− k ·KD · [BIR3BAK1])

−Acell surface · (k · [BAK1] · [BRI1pBL]− k ·KD · [BAK1BRI1pBL])

+Acell surface · koff2 · [BAK1BRI1pBL]

+Acell surface · koff2 · [BAK1pBRI1ppBL]

+Acell surface · koff3 · [BAK1pBRI1pppS891BL]
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BAK1 BRI1p BL

d([BAK1BRI1pBL] ·Acell surface)
dt

= +Acell surface · (k · [BRI1pBL] · [BAK1]

− koff · [BAK1BRI1pBL])

−Acell surface · koff2 · [BAK1BRI1pBL]

−Acell surface · k · [BAK1BRI1pBL]

BAK1p BRI1pp BL

d([BAK1pBRI1ppBL] ·Acell surface)
dt

= +Acell surface · k · [BAK1BRI1pBL]

−Acell surface · koff2 · [BAK1pBRI1ppBL]

−Acell surface · k · [BAK1pBRI1ppBL]

BAK1p BRI1pppS891 BL

d([BAK1pBRI1pppS891BL] ·Acell surface)
dt

= +Acell surface · k · [BAK1pBRI1ppBL]

−Acell surface · koff3 · [BAK1pBRI1pppS891BL]

BIK1

d([BIK1] ·Acell surface)
dt

=−Acell surface · k · [BRI1BL]

· [BIK1]

(Ki,BIK1 + [BIK1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

+Acell surface · k · [BIK1p]

BIK1p

d([BIK1p] ·Acell surface)
dt

= +Acell surface · k · [BRI1BL]

· [BIK1]

(Ki,BIK1 + [BIK1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

−Acell surface · k · [BIK1p]
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BRI1 BL

d([BRI1BL] ·Acell surface)
dt

=−Acell surface · k · [BRI1BL]

· [1]

(1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

+Acell surface · (k · stimulation · [BL] · [BRI1]− koff · [BRI1BL])

BRI1p BL

d([BRI1pBL] ·Acell surface)
dt

= +Acell surface · k · [BRI1BL]

· [1]

(1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

−cell surface ·(k · [BAK1] · [BRI1pBL]− koff · [BAK1BRI1pBL])

−Acell surface · koff · [BRI1pBL]

BIR3

d([BIR3] ·Acell surface)
dt

=−Acell surface · (k · [BIR3] · [BAK1]− k ·KD · [BIR3BAK1])

−Acell surface · (k · [BIR3] · [BRI1]− k ·KD · [BIR3BRI1])

BIR3 BAK1

d([BIR3] ·Acell surface)
dt

=−Acell surface · (k · [BIR3] · [BAK1]− k ·KD · [BIR3BAK1])

BIR3 BRI1

d([BIR3] ·Acell surface)
dt

=−Acell surface · (k · [BIR3] · [BRI1]− k ·KD · [BIR3BRI1])
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Extracellular Proton Concentration

d([H+
out] · Vcell wall)

dt
= +Acell surface · k · [AHA] · [H+

in] · [AHA]

[AHA] + InhibitionAHACT · [AHACT ]

−Acell surface · k · ([H+
out]− [H+

in])

C.4 Data used for Parameter Estimation

C.4.1 Dose Response Data

This data file comprises the data of the resting membrane potential in absence of the hor-
mone as well as the dose-response data of the membrane potential in response to BL
stimulation. The stimulation with BL occurs after 1 d = 86400 s. The respective dose of BL
has the units of nM. The corresponding membrane potential value is listed in the column
called Em. The BRI1 expression factor is also listed.

BL BRI1 Time Em
0 1 10000 −0.121
0 1 20000 −0.121
0 1 30000 −0.121
0 1 50000 −0.121

0 1 0 −0.121
0 1 5000 −0.121
0 1 40000 −0.121
0 1 86400 −0.121

0 1 0 −0.121
0 1 15000 −0.121
0 1 20000 −0.121
0 1 86400 −0.121

10 1 86400 −0.121
10 1 87000 −0.1236
10 1 87600 −0.1262
10 1 88200 −0.1288

10 1 86400 −0.121
10 1 87000 −0.1246
10 1 87600 −0.1282
10 1 88200 −0.1318

10 1 86400 −0.121
10 1 87000 −0.1256
10 1 87600 −0.1302
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10 1 88200 −0.1348

