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Abstract

Background: Tigecycline is a vital antibiotic treatment option for infections caused by multiresistant bacteria in the
intensive care unit (ICU). Acute kidney injury (AKI) is a common complication in the ICU requiring continuous renal
replacement therapy (CRRT), but pharmacokinetic data for tigecycline in patients receiving CRRT are lacking.

Methods: Eleven patients mainly with intra-abdominal infections receiving either continuous veno-venous hemodialysis
(CWHD, n = 8) or hemodiafiltration (CVWHDF, n = 3) were enrolled, and plasma as well as effluent samples were collected
according to a rich sampling schedule. Total and free tigecycline was determined by ultrafiltration and high-performance
liquid chromatography (HPLC)-UV. Population pharmacokinetic modeling using NONMEM® 7.4 was used to determine
the pharmacokinetic parameters as well as the clearance of CWHD and CWHDF. Pharmacokinetic/pharmacodynamic
target attainment analyses were performed to explore the potential need for dose adjustments of tigecycline in CRRT.

Results: A two-compartment population pharmacokinetic (PK) model was suitable to simultaneously describe the plasma
PK and effluent measurements of tigecycline. Tigecycline dialysability was high, as indicated by the high mean saturation
coefficients of 0.79 and 0.90 for CWHD and CWHDF, respectively, and in range of the concentration-dependent unbound
fraction of tigecycline (45-949%). However, the contribution of CRRT to tigecycline clearance (CL) was only moderate
(Clewnp: 169 h, Clawpr: 271 L/h) in comparison with Clogy (physiological part of the total clearance) of 183 L/h.
Bilirubin was identified as a covariate on Clieq, in our collective, reducing the observed interindividual variability on ClLiogy,
from 586% to 43.6%. The probability of target attainment under CRRT for abdominal infections was 2 0.88 for minimal
inhibitory concentration (MIC) values < 0.5 mg/L and similar to patients without AKI.

Conclusions: Despite high dialysability, dialysis clearance displayed only a minor contribution to tigecycline elimination,
being in the range of renal elimination in patients without AKI. No dose adjustment of tigecycline seems necessary in CRRT.

Trial registration: FudraCT, 2012-005617-39. Registered on 7 August 2013.
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Background

Tigecycline is the first example of a glycylcycline, a new
derivative of tetracyclines, and an important option for
the treatment of infections caused by multiresistant bac-
teria in the intensive care unit (ICU) [1, 2]. Acute kidney
injury (AKI) is a frequent complication in ICU patients
and may require renal replacement therapy (RRT). Con-
tinuous veno-venous hemodialysis (CVVHD) and
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continuous veno-venous hemodiafiltration (CVVHDEF)
are well established and very effective continuous RRT
(CRRT) methods that can cause enhanced elimination of
drugs, including antibiotics. Accordingly, higher doses of
antibiotics may be necessary in patients with AKI during
CRRT [3, 4]. No dosage adjustment of tigecycline is con-
sidered necessary in patients with renal impairment or
in patients undergoing hemodialysis, but data on the
pharmacokinetics (PK) during CRRT are lacking [5]. The
aim of this study was to provide pharmacokinetic data in
ICU patients undergoing CVVHD or CVVHDE, and to
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explore the potential need for dose adjustments by a
probability of target attainment analysis.

Methods

Setting and study population

The study was performed in an anesthesiological ICU (40
beds) of a tertiary care hospital. Patients were included
when they required RRT for AKI and were treated with
tigecycline (loading dose of 100 mg followed by 50 mg
twice daily). Major exclusion criteria were age > 85 or < 18
years, severe liver insufficiency (Child-Pugh C), acute pan-
creatitis, concomitant anti-coagulation therapy, or patients
with a history of allergy to tigecycline. Written informed
consent was obtained from either the patient or the legal
representative.

Continuous renal replacement therapy

All the equipment and solutions for CRRT were ob-
tained from Fresenius Medical Care, Bad Homburg,
Germany, except for calcium solutions which were pro-
vided by Serag-Wiessner, Naila, Germany. Patients were
treated with CVVHD or CVVHDF using the MultiFil-
trate system equipped with an Ultraflux AV 1000 S poly-
sulfone membrane. For CVVHD, Ci-Ca® Dialysate K2,
sodium citrate 4% and 0.5 M CaCl, solution were used.
Blood flow and dialysate flow were adjusted to body
weight (< 90 kg/> 90 kg; 100/120 mL/min and 2000/2500
mL/h, respectively) [6]. The pre-filter dose of sodium
citrate was adjusted to obtain a target concentration of
ionized calcium post-filter of 0.25-0.35 mmol/L with a
median flow rate of 176 mL/h (< 3% of blood flow) [7].
For CVVHDE, the multiBic® fluid was used for both dia-
lysis and post-filter fluid replacement (post-dilution).
Ultrafiltration rate (Qg;) was 1 L/h. Anticoagulation was
achieved with unfractionated heparin, targeting a
1.5-times greater activated clotting time compared with
baseline.

