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We present new upper limits for black hole masses in extremely late type spiral galaxies. We confirm that this class of galaxies has
black holes with masses less than 10° Mo, if any. We also derive new upper limits for nuclear star cluster masses in massive galaxies
with previously determined black hole masses. We use the newly derived upper limits and a literature compilation to study the low
mass end of the global-to-nucleus relations. We find the following. (1) The Mpy-o relation cannot flatten at low masses, but may
steepen. (2) The Mgy-Myuge relation may well flatten in contrast. (3) The Mgy-Sersic n relation is able to account for the large
scatter in black hole masses in low-mass disk galaxies. Outliers in the Mpy-Sersic # relation seem to be dwarf elliptical galaxies.
When plotting Mgy versus Myc we find three different regimes: (a) nuclear cluster dominated nuclei, (b) a transition region, and
(c) black hole-dominated nuclei. This is consistent with the picture, in which black holes form inside nuclear clusters with a very
low-mass fraction. They subsequently grow much faster than the nuclear cluster, destroying it when the ratio Mgn/Myxc grows

above 100. Nuclear star clusters may thus be the precursors of massive black holes in galaxy nuclei.

1. Introduction

Supermassive black holes (BHs) are thought to be ubiquitous
in the nuclei of massive galaxies. The discovery of a number
of tight correlations between the global properties of galaxies
and the properties of their nuclei (e.g., [1-3]) has led
astronomers to realize that the evolution of galaxies may
be closely linked to their nuclear properties. However, the
nuclei of galaxies do not only host massive BHs but also host
massive star clusters, commonly called nuclear star clusters
(NCs). (Note that we here make the distinction between
nucleus, that is, the location at the very center, and nuclear
star cluster. Often the NC has been called nucleus or stellar
nucleus in the past, but this seems ambiguous to us).

The overall nucleation frequency is around 75% over all
Hubble types ([4—6], hereafter B02), but NCs seem to be
absent in the most massive galaxies [5, 7]. NCs typically have
stellar velocity dispersions of 15-35 kms ™!, effective radii of a
few parsecs, and dynamical masses of ~10°-107 M, (B02 [8,
9]). Moreover, they show stellar populations of multiple ages
[10-12], pointing towards them having a complex formation

history. This might be related to their special location in the
galaxy, as on average, NCs appear to sit at the photometric
centre of their host galaxy [6, 13]. We recently showed that
for bulgeless galaxies their location also coincides with the
kinematic centre, that is, the bottom of the potential well
[14].

Intriguingly, NCs in late-type spirals and dwarf ellipticals
follow relationships with their host galaxies that mirror the
Mpgn-0 and Mpp-Mpylge relationships of high-mass galaxies
[10, 15, 16], suggesting the possibility that the fueling and
growth of NCs and BHs are determined by similar processes,
and that BHs and NCs should be grouped together into
“central massive objects” (CMOs, [15]). The NC would then
be nothing else than the failed BH [17]. In this picture, BHs
would form in high-density clumps typically located in high-
mass galaxies, while NCs form from lower-density clumps in
lower-density disks. Recent simulation studies (e.g., [18, 19])
have been able to reproduce the formation of BHs through
direct collapse models. If the collapse is quick—compared to
the cooling time of the gas—a BH will form. If, however,
the gas has sufficient time to cool and form stars, it will



form an NC (see also the recent review in [20]). Competing
formation scenarios for NCs are, however, equally successful.
For example, recent work by Hartmann et al. [21] has shown
that the observed properties of NCs are well reproduced by
combining mergers of star clusters with the accretion of gas
at a much later time in the history of a galaxy.

A further reason for interest in NCs and their BHs is that
a number of authors [22-26] have found that dense clusters
of young, massive stars can experience runaway coalescence
of their most massive stars, leading to an intermediate mass
black hole (IMBH, but see also [27]). It would then be
tempting to identify NCs with the long-sought seeds for BH
formation. An observational result supporting this view is
that NCs and BHs can coincide [28, 29]; this is especially
well studied in our own Galaxy [30, 31]. On the other hand,
parameter studies of the runaway collapse scenario (e.g.,
[32]) show that NCs are actually not in a region of parameter
space that would be favourable to the collapse.

Of the many global-to-nucleus relations, the three most
frequently referred to ones seem to be the Mpy-o relation
(1, 2], the Mpy-Myuge relation [3], and the Mpy-fsersic
relation [33]. As all these relations have been initially set
up for the range of massive galaxies (i.e., My > 108 M),
the low-mass range of BHs is not very well populated and
holds most potential to find out which one of the three is
more fundamental. A particularly interesting case is BHs and
NCs in bulgeless galaxies. Indeed, while according to the
Mpu-o relation one would expect late-type, bulgeless spirals
to host BHs of mass < 10° M, the Mgy -Myulge relation is no
longer “defined” for bulgeless galaxies, as the lack of a bulge
would imply the absence of a black hole. On the other hand,
exploring the low-mass end of the scaling relations, Green
et al. [34] have derived reliable BH masses in spiral galaxies
(with bulges) from maser measurements and find that these
fall below the Mpy-o relation of elliptical galaxies but seem
consistent with the Mpy-Mpuige relation.