50 1 86400 −0.121
50 1 87000 −0.124
50 1 87600 −0.127
50 1 88200 −0.1298

50 1 86400 −0.121
50 1 87000 −0.1245
50 1 87600 −0.1281
50 1 88200 −0.1316

50 1 86400 −0.121
50 1 87000 −0.1251
50 1 87600 −0.1293
50 1 88200 −0.1334

100 1 86400 −0.121
100 1 87000 −0.1251
100 1 87600 −0.1292
100 1 88200 −0.1333

100 1 86400 −0.121
100 1 87000 −0.1264
100 1 87600 −0.1318
100 1 88200 −0.1374

100 1 86400 −0.121
100 1 87000 −0.1277
100 1 87600 −0.1344
100 1 88200 −0.1411

C.4.2 Overexpression Data

This data file comprises the reconstructed response based on the overexpression pheno-
type of BIR3 and BIR3&BRI1 overexpressing plants. The basic set up is identical to the
dose response data above. The overexpression factors of BRI1 and BIR3 are listed in the
columns called BRI1 and BIR3, respectively.

BL Time BRI1 BIR3 Em
10 86400 1 100 −0.121
10 87600 1 100 −0.121

10 86400 130 100 −0.121
10 87600 130 100 −0.128
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C.5 Boundaries of Parameter Estimation

Reaction Parameter Lower Bound Upper Bound Reference
r01 k 10−6 106

r02 k 8.4 · 10−10 1.25 · 10−9 Dr. Stefan Scholl
r03 k 1 106

r04 k 1 106

r07 kcat 0.0097 97 estimated within
a 2 orders of
magnitude of [199]

r08 k1 10−6 106

r09 k1 10−6 106

r10 k1 10−6 106

r11 K 0.003 106

r11 k 10−6 10
r12 k1 10−4 10−4 approx. by [79]
rd4 k 10−12 10−8 approx. by [79]
rd5 k 10−12 10−4

rd6 k1 10−12 10−4

rd7 k1 10−12 10−4

BKI1 Ki 10−6 10−3

BIK1 Ki 10−6 10−3

BRI1CT Ki 10−6 10−3

BAK1 KD 10−8 10−2

BL KD 7 55 [1, 45, 59, 198]
BLBRI1BAK1 koff 10−6 0.0105 [45]
AHACT inhibition 1 6.7 [73]
BIR3BAK1 Kd 10−8 10−4 estimated acc. to [30]
BIR3BAK1 Kd 10−3 1 estimated acc. to [30]
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C.5.1 Exemplary Parameter Set

Table C.1: Exemplary parameter set of the ODE model of the fast BR response. The
remaining 49 parameter sets are included on the attached CD.

Reaction Parameter Value
r01 k 0.000 588 774 dm3 nmol−1 s−1

r02 k 1.25× 10−9 dm s−1

r03 k 993 351 dm2 nmol−1 s−1

r04 k 1 dm2 nmol−1 s−1

r07 kcat 10.9191 s−1

r08 k1 948 636 s−1

r09 k1 92.073 dm2 nmol−1 s−1

r10 k1 140 940 s−1

r11 K 0.004 489 36 nmol dm−2

r11 k 9.999 78 s−1

r12 k1 0.000 099 999 6 s−1

rd4 k 9.22× 10−9 s−1

rd5 k 7.227 69× 10−5 dm s−1

rd6 k1 9.996 32× 10−5 s−1

rd7 k1 9.999 99× 10−5 s−1

BKI1 Ki 0.000 205 491 nmol dm−2

BIK1 Ki 0.000 158 267 nmol dm−2

BRI1CT 0.000 967 652 nmol dm−2

BAK1 KD 0.001 208 56 nmol dm−2

BL KD 55 nM
BLBRI1BAK1 koff 0.0105 s−1

AHACT inhibition 1.715 22
BIR3BAK1 Kd 0.000 018 252 nmol dm−2

BIR3BAK1 Kd 0.001 121 22 nmol dm−2
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C.6 Additional Plots

C.6.1 BIR3 and BRI1 Overexpression Model

Figure C.3: Time-course simulation of the BIR3&BRI1 overexpressing model befor stim-
ulation with BL. The time-course includes the 24 h before the addition of the hormone. BIR3
is indicated in green; BIR3BRI1 is indicated in red; BIR3BAK1 is indicated in blue. The
behavior of all 50 model parameterizations was plotted.
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C.7 Files

The ODE models were built in COPASI version 184, which supports 2-dimensional com-
partments. Opening this model in an older version of COPASI will result in the 2D com-
partment to be interpreted as a 3D compartment.

File Name Description
Model 1-50.cps Model of the fast brassinosteroid response

pathway that was used for the simulations
in this thesis. The following parameter sets
were included per model: elongation zone
(wild-type), elongation zone (bir3 deletion) and
meristematic zone (wild-type).

Data data_2.txt Experimental data used for parameter estima-
tion. Includes dose response data on the mem-
brane hyperpolarization [14].

overexpression.txt Qualitative experimental data of BIR3 and BIR3
& BRI1 overexpression plants and their re-
sponse to stimulation with brassinosteroids.

overview_fits.xlsx Contains the overview of the parameter estima-
tion results. This comprises all 50 parameter
sets, the sensitivities in the elongation zone and
meristematic zone, the dose response data for
10, 50 and 100 nM BL and the fitted behavior
of the BIR3 and BIR3&BRI1 overexpression at
10 nM BL.
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D.1 Changes of the Biomechanical Model Code

D.1.1 Initial Settings

i n t ce l l r ows = 14;
i n t c e l l c o l s = 14;

/ / Distances f o r p lac ing c e l l s
double xde l t a = (2* roo t rad ) / c e l l c o l s ;
double yde l t a = ( rootdome + roo t rad ) / ( ce l l r ows ) ;

/ / Create c e l l s a t predef ined p o s i t i o n s

i n t sub = ( c e l l c o l s / 2 ) − 1; / / Used to make narrowing t i p

for ( i n t row = 0; row < ce l l r ows ; row+=1 ) {

for ( i n t co l = sub ; co l < c e l l c o l s−sub ; co l +=1) {

Double2D newPos ;
Un i ve rsa lCe l l newcel l = new Un ive rsa lCe l l ( null , null , true ) ;
RootTipCenterBased2DModel mechModel = ( ( RootTipCenterBased2DModel )

newcel l . getEpisimBioMechanicalModelObject ( ) ) ;

newPos = new Double2D ( x s t a r t + xde l t a * col , y s t a r t + yde l t a * row ) ;
mechModel . se tCe l lWid th (CELL_WIDTH ) ;
mechModel . se tCe l lHe igh t (CELL_HEIGHT ) ;
mechModel . setStandardCel lWidth (CELL_WIDTH ) ;
mechModel . se tStandardCel lHe ight (CELL_HEIGHT ) ;

mechModel . s e t C e l l L o c a t i o n I n C e l l F i e l d ( newPos ) ;

standardCellEnsemble . add ( newcel l ) ;
}

i f ( sub > 0) {
sub −= 1;

}

/ / RootTipCenterBased2DModel . setDummyCellSize (CELL_WIDTH ) ;
/ / i n i t i a l i z e B i o m e c h a n i c s ( standardCellEnsemble ) ;
return standardCellEnsemble ;

}
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D.1.2 Directional bias of cell division

i f ( c e l l != nul l && c e l l . getMotherCel l ( ) != nul l )
{

double ce l lW id th = 0;
double c e l l H e i g h t = 0 ;

i f ( c e l l . getMotherCel l ( ) . getEpisimBioMechanicalModelObject ( )
instanceof RootTipCenterBased2DModel )

{
EpisimModelConnector motherCel lConnector = ( ( RootTipCenterBased2DModel )

c e l l . getMotherCel l ( ) . getEpisimBioMechanicalModelObject ( ) ) . getEpisimModelConnector ( ) ;

/ / De fau l t d i v i s i o n b ias value
double del taX = T i ssueCon t ro l l e r . ge t Ins tance ( )

. getActEpidermalTissue ( ) . random . nextDouble ()*0.005−0.0025;
double del taY = T i ssueCon t ro l l e r . ge t Ins tance ( )

. getActEpidermalTissue ( ) . random . nextDouble ()*0.005−0.0025;

i f ( motherCel lConnector instanceof RootTipEpisimCenterBasedMC )
{

ce l lW id th = ( ( RootTipEpisimCenterBasedMC ) motherCel lConnector ) . getWidth ( ) ;
c e l l H e i g h t = ( ( RootTipEpisimCenterBasedMC ) motherCel lConnector ) . getHeight ( ) ;
se tCe l lWid th ( ce l lW id th ) ;
se tCe l lHe igh t ( c e l l H e i g h t ) ;
c e l l E l l i p s e O b j e c t . setMajorAxisAndMinorAxis ( ( ( RootTipEpisimCenterBasedMC ) motherCel lConnector )

. getWidth ( ) , ( ( RootTipEpisimCenterBasedMC ) motherCel lConnector ) . getHeight ( ) ) ;

de l taX = ( ( RootTipEpisimCenterBasedMC ) motherCel lConnector ) . getBiasX ( ) ;
de l taY = ( ( RootTipEpisimCenterBasedMC ) motherCel lConnector ) . getBiasY ( ) ;

Double2D oldLoc = c e l l F i e l d . ge tOb jec tLocat ion ( c e l l . getMotherCel l ( ) ) ;

/ / Ca l cu l a t i on o f i n i t i a l daughter c e l l l o c a t i o n a f t e r c e l l d i v i s i o n
i f ( oldLoc != nul l )
{

/ / Place newly−generated c e l l on mother c e l l l o c a t i o n + d i v i s i o n b ias
i f ( oldLoc != nul l ) {

Double2D newloc = new Double2D ( oldLoc . x + deltaX , oldLoc . y + del taY ) ;
c e l l L o c a t i o n = newloc ;
c e l l F i e l d . se tOb jec tLoca t ion ( c e l l , newloc ) ;
S imu la t i onD isp layPrope r t i es props = ( ( RootTipCenterBased2DModel ) c e l l . getMotherCel l ( )

. getEpisimBioMechanicalModelObject ( ) ) . g e t C e l l E l l i p s e O b j e c t ( )

. ge tLas tS imula t ionDisp layProps ( ) ;
th is . se tLas tS imula t ionDisp layPropsForNewCel lE l l ipse ( props , c e l l L o c a t i o n ) ;

}
}

}
}

}



D.2. CHANGED DEFINITIONS AND ODES 195

D.2 Changed Definitions and ODEs

Cell Wall Volume

Vcell wall(t) = Acell surface(t) · cell wall thickness(t)

Cytoplasm Volume

Vcytoplasm(t) = cell width · cell width · cell length(t) · 0.35

Cell Surface Area

Acell surface(t) = 2 · cell width2 + 4 · cell width · cell length(t)

BRI1

(d[BRI1] ·Acell surface)
dt

=−Acell surface · (kon · stimulation · [BL] · [BRI1]− koff · [BRI1BL])

+Acell surface · koff · [BRI1pBL]

−Acell surface · (k · [BRI1] · [BIR3]− k ·KD · [BIR3BRI1])

+Acell surface · koff2 · [BAK1BRI1pBL]

+Acell surface · koff2 · [BAK1pBRI1ppBL]

+Acell surface · koff3 · [BAK1pBRI1pppS891BL]

+Acell surface · (scaling factor for protein synthesis · 11)

BKI1

d([BKI1] ·Acell surface)
dt

=−Acell surface · k · [BRI1BL]

· [BKI1]

(Ki,BKI1 + [BKI1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

+Acell surface · k · [BKI1pY 211]

+Acell surface · scaling factor for protein synthesis · 13.2

BKI1

d([BKI1] ·Acell surface)
dt

=−Acell surface · k · [BRI1BL]

· [BKI1]

(Ki,BKI1 + [BKI1] · (1 + [BKI1]
Ki,BKI1

) · (1 + [BIK1]
Ki,BIK1

) · (1 + [BRI1CT ]
Ki,BRI1CT

)

+Acell surface · k · [BKI1pY 211]

+Acell surface · scaling factor for protein synthesis · 13.2
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AHA C-terminus

d([AHACTp] ·Acell surface)
dt

= +Acell surface · k · [AHACTp]

−Acell surface · [BAK1pBRI1ppBL] · [AHACT ]

[AHACT ] +K

+Acell surface · scaling factor for protein synthesis

· translation rateAHA

BIR3

d([BIR3] ·Acell surface)
dt

=−Acell surface · (k · [BIR3] · [BAK1]− k ·KD,BIR3,BAK1 · [BIR3BAK1])

−Acell surface · (k · [BIR3] · [BRI1]− k ·KD,BIR3,BRI1 · [BIR3BRI1])

+Acell surface · scaling factor for protein synthesis · stoichiometry BIR3)

