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Common spatial pattern (CSP) is one of the most popular and effective feature extractionmethods for motor imagery-based brain-
computer interface (BCI), but the inherent drawback of CSP is that the estimation of the covariance matrices is sensitive to noise.
In this work, local temporal correlation (LTC) information was introduced to further improve the covariance matrices estimation
(LTCCSP). Compared to the Euclidean distance used in a previous CSP variant named local temporal CSP (LTCSP), the correlation
may be amore reasonablemetric tomeasure the similarity of activated spatial patterns existing inmotor imagery period. Numerical
comparisons amongCSP, LTCSP, and LTCCSPwere quantitatively conducted on the simulated datasets by adding outliers toDataset
IVa of BCI Competition III and Dataset IIa of BCI Competition IV, respectively. Results showed that LTCCSP achieves the highest
average classification accuracies in all the outliers occurrence frequencies. The application of the three methods to the EEG dataset
recorded in our laboratory also demonstrated that LTCCSP achieves the highest average accuracy. The above results consistently
indicate that LTCCSP would be a promising method for practical motor imagery BCI application.

1. Introduction

Brain-computer interfaces (BCI) use electroencephalo-
graphic signals or other electrophysiological measures of
brain activity to provide a new nonmuscular channel for
sending messages and commands to the external world.
According to the different electrophysiological signals which
they use, BCI can fall into 6 groups [1]: visual evoked
potentials (VEP) based BCI [2]; slow cortical potentials
(SCP) based BCI [3]; evoked potentials P300 based BCI [4];
mu and beta rhythms (ERD/ERS) based BCI [5], cortical
neuronal action potentials based BCI [6] and hybrid BCI
[7]. Among them, ERD/ERS based BCI has received a lot of
attentions in recent years due to its potential application in
motor rehabilitation and its assisting for the motor function
impaired patients [8–10].

Feature extraction and classification algorithms play im-
portant roles for the performance of ERD/ERS based BCI,
and there are various methods have been proposed to extract

ERD/ERS related features [11, 12], such as the laplacian
method [13], autoregressive spectral analysis [14], common
spatial pattern (CSP) [15], discriminative spatial patterns
[16], bispectrum analysis [17], and multivariate empirical
mode decomposition [18]. Currently, CSP is one of the most
popular feature extraction methods for ERD/ERS based BCI,
its efficiencies have been proved by the BCI competitions
[19, 20] and various ERD/ERS based BCI studies [21–23].
Besides BCI discipline, CSP has been also applied to normal
versus abnormal EEGs classification [24] and EEG source
localizations [25].

The aim of CSP is to learn the optimal spatial filters which
maximize the variance of one class while minimizing the
variance of the other class simultaneously [26, 27]. Mathe-
matically, CSP relies on the simultaneous diagonalization of
two covariance matrices. However, there are two inherent
drawbacks for the estimation of the covariance matrices in
using the conventional strategy; on one hand, it is prone to
be influenced by outlier noise; even one outlier may make
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the spatial filters obtained meaningless [28]; on the other
hand, the temporal information is neglected, while the time-
dependent local variances may deliver more discriminant
power than the global variances [29]. To deal with above
shortcomings in conventional CSP, Local Temporal Common
Spatial Patterns (LTCSP) propose to use the Euclidean dis-
tance between 𝑥𝑙 and 𝑥𝑚 (both 𝑥𝑙 and 𝑥𝑚 are 𝑁-channel
EEG recording vectors at two given time points 𝑙 and 𝑚) as
a weight to emphasize the covariance matrices [29]. From
the perspective of neurophysiology, the task related signal
is usually hidden in strong spontaneous brain background
activity, which is nonstationary [30, 31]. Therefore, the scalp-
recorded signal is very noisy even if the recordings are from
high-performance EEG amplifier with suitable reference
strategy [32, 33] and in a finely shielded room with a very
cooperative subject. In this case, the Euclidean distance
measure may give unsuitable weight coefficient due to the
noise effect. Besides, the Euclidean distance is not convergent
with distribution in a wide range, which may reduce the
robustness of LTCSP. In this work, the correlation measure
was newly proposed to replace the Euclidean distance in
order to solve the above problems. In fact, when Müller-
Gerking et al. firstly introduced CSP into BCI areas [26],
the correlations of neighboring electrodes had been argued
as an important information which implies the need to pay
attention for them.