Sampling and drug analysis

Arterial blood samples were collected using Lithium
Heparin Monovettes (Sarstedt, Niimbrecht, Germany)
on day 4 of treatment with tigecycline after at least 24 h
on CRRT. Samples were collected immediately before
the start of infusion (time 0), after 1 h (i.e., the end of in-
fusion), and then at 1.25, 1.5, 1.75, 2, 4, 6, 8, and 12 h.
At the same time points, effluent was collected into
polypropylene tubes from the effluent port of the CRRT
circuit.

The blood was centrifuged (10 min, 3800 g), and the
plasma as well as the effluent were stored at —70 °C until
analysis. Tigecycline was determined by a validated
high-performance liquid chromatography (HPLC)-UV
method [8]. The free concentrations of tigecycline were
measured in plasma after 1, 2, and 12h. The limit of

Page 2 of 7

quantification in plasma was 0.05 mg/L tigecycline, and
the intra- and interassay imprecision was < 6%. The re-
spective values in effluent were 0.025mg/L and < 9%,
respectively.

Pharmacometric analysis

For population PK modeling, NONMEM™ 7.4 (ICON
Development Solutions, Hanover, MD, USA, FOCEI
method) was utilized and executed via PsN (V 4.5.16)
[9]. Interindividual variability was implemented on the
structural PK parameters as follows:

Pk,,' = G x elxi (1)

where Py ; represents the estimated kth PK parameter
for the ith individual calculated from the population PK
parameter 0 of the typical patient whilst 7, ; represents
the deviation from the typical PK parameter assuming
log-normal distribution.

The residual variability in an individual patient at each
time point (i.e., the difference between individual model
predicted (Ypgep, ;, ;) and the observed tigecycline con-
centration (Yogs, 4, ;) for the ith subject at the jth time
point) was estimated by a combined proportional (g, ; ;)
and/or additive (g, ; ;) residual variability model:

Yossij = Yrrepij % (1+ gp,i,j) + €aij (2)

One- and two-compartment PK models with
first-order disposition and elimination processes were
fitted to the plasma data to determine the compartmen-
tal structure and the interindividual error model struc-
ture using ADVAN1 and ADVAN3 routines of
NONMEM™. Allometric scaling models using total body
weight with fixed [10] and freely estimated scaling pa-
rameters were evaluated.

The plasma PK model was extended to estimate the
dialysis clearance. First principle dialysis modeling [11,
12] was used for this purpose as cumulated effluent con-
centration and volume measurements were not available.

Dialysis clearance (CLp;,;) of CVVHD was calculated
as follows using the effluent concentrations:

CLpiai.cvvip = Qpiar % g—eﬂ (3)

Pla

where Qp;,; represents the dialysate flow rate, C.4 rep-
resents the concentration of tigecycline in the effluent,
and Cpy, represents the pre-filter plasma concentration.

For the CVVHDF method, the ultrafiltrate flow rate
(Qgi7) needed to be considered in addition to Qp;:

Cor (4)

CLpiat,cvvipr = (Qpiar + Qpir) % C
Pla

Mean saturation coefficients (Ceg/Cpra) for CVVHD in-
dicating diffusion and for CVVHDEF indicating convection,
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respectively, were calculated for each patient in the popu-
lation PK model. Due to the very low citrate flow in rela-
tion to blood flow, no predilution correction of the CRRT
clearance [13] was performed.

Age, sex, serum creatinine, creatinine clearance (Cock-
croft-Gault), and bilirubin were tested as covariates on
the body clearance (i.e., remaining total clearance sepa-
rated from the dialysis clearance). All population PK pa-
rameters were modeled simultaneously.

Model selection was based on the likelihood ratio test
(alpha = 0.05, change in degree of freedom =1, i.e., drop
in objective function value (dOFV) >3.84) for nested
models, Akaike information criterion (AIC) for
non-nested models, and graphical criteria (goodness of
fit plots (GOF) of population and individual prediction
vs. observed concentrations, residual analyses, visual
predictive checks (VPCs), n = 1000).

A mass balance analysis over 24 h under steady state
was performed with the final model to investigate the
impact of CVVHD; the low number of CVVHDEF pa-
tients did not allow further investigation.