BAK1

d([BAK1] ·Acell surface)
dt

=−Acell surface · (k · [BAK1] · [BIR3]− k ·KD · [BIR3BAK1])

−Acell surface · (k · [BAK1] · [BRI1pBL]− k ·KD · [BAK1BRI1pBL])

+Acell surface · koff2 · [BAK1BRI1pBL]

+Acell surface · koff2 · [BAK1pBRI1ppBL]

+Acell surface · koff3 · [BAK1pBRI1pppS891BL]

+Acell surface · (scaling factor for protein synthesis · 5)

AHA

d([AHA] ·Acell surface)
dt

= +Acell surface · scaling factor for protein synthesis

· translation rateAHA

Intracellular Proton Concentration

d([H+
in] · Vcytoplasm)

dt
=− Vcytoplasm · (k · [H+

in])

+ Vcytoplasm · flux[H+
in]

+Acell surface · k([H+
out]− [H+

in])

−Acell surface · k · [AHA] · [H+
in] · [AHA]

[AHA] + InhibitionAHACT · [AHACT ]
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Cell Wall Instability

cell wall instability = 5 · 10−4 · stimulation

·
(

1

1 + e−0.0005·([Hout]−2·proton readout)

− 1

1 + e−5,000,000·(cell wall thickness−6.525 10−6)

)

Ratio AHA2:BRI1

ratioAHA2 : BRI1 =
1

1 + e−8800·(cell length−0.00016
· 0.9

D.3 Parameter Values

Table D.1: Parameter values of the elongating cell ODE model.

Reaction Parameter Value
r01 k 0.000 548 910 372 1 dm3 nmol−1 s−1

r02 k 1.148 676 594× 10−9 dm s−1

r03 k 123 351.7945 dm2 nmol−1 s−1

r04 k 468 708.5154 dm2 nmol−1 s−1

r07 kcat 96.120 317 53 s−1

r08 k1 3436.810 685 s−1

r09 k1 2272.103 802 dm2 nmol−1 s−1

r10 k1 2727.083 532 s−1

r11 K 9.520 865 887× 10−5 nmol dm−2

r11 k 0.949 557 063 4 s−1

r12 k1 1.189 518 838× 10−5 s−1

rd4 k 4.290 023 087× 10−9 s−1

rd5 k 2.993 625 519× 10−12 dm s−1

rd6 k1 3.967 025 12× 10−8 s−1

rd7 k1 0.0001 s−1

BKI1 Ki 0.000 944 475 075 4 nmol dm−2

BIK1 Ki 0.000 715 067 125 7 nmol dm−2

BRI1CT 0.000 554 752 860 4 nmol dm−2

BAK1 KD 0.032 343 459 42 nmol dm−2

BL KD 55 nM
BLBRI1BAK1 koff 0.0105 s−1

AHACT inhibition 1.741 070 029
BIR3BAK1 Kd 4.353 077 802× 10−7 nmol dm−2

BIR3BAK1 Kd 0.016 472 518 26 nmol dm−2
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D.4 Files

The ODE models were built in COPASI version 184, which supports 2-dimensional com-
partments. Opening this model in an older version of COPASI will result in the 2D compart-
ment to be interpreted as a 3D compartment. Furthermore, earlier versions of COPASI are
unable to export the SBML file of the model correctly. Instead of the change in cell length,
the actual cell length is exported, which results in completely changed model behavior.

File Name Description
Agent-Based Model Root_transection_with_SBML.zip Export of the agent-based model in-

cluding all model parameters, cell be-
havior submodels, imported SBML file
containing the COPASI ODE model of
the fast BR response.

Biomechanical Model biomechanics_root.jar Contains the biomechanical informa-
tion on the interaction between cells as
well as the initial settings for the sim-
ulations. Is part of the EPISIM simu-
lator but also has to be compiled and
linked to the cell behavior model in
the EPISIM simulator. Changes in the
biomechanical model require a newly
compiled version of the EPISIM simu-
lator and reestablishing the link to the
cell behavior model within the EPISIM
modeller.

COPASI Models thesis_02_07_2018.cps ODE model of the BR-induced cell
elongation.

thesis_02_07_2018_rescue.cps model version used to simulate the res-
cue experiment with BL application 12 h

after allowing cell elongation to occur
thesis_02_07_2018_episim.cps model version updated to the point

where BL stimulation is triggered by an
event in the regular ODE model
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