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Research has shown that functional connectivity is a powerful tool in the study
of the complex processes of the human brain. Functional connectivity is gener-
ally defined as the synchronisation of anatomically distant areas and it can be
inspected for example through coherent oscillations. Magnetoencephalography
(MEG) is well suited for functional connectivity studies as it has a good time
resolution that allows us to observe the changes in magnetic field in real time.
Dynamic Imaging of Coherent Sources (DICS) uses spatial filters to estimate the
oscillatory activity in the human brain.

In my master’s thesis, I introduce a python-based pipeline and code library that
estimates functional connectivity from MEG data using DICS. I will then demon-
strate the application with a real MEG dataset. This pipeline also implements
the use of canonical coherence, which provides a fast and stable way of calculat-
ing coherence between a large number of signal sources. The pipeline presented
here consists of seven steps: First the data is preprocessed and the cross-spectral
density (CSD) matrices are computed. Then the source space is computed and
used with the CSD matrices to compute both oscillatory power and connectivity.
These results are then analysed at the group-level and visualised. The results
show that the pipeline is easy to apply to a real world dataset. Selection of the
parameters in different steps should be made based on the dataset at hand and
the results should be interpreted carefully. Further research on the stability of
this pipeline is suggested.
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Toiminnallisten kytkösten tarkastelu on osoittautunut tehokkaaksi apuvälineeksi
aivojen monimutkaisten toimintojen tutkimisessa. Neurotieteessä toiminnalli-
nen kytkeytyvyys määritellään yleensä aivojen rakenteellisesti etäisten raken-
teiden tahdistumisena. Toiminnallista kytkeytyvyyttä voidaan tarkastella esi-
merkiksi koherenssin avulla. Magnetoenkefalografia (MEG) on osoittautunut
hyvän aikaresoluutionsa takia sopivaksi menetelmäksi tarkastella toiminnallisia
kytköksiä. Keilanmuodostusmenetelmä koherenttien lähteiden dynaaminen ku-
vaaminen (Dynamic Imaging of Coherent Sources, DICS) käyttää spatiaalisuo-
dattimia tarkastellakseen aivoissa tapahtuvia värähtelyitä.
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pea ja vakaa tapa laskea koherenssi suurelle määrälle lähdepisteitä. Koodikir-
jaston vaiheita on seitsemän: Data esikäsitellään ja siitä lasketaan ristispektriti-
heysmatriisi (CSD-matriisi). Lähdepisteet määritellään ja niitä käytetään CSD-
matriisien kanssa värähtelyn tehon ja yhteyksien laskemiseen. Tämän jälkeen
tuloksia käsitellään ryhmätasolla ja näytetään kuvina. Tulokset osoittavat, että
koodikirjaston soveltaminen mittausaineistoon on helppoa. Eri vaiheissa tarvit-
tavat parametrit on valittava aineiston ominaisuuksien perusteella ja tuloksia on
tarkasteltava varoen. Lisätutkimusta suositellaan menetelmän vakauden varmis-
tamiseksi.
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Chapter 1

Introduction

The brain is an organ with billions of neurons working together to allow us to

perform all the everyday functions. It is the organ that has made it possible

for us to communicate, to create, to think. Throughout centuries humans

have been interested in discovering how the brain functions. To measure the

changes in the brain, imaging methods like magnetoencephalography (MEG)

have been invented. These methods have given us an opportunity to see

beyond the anatomical structures. For multiple years, the number of publi-

cations and neuroscience themed journals has been on the rise (Yeung et al.

2017). Especially in the recent decades, functional connectivity and neural

networks have become an interesting topic in neuroscientific research. Func-

tional connectivity analysis attempts to study connections between anatom-

ically distant areas by inspecting the synchronisation of neuronal activity

(Friston 2011).

To analyse functional connectivity existing imaging methods like MEG

can be used. MEG measures how the magnetic fields around the brain change

(Lopes da Silva 2010). Sensors are placed inside a helmet to measure the

small fluctuations in the magnetic field caused by neuronal activity around

the scalp. MEG provides a time resolution of milliseconds, allowing us to

measure the changes in magnetic field in real time (Del Gratta et al. 2001).

MEG also provides good spatial resolution that can be smaller than a cen-
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CHAPTER 1. INTRODUCTION 2

timetre (Nijholt et al. 2008). In MEG the challenge is the source estimation,

where we want to estimate the origin of the measured signal. This is called

the inverse problem (Gross et al. 2013). Additionally, due to the fact that

magnetic field extends to infinity, the signals measured by MEG sensors are

always correlated to some extent, which creates additional challenges when

studying connectivity (Gross et al. 2013; Lopes da Silva 2010).

There are various approaches for solving the inverse problem in the field

of MEG studies (Jensen et al. 2010). One approach is beamforming, which

uses spatial filters to estimate the contribution of each source (Hillebrand et

al. 2005; Van Veen et al. 1988). A spatial filter aims to reduce the interfering

signals outside the source and enhance the signal originating from the source

of interest. Beamforming has provided stable results when the focus is on

the power of oscillatory activity (Jensen et al. 2010). Dynamic Imaging of

Coherent Sources (DICS) introduced by Gross et al. (2001) can be used to

calculate both the power and coherence of oscillating signals. Laaksonen

et al. (2008) used a filter bank of Morlet wavelets and calculated the CSD

for short segments of time. This allows the inclusion of time information,

allowing DICS to be used in studies with event-related designs (event-related

DICS, erDICS). Different stimuli and tasks can then be used to study how

the human brain operates in these context, thus possibly helping us to gain

a deeper understanding about how the brain functions.

In Saarinen et al. (2015) the calculation of connectivity between multiple

sources of interest, instead of just from a single source to others, is intro-

duced. This all-to-all connectivity calculation is done using a method we call

”canonical calculation of coherence”, which allows fast and stable coherence

calculations between a large number of source pairs. This is achieved by

choosing the source orientations that maximise coherence using a discrete

number of source orientations. The canonical calculation of coherence was

employed together with erDICS in Liljeström et al. (2015). While there are

existing DICS implementations for power mapping in neuroscience toolboxes

like MNE (Gramfort et al. 2014) and FieldTrip (Oostenveld et al. 2011), at
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the start of this project no published implementation of DICS for calculating

all-to-all connectivity using canonical coherence existed, though it had been

in use at Aalto University.

My master’s thesis has two goals: First, I will describe an analysis pipeline

that utilises the open-source python library, Conpy, which I took part in de-

veloping. As studying functional connectivity is important for understanding

the complex processes of the brain, we consider an easy-to-use python library,

that can be used to analyse connectivity on the entire cortex, to be relevant

to the field of neuroscience and other researchers. In the future, we aim to

merge the Conpy and the pipeline into MNE-python, a very popular toolbox

for analysing MEG data, to make the pipeline even more widely available.