In fact both NCs and BHs have been found in bulgeless
galaxies. For NCs see B02; for BHs see, for example, the cases
of NGC4395 [28, 35], NGC1042 [36], NGC3621 [37, 38],
and probably many more (see, e.g., [39-42]). On the other
hand, very tight upper limits for the BH mass exist for
some galaxies such as M33 [43, 44], but direct observational
constraints are scarce because such small BHs are extremely
difficult targets for dynamical searches and therefore very few
objects have useful measurements. While it would thus seem
tempting to declare that NCs are the central spheroids in
bulgeless galaxies, this could lead to a paradox. Indeed, NCs
have largely been identified with CMOs in massive galaxies,
on the ground that they follow similar scaling relations as
BHs. Identifying the same objects with the spheroid in low-
mass galaxies would imply a transition in physical properties
of the NC. Many observational hints seem to point against
this possibility [9], the most important being that NCs have
constant radius over Hubble type. A backdoor might be that
Erwin and Gadotti [45] find that BH mass correlates with
bulge mass (and no correlation with disk mass exists, [46]),
while NC mass correlates better with total galaxy mass.

To conclude this introduction, measurements of the
demographics of the lowest-mass BHs are an important
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goal. Their mass distribution encodes a fossil record of the
mass scale and formation efficiency of the initial BH seeds
at high redshift (e.g., [47]) and they hold the power to
help us distinguish between different scenarios explaining
the observed global-to-nucleus relations [48-52]. In order
to increase the statistics in this particularly interesting low-
mass regime, we have calculated Mgy upper limits for a
sample of 9 NCs, for which integrated velocity dispersions
had been published previously ([9], hereafter W05). We have
also placed upper limits on My for a sample of 11 galaxies
with measured black hole masses. We have then used these
upper limits in conjunction with a literature compilation
to gauge which of the different proposed global-to-nucleus
relations seem to hold best at the low-mass end.

2. New Upper Limits for BHs in NCs

2.1. Data. Our sample consists of 9 NCs culled from the
HST/WFPC2 snapshot survey of B02. Imaging in the F804W
filter is available from B02 and we refer to this paper for
all details. All 9 NCs are resolved, even if some only barely.
We here use the images as available through MAST to
yield the surface brightness profile through a multi-Gaussian
expansion (see the following).

VLT/UVES spectra with high S/N and high spectral
resolution have been obtained by W05. We use their velocity
dispersion measurement. The properties of our sample are
summarized in Table 1.

The sample selection for spectroscopic follow-up tech-
nically implied a slight bias to the more luminous among
the NCs. Nevertheless, we expect this sample to be a fair
representation of NCs in pure disk galaxies in general, as it
covers the upper 2/3 of the luminosity range of NCs.

2.2. Analysis. We constructed a dynamical model to estimate
the mass and M/L of the NCs and to put meaningful upper
limits on the possible central black holes inside them. The
first step in this process is developing a model for the light
distribution. To parametrise the surface brightness profiles
of the NCs and to deproject the surface brightness into
three dimensions, we adopted a Multi-Gaussian Expansion
(MGE; [53]). The MGE fit was performed with the method
and software of Cappellari [54], on the HST I-band images
deconvolved from the PSF (using a Tiny Tim PSF [55]). As
most of the clusters are barely resolved in the HST images and
shape measurements are therefore impossible, we assume
spherical symmetry. Note that although the NCs in NGC300
and NGC7793 (the best resolved) are indeed round, this may
be due to their host disks being seen face-on. Seth et al. [11]
find that edge-on NCs can have quite disky outer isophotes.
We use the Jeans Anisotropic MGE (JAM) software by
Cappellari [56] which implements the solution of the Jeans
equations allowing for orbital anisotropy. The model has
three free parameters: (i) the anisotropy, (ii) the mass of a
central black hole Mgy, and (iii) the I-band total dynamical
M/L. From the velocity dispersion profile computed by
JAM, we compute the luminosity-weighted velocity disper-
sion (orw) over an aperture of 1 square arcsecond. This
corresponds to the width of the UVES slit on the sky. We
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TABLE 1: Properties of the sample of NCs in bulgeless galaxies.

Galaxy Type NCr, (pc) o (km/s) M/L™™ (M/L; o) M (M) MG (M)
NGC 300 SAd 2.9 13 =2 0.41 1x10° 1 x10?

NGC 428 SABm 3.36 244 + 4 0.41 7 x 10* 3 x 10*

NGC 1042 SABcd 1.94 32+5 0.07 3 % 10° 2.5 x 10*
NGC 1493 SBcd 2.6 25+ 4 0.07 8 x 103 2.5 % 10°
NGC 2139 SABcd 10.3 17«3 0.02 4x10° 1.5x 10°
NGC 3423 SAcd 4,18 305 0.87 7 % 10° 1.5x 10°
NGC 7418 SABcd 12.3 34 +5 0.10 9 x 10° 1.5 % 10°
NGC 7424 SABcd 7.4 16 +2 0.10 4x10° 1.5 x 10°
NGC 7793 SAd 7.7 25+ 4 0.15 8 x 10° 5% 10°

iterate the computation of opw over a grid of values for
M/L and Mgy. The results are shown in Figure 1 which
is directly comparable to Figure 8 of Barth et al. [37].
Direct comparison with the mass-to-light ratios obtained by
WO05 (thin solid vertical line) shows that the ratios scatter
around 1.0, with no obvious systematic outliers. The small
differences in the result can be attributed to the way in
which the surface brightness was modelled (Multi-Gaussian
expansion here versus direct deprojection in W05).

The maximum allowed mass of the black hole will be
obtained when a minimum of mass is present in the form
of stars. From Figure 1 one can easily read what BH mass
would result if we assumed M/L = 0 for the stars in the
cluster. A more interesting lower limit to the M/L comes
from the spectral fitting with stellar population models. We
exploit the fact that the age obtained by fitting a simple
single stellar population to a composite stellar population is
strongly biased to the age of the youngest population in that
object which contributes significantly to the total luminosity
(see, e.g., W06, [57]). The relevant values are tabulated in
W06 and repeated in Table 1 along with the values derived
as upper limits to the mass of a putative BH from the
intersection between both thick solid lines in Figure 1. This
is a conservative estimate for the Mgy upper limit. A more
realistic value for Mgy can be derived from the intersection
or asymptotic point of the model (thick solid curved line)
with the best-fit M/L from WO05 (thin solid vertical line)
in Figure 1. The resulting best-fit Mpy values are listed in
Table 1.

We explicitly test the effect of velocity anisotropy on the
modeling results and found very little change in the results—
certainly below our systematic uncertainties due to the lower
limit to the mass-to-light ratio that we apply (see also [37]).
We therefore neglect this effect for the rest of this paper.

3. Global-to-Nucleus Relations

We now plot the upper limits we have derived into figures
showing existing correlations from earlier work. In these
figures we typically have a comparison sample which is
taken from a larger statistical study and we add a number
of objects at the low-mass end from different sources in
the literature. We have tried to be complete at the very
lowest mass end of the relations. Further literature does

exist, but typically, the BH masses exceed values of ~10° M,
and the galaxies structural parameters have not been studied
individually.

3.1. Mpy-o Relation. For Figure 2, the Mpy-o relation, the
comparison sample, and relation are as compiled by Giiltekin
etal. ([58], black open symbols). We extend this compilation
with recent maser measurements by Greene et al. ([34], green
crosses). Active AGNs are denoted by blue stars; these are
NGC4395 [28, 59] and POX52 [60]. In principle, NGC1042
from the present work falls also into this category (see, [36])
but is plotted as a filled red circle. Previous upper limits for
nonactive nucleated galaxies are plotted as open blue circles:
M33 [43, 44], NGC205 [61], IC342 [62], and NGC404 [63].
We also plot the globular clusters G1 [64], w Cen [51, 65, 66],
and NGC6388 [67] as green open circles. The verdict on
the usefulness of these measurements is still out, with strong
contrasting claims by other authors that there is no evidence
for a black hole in w Cen [68, 69] and in G1 (e.g., [70]). We
nevertheless use the derived values in a spirit of adventure,
that is, what would it mean if these measurements were
correct? Finally, the new upper limits derived in this work are
denoted by filled red circles. It emerges that a flattening of the
relation is not consistent with the current measurements. It
may well be that a downwards bending would be necessary,
if more stringent upper limits such as that for M33 would be
published.

3.2. MH-Mpuige Relation. For Figure 3, the Mpy-Mpulge rela-
tion, the comparison relation and sample are taken from
Hiring and Rix [3] (filled black circles), while the other
data points come from the same sources as in Figure 2.
There is a hint towards a flattening of the relation with the
lowest spheroid masses, but it will be difficult to confirm
this without much better estimates of the masses of IMBHs.
On the other hand a steepening, that is, bulges that are too
massive for their BHs, has been mentioned by Greene et al.
[34, 71]. If there are BHs in galaxies with no bulges as well
as bulges that are too massive for their BHs, it seems clear
that the Mpp-Mpylge relation must suffer from large scatter at
small masses.

3.3. Mpr-nsersic Relation. For Figure 4, the Mpp-tisersic rela-
tion, the comparison relation, and sample are taken from
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FIGURE 2: The relation between the mass of the BH and the velocity
dispersion of the spheroid around it. We plot the objects as listed in
the text. The lines give the best fit of Giiltekin et al. [58].

Graham and Driver [33] (filled black circles), while the other
data points come from the same sources as in Figure 2.
We have also assembled measurements of the Sersic n from
literature sources for all objects with published BH masses.
For the galaxies with Mpy limits newly derived in the present
paper, Sersic n was derived from the following literature
sources: Ganda et al. [72] for NGC1042 and NGC3423
and Weinzirl et al. [73] for NGC2139. For NGC300 and
NGC428 Spitzer IRAC 3.6 ym images were downloaded from
the Spitzer Heritage Archive (http://sha.ipac.caltech.edu/)
and Sersic n was determined using the GALFIT software
[74]. For NGC1493, NGC7424, and NGC7793 the corre-
sponding images were obtained from the 2MASS archive
(http://irsa.ipac.caltech.edu/) and again fitted with GALFIT.
All galaxies were fit using one PSF component for the central
NC, one Sersic component representing the disk, and one
constant sky component. All parameters were left free to
be fit for. The webpages provide appropriate point spread
functions; although all of our targets are nearby and therefore
well resolved, the resulting Sersic # is almost independent of
the PSF used in GALFIT. We caution that the resulting Sersic
n may depend heavily on the radial range used in the fitting.
To cite two extreme examples, the Sersic n of NGC300 is
independent of the radial range used within A(n) = 0.1. On
the other extreme, the Sersic n for NGC1493 varies between
~1.3 and the reported value of ~2.5. It is beyond the scope of
the current paper to derive a physically meaningful fit range
that would put the physical meaning of the Sersic n on firmer
ground. We emphasize that it is despite the cited uncertainties
that the relation between Mpy and Sersic #n seems to
hold.
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FIGURE 3: The BH mass versus the spheroid mass (bulge, GC, NC).
We plot the objects as listed in the text. The line indicates the best-
fitting relation of Hiring and Rix [3].

Figure 4 shows two interesting features. (1) Because the
relation fitted by Graham and Driver [33] curves down at
n = 1, a large range of BH masses is allowed in this regime,
which clearly allows for the scatter that seems to emerge
as a common trend in the previous two nucleus-to-global
relations. (2) There are significant outliers in this plot, in the
sense that some low-mass galaxies can have too high Sersic n
for their BH mass.

3.4. Mpy-Mnc Relation. In Figure 5 we show the relation
between Mpy and Mxc (compare [29, 75]). We have plotted
objects already used above, for which determinations of
both Mpn and Myc exist. In searching for a high-mass
comparison sample we have made use of the compilations
by Graham and Spitler [75] and Giiltekin et al. [76] from
which we also take the distances. Where not available, we
have then proceeded to derive upper limits to the NC masses
either from the literature or from own fits to archival HST
images. (Thorough work deriving consistent photometry
and structural parameters for NCs across the entire Hubble
sequence for large swaths of the HST archive is badly needed,
but is beyond the scope of the current work. Note that one
focus of such work could be the distinction (if any clear
distinction exists) between NCs and nuclear disks. In the
case of NGC4342, for example, the upper limit we give on
the NC mass is not only observationally uncertain, but also
conceptually uncertain. As Scorza and van den Bosch [77]
discuss, a relation between the nuclear disk mass and the BH
is as plausible as between the NC and the BH. Indeed, some
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NCs may turn out to be nuclear discs on close inspection
(compare [11])).

We now discuss the ways that we have obtained upper
limits for the NC masses galaxy by galaxy. We strongly
emphasize that we have tried to obtain upper limits to rather
than real measurements of the NC mass. Real measurements
of NC masses can only be carried out by a combination
of dynamical modeling and spectral analysis to determine
the relative influence of the AGN and possible varying M/L
ratios. We rather aim to be conservative with respect to all
uncertainties affecting our estimates of upper limits to the
NC masses. Our resulting upper limits are listed in Table 2.
For the following 5 objects we estimated upper mass limits
from the literature only.

NGC4486 (M87): the bright nucleus is dominated by
AGN light. There is no evidence for an NC. We therefore
use Figure 7 of Gebhardt and Thomas [78], which shows
the enclosed stellar mass within the central arcsec to be
2 X 108 M. This is consistent with an estimate from Young
et al. [79], which gives a total of M = 5 X 10° Mg, within a
radius of 100 pc and M/L = 60, thus leading to an estimate of
the stellar mass within that radius of 3 X 10® Mo, assuming
that the stellar M/L = 4. We emphasize that this is the total
stellar mass within a radius comparable to the radii of typical
NCs and therefore gives an upper limit to Mnc. We do not
claim that M87 actually hosts a stable NC at its centre.

NGC4374 (M84): an AGN has been shown to exist by
Bower et al. [80], with very weak stellar features. To estimate
an upper mass to the NC in NGC4374 we use the paper
by Walsh et al. [81], which yields a BH mass estimate of
4 X 10%M,. Their Figure 4 shows the circular velocity
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profiles due to the BH and the stellar mass, respectively.
Assuming a distance to M84 of 17 Mpc yields 70 pc/arcsec.
Assuming an NC radius of 10 and a stellar M/L = 4, we
obtain that at 10 pc radius the circular velocity due to the BH
is 400 km/s, while the circular velocity due to the remaining
stellar mass is smaller than 50 km/s. To obtain an estimate
of the upper limit for a putative NC, we need to correct for
the different masses and for the different spatial distribution
(point-like versus extended). From the virial theorem, we can
scale the velocity quadratically. From Table 2 in the current
work it can be seen that a conservative factor (i.e., one that
gives a lot of stellar mass) for the conversion from point-
like to extended would be a factor of 10. The upper limit
for the stellar mass within 10 then becomes Myc/Mpy =
10 * 502/400* = 0.15, thus yielding an NC upper mass
limit of 6.3 X 10’M,. Walsh et al. [81] also state that
stellar mass is a negligible contributor to their mass budget;
it is therefore entirely possible that no NC exists in that
galaxy.

NGC4261: the central luminosity distribution is com-
plex, with a nuclear disk and a luminous nuclear source
which seems to be dominated by an AGN; at least a radio
jet is present [82]. There is thus no clear evidence in favour
of any NC. Ferrarese et al. [82] find that M/Ly = 2100 within
the inner 14.5 pc. A maximum M/Ly for stellar populations
is 7. We thus obtain that 7/2100 of the central mass within
15 pc can be in stars, which is 5 X 108/300 = 1.6 x 10° M.
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TaBLE 2: Sample of galaxies for which new properties were derived in this paper.
Galaxy Type o(km/s) Dist (M) Mpy (M) Mnc (M) Sersic n Mpuge (Mo) Ref
group 1
NGC 300 SAd 13+2 2.2 <1 x10? 1x10° 1.1 — [105]
NGC 428 SABm 244 + 4 16.1 <3 x10* 3% 10° 1.05 — [105]
NGC 1042 SABcd 325 18.2 <2.5 x10* 3 % 10° 1.15 — [105]
NGC 1493 SBcd 25 + 4 11.4 <2.5 x10° 2% 10° 2.36 — [105]
NGC 2139 SABcd 17 +3 23.6 <1.5 x10° 8 x 10° 1.53 — [105]
NGC 3423 SAcd 30+ 5 14.6 <1.5 x10° 3 % 108 1.20 — [105]
NGC 7418 SABcd 34 +5 18.4 <1.5 x10° 6% 107 — — [105]
NGC 7424 SABcd 16 + 2 10.9 <1.5 x10° 1x10° 0.91 — [105]
NGC 7793 SAd 25 + 4 3.3 <5x%x10° 8 x 10° 1.27 — [105]
group 2 X
NGC 4486 El 375 + 18 17.0 6.3 x 10° <2 x108 6.86 6.0 x 10" [68]
NGC 4374 El 296 + 14 17.0 1.5 x 10° <6.3 X107 5.60 3.6 x 10! [41]
NGC 1332 SO 321 + 14 19.6 1.45 x 10° <1.4 x 107 — — [60]
NGC 3031 Sb 143 + 7 4.1 8 x 107 <7x10° 3.26 — [37]
NGC 4261 E2 315+ 15 33.4 5% 108 <1.7 x10° 7.30 3.6 x 10" [70]
group 3 X
NGC 4649 E2 385 + 19 16.5 2.1 x10° <2 x10° 6.04 4.9 x 10" [103]
NGC 3998 S0 305 + 15 14.9 2.4 %10 <8.5 x10° — — (98]
NGC 2787 SBO 189 + 9 7.9 0.7 x 108 <1.9 x10° 1.97 — [95]
NGC 3379 EO 206 + 10 11.7 1.2 x 108 <1.4 x10* 4.29 6.8 x 10'° [108]
NGC 4342 S0 225 + 11 18.0 3.6 < 108 <2.5 x10° 5.11 1.2 x 10" [13]
NGC 4291 E2 242 + 12 25.0 3.2x 108 <5 x10° 4.02 1.3 x 10" [103]

Galaxies for group 1 are from W05, and we here derived upper limits on the black hole mass and Sersic n. Galaxies for groups 2 and 3 are from Gultekin et al.
[76]. For group 2 objects we derived upper limits on the NC mass via dynamical arguments, while for group 3 objects we used photometry to derive Myc
upper limits. For groups 2 and 3 Sersic n values are taken from Graham and Driver [33], bulge masses are from Hiring and Rix [3], and velocity dispersions
are from Hyperleda. The newly derived quantities are marked with an x at the top of the respective column. References for black hole masses are. (1) this
work, (2) Gebhardt and Thomas [78], Gebhardt et al. [109], (3) Bower et al. [110], (4) Rusli et al. [83], (5) Devereux et al. [84], (6) Ferrarese et al. [82], (7)
Gebhardt et al. [111], (8) De Francesco et al. [88], (9) Sarzi et al. [112], (10) Gebhardt et al. [90]; Shapiro et al. [113], and (11) Cretton and van den Bosch

[89].

NGC1332: there is no firm evidence for an NC, although
the surface brightness profile of Rusli et al. [83] hints at
a central luminosity excess within the central arcsec. The
dynamical model of Rusli et al. [83] gives a central stellar
luminosity density of 4 x 10'2 Lo kpc . For an NC of 5 pc
radius this yields an NC luminosity of 2 X10° Lo in the R-
band. With M/Lg = 7 (also according to [83]), Mnc max is
1.4 x 10" M.

NGC3031: Devereux et al. [84] list values of stellar mass
within radius in their Table 3. From their Figure 3, it is clear
that the nuclear source is not extended; there is thus no
evidence for the presence of an NC. To estimate an upper
mass limit for the NC, we assume an NC radius of 7 pc
(compare [5, 6]); the upper limit to Myc is then 7 x 10® M.

For the following 6 objects no NC mass estimate
was available. We therefore turned to the HST images as
downloaded from the Hubble Legacy Archive. We have then
used GALFIT [74] to derive the magnitudes of the NCs.
Because all NCs we treat in this last step are in early-type
galaxies, we can assume that their ages range between 1 and
10 Gyr, yielding an estimate of the allowed range for the M/L
ratio. For most cases we used the F814W filter on either ACS
or WEPC2, setting the allowed range of M/L between 1 and

4. Much more sophisticated modeling of the photometry,
while possible, would yield only marginally better estimates
of the total stellar mass of the NC for several reasons. (1)
The star formation histories (SFHs) of NCs are unknown
and, indeed, likely to be semirandom, repetitive bursts of star
formation. Therefore no strong prior can be applied to the
SFH. Because the oldest stellar populations are the faintest
per unit mass, the resulting uncertainty on M/L is of order
factor 2. (2) The photometry of the NCs is in itself uncertain.
We have made use of realistic PSFs from either Jee et al.
[85] (http://acs.pha.jhu.edu/~mkjee/acs_pst/) or from Tiny
Tim (http://www.stsci.edu/hst/observatory/focus/TinyTim).
It is much less certain what the ideal profile for the surface
brightness of the host galaxy should be though (compare [86,
87]). We have used one single Sersic, as we are only interested
in subtracting the host, not in describing it. Nevertheless,
we estimate that the use of different profiles (2 Sersics,
Nuker, etc.) could impact the total photometry of the NC
by up to 0.5 or even 1 magnitude (compare, e.g., the central
extrapolations of [6]). We therefore have chosen to let these
uncertainties be reflected in the errorbars of the NC mass
estimate, rather than trying to hide them somewhere within
a sophisticated analysis.



NGC4649: no nuclear source is visible (as also found
by [75]). We first fit this galaxy with a single Sersic.
When additionally forcing in a point source (GALFIT PSF
component) of different magnitudes (20, 20.5, 21,21.5, 22),
the resulting oversubtraction can be seen clearly in the
residual image for as faint as m; = 21.0. We use this value as
a conservative upper limit to the NC magnitude. This results
in an upper mass limit of 2 X 10° Mo.

NGC4291: we attempted the same procedure as before.
However, due to a flat central surface brightness profile, our
simple Sersic fit by itself produced an oversubtraction of the
central flux, not allowing us to use the exact same procedure
as for NGC4649. Nevertheless, the HST image clearly shows
the absence of any point source in the center. We therefore
assumed the same limit as before, that is, 21 mag in F814W,
which results in Myc =5 X 10° M.

NGC3998: after the GALFIT fit, a clear spiral structure
and a bar are seen in the residuals. The central light source
was modeled as a Sersic with an effective radius of 0.2” and
a Sersic n = 0.1, making us believe it is unresolved. De
Francesco et al. [88] classify this galaxy as a LINER; thus
the central source is AGN-light dominated. Therefore our
photometrically derived NC mass of 8.5 x 10° M, again is
a conservative upper limit.

NGC4342: the fit with GALFIT was difficult, with 4 Sersic
components in the final fit. The final solution was chosen
to oversubtract the NC. Again we have a conservative upper
limit of 21.85 mag corresponding to Mxc = 2.5 X 10° Mo,
using an M/L of 6.5 in I from Cretton and van den Bosch
[89]. Contamination from AGN light is also possible, making
our upper mass limit more robust.

NGC3379 (M105): the NC is visible in Gebhardt et al.
[90], but not mentioned there. Graham and Spitler [75]
note this galaxy as unnucleated. Two extended components
with Sersic # ~ 1 and one very compact source with Sersic
n =~ 1/2 (i.e., Gaussian surface brightness profile) and r, =
0.2"" give a good fit to this object. The measured integrated
magnitude of the central point source is 25.7 in the F814W
of WFPC2, corresponding to Mnc = 1.4 X 10* My. We used
M/Lp814W = 3 as a suitable upper limit to the M/L.

NGC2787: this galaxy was analyzed in Peng et al. [74]
and the nuclear photometry is taken from that source. We
used M/Lp547M = 3 as a suitable upper limit to the M/L.
Thus, the NC upper mass limit is 1.9 X 10° M.

Note that in the galaxies NGC4486, NGC4374, and
NGC3379 a luminous nuclear source is clearly seen. While
this could all be AGN light, we see no way to ascertain the
absence of an NC. In contrast to Graham and Spitler [75]
we only claim to be able to derive an upper limit to the NC
mass, rather than excluding an NC all together. Note also that
a stellar cusp containing 10% of the BH mass is predicted
around any BH [91].

4. Discussion

We now discuss and interpret a number of features we saw
in the previous section, with the aim to discuss ideas that
emerge from these figures but, to our knowledge, have not
been discussed in the literature before. The ultimate aim of

Advances in Astronomy

our study is of course to contribute to a consistent physical
picture of black hole and nuclear cluster growth.

In Figure 4, one relation between the global galaxy
properties and Mg holds for a large range of n, independent
of the presence of a bulge. Outliers are rather low-mass
galaxies (and not low-mass black holes).

We stress that this relation is purely observational at this
stage. Due to the heterogeneous assembly of the Sersic # val-
ues (literature, own fitting) the physical region represented
by them is not always the same. In particular some of the
galaxies do not contain a bulge, while for others the Sersic
n has been explicitly measured for the bulge component.
The existence of a relation seems evidence that indeed
the measurement of Sersic n is meaningful. In particular,
no conspiracy is obvious that would fundamentally bias
our measurements in the sense of producing a spurious
correlation. It thus seems to us that even independently
of the exact details of the derivation of the Sersic n, it
clearly describes a property of the galaxy that is relevant
for the BH mass. A question to ask is then whether we
fully understand the physical implications of that relation,
and whether we could potentially reduce the relation to
underlying intrinsic distribution of galaxy properties (e.g., if
Sersic n was related to bulge mass in a very tight manner,
we might be tempted to argue that bulge mass is the more
fundamental measurement). We believe that the present
paper cannot resolve this question but hope it provides
motivation to explore these issues further.

To venture a possible physical interpretation of the
outliers from the relation we note the following: it could be
that the transformation process from disk galaxy to spheroid
is different in this galaxy mass regime. While BHs in massive
galaxies grow during the morphological transformation pro-
cess of their host galaxies, BHs in low-mass galaxies are not
affected (fed) during the transformation process. It might
be worthwhile exploring through simulations, whether this
has to do with a possible transformation dichotomy, that is,
mergers versus harassment. It is worth pointing out here that
such a dichotomy does not seem to be immediately apparent
from the age or metallicity profiles, as these seem not to
depend on mass [92].

Figure 5 has not been published previously in this form
to the best of our knowledge (though compare [29, 75] for
similar representations) and may yield considerable insight
on the relation between NCs and BHs. An immediate
conclusion from this figure is that BHs and their host NCs do
not share the same intimate connection as BHs and their host
spheroids. It rather seems that in galaxies with a high total
mass, or alternatively a sizable spheroid, the BH has been able
to grow independently of the NC, thus being able to reach
comparable masses. In galaxies or star clusters unaffected by
spheroid growth, as, for example, the GCs, M33, and others,
it seems the BH, if existent, is only a very small portion of the
mass of the NC.

Figure 5 (and similar figures, see [7, 29, 75] is still in an
early phase and we believe that further studies in the field will
attempt to fill in the high- and low-mass end of the BH mass
regime with more NC masses and BH masses, respectively.
Nevertheless it seems that two extreme ends can be identified,
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with a transition region in between. At the low BH-mass end,
there is little evidence for the presence of any BH; yet NCs
seem to be common (B02). On the other hand no nuclear
BH has been found that is not surrounded by an NC in this
regime. If GCs with BHs are indeed the remnants of accreted
satellite galaxies (e.g.,[93-96]) and if indeed they lie on the
Mgy-0 relation, this would imply, however, that at this stage
BH growth is linked to NC growth much in the same way
that BH growth is later tied to galaxy growth. A close look
suggests indeed that some physical processes that occur in
or with NCs, such as gas accretion [97-99] and merging
[100-105], are quite similar to those experienced by galaxies.
An alternative to the assumption that the process giving
rise to the Mpy-0 is so astoundingly generic is of course
that the BH mass measurements in GCs may be subject to
the “expectation bias”, that is, when the measurement is in
accordance with the expectations of the community they get
accepted more easily.

At the very high-mass end of the BH-mass range, the
BH is much more massive than the NC. On the other hand,
this is the region where global-to-nucleus relations hold best.
This could happen through two mechanisms: (1) either the
galaxies in question never had a sizable NC, possibly because
their central BHs grew early on in the age of the universe,
thus stopping NC growth [106], or (2) massive BHs destroy
their host NCs. Figure 5 in its current form suggests that this
may happen at a mass ratio of =100 or alternatively when the
BH radius of influence is of the same size as the NC radius.
Loss cone depletion and core formation in early-type galaxies
are well-studied mechanisms, that would amply suffice to
destroy the preexisting NC [107].

Bekki and Graham [108] have examined an alternative
solution for the disappearance of NCs for massive galaxies.
Their argument relies on the mergers that are responsible
for the morphological transformation from disk-dominated
to bulge-dominated galaxies. They show that NCs can
be significantly heated and thus be made susceptible to
destruction during the merger event. The picture painted
here differs significantly from that painted in Bekki and
Graham [108] in that we put weight on the importance of
the BH for destroying the NC. Indeed, what determines NC
disappearance does not seem to be galaxy morphology, as
most early-type galaxies have NCs. Rather, there is evidence
for an upper limit to the BH/NC mass ratio, arguing strongly
for a pivotal role of this ratio in leading to NC disruption.

The intermediate mass or transition regime may possibly
lie between two boundaries, that is, above NC masses of
5 X 10°M, and below a Mgy/Myc mass ratio of 100. In this
intermediate mass regime, while BHs have grown by at least 2
orders of magnitude, and probably more than 4 as compared
to the NC-dominated regime, the NC grows by at most a
factor of 10. There thus is some common growth; yet it does
not occur in parallel. On the other hand, this is the region
of most scatter in the typical global-to-nucleus relations.
This phase would thus be characterized as a transition phase
between NC-dominated nuclei and BH-dominated nuclei.

Does Figure 5 imply that NCs do not grow by the same
processes as their BHs and is this a serious setback to
the grouping together of NCs and BHs into CMOs [15]?

That NCs and BHs need not grow in parallel has been
emphasized by Nayakshin et al. [106], where both types of
objects rather grow in competition for the same gas reservoir.
Nayakshin et al. [106] ask whether the BH can prevent the
NC from growing through its feedback and postulate that
this is the case when the gas accretion rate is smaller than
the Eddington rate. This picture is attractive in explaining
Figure 5 because it naturally explains the three regimes—
NC dominated, NC/BH transition, and BH dominated.
Nevertheless, given the very low accretion rates observed in
bulgeless galaxies and the presence of significant BHs in at
least a few of them, this picture seems to break down exactly
for the NC-dominated regime.

Discrimination between the different scenarios envisaged
in the literature seems to be mostly an observational question
at present. At low masses the error bars on BH measurements
are typically very large, while NC masses are well measured.
At high masses, BH masses are more accurate while the
uncertainties for NC masses increase, due to resolution
problems of the NCs above the underlying galaxies. We need
both reliable BH and NC masses to see what the exact locus of
points in this plot is. If there is a smooth transition, making
the sequence look like a closed parenthesis, this would imply
that the destruction of the NC due to the growing black hole
is a slow process. If there really is a well-defined transition
at Mpp/Mnc = 100, then this would imply either that the
process of NC destruction is very fast or that these galaxies
never had an NC.

5. Conclusions

We have computed new upper limits for the masses of
intermediate mass black holes in 9 pure disk galaxies with
very low BH masses. We also computed upper limits to
the masses of nuclear star clusters in the nuclei of galaxies
with previously determined massive BHs. We plot these
upper limits on the three global-to-nucleus relations Mpy-o0,
Mpgi-Mpulge, and Mpy-Sersic #, as well as on a new figure
that compares Mpy and Myc. We discuss the features we see
in these figures. Two possible conclusions emerge from our
discussion.

(1) In the Mpy-Sersic n figure, those galaxies that lie on
the relation seem to prove that there is a relation
between Mgy and the morphological transformation
of their host galaxies. A few notable outliers are
dwarf elliptical galaxies, where the morphological
transformation process does not seem to be associate
with BH growth. We speculate that this difference
may arise from different mechanisms, that is, mergers
for high-mass galaxies and harassment for dwarfs.

(2) In the Mpu-Mnc figure, we can clearly distinguish
three regimes; NC dominated, BH dominated, and
transition between the two. We speculate that this
could imply that BHs are formed in NCs, then
start to grow much faster than their host NCs, and,
through a transition phase with similar masses for
both components, could then ultimately destroy their
host through loss cone depletion.
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We expect further progress in the field to arise from
better measurements of BH masses at the low-mass end
of the Mgy mass function and from better measurements
of NC masses at the high-mass end of the Mgy mass
function. In particular, it might be useful for further
research in the field if authors attempting to measure
black hole masses also stated more clearly what their
constraints on the NC mass are. Currently NCs are treated
more or less as a nuisance to get rid of, while a clearer
assessment of the constraint on their mass would ben-
efit our understanding of the role NCs play in galaxy
nuclei.
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