Probability of target attainment analysis

The final pharmacometric model was used for clinical
trial simulations (# =500 simulations from the original
study design) to investigate the impact of CRRT in the
present population and to compare the present patient
population to patients without renal failure and to
healthy volunteers. Therefore, simulations from pub-
lished models for patients with complicated skin and
skin structure infections (cSSSI)/intra-abdominal infec-
tions (cIAI) [14] and healthy volunteers, respectively
[15], were performed. Steady-state 24-h area under the
concentration-time curve (AUC,y,) and probability of
target attainment (PTA) were calculated for the AUC,g4;,/
minimal inhibitory concentration (MIC) target for
intra-abdominal infections of 6.96 [16].

Results

Patients, infections and pathogens

A total of 11 patients were included in the study
(Table 1). The patients were treated with tigecycline due
to cIAI (n=10) or infection caused by Acinetobacter
baumanii (n = 1). Relevant co-conditions were: liver fail-
ure or cirrhosis (four patients), liver transplantation (two
patients),  extracorporeal membrane  oxygenation
(ECMO; one patient). Two patients died during the
follow-up period of the study. A total of 109 blood sam-
ples and 108 effluent samples were collected and used
for the pharmacometric analysis, excluding two 12-h
blood samples with very high tigecycline concentrations
indicating that blood was taken after the start of the fol-
lowing infusion.
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Unbound fraction of tigecycline in plasma

The free plasma concentrations of tigecycline were de-
termined after 1, 2, and 12 h (high, medium, low concen-
tration), as tigecycline is reported to exhibit an inverse
concentration-dependent plasma protein binding [17].
The decrease of the unbound fraction with increasing
concentration was moderate (mean intraindividual coef-
ficient of variation 4.9%, available as Additional file 1:
Figure S1). The median unbound fraction of tigecycline
in the patients was 61% (range 45—94%).

Pharmacometric analysis

A two-compartment model with first-order disposition
processes described the plasma concentration-time pro-
files adequately and was superior to a one-compartment
model (dOFV of -113.77). Various interindividual vari-
ability (IIV) models were assessed. The best model in-
cluded IIV on clearance, central volume of distribution
and intercompartmental clearance, guided by lowest ob-
jective function value as well as graphical improvement.
Shrinkage of the individual parameters towards the
population mean was moderate (< 26%). A combined re-
sidual variability model (proportional and additive) was
not supported (additive error tended to zero), so a pro-
portional residual variability model was chosen.

Bilirubin (normalized by the population median of bili-
rubin, 2.3 mg/dL) as a covariate on clearance signifi-
cantly improved the fit (dOFV=-5.71, p=0.017,
interindividual variability on clearance reduced from
58.6% to 43.6%) and was included in the final model
(lower bilirubin concentrations corresponded to higher
clearances). Allometric scaling with a fixed exponent did
not improve the model significantly and was not in-
cluded. The typical body clearance was 18.3 L/h. Individ-
ual clearance values varied from 9.3 L/h (10th percentile)
to 19.1 L/h (90th percentile) depending on the bilirubin
concentration (24 mg/dL to 1.8 mg/dL). One patient re-
ceiving ECMO was investigated by a case deletion study
that showed no significant influence of this patient on
the model parameters.

The effluent measurements were added to the model
and resulted in an estimated dialysis clearance of 1.69 L/
h for CVVHD and 2.71 L/h for the CVVHDF method.
The mean (+SD, interindividual variability) saturation
coefficient was 0.79+0.36 for CVVHD and 0.90 for
CVVHDEF (an IIV for this method was not supported by
the data (IIV tended to zero during estimation)). The
population pharmacokinetic parameters are presented in
Table 2. The visual predictive check indicated high
agreement between the observed and model-predicted
tigecycline concentration-time profiles in plasma and ef-
fluent (Fig. 1).

The mass balance analysis revealed a median propor-
tion of 11.2% (3.8% to 18.3%, 10th and 90th percentile)
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Table 1 Demographic and clinical details of the 11 patients included in the study

No. Sex Age Height Weight APACHE Il Serum creatinine Bilirubin Albumin Protein Co-condition
(years) (cm) (kg) (mg/dL) (mg/dL) (g/dL) (g/dL)
1° M 69 176 69 21 1.7 23 2.1 64
2° F 47 160 70 21 12 9.2 2.8 59 Liver failure
3° M 81 172 68 15 1.0 22 2.1 6.3
4° M 52 180 80 45 15 240 31 54 Liver failure
50 M 78 178 70 25 0.5 35 26 35 Liver failure
6° M 73 172 86 29 24 1.8 30 57
7° M 56 164 104 31 12 1.1 30 5.1 Liver cirrhosis
8? M 37 182 85 21 1.3 433 2.8 43 Liver transplantation
9° M 60 180 80 35 0.8 1.8 2.8 43 Liver transplantation
10° M 74 170 73 30 0.7 2.2 26 56
119 M 75 180 80 30 0.7 0.7 2.7 56 ECMO
Median 69 176 80 29 12 23 2.8 56
Minimum 37 160 68 15 05 0.7 2. 35
Maximum 81 182 104 45 24 433 31 6.3

APACHE Acute Physiology and Chronic Health Evaluation, ECMO extracorporeal membrane oxygenation, F female, M male
2Continuous veno-venous hemodialysis (CVWWHD); ® continuous veno-venous hemodiafiltration (CYWHDF)

of tigecycline eliminated by hemodialysis within a dosing
interval under steady state whereas the main proportion
(88.8%) was eliminated by the body.

Probability of target attainment

The simulated AUC,y4;, under steady state was (median,
10th to 90th percentile) 6.15 mg-h/L (3.39 mg-h/L, 11.13
mgh/L) in the CVVHD patients in the present study.
The simulated AUC,y;, in ¢SSSI/cIAI patients was 5.65
mg-h/L (3.46 mg-h/L, 9.79 mg-h/L) and hence similar to
the AUC,y, determined in our patient collective, but

more variable than the AUC,y, of 6.24 mgh/L (5.26
mg-h/L, 8.33 mg-h/L) in healthy volunteers.

Tigecycline standard dosing provided a high PTA of >
0.9 for pathogens with MIC < 0.5 mg/L to attain the PK/
pharmacodynamic (PD) target for cIAI (AUC,4,/MIC of
6.96) in our patient collective undergoing CRRT being
comparable to cSSSI/cIAI patients (Fig. 2).

Discussion

The present study investigated the steady-state pharma-
cokinetics of tigecycline 50 mg twice daily in ICU pa-
tients with AKI during CVVHD or CVVHDE. The

Table 2 Typical pharmacokinetic parameters, unexplained interindividual variability and residual variability obtained from the

pharmacometric analysis

Pharmacokinetic parameter Estimate RSE 95% (/I Interindividual
variability (%CV)
Clearance (L/h) =6, x (bilirubin/z.S)ez
0, 183 11.0 132, 22.7 436
0, -0.29 33.1 -0.68, —=0.10
Central volume of distribution (V1) (L) 58.7 213 29.3,1016 1109
Peripheral volume of distribution (V2) (L) 154 9.5 124.3,196.8 -
Distribution clearance (Q) (L/h) 564 153 411,766 418
Dialysis clearance CWHD (L/h) 1.69 154 1.26,2.27 435
Dialysis clearance CVWHDF (L/h) 271 89 2.31,3.16 -
Residual variability
Oproportional, pre-filter plasma (0CV) 16.9 16.1 109, 21.7 -
Oproportional, effuent (0CV) 406 13.1 304,502 -

CV coefficient of variation, CVWHD continuous veno-venous hemodialysis, CVVHDF continuous veno-venous hemodiafiltration, RSE relative standard error (reported

on standard deviation scale for variability parameters)

#95% confidence interval (Cl) determined from a nonparametric bootstrap analysis (n = 1000)
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pharmacometric analysis was performed using a popula-
tion pharmacokinetic model employing effluent mea-
surements for estimation of CRRT clearance. The
clearance of the CVVHDF method was estimated to be
more efficient (2.71L/h) than the CVVHD method
(1.69 L/h).

The typical PK parameters in our collective of CRRT
patients were in close approximation to those deter-
mined in healthy volunteers [15] and cSSSI/cIAI patients
[14]. This was also reflected in the clinical trial simula-
tions, where the obtained mean AUC,y, under a steady
state was similar between our CRRT patients, cSSSI/cIAI
patients [14], and healthy volunteers [15]. Notably, the
variability in AUC,,y, (10th to 90th percentile) in healthy

volunteers was markedly lower (5.26 mg-h/L, 8.33 mg-h/
L) than in our patients (3.39 mg-h/L, 11.13 mg-h/L).

The covariate inclusion of bilirubin as a marker for
hepatic function seemed reasonable and a previous phar-
macokinetic analysis also identified bilirubin as a signifi-
cant covariate, even though it was not included in their
final model [14]. The use of ECMO in one patient had
no significant influence on the model, which is in agree-
ment with the case report of Veinstein et al. [18]. Add-
itionally, the inclusion of the effluent into the
pharmacometric model allowed us to distinguish be-
tween body (hepatic) clearance and dialysis clearance.
The mass balance analysis using the pharmacometric
model clarified that CRRT clearance is a minor factor for
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Fig. 2 Probability of PK/PD target attainment analysis. Complicated intra-abdominal infections (AUC,4+/MIC of 6.96) for dialysis patients of the present
study compared with patients with cSSSI/clAl (simulated from [15]) and healthy volunteers (simulated from [14]). Horizontal dashed line indicates
PTA = 0.9 considered as reliable target attainment. cSSSI complicated skin and skin structure infections, MIC minimal inhibitory concentration
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drug elimination (11.2%) and on a comparable level to
renal elimination (13% according to the summary of
product characteristics (SPC)).

According to the manufacturer’s SPC (SPC Tygacil 50
mg powder for solution for infusion, Pfizer Limited,
Sandwich, UK), the in-vitro plasma protein binding of
tigecycline ranges from 71% to 89% at concentrations
observed in clinical studies (0.1 to 1.0mg/L), corre-
sponding to an unbound fraction (fu) of only 11-29%.
These protein binding data have been suggested as an
explanation for the poor elimination of tigecycline by
intermittent hemodialysis [19]. However, the mean sat-
uration coefficient of 0.79 for CVVHD or 0.90 for
CVVHDF as found in the present study indicates good
transfer of tigecycline through the dialysis membrane,
and is a strong argument against a high plasma protein
binding of tigecycline. Indeed, recent in-vitro investiga-
tions revealed that the protein binding of tigecycline in
human plasma is rather moderate with a fu of about 50—
70% at therapeutic concentrations [8]. Using this ultrafil-
tration method, which (in contrast to other methods)
mimicked physiological conditions during ultrafiltration,
the mean unbound fraction of tigecycline in the plasma
of the study patients was determined to be 45-94%, in
line with the saturation coefficient for CVVHD. In con-
clusion, the small extracorporeal clearance of tigecycline
of only 11.2% of the administered dose is due to the high
volume of distribution of tigecycline and not due to high
plasma protein binding.

The PK/PD target attainment in our patients was simi-
lar to that in cSSSI/cIAI patients using the published
model by Van Wart et al. [14]. Considering the reported
PK/PD target for AUC,4,/MIC of 6.96 (cIAI) [16], the
standard dose of tigecycline (100 mg followed by 50 mg
b.i.d.) would be considered appropriate for pathogens
with a MIC value of up to 0.5 mg/L.

Some limitations of our study have to be acknowl-
edged. The data have a pilot character, as they are based
on eight patients receiving CVVHD and three patients
receiving CVVHDEF. However, it should be acknowl-
edged that the studied collective represents a vulnerable
population and pharmacokinetic data are lacking, and
the chosen approach of a pharmacometric analysis maxi-
mized the information content drawn from the popula-
tion. Still, it would be desirable to study longer time
periods across several dosing occasions in future studies
to detect potential time-dependencies in the pharmaco-
kinetics. Protein binding of tigecycline is affected by di-
valent cations such as calcium [8]; hence, citrate
anticoagulation within the extracorporeal circulation
might theoretically affect its transfer through the dialysis
membrane. Moreover, tigecycline can adsorb to plastic
labware [8] and apparently also to dialysis membranes
[19]. In one patient, we observed a time delay in the
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effluent concentrations which may have been caused by
adsorption losses, e.g., after changing the filter, and
which would have resulted in an underestimated dialysis
clearance. Since the delay indicated a reversible or satur-
able binding, probable adsorption losses did not impact
the estimated dialysis clearance significantly, and cer-
tainly did not influence systemic drug exposure. How-
ever, potential adsorption of tigecycline to other
membrane types and tigecycline dialysis clearance in
other RRT systems should be investigated in future stud-
ies. For the PK/PD target attainment analysis, our ana-
lysis focused on total rather than unbound AUC,y, due
to a lack of reliable clinical breakpoints for fAUC,4/
MIC. Future clinical studies considering unbound con-
centrations for PK/PD target attainment are highly war-
ranted. The use of reliable techniques in these trials will
be crucial to ensure that the determined fAUC,,,/MIC
will be not biased by the methodology utilized to deter-
mine the unbound fraction.

Conclusions

The pharmacokinetic parameters of tigecycline are not
significantly influenced by CRRT. The probability of tar-
get attainment was similar in the present patient collect-
ive receiving CRRT compared with patients with no
AKI, indicating that no dose adjustment seems necessary
in CRRT.

Additional file

Additional file 1: Figure S1. Unbound fraction of tigecycline in the
plasma of 11 patients undergoing CRRT. Solid line = CVWHD, dashed line
=CVWHDF. (DOCX 59 kb)
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