The framework of this paper is arranged as follows.
Section 2 gives details about LTCSSP; In Section 3, CSP,
LTCSP, and LTCCSP are evaluated on simulated outliers
influenced BCI Competition datasets. Then the comparison
results of the above three methods on the actual EEG dataset
recorded in our lab are given in Section 4; Sections 5 and 6
include discussion and final conclusion, respectively. Besides
the above sections, an appendix was provided to describe the
mathematical details of CSP.

2. Materials and Methods

2.1. Principles of LTCCSP. LTCCSP is an extension of the
conventional CSP (See Appendix for detail). The spatial filter
matrix Γ of conventional CSP is obtained by maximizing the
variance of one class while minimizing the variance of the
other class simultaneously.We denote𝑁×𝑆matrix𝑋 and𝑌 as
the EEG data under task is 1 and 2, with 𝑁 being the number
of channels and 𝑆 being the number of samples in each trial.
Formally, the object function of CSP could be expressed as
[34]

max Γ
𝑇
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where 𝑅𝑋 and 𝑅𝑌 are the average normalized spatial covari-
ance matrices of tasks 1 and 2 and Γ is the spatial filter matrix.
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optimized spatial filters.
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where 𝐾𝑋 and 𝐾𝑌 are, respectively, the numbers of trials
under each task, (𝑖) denotes the 𝑖th trial, and 𝛾𝑗 is the
𝑗th column of the matrix Γ. The last 𝑀 columns could be
transformed as above, too.

Using the dimension reduction strategy in [35], the quad-
ratic forms 𝛾𝑇
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where 𝑥𝑙 and 𝑥𝑚 are the data vectors at time points 𝑙
and 𝑚, respectively. Obviously, (3) mainly focuses on the
global information of trials. However, in actual BCI situation,
the local information may be helpful for task recognition.
Therefore, the weight matrix can be added to emphasize the
local information as follows [29]:

1

2𝑆

𝑆

∑

𝑙=1

𝑆

∑

𝑚=1

(𝛾
𝑇

𝑗
𝑥𝑙 − 𝛾

𝑇

𝑗
𝑥𝑚)

2

𝑊
𝑋

𝑙𝑚
, (4)

where𝑊𝑋
𝑙𝑚

is the weight matrix. The fundamental derivation
of weight matrix is that if the two concerned patterns 𝑥𝑙 and
𝑥𝑚 are close, it will impose a large coefficient in the weight
matrix. Hence, wewill use the correlation coefficient to define
the corresponding weight matrix as follows:
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(5)

where corr( ) denotes the correlation coefficient operator
and 𝜏 is the local temporal range. Obviously, the weight
matrix will impose a relatively larger coefficient on the similar
patterns in the concerned local temporal range 𝜏.

Moreover, (4) will be further expressed as
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where the Laplacian matrix 𝐿𝑋 = 𝐷𝑋 − 𝑊𝑋 and 𝐷𝑋 is a
diagonal matrix with the diagonal elements being the row
sums of 𝑊𝑋; that is, 𝐷𝑋

𝑙𝑙
= ∑
𝑆

𝑚=1
𝑊
𝑋

𝑙𝑚
. Equation (6) is also

held for EEG trials 𝑌 under task 2. Using (6), (2) can be
converted as follows:
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lation covariancematrices of two classes; (7) can be simplified
to
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Noting that (8) has the same structure as (1), so the solution
of maximizing (8) subject to Γ𝑇𝑅̃𝑌Γ = 𝐼 is similar to (1), and
the spatial filter matrix could be given by

Γ̃ = 𝑈̃𝐷
−1/2
𝑉̃, (9)

where 𝑈̃ is thematrix of eigenvectors of 𝑅̃𝑋+𝑅̃𝑌 with𝐷 being
the diagonal matrix of associated eigenvalues and 𝑉̃ is the
eigenvectors matrix of𝐷−1/2𝑈̃𝑇𝑅̃𝑋𝑈̃𝐷

−1/2.

2.2. Online Implementation of LTCCSP. In the online appli-
cation, when the spatial filter matrix Γ̃ is obtained from the
training dataset, there also exists a little difference between
LTCCSP and conventional CSP for feature extraction. Take
𝐿 as a generic symbol for 𝐿𝑋(𝑖) and 𝐿𝑌(𝑖); since 𝐿 is a
semipositive definite matrix, it can be decomposed as 𝐿 =
𝐿
1/2
(𝐿
1/2
)
𝑇. Then EEG data𝐶 from a trial should be spatially

filtered as ̃𝑍 = Γ̃𝐶𝐿1/2. At last, the logarithm variances of the
first and last𝑀 rows of ̃𝑍 are served as final features and will
be sent to classifier for classification.

3. Evaluations on Simulated Outliers
Influenced EEG Datasets

3.1. EEG Datasets Description

(1) Dataset IVa of BCI Competition III. This dataset con-
tains EEG signals recorded from five subjects by using 118
electrodes [36]. In each trial, a visual cue was shown for
3.5 s, during which three kinds of motor imageries were
performed, that is, left hand, right hand, and right foot. The
motor imageries of right hand and foot were needed to be
classified. The total number of EEG trials for each subject is

280. In particular, 168, 224, 84, 56, and 28 trials are used as
training data corresponding to the five subjects: aa, al, av, aw,
and ay, respectively.The data were band-pass filtered between
0.05 and 200Hz and downsampled at 100Hz for subsequent
analysis.

(2) Dataset IIa of BCI Competition IV. The EEG data was
recorded from nine subjects, who were asked to perform
four different kinds of motor imagery tasks, that is, left hand,
right hand, foot, and tongue [37]. Two sessions recorded on
different days were made available for each individual, and
each session consisted of 288 trials with 72 trials per class.
The EEG signals, measured by 22 electrodes, were sampled at
250Hz. In our experiment, one session containing the class
labels for all trials is used as training set and the unlabelled
session as test set. We focus on two-class classification
scenario, that is, classifying EEG signals belonging to left and
right hand motor imageries.

3.2. Preprocessing. Following the winner of BCI competition
IV and [34], the EEG segments recorded from 0.5 s to 3.75 s
after the visual cue were used for subsequent analysis on the
first dataset, and the time interval from 0.5 s to 2.5 s was used
on the second dataset. Then the EEG segments were band-
pass filtered between 8Hz and 30Hz.

3.3. IntroducingOutliers. We introduced outliers into the two
datasets from BCI Competitions with the aim to simulate
the actual recordings with outliers contamination and then
quantitatively compare the classification accuracies of the
conventional CSP and LTCSP methods and the proposed
LTCCSP method. For each subject, the outliers were gener-
ated by the one-dimensional Gaussian distribution 𝑁(𝜇 +
30𝜎; 30

2
𝜎
2
), where 𝜇 and 𝜎 are the mean and standard

deviation of the training EEG segments, respectively. The
generated outliers were added to the training EEG data to
simulate polluted EEG signals. The number of outliers is
varying from0 to 0.4𝑛with step 0.1𝑛, where 𝑛 is the number of
trials in training set.We randomly selected the time positions
to add the outliers.

3.4. Results. We used CSP, LTCSP, and LTCCSP to extract
the motor imagery-related features, respectively. Comparing
with CSP, there are two parameters in LTCSP and one
parameter in LTCCSP that need to be configured. We set 𝜎 =
7𝜎0 in using LTCSP, where 𝜎0 is the standard deviation of the
squared norms of the training samples, as the highest average
classification accuracy was achieved under this parameter
[29]. For the local temporal range 𝜏 that exists in both LTCSP
and LTCCSP, we used 10-fold cross-validation method to
compare the average accuracies of 𝜏 within {2, . . . , 12} on the
training set and then set 𝜏 as the one corresponding to the
highest average accuracy.

Three pairs of spatial filters were used for feature extrac-
tion for all of the three CSP-basedmethods, as recommended
in [15]. Then the log-variances of the spatially filtered EEG
signals were used as input features for a classifier. Support
Vector Machine (SVM), one of the most popular classifiers
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Table 1: Average classification accuracies (%) of the Dataset IVa of BCI Competition III and Dataset IIa of BCI Competition IV for CSP,
LTCSP, and LTCCSP with increasing occurrence frequencies of outliers.

Freq Dataset IVa of BCI Competition III Dataset IIa of BCI Competition IV
Subject aa al av aw ay 1 2 3 4 5 6 7 8 9 Mean

0
CSP 75.0 100.0 69.9 91.5 74.2 84.0 54.5 95.8 75.3 58.0 68.1 80.6 92.4 93.7 79.5

LTCSP 63.4 96.4 61.7 75.9 49.6 88.8 58.5 95.1 73.9 70.0 72.3 81.3 95.8 92.3 76.8
LTCCSP 77.7 100.0 73.0 92.9 78.2 90.9 60.2 96.5 78.2 72.9 70.2 81.3 95.1 93.7 82.9∗

0.1
CSP 70.5 100.0 68.2 86.1 76.5 86.9 56.2 93.5 65.9 56.1 61.7 66.0 92.2 92.7 76.6

LTCSP 65.2 98.8 61.8 77.5 49.1 87.8 56.8 94.5 69.4∗ 69.5∗ 71.6∗ 80.4∗ 97.5∗ 92.4 76.6
LTCCSP 74.0∗ 100.0 71.9∗ 91.6∗ 78.5∗ 91.7∗ 61.1∗ 95.5∗ 72.0∗ 64.7∗ 66.4∗ 71.9∗ 95.2∗ 93.7∗ 80.6∗

0.2
CSP 69.6 98.9 68.0 89.2 76.3 86.3 56.0 93.4 64.8 51.7 61.8 62.6 93.1 92.5 76.0

LTCSP 64.6 97.7 62.1 75.2 49.4 88.3∗ 59.1∗ 94.8∗ 68.9∗ 69.1∗ 71.3∗ 80.2∗ 97.3∗ 92.5 76.5
LTCCSP 73.6∗ 99.8∗ 70.2∗ 92.8∗ 79.9∗ 90.6∗ 61.9∗ 95.7∗ 69.5∗ 59.1∗ 67.5∗ 69.4∗ 94.7∗ 93.6∗ 79.9∗

0.3
CSP 67.6 99.8 69.3 86.6 77.7 87.1 55.9 93.0 64.0 51.9 62.2 60.1 94.2 92.2 75.8

LTCSP 63.2 98.9 63.0 74.2 49.2 87.6 58.6 94.1∗ 67.5∗ 69.1∗ 70.1∗ 81.3∗ 97.4∗ 92.5 76.2
LTCCSP 71.2∗ 100.0 73.3∗ 91.9∗ 81.4∗ 89.8∗ 60.0∗ 94.9∗ 68.0∗ 58.9∗ 67.2∗ 65.5∗ 95.6∗ 93.6∗ 79.4∗

0.4
CSP 58.7 99.6 61.7 82.4 74.0 85.3 53.7 93.1 65.1 53.9 61.0 58.6 93.3 92.5 73.8

LTCSP 64.6∗ 97.7 63.1∗ 72.0∗ 49.0 87.9∗ 58.1∗ 94.3∗ 67.8∗ 67.4∗ 69.5∗ 81.5∗ 97.0∗ 92.5 75.9
LTCCSP 67.3∗ 99.8 67.8∗ 86.6∗ 77.7∗ 89.2∗ 59.3∗ 95.1∗ 67.7∗ 56.8∗ 65.8∗ 64.3∗ 95.0∗ 93.8∗ 77.6∗

∗Paired t-test 𝑃 < 0.05 between two concerned methods, that is, LTCSP versus CSP and LTCCSP versus CSP. The bold values indicate the best performance
among the three methods.

in BCI application, was used for classification [38], and the
default parameters were set for SVM. The experiments were
repeated ten times for each occurrence frequency of outliers;
the average accuracies and the mean accuracies for all of the
subjects were reported in Table 1.

All three CSP-based methods achieved the highest clas-
sification accuracies on the clean EEG data compared to
those cases with various occurrence frequencies of outliers
added. When outliers were introduced, the performance of
all the three methods was deteriorated with the increasing
occurrence frequencies of outliers for most of the subjects
except some subjects, that is, Sub ay, Sub 1, and Sub 2. For
Sub 2, all the three methods achieved approximately 50%
accuracies, which may indicate BCI illiteracy phenomenon
[39], that is, the subject cannot control BCI effectively by
motor imagery.

Table 1 also revealed that both LTCCSP and LTCSP
achieve better performance than the conventional CSP under
various outliers conditions, where LTCCSP showed the sta-
tistically significant improvement but not for LTCSP. Among
the three methods, the best performance was achieved by
LTCCSP on both clean EEG datasets and outliers influenced
EEG datasets.

4. Evaluation on Actual EEG Dataset

4.1. EEG Datasets Description

Dataset Recorded in Our Laboratory. This dataset consists
of EEG data from 13 subjects (11 males and 2 females,
right handed, 19–25 years old). The experimental protocol
was approved by the Institution Research Ethics Board at
University of Electronic Science & Technology of China. All

participants were asked to read and sign an informed consent
form before participating in the study. After experiment,
all the participants received a monetary compensation for
their time and effort. Subjects sat in a comfortable armchair
in front of a computer screen; they were asked to perform
motor imagery with left hand or right hand according to the
instructions appeared on the screen. Motor imagery lasted
for 5 seconds, and followed a 5 seconds rest. FifteenAg/AgCl
electrodes covers sensorimotor area were used for EEG
recordings with Symtop Amplifier (Symtop Instrument, Bei-
jing, China), and the signals were sampled with 1000Hz and
band-pass filtered between 0.5Hz and 45Hz. Four runs were
collected; each run consisted of 50 trials, 25 trials for each
class, and therewas a 3-minute break between the consecutive
two runs.The first two runs are served as training dataset, and
the last two runs are served as test dataset.

4.2. Preprocessing. All the EEG segments during motor
imagery period were selected, that is, from 0 s to 5 s.Then the
selected EEG segments were band-pass filtered between 8Hz
and 30Hz.

4.3. Results. We used CSP, LTCSP, and LTCCSP to extract
the motor imagery related features, respectively, and the
parameters of LTCCSP and LTCSP were the same as we
mentioned in Section 3.4. SVM with the default parameters
was used for classification. The classification accuracy for
each subject and themean accuracy were reported in Table 2.

On the EEG dataset recorded in our lab, LTCCSP
achieved the highest mean accuracy across the three meth-
ods. As revealed in Table 2, the highest accuracies were
achieved by LTCCSP in 11 of 13 subjects. Furthermore, when
we set the accuracies obtained by CSP as the baseline;
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Table 2: Classification accuracies (%) of the Dataset recorded in our laboratory for CSP, LTCSP, and LTCCSP.

Subject TCY LPY GK WCF WZQ CR HYR ZB PKH FNX XJP WXY DT Mean
CSP 57.0 79.0 94.0 81.0 69.0 76.0 77.0 68.0 79.0 72.0 97.0 72.0 82.0 77.2
LTCSP 65.0 73.0 98.0 79.0 69.0 83.0 79.0 72.0 82.0 63.0 98.0 77.0 80.0 78.3
LTCCSP 65.0 79.0 95.0 83.0 78.0 83.0 79.0 70.0 87.0 75.0 98.0 77.0 82.0 80.8∗
∗Paired t-test 𝑃 < 0.05 between two concerned methods, that is, LTCSP versus CSP and LTCCSP versus CSP. The bold values indicate the best performance
among the three methods.

the accuracies obtained by LTCCSP are higher or at least
equal to the baseline, while the accuracies obtained by LTCSP
are not consistently improved across the 13 subjects. Paired
𝑡-test showed that there is statistical difference between CSP
and LTCCSP, while no statistical difference existed between
CSP and LTCSP.

5. Discussions

Both LTCCSP and LTCSP introduce local temporal infor-
mation to the covariance matrices estimation procedures in
CSP, and our experiments indicate that the local temporal
information is effective in handling outliers. If we take
the performance of CSP as baseline, Table 1 indicates that
LTCCSP consistently improves the performance for most of
subjects under outliers condition, but the improvement of
LTCSP under the same situation is not stable. Table 1 also tells
us that the performance of LTCSP is worse than that of CSP
on the two clean BCI Competition datasets without outliers
introduced, but Table 2 shows us that LTCSP achieves better
performance than CSP on the EEG dataset recorded in our
lab.

We think that the performance difference between
LTCCSP and LTCSP is mainly caused by the definition of the
weightmatrix. LTCCSPuses correlationmeasure to construct
the weight matrix, while LTCSP uses the Euclidean distance
to construct the weight matrix. In our opinion, the Euclidean
distance measure is not good enough because sometimes it
will wrongly treat normal signal as noise signal. An extreme
case is that, for example, 𝑥𝑙 and 𝑥𝑚, where 𝑥𝑚 = 𝑥𝑙 +

constant vector, are EEG data vectors selected from time
points 𝑙 and𝑚, respectively.When we calculate the Euclidean
distance of them, we will get the Euclidean norm of the
constant vector. Obviously, if the constant vector is of a
large norm, the Euclidean distance of them will be large too,
then, in the framework of LTCSP the corresponding EEG
information will be strongly suppressed by imposing a very
small weight on the estimation of the covariance matrix.
However, no matter how big is the norm of the constant
vector, the correlation coefficient of them is fixed at 1. In
practical application, similar situationsmay appear in natural
EEG signals due to the transient baseline shift. In addition,
since the crucial concern of CSP is based on the spatial
pattern [26], the data vectors that have similar spatial patterns
should be imposed with a relatively large weight. Therefore,
correlation coefficient may be a more suitable measure to
construct the weight matrix.

In summary, compared with the Euclidean distance-
based LTCSP, correlation-based LTCCSP may provide the
following merits.

(1) The correlation coefficient distributes in [−1, 1], while
the Euclidean distance distributes in a wide range,
which makes LTCCSP more stable than LTCSP.

(2) Use of correlation may reduce the possibility of im-
posing small weight to natural EEG signal.

(3) There is only one parameter 𝜏 in LTCCSP, while in
LTCSP there are two parameters need to configure, 𝜏
and 𝜎, which makes LTCCSP easier to implement in
practical use.

It should be noted that several methods have also been
proposed to improve CSP’s performance. For example, adap-
tive CSP is developed to deal with time-varying signals [40];
nonlinear CSP overcomes the linearity restriction [41]; L1
norm CSP enhances its robustness [42]. Besides, an excellent
method named extreme energy ratio (EER) has been recently
proposed [43, 44], which also relies on covariance matrices
estimation and eigenvalue decomposition, but it aims at
maximizing or minimizing the disparity of energy features
between two classes of EEG signals. Afterwards, semisu-
pervised EERs are developed to solve the small training
set and time-varying problems in BCI application [45]. The
algorithm proposed in this paper is mainly to establish robust
covariancematrices estimation by introducing local temporal
correlation information, and it could be complementary to
the above existing methods to develop the more competitive
method in the future.

6. Conclusions

In this paper, we proposed a practical feature extraction
method named LTCCSP, which considers local temporal
correlation information in the learning process of the conven-
tional CSP, for optimizing spatial filters. The current results
confirmed that LTCCSP has the ability to obtain meaningful
spatial filters from natural EEG data and noise influenced
EEG data. Furthermore, LTCCSP is simple for application
as there is only one parameter that needs to be configured.
However, it should be noted that though LTCCSP shows its
effective ability for motor imagery-related feature extraction,
it still cannot completely suppress the introduced noise, and
much work is still needed to promote for a more robust
feature extraction.
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Appendix

The Method of Common Spatial Patterns

Wedescribe here themathematical part of themethod of CSP
as used in the present paper [26].

Let𝑁×𝑆matrix𝑋 denote the filtered data of a trial under
task 1, with𝑁 being the number of channels and 𝑆 being the
number of samples in time. Thus, the recording at a given
time point can be represented as a point in 𝑁-dimensional
Euclidean space and also can be seen as a spatial pattern.The
normalized spatial covariance matrix is calculated as

𝑅𝑋 =

𝑋𝑋
𝑇

trace (𝑋𝑋𝑇)
. (A.1)

Likewise, let𝑅𝑌 denote the corresponding normalized spatial
covariance matrix of a trial under task 2. Then, the normal-
ized spatial covariance matrices are averaged over trials, 𝑅𝑋
and𝑅𝑌 are obtained for each task. Next, whiten the composite
spatial covariance matrix 𝑅𝑋+𝑅𝑌; that is, determine a matrix
𝑃 such that

𝑃
𝑇
(𝑅𝑋 + 𝑅𝑌) 𝑃 = 𝐼, (A.2)

where 𝐼 is an identity matrix.The whiteningmatrix is formed
as 𝑃 = 𝑈𝐷−1/2, where𝑈 is the eigenvectors matrix of 𝑅𝑋+𝑅𝑌
and 𝐷 is the diagonal matrix of associated eigenvalues. After
that, let 𝐺𝑋 = 𝑃

𝑇
𝑅𝑋𝑃 and 𝐺𝑌 = 𝑃

𝑇
𝑅𝑌𝑃, respectively; then

𝐺𝑋 and 𝐺𝑌 share the same eigenvectors matrix 𝑉:

𝑉
𝑇
𝐺𝑋𝑉 = Λ, 𝑉

𝑇
𝐺𝑌𝑉 = 𝐼 − Λ.

(A.3)

This decomposition can be accomplished due to 𝐺𝑋 + 𝐺𝑌 =
𝐼. Make the eigenvalues mentioned are sorted in descending
order; in consequence, the final optimal spatial filter is given
by

Γ = 𝑃𝑉. (A.4)

Using this projection matrix Γ, the EEG signals 𝑋 and 𝑌 are
projected as

𝑍𝑋 = Γ
𝑇
𝑋, 𝑍𝑌 = Γ

𝑇
𝑌. (A.5)

Since the sum of the corresponding eigenvalues is always one,
the variances of first and last few rows of 𝑍𝑋 and 𝑍𝑌 are
suitable features for classification.
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