My second goal is to apply the DICS pipeline to a dataset measured at Aalto

University and discuss the application and the results. I will consider the

stability of the current implementation and the important key factors that

should be taken into account for good results.

In this master’s thesis, I will first discuss the theory and background

behind the python library and analysis pipeline in chapter 2. Then I will

describe the analysis pipeline in chapter 3 and the results of applying it

to the aforementioned dataset in chapter 4. In chapter 5, I will proceed

to discuss the significance of these results both for the dataset and for the

implementation in general. In chapter 6, I will consider the limitations of this

Conpy library and the future steps that could be taken to further develop it.



Chapter 2

Background

Our pipeline and the Conpy library were developed for analysing functional

connectivity between cortical areas from MEG data. In this chapter, I will

first discuss the term functional connectivity in neuroscience, and then ex-

plain the key points of MEG relevant to this thesis.

2.1 Functional connectivity

In the field of neuroscience, a large part of studies has focused on locating

the source of a specific function in the brain. This approach assumes that the

specialised areas of the brain work together to create the desired output and

that spatially distinct areas in the cortex communicate with each other. Such

functional integration can be measured using statistical dependencies like

correlation between measurements of neuronal activity, defined as functional

connectivity (Friston 2011).

In the most basic form, the communication between neurons can be con-

sidered to be a process where a neuron sends a message along its axon and

synapses to the receiving neuron(s) using existing anatomical connections

(Purves et al. 2004). However, for higher brain function to be possible, the

ability to integrate information flexibly from different spatial locations is es-

sential (Sun et al. 2004). It has been shown that spatially distant neurons

4



CHAPTER 2. BACKGROUND 5

synchronise their oscillations when reacting to visual stimuli (Gray et al.

1989). Singer (1999) suggests that this neuronal phase synchronisation does

not arise from anatomical connectivity but, instead, results from dynamic

interactions in the brain’s network. Salinas et al. (2000) argues that if all

neurons in a group send bursts of activation spikes that are synchronised

within the group, the effectiveness of the message increases. Previous stud-

ies indicate that groups of neurons have a built-in attribute to oscillate, and

this affects their sensitivity to input (Kopell et al. 2000; Burchell et al. 1998).

Coherence is considered to be a suitable measure for studying phase syn-

chronisation (Miltner et al. 1999; Mormann et al. 2000; Sauseng et al. 2005)

and it has been used as the definition of functional connectivity (Horwitz

2003). Fries (2005) introduced the communication-through-coherence (CTC)

hypothesis, which argues that effective interaction between neuronal groups

requires the groups to oscillate coherently and that coherence can be used to

analyse cognitive flexibility.

For a neuronal group to send messages effectively to another group of

neurons, the recipient group has to be excitable. This is possible if the

group sending the message and the group receiving the message are phase-

locked. Studies have shown supporting evidence to this theory, as coherent

oscillations have been found in the γ-frequency band (∼ 25 - 75 Hz) (Gray

et al. 1989; Tallon-Baudry et al. 1997) and the β-frequency band (∼ 20 Hz)

(Tallon-Baudry et al. 1999). It also seems that these coherent oscillations

may exist in lower frequency ranges (Palva et al. 2005). It follows that

coherent oscillations on the cortex can be used as measure of functional

connectivity and functional integration in the brain.

Coherence measures the consistency of phase-difference between two sig-

nals (Maris et al. 2007a). It is a non-parametric measure, as it is estimated

directly from data (Gross et al. 2010). It is comparable to correlation, a very

popular and simple measure of similarity. The disadvantage of correlation is

that it is sensitive to both phase and polarity. While the mathematical defini-

tion of coherence is more complex than that of correlation, it is sensitive only
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to changes in power or phase dynamics. Correlation gives us direct informa-

tion about the shape and time dependency of two signals, while coherence

tells more about the stability of similarity. The choice between correlation

and coherence as a metric depends on the research question at hand (Guevara

et al. 1996).

When calculating coherence, the time series must be transformed to the

frequency domain using a wavelet transformation, fast Fourier transform

or other similar method. To calculate the coherence for these transformed

signals X(f) and Y (f), the auto-spectrum of both signals and the cross

spectrum are needed:

Cohxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
=

|X(f)Y (f)∗|2

X(f)X(f)∗Y (f)Y (f)∗
(2.1.1)

where Cohxy is the coherence between the signals Y (f) and X(f), Pxy is

the cross-spectrum of the signals Y (f) and X(f), Pyy and Pxx are the auto-

spectra of the signals Y (f) and X(f). Y (f)∗ and X(f)∗ are the complex

conjugates of the signals Y (f) and X(f).

Coherence Cohxy can have values between 0 and 1. If the coherence is

zero, the two signals of interest are completely unrelated. If the phase rela-

tionship of two signals remains constant as function of time, the coherence

value is 1. If the value is below one and above zero, it can mean that noise ex-

ists in the system, not all inputs were taken into account or that nonlinearity

exists in the system (Lessard 2005).

As with all dependency measures, coherence has its limitations. Coher-

ence value between two signals can be affected by a common input from a

third source, and therefore it may be impossible to determine the direct de-

pendency between the two signals (Lessard 2005). As a measure of synchro-

nisation for two signals, coherence is sensitive to changes in phase dynamics.

Additionally, estimation of coherence requires the data to be stationary. Var-

ious solutions like event-related coherence and phase synchronisation can be

used to allieviate these limitations (Gross et al. 2010; Srinivasan et al. 2007).

The interpretation of connectivity results needs to be done carefully and
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not before statistical testing has been performed (Gross et al. 2013). How-

ever, the statistical test must be chosen with care, especially if coherence is

used as a measure of connectivity. Generally, coherence is sampled, which

results in a biased estimate of true population coherence. This means that

smaller sample sizes lead to larger bias (Maris et al. 2007a). Connectivity

analysis often inspects a large number of connections, which leads to a mul-

tiple comparison problem, where the likelihood of the null hypothesis being

incorrectly rejected increases with the number of comparisons. Using multi-

ple frequency bands also leads to multiple comparison problems if we want to

test each band separately and control for the number of false positives or neg-

atives across all frequency bands. Different approaches for statistical testing

are recommended. The choice of statistical test depends on the connectiv-

ity measure and the approach used to estimate connectivity. For example,

Gross et al. (2013) suggest the use of surrogate data created artificially to

be compared against the measured data. Maris et al. (2007a) suggest that

non-parametric statistical tests are suitable to be used with coherence.

2.2 MEG

Magnetoencephalography (MEG) is a non-invasive imaging technique which

measures changes in magnetic fields. Analysis of MEG data can help us to

estimate time courses of neural activity in different brain areas. Its good

time resolution makes MEG a suitable method for analysing functional con-

nectivity (Lopes da Silva 2010; Gross et al. 2010).

Neurons transfer information using electric signals. In their resting state,

neurons have a negative resting membrane potential, which is typically be-

tween -40 and -90 mV. The negative potential is caused by the different

ion concentrations between the cytoplasm and extracellular space. The cell

membrane has different permeability to different ions, which causes the differ-

ence in ion concentrations. A stimulus that is strong enough causes changes

in membrane permeability, leading to first rapid depolarisation and then
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hyperpolarisation of the cell. After the hyperpolarisation the membrane per-

meability and thus the membrane potential return to their resting values.

(Purves et al. 2004).

The electric currents are transferred from one nerve cell to another through

synapses, which can be either electric or chemical. In electric synapses, the

presynaptic and postsynaptic membranes are connected with intercellular

channels, which allow passive current flow. In chemical synapses, the two

membranes are not connected and instead neurotransmitters are released

from the presynaptic neuron (Purves et al. 2004). These neurotransmitters

cause changes in the permeability of the postsynaptic nerve cell’s membrane.

This leads to either depolarisation (excitatory response) or hyperpolarisa-

tion (inhibitory response). The flow of synaptic currents is slower than the

rapid action potentials, and MEG signals are mostly caused by the synaptic

current flow (Hämäläinen et al. 1993).

MEG measures only magnetic fields that have a component perpendicu-

lar to the skull, which means that the currents inside neurons must have a

tangential component. As the cortex in the brain is folded, MEG measures

only signals from sources in the fissures, which cause tangential fields that

can be detected (Lopes da Silva 2010). The neurons with largest contribution

to MEG signals are pyramidal neurons, as they typically are perpendicular

to the cortical sheet of grey matter (Hämäläinen et al. 1993). They have

long apical dendrites and when a large enough number of pyramidal neurons

are activated simultaneously, they can generate coherent magnetic fields to

be measured by MEG sensors (Lopes da Silva 2010).

These activated neurons can be modelled as a current dipole, which ap-

proximates the current flow in a small area (Hämäläinen et al. 1993). The

current dipole Q approximates the localised primary current Jp(r), which

together with return current Jv(r) sum to the electric current caused by neu-

ronal activity J(r). The primary current can be defined as in Hämäläinen

et al. (1993):
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Jp(r) = Qδ(r − rQ) (2.2.1)

where the δ is the Dirac delta. The magnitude, direction and position

of the current dipole source must be solved, and this in practice is done by

fitting equivalent current dipole (ECD) from the measured magnetic field

patterns using least-squares approach (Hämäläinen et al. 1993).

The magnetic field B in the quasi-static approximation of Maxwell’s equa-

tions is defined using the primary current Jp(r) is as follows:

B(r) =
µ0

4π

∫
Jp(r

′)×R

R3
(2.2.2)

where the magnetic field is calculated at r and R = r − r′. Using the

quasi-static approximation of Maxwell equations, it can be shown that the

electric current and the magnetic field are linearly related to the primary

current. Solving the magnetic field from the primary current distribution

is called the forward problem (Hämäläinen et al. 1993). The solution re-

quires modelling the conductivity in the brain. The head can be approxi-

mated to be a simple sphere, which leads to results that are generally stable

(Hämäläinen et al. 1993). However, Hämäläinen et al. (1989) suggest that a

boundary-element model (BEM) provides more accurate results for sources

in the frontal and frontotemporal areas. BEM can be used if anatomical

magnetic resonance images (MRI) of the individual are available.

Magnetic fields caused by neuronal activation are very small, around 50

- 500 fT, which means that the detector needs to be sensitive to weak mag-

netic signals. MEG sensors use flux transformers and different sensor con-

figurations are available. Magnetometers have a signal coil on top of the

transformer and a pick-up coil closer to the brain. Gradiometers have a com-

pensation pick-up coil that makes them less sensitive to the more distant

sources. The arrangement of the coils in the sensor affects its sensitivity

to the nearby sources (Parkkonen 2010; Hämäläinen et al. 1993). If we de-

fine L to be the leadfield matrix containing the sensitivity distribution of
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each sensor used in measurement, there exists L that satisfies the following

equation:

B = LQ (2.2.3)

where B is the magnetic field induced by the dipole Q. This equation

results from the linear relation of magnetic field and the electric current to the

primary current. The estimation of the leadfield is called forward modelling

and it attempts to predict the magnetic field produced by a source model on

a sensor level (Baillet 2010).

To localise the sources of measured MEG signals, it is necessary to coreg-

ister the measured data with anatomical information. Before the start of

a MEG measurement, a set of anatomical landmarks on the subject’s head

are identified and then digitised, thus providing a reference frame for the

functional data. The set must consist of at least three landmarks. Whalen

et al. (2008) suggests that the accuracy of the alignment can be further im-

proved with the digitisation of the whole scalp with a digiser. Coregistration

to anatomical data is preferably done using subject’s anatomical MRIs to

achieve higher precision, but if the individual MRIs are not available tem-

plates can be used (Gross et al. 2013). Anatomical images of the brain taken

with MR-scanner contain high resolution information of the tissue structures

(Smith et al. 2004). A source space that contains the possible sources of inter-

ests can be constructed from anatomical images with software like Freesurfer

(Dale et al. 1999; Fischl et al. 1999a). In MEG, source reconstruction is

complicated by the inverse problem. The underlying current sources need to

be estimated from the magnetic fields measured outside of the brain. This

system is ill-defined with no unique solution (Hämäläinen et al. 1993; Baillet

2010). Fitting ECDs is a common method for solving the inverse problem

(Baillet 2010).

The uncertainty in the source reconstruction leads to a phenomenon called

field spread, which is caused by the fact that, theoretically, magnetic fields

extend to infinity. As a result, all MEG sensors can measure it. This means
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that a measured signal contains signals with multiple sources. This creates

challenges especially in connectivity analysis, if we define connectivity as the

dependence of two signals like in correlation. The signal mixing can, in the

worst-case, result in incorrect interpretation of coherence when no actual

interaction exists. Because the number of possible sources is multiple times

larger than the number of sensors, there may exist a source that was not

interpreted as a separate source, which in turn can affect the interpretation

of observed connectivity (Gross et al. 2013). As the source localisation with

multiple possible sources and noisy data is difficult, solutions like spatial

filters and beamformers are used (Baillet 2010).

For dependency-based measures like correlation and coherence, it is often

recommended that the connectivity analysis is performed on source level to

minimise the field spread. Connectivity measures that are based on phase

difference like imaginary coherence (Nolte et al. 2004) can be used to avoid in-

correct interpretations caused by field spread. However, these measures may

also interpret signals with neural origin as noise if they are only sensitive

to phase difference. The interpretation of imaginary coherence in measure-

ments with experimental design can be challenging as the task-related effects

may cause difference in phase difference, magnitude or in both (Gross et al.

2013). Using contrasts, where two conditions are compared, while ensuring

that there is no concomitant difference in oscillatory power, can reduce the

effect of field spread (Gross et al. 2013).

Another common approach is to perform the connectivity analysis using

specified regions of interests (ROIs), which have been selected based on prior

knowledge or maps of neuronal activity. This limits the number of compar-

isons in the connectivity analysis. However, incorrectly selected ROIs may

lead to incorrect interpretation of the underlying interactions, and even when

ROIs are selected correctly field spread may still cause incorrect interpreta-

tions (Schoffelen et al. 2009).



Chapter 3

The pipeline and Conpy

As stated in chapter 1, one of the main tasks of my thesis was to implement a

python-based pipeline and code library, Conpy, that uses DICS beamforming

first introduced in Gross et al. (2001) to estimate oscillatory power and con-

nectivity from MEG data. We wanted to include the modifications that were

used in the studies by Saarinen et al. (2015) and Liljeström et al. (2015), and

now published in van Vliet et al. (2018). The most important modification is

the use of canonical coherence in connectivity analysis, which allows efficient

calculations of all-to-all connectivity by selecting source orientations that

maximise coherence. The original DICS presented in Gross et al. (2001) is

used for coherence from one source of interest. In all-to-all connectivity, con-

nections between multiple sources are considered. The canonical coherence

will be discussed in more detail in section 3.6.

We chose to implement the pipeline using the MNE-python software

(Gramfort et al. 2013; Gramfort et al. 2014). The MNE software includes a

wide variety of functions to process electromagnetic data. When this project

started, the DICS beamformer was also already implemented in MNE, but

it did not have the functionality for calculating connectivity between all pos-

sible sources. The pipeline described here is the stable version published in

van Vliet et al. (2018), where the CSD computations and power mapping

have been merged into MNE-python.

12
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Our goal is that the Conpy and the pipeline will be merged into MNE-

python. We also wanted to publish the pipeline independently to guarantee

that the results published in van Vliet et al. (2018) would remain replicable

also in the future. The code examples here work with Conpy version 1.0 and

MNE-python version 0.16.

The pipeline consists of 7 steps, which are covered in depth in this chapter.

I will first discuss the theory and then demonstrate the implementation with

sample code of how to use the code library. This chapter closely follows van

Vliet et al. (2018). First, the measured MEG data must be pre-processed

so that the analysis can be performed. Then, cross-spectral matrices are

calculated for each subject. A common grid is created and morphed to each

subject to allow group-level analysis. Coherence is calculated using a CSD

matrix and a forward operator containing the leadfield. Group-level analysis

combines the individual level results and uses statistics to remove spurious

connections. These results can then be then visualised.

3.1 Dynamic imaging of coherent sources

Gross et al. (2001) introduced a method for estimating functional connectiv-

ity at the source level called Dynamic Imaging of Coherent Sources (DICS).

DICS can be used to calculate both the power spectra and the coherence of

oscillatory activity. As DICS uses a spatial filter, it is considered a beam-

forming technique.

Beamformers employ discrete spatial filtering to reduce the effect of noise

and signals originating from sources outside the area of interest (Van Veen

et al. 1988) and they have been used successfully in different MEG studies

(Hillebrand et al. 2005; Sekihara et al. 2001; Brookes et al. 2011). Another

benefit is that they do not need prior information of the number of possible

sources as the spatial filter is calculated for each point in the source space.

However, the source space containing the possible sources of interest must

be defined, as the narrowband spatial filter is applied at each defined point.
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Calculating the spatial filter for each point changes the source localisation

problem into a signal detection problem (Hillebrand et al. 2005; Baillet 2010;

Jensen et al. 2010).

The magnetic field resulting from neuronal activation can be represented

with equation 2.2.3. For beamformers in general, Mosher et al. (2003) show

that using a generalised linear solution, the current distribution of a dipole

Q can be defined with the following equation:

Q = CjL
TC−1b B (3.1.1)

where Cj is the covariance matrix for the source currents and Cb the

covariance matrix for the data (Mosher et al. 2003). Now, if σ2
j is defined as

the signal power, we have the relation Cj = diag(σ2
j ). The signal power σ2

j

can then be defined using Cj as in Hillebrand et al. (2005):

σj(r)
2 = (L(r)TC−1b L(r))−1 (3.1.2)

These two equations 3.1.1 and 3.1.2 give us the beamforming algorithm:

Q(r) = A(r)TB = (L(r)TC−1b L(r))−1L(r)TC−1b B (3.1.3)

where A(r) contains the weights of the spatial filter. When the orienta-

tion of the current dipole is not known, the optimal solution can be searched

(Hillebrand et al. 2005). As seen from the equations 3.1.1 and 3.1.2 above,

beamforming uses covariance matrices. For covariance matrices and results

to be accurate, enough data must be collected. As a pre-defined source space

is used, inaccuracies in the head conductor model lead to erroneous results

in beamforming (Baillet 2010).

In Gross et al. (2001) oscillatory components of MEG signals are rep-

resented with the cross-spectral density (CSD) matrix with complex values

instead of a covariance matrix. The cross-spectral density between signals

x(t) and y(t) is defined as X(f)Y (f)∗ as in equation 2.1.1. In Gross et al.

(2001) the time signal is transformed using Welch’s method (Welch 1967).
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However, DICS as presented in Gross et al. (2001) is best suited for contin-

uous data due to its limited time-frequency resolution tradeoff within small

time intervals (Laaksonen et al. 2008). Event-related DICS (erDICS) intro-

duced in Laaksonen et al. (2008) included modifications that allowed more

flexibility with event-related studies. Time-dependent CSDs are calculated

using wavelets, resulting in better time-frequency resolution trade-off. As a

result, erDICS can be used when the study has an event-related design where

the tasks and stimuli appear in random order. erDICS allows the investiga-

tion of oscillatory activity around the occurrence of the stimuli. A caveat

of the wavelet approach is that the time resolution is limited. Additionally,

when CSDs are averaged, we assume that the source orientation remains

static throughout the task. This is a common assumption in event-related

approaches (Laaksonen et al. 2008).

3.2 Data pre-processing

Before our DICS library and pipeline can be applied to a MEG dataset,

several pre-processing steps are necessary. Noisy or flat channels must be

taken into account and artefacts caused by eye saccades and other muscle

activity must be removed. For event-related DICS it is important to split the

measurement data into smaller segments that are centred around the task

stimuli. Here I give only a general overview of these necessary steps. Gross

et al. (2013) contains more discussion and suggestions for good MEG data

pre-processing. For a more detailed discussion, the reader is referred to Jas

et al. (2018).

MEG measurement data often contains artefacts from movements and

some channels may contain low quality data. To increase the signal-to-noise

ratio, artefact removal and de-noising is needed (Jas et al. 2018). For Elekta

Neuromag systems, like the device at Aalto University, the first step is the

application of signal space separation (SSS) or spatiotemporal signal space

separation (tSSS), both available in Elekta MaxFilter software. The software
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also recognises if some sensors did not measure any data. If this step is

left out, these sensors need to be identified by other means. A detailed

explanation for SSS is available in Taulu et al. (2005) and for tSSS in Taulu

et al. (2006).

Artefacts caused by eye blinks can be removed from the data in several

different ways. Data segments with artefacts can be manually or automat-

ically identified and left out, or artefact correction methods can be used

(Gross et al. 2013). Artefact fields often have a specific distribution which

can be taken advantage of to remove artefacts (Nolte et al. 1999). There

are spatial filtering methods that remove noise, like Independent Component

Analysis (ICA) or Signal-Space Projection (SSP). However, modifying the

signal to remove artefacts has the risk that some of the signal of interest is

also lost. Methods that modify the signal by removing artefact components,

like SSP and ICA, are therefore best suited for cases where the number of

trials is already small before artefact rejection (Gross et al. 2013).

MEG data analysis is traditionally event-related; hence the measured

data is segmented and centred on the onset of the stimulus. The MEG

measurement contains information of these onsets. Typically different stimuli

are marked with different codes so that they can be separated in the analysis.

3.3 Cross-spectral density matrices

DICS uses cross-spectral density matrices, which must be calculated for each

frequency band. In the original paper by Gross et al. (2001) discussed in

section 3.1, these were calculated using Welch’s method, which employs a

Fast Fourier Transform (Welch 1967). We chose to use Morlet wavelets as

introduced in Laaksonen et al. (2008). Their definition for Morlet wavelet is

modified from Tallon-Baudry et al. (1997):

M(t, fc, σt) = Se
−t2
2σt ei2πfct (3.3.1)

where S is the scaling parameter S = (σt
√
π)−

1
2 . An important parameter
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is the wavelet width, which is defined as the ratio between frequency fc

and the standard deviation in frequency domain σf , which depends on the

standard deviation in time σt so that σf = 1
2πσt

.

This ratio controls the trade-off between the time and frequency resolu-

tion. One popular tactic is to choose better frequency resolution for lower

frequencies and better time resolution for higher frequencies. If we define the

wavelet width to be n0 = fc
σf

, then the standard deviation σt can be defined

as in Tallon-Baudry et al. (1997):

σt =
n0

2πfc
(3.3.2)

To construct the Morlet wavelet with the chosen length, we define the

time points to evaluate as t = {−5σt,−5σt + 1
fs
, . . . , 5σt}, where fs is the

sampling frequency (van Vliet et al. 2018).

Now we can define the Morlet function Eq. 3.3.1 as

M(fc) = (σt
√
π)

1
2 e

−t2

2σ2t e2iπfct (3.3.3)

The signal x(t) is then transformed to a vector in the frequency domain

X(fc) using the Morlet function defined above using linear combination (∗)
Cross-spectral density between two signals x1(t) and x2(t) for frequencies of

interest is then defined as:

c(x1(t), x2(t)) =
1

Nf

1

Nt

∑
fc

∑
t

(M(fc) ∗ x1(t))×M(fc) ∗ x2(t) (3.3.4)

where the stands for the complex conjugate. Nf and Nt are the number

of frequencies and the number of time points. Equation 3.3.4 results in one

(complex) cross-spectral density value between two channels. The values are

complex if the signals x1 and x2 are distinct. The equation 3.3.4 is then

repeated for each channel pair so that the result is a matrix containing the

cross-spectral density value for each channel pair for frequency fc and time
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point t. This matrix is calculated for each individual data segment (single

CSD) which is then averaged to get the mean CSD matrix C(f) (van Vliet

et al. 2018).

The calculation of CSD matrices was available in MNE-python at the time

of implementation, however there was no option to use the Morlet wavelet.

This functionality is now merged into MNE (van Vliet et al. 2018). The

discrete frequencies were retained in the matrix, so that the same object

could be averaged for the chosen frequency band instead of saving a separate

CSD object for each frequency band of interest. The time window needs to

be defined beforehand to make calculations faster and to save disk space.

Below I show a code sample to demonstrate how to create the mean CSD

for the selected frequency band using Conpy. The data segments ate created

from the raw data and the CSD matrix is computed from the onset of the

stimuli to 600 ms after the onset. Then the matrix is averaged across 17

- 25 Hz frequency range. The decim parameter is the decimation factor,

which down-samples the signal so every 10th sample is used. This makes the

computations faster and more memory efficient.

import conpy, mne

segments = mne.read_epochs(’subject01-epo.fif’)

csd = mne.time_frequency.csd_morlet(segments, frequencies, tmin=0,

tmax=0.6, decim=10)

csd_alpha = csd.mean(17, 25)

3.4 Forward operator and source space

To form the forward operator containing the lead field, the source space

must be defined. Gross et al. (2013) recommends that if anatomical MRIs

are available, they should be used. In this case, MNE uses the Freesurfer

software’s surface functionality (Dale et al. 1999; Fischl et al. 1999a). Briefly

explained, Freesurfer performs several processing steps that strip the skull

from the MR images and classify whether points are white matter or not.
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This segmentation is further used to create white matter surface that is based

on the border of white and grey matter. Another surface created is the so-

called pial surface, which follows the border between gray matter and pia.

The source space contains the locations, the source points, of elementary

dipoles. If surface is used, MNE creates the source space by subsampling

using a defined scheme and the surfaces between white and grey matter

as default. The sensor locations need to be coregistered to the anatomical

coordinates. During the MEG measurement the location of the sensor array

is saved. Before the actual measurement landmarks on subjects’ face and coil

locations are digitized and this information is included in the measurement

files. Initial approximation is done by identifying landmarks from the MRI-

based head surface, after which the coregistration is optimised automatically

(Gramfort et al. 2014).

When analysis is performed on group-level, the results must be compara-

ble across the subjects. In MNE this is commonly done using surface based

normalisation, where the subject’s data is morphed to the average brain

called ”fsaverage” using Freesurfer’s registration methods (Gramfort et al.

2014). This morphing transforms the source space of individual subjects to

the same source space, so that the analysis results are comparable across

subjects. This average brain is included in Freesurfer and it was created

using MR images of 40 individuals (Fischl et al. 1999b). When calculating

oscillatory power, this morphing is used. However, for group-level connectiv-

ity analysis we need the same connections to exist for all subjects to be able

to compare the connections across subjects. Therefore, for each subject, the

exact same points in the source space need to exist, and the connection pairs

must be the same for each subject. As a result, morphing the connectivity

results to the average brain is not possible. Instead, we define the source

space in the average brain and morph it to the each subject. These mor-

phed source spaces are then used for creating the forward operator for each

subject.

A head conductivity model is needed to calculate the potentials and mag-
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netic fields at the surface (Gramfort et al. 2014). If anatomical information

is available, piecewise-constant conductivity model and Freesurfer segmenta-

tion can be used (Jas et al. 2018). In this case, BEM can be used to estimate

the electric potential and magnetic field. BEM methods attempt to solve

the surface potentials of electric currents using numerical methods (Mosher

et al. 1999). MNE uses the linear collocation method introduced in Mosher

et al. (1999) to create the BEM (Gramfort et al. 2014). The forward opera-

tor, which contains the leadfield, models each source point with ECDs using

three separate orthogonal dipoles (Hämäläinen et al. 1993).

The number of source points depends on the choice of subsampling scheme

selected for the source space, ranging from a little over 2000 to over 20 000

source points (Gramfort et al. 2014). Calculating connectivity for all possi-

ble pairs can therefore become computationally expensive, which is why the

number of source points are restricted in the analysis. First, sources too far

away from MEG sensors cannot be reliably detected, so leaving them out of

the connectivity analysis should leave out only connections we cannot reliably

detect. In the pipeline, the default cut-off value for the maximum distance

from a source point to a MEG sensor is 7 cm. However, the cut-off value

depends on the data at hand as we want to maintain enough source points

to cover the cortex, but leave out enough points to make the connectivity

computations feasible. The quality of this step should be checked using vi-

sual inspection. The same exact points need to be defined for every subject

for connectivity analysis. This restriction is done for one subject and then

the forward operators of others are restricted to the same source points. A

good guideline for selecting the subject that is used for restricting the source

space is to find an individual whose head position within the MEG helmet

is close the average position across subjects.

Another way to reduce the computation times during the connectivity

analysis is to use two ECDs instead of three. The three orthogonal dipoles

in a source point are transformed into two orthogonal dipoles tangential to

the spherical approximation of the head. These tangential sources generate



CHAPTER 3. THE PIPELINE AND CONPY 21

stronger magnetic fields than radial sources (Hämäläinen et al. 1993). We

call this modified leadfield the tangential leadfield and recommend using it

for connectivity. This is because computing the canonical coherence with the

tangential leadfield gives stable results while reducing the computation time.

Estimation of oscillatory power requires less computation time, so the use of

leadfields with three dipoles is recommended (van Vliet et al. 2018).

Below is a code example modified from van Vliet et al. (2018) that shows

how to restrict the source space for one subject and create the forward op-

erator. In this example the source space is subsampled with icosahedrons,

which results in 2562 source points for each hemisphere.

import conpy, mne

# Morph the average brain into a subject

src_avg = mne.setup_source_space(’fsaverage’, spacing=’ico4’)

src_sub = mne.morph_source_spaces(src_avg, subject=’subject01’)

# Leave out sources further than distance threshold away form sensors

info = mne.io.read_info(’subject01-epo.fif’) # Information about

sensors

verts = conpy.select_vertices_in_sensor_range(src_sub, dist=0.07,

info=info)

src_sub = conpy.restrict_src_to_vertices(src_sub, verts)

# Create a one-layer BEM model

bem_model = mne.make_bem_model(’subject01’, ico=4, conductivity=(0.3,))

bem = mne.make_bem_solution(bem_model)

# Create the forward operator

trans = ’sub001-trans.fif’ # File containing the MRI<->Head transformation

fwd = mne.make_forward_solution(info, trans, src_sub, bem, meg=True)

# Transform to tangential

fwd_tan = conpy.forward_to_tangential(fwd)
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3.5 Oscillatory power

As previously explained in section 3.1, DICS can be used to map oscillatory

power for a given frequency band using a spatial filter. The power in the

source space is calculated using the CSD matrix and the forward operator

L(r). First the inverse of the CSD matrix is computed. We chose to do

this with Moore-Penrose pseudoinverse (Penrose 1955) as the CSD matrix

is often rank-deficient and, therefore, its inverse cannot be calculated and

an approximation needs to be used. Before calculating the pseudo-inverse,

the result can be made more stable by adding a small value λ to the diag-

onal (van Vliet et al. 2018). An important parameter for the inverse is the

regularisation parameter α, which controls the sensitivity to noise. If the reg-

ularisation value is too small, the noise can dominate the power results. On

the other hand, if the regularisation value is too large, even relevant details

can be lost in the power map. Typical values are between 0.01 and 0.1 (van

Vliet et al. 2018). Now we define the inverse of the CSD matrix as follows:

λ =
αtrace

(
C(f)

)
Ns

(3.5.1)

Ĉ(f)−1 = (C(f) + λI)−1 (3.5.2)

where Ns is the number of the sensors, I is the identity matrix and

(C(f) + λI)−1 is the Moore-Penrose pseudoinverse (van Vliet et al. 2018).

The leadfield can be normalised to increase its stability. Before normal-

isation the leadfield can favour locations close to the sensors as they affect

the sensor values more. The normalisation is done by dividing the leadfield

vector L(r, f) with its norm:

L̂(r, f) =
L(r, f)

|L(r, f)|
(3.5.3)

Now we create the spatial filter for each dipole separately:
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A(r, f) =
L̂(r, f)Ĉ(f)−1

L̂(r, f)Ĉ(f)−1L̂(r, f)−1
(3.5.4)

In our approach the leadfield consists of three orthogonal dipoles, thereby

we treat them as separate sources even though they are at the same loca-

tion. This reduces the denominator to scalar. Equation 3.5.4 is then used to

calculate the power estimates for all dipoles at the source point:

P (r, f) = A(r, f)C(f)A(r, f)T∗ (3.5.5)

The matrix contains cross-power estimates and on the diagonal are the

squared power estimates for each dipole. In Gross et al. (2001) the power

estimate in the dominant direction is found using the largest singular value.

Other common ways to summarise the power are the sum of squared power

and the squared power orthogonal to cortical surface (van Vliet et al. 2018).

The code example below shows the step for calculating the oscillatory

power for one subject. The source orientation that maximises the oscillatory

power by selecting the first singular value of P (r, f) is chosen.

import conpy, mne

# Read the forward operator and sensor information

fwd = mne.read_forward_solution(’subject01-fwd.fif’)

info = mne.io.read_info(’subject01-epo.fif’)

# Read the CSD an average for 17-25Hz band

csd = mne.time_frequency.read_csd(’subject01-csd.h5’)

csd = csd.mean(17, 25)

# Compute spatial filters

filters = mne.beamformer.make_dics(info, fwd, csd, reg=0.05,

pick_ori=’max_power’)
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# Get the power estimates

power = mne.beamformer_apply_dics_csd(csd, filters)

3.6 Connectivity

As discussed in section 2.1, the coherence between two signals can be defined

using the cross-spectral density matrix. However, to be able to calculate

coherence between two points on the cortex, the information contained in

the leadfield needs to be included.

Gross et al. (2001) use coherence as their connectivity measure, and I

discussed the benefits and caveats of coherence in section 2.1. Our pipeline

deviates from the original DICS here: instead of calculating coherence as

presented in section 3.1, we use ”canonical coherence” as our default. Sim-

ulations done in Jalava (2009) showed that when for every source point the

orientation that maximised source power was selected, there was an increase

in coherence for unsynchronised sources. One way to try to avoid this is

by choosing the orientation that maximises the coherence instead of the os-

cillatory power. This is achieved here by iterating through all the possible

orientation pairs and choosing the optimal combination. The number of pos-

sible orientation pairs is often so large that this becomes computationally

intensive (van Vliet et al. 2018).

Jalava (2009) suggests that instead of finding the optimal orientation pair

analytically, a number of discrete tangential orientations can be used. Coher-

ence does not depend on the direction so the possible orientations inspected

need to cover only 180◦. The discrete approximation is more stable and

faster than analytical approach, as in practice only 50 tangential directions

are needed for stable results (Jalava 2009).

We use the regularised CSD matrix defined in section 3.5 to approximate

the oscillatory power, which simplifies the equation of the power estimate for

one dipole r:
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P (r, f) = A(r, f)Ĉ(f)A(r, f)T∗

=

(
L̂(r, f)Ĉ(f)−1

L̂(r, f)Ĉ(f)−1L̂(r, f)−1

)
Ĉ(f)

(
L̂(r, f)Ĉ(f)−1

L̂(r, f)Ĉ(f)−1L̂(r, f)−1

)T∗

=
(
L̂(r)Ĉ(f)L̂(r)

)−1
(3.6.1)

In the tangential forward operator we use two orthogonal dipoles, and

the leadfield L̂(r, θ) for a source point described with two dipoles r = [r1, r2]

as follows:

L̂(r, θ) = L̂(r1) sin θ + L̂(r2) sin θ (3.6.2)

Now, as suggested in Jalava (2009) the tangential orientations θ1 and

θ2 that maximise the coherence between two source points r1 and r2 are

found. This is done by iterating over a discrete number of orientations at

both source points to find the optimal orientations and using the maximal

coherence value (van Vliet et al. 2018):

Coh(r1, r2) = max
θ1,θ2

{
|L̂(r1, θ1)Ĉ(f)−1L̂(r2, θ2)|2(

L̂(r1, θ1)Ĉ(f)−1L̂(r1, θ1)
)(
L̂(r2, θ2)Ĉ(f)−1L̂(r2, θ2)

)}
(3.6.3)

To reduce the computational requirements, in section 3.4 a threshold was

used to leave out sources that are too far away from the sensors, and the

tangential forward operator was introduced. We also use a distance criterion

that requires that for a connection to be inspected, the end points must be

further apart than the selected threshold. Another purpose of the distance

criterion is to reduce the effects of fieldspread discussed in section 2.2. The

default threshold value is 4 cm, but a good threshold value should be chosen

with care, taking into account the research question of the study (van Vliet

et al. 2018).



CHAPTER 3. THE PIPELINE AND CONPY 26

Below is the code example how to calculate coherence for a single subject

and for a single frequency band. The forward operator is first transformed

to a tangential forward operator and the CSD matrix is averaged. Then, the

source pairs of interest are created using the 4 cm threshold and the canonical

coherence is calculated.

import conpy, mne

# Read the forward operator

fwd = mne.read_forward_solution(’subject01-fwd.fif’)

fwd_tan= conpy.forward_to_tangential(fwd)

# Read the CSD and average for 17-25Hz band

csd = mne.time_frequency.read_csd(’subject01-csd.h5’)

csd = csd.mean(17, 25)

# Create pairs

pairs = conpy.all_to_all_connectivity_pairs(fwd_tan, min_dist=0.04)

# Calculate connectivity

connectivity = conpy.dics_connectivity(pairs, fwd_tan, csd, reg=0.05,

n_angles=50)

3.7 Group-level analysis

As stated in chapter 1, this pipeline is meant to be used for studies with

experimental tasks. By calculating the mean difference in coherence values,

contrasts for connectivity between two experimental tasks can be created

across subjects. This approach identifies the parts of network where there

are connectivity changes between the two experimental conditions. The use

of contrasts is also a strategy to reduce the effect of field spread (Schoffelen

et al. 2009).
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In general, the number of connections in connectivity analysis is often

quite large, making the results difficult to interpret. The large number of

connections also leads to a high likelihood that coherent connections without

neuronal basis are included. The challenge is to differentiate reliable connec-

tions from spurious connections. In our pipeline, this differentiation is done

with statistical testing.

First, the connections are evaluated using a one-sided t-test for related

samples, where the coherence values across the subjects between conditions

are compared and the connections in the contrast that are above the selected

p-value or t-value threshold are removed. We also assume that if the mea-

sured activity originates from physiological causes, the area of activation is

larger than one source point, which is a common assumption (Bennett et al.

2009; Forman et al. 1995). If a source point with a connection is distant from

other sources with connections, the likelihood that it is spurious increases.

The pipeline offers two options to prune isolated connections: connections

can be evaluated with distance-based hierarchical clustering or with modi-

fied version of the non-parametric clustering-permutation test introduced in

Maris et al. (2007b).

When clustering is used, the connections are grouped into cluster based on

their proximity using agglomerative hierarchical clustering, and only clusters

with number of connections larger than a certain threshold survive. This

approach controls the rate of false positives, as spurious connections are

removed. In hierarchical clustering, the observations are partitioned into

clusters using a similarity measure (here the Euclidean distance). In agglom-

erative hierarchical clustering, at the start, each object belongs to its own

cluster and these clusters are then joined bottom-up using a linkage algo-

rithm (Aggarwal et al. 2014). The important parameters for this approach

are the minimum number of connections for a cluster to be accepted and

the maximum distance the start and end points are allowed to vary to be

considered to belong to the same cluster. This method was used to prune

connections in Liljeström et al. (2015).
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However, the clustering approach uses the size of the clusters as a thresh-

old, rejecting all clusters smaller than a certain threshold. The modified

non-parametric clustering-permutation test controls for false positives using

randomly permuted data and assigns a p-value to each cluster. Connections

close to each other and with t-values that have the same sign are grouped

into the same cluster using hierarchical clustering. For every cluster, a cluster

t-value is assigned by summing the absolute t-values inside the cluster. The

condition labels for a random number of subjects are changed and then the

largest t-values are added to a list of t-values. After the permutations have

been repeated many times, only the clusters with t-value higher than 95%

of the t-values created with the permutations are considered significant and

others are removed. Important parameters for this function are the same

distance parameter as in the agglomerative hierarchical clustering method

and the initial t-value threshold. Connections with t-values smaller than the

threshold (or larger than the negative threshold value) are discarded. Large

clusters often have a larger cluster t-value, meaning they are more likely to

be labelled significant. The important note is that the significance is for the

entire cluster and does not give detailed information on how the connections

inside the cluster affect the significance (Maris et al. 2007b).

Code example to how to perform the group-level analysis for three sub-

jects is shown below. The connections are transformed to the common brain

to facilitate the group-level inspection. Then the contrast is created from the

grand average conditions and thresholded using two-sided t-test. Then the

remaining connections are further limited using hierarchical clustering.

import conpy, mne

# Morph to fsaverage brain

fsaverage = mne.setup_source_space(’fsaverage’, spacing=’ico4’)

subjects = [’subject01’, ’subject02’, subject03’]

conditions = [’task1, ’task2’]

cons = dict()
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for condition in [’task1, ’task2’]:

# Go through subjects

for subject in subjects:

con_fname = subject + condition + ’connectivity.h5’

con_subject = conpy.read_connectivity(con_fname)

# Morph the Connectivity to the fsaverage brain.

con_fsaverage = con_subject.to_original_src(fsaverage)

cons[condition].append(con_fsaverage)

# Average the connection objects.

ga_con = dict()

for cond in [’task1, ’task2’]:

con = cons[cond][0].copy()

for other_con in cons[cond][1:]:

con += other_con

con /= len(cons[cond]) # compute the mean

ga_con[cond] = con

# Statistics

contrast = ga_cond[’task1’] - ga_cond[’task2]

t, p = conpy.group_connectivity_ttest(cons[’task1’],

cons[’task2’])

con_sig = contrast.threshold(pval, crit=p, direction=’below’,

copy=True)

con_clust = conpy.cluster_threshold(con_sig, fsaverage)

3.8 Visualisation

At the end of the analysis, the number of connections depends on the data,

the statistical threshold and the clustering parameters. After statistical test-

ing, there may still be even thousands of connections left. We introduce two



CHAPTER 3. THE PIPELINE AND CONPY 30

different ways to summarise and visualise the data to make the results easier

to interpret. First, we introduce a cortical degree map. This map includes

the number of connections after statistical thresholding from and to a source

point. Source points with a large number of possible connections tend to

have a larger number of surviving connections, making it harder to interpret

the overall connectivity. The degree value may be divided by the number of

connections to scale the connectivity values (van Vliet et al. 2018).

Second, we use cortical parcellations. The cortex has been divided into

smaller areas, called parcels, using prior information (Fischl et al. 2004). A

parcellation consists of parcels covering the entire cortex. These parcella-

tions are provided for example in the Freesurfer software that MNE uses

to create the source spaces (Gramfort et al. 2014). Each parcel contains a

list of source points that belong to it (Fischl et al. 2004). The connections

between two parcels are summarised using a chosen summary statistic, like

the number of connections between them (”degree”), sum of the incoming

and outgoing connection strengths (”sum”) or the absolute maximum value

of the connections (”absmax”). There is also an option for the user to define

their own summary statistic if they wish. When ”degree” or ”sum” is used,

the larger parcels often have larger values, so dividing by number of possible

connections can be used to reduce the bias. After the connections have been

summarised to parcels, circular connectograms are used to visualise the re-

sults. A connectogram is a visualisation where the connections are visualised

as a line between the connected source points, here regions. In a circular con-

nectogram the sources are arranged in a circle. A basic visualisation can be

created using a simple connectivity parc.plot(), but different parameters

can also be tuned to improve the interpretability and the visual appearance

of the connectogram.

import conpy, mne

# Load thresholded connectivity contrast

connectivity = conpy.read_connectivity(’contrast.h5’)
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# Create degree map and plot left hemisphere

brain = con.make_stc("degree", weight_by_degree=True).plot(hemi=’lh’)

# Read parcellation "parcellation" for the average brain

parcels = mne.read_labels_from_annot(’fsaverage’, ’parcellation’)

# Summarise to parcels

connectivity_parc = connectivity.parcellate(parcellations,

weight_by_degree=True)

# Plot connectogram

connectivity_parc.plot()



Chapter 4

Application to real data

In this chapter the implemented DICS pipeline is applied to an existing

dataset to demonstrate the functionality of our pipeline. The dataset was

measured at the Aalto University, Finland and it was analysed using the steps

and guidelines presented in chapter 3. This dataset is a part of another study

at Aalto University Department of Neuroscience and Biomedical Engineering

and it was designed to be well suited for connectivity analysis. The data

was measured on two separate measurement days, allowing us to compare

the similarity of the group-level results and thus discuss the stability of the

pipeline described in chapter 3.

4.1 Description of the dataset

Twenty right-handed native Finnish speakers took part in two MEG measure-

ment sessions and one MRI session. Ten subjects were male and ten female,

with mean age 25.2 years (range 21 - 35 years). None of the subjects had a

history of neurological disorders, psychological disorders or dyslexia. All had

normal or corrected to normal vision and they consented to the experiments

with prior approval of Aalto University Research Ethics committee.

The MEG experiment included four different tasks. In the ”naming”

task subjects were shown pictures and were asked to name the object in

32
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the pictures out loud. In the semantic task, called ”categorical”, subjects

answered ”yes” or ”no” depending on whether the object in picture was a

living thing or not. There were also two visual tasks, where the subjects

answered ”yes” if there was a cross in the middle of the picture. In one

of the visual tasks, ”visual”, the pictures were objects and in the other,

”scrambled”, task they were scrambled to make them unrecognisable. All

answers were given in Finnish. The tasks were practiced before the recording

sessions. The tasks were organised in five sets each consisting of 8-9 blocks.

Each block contained ten pictures. There were two sessions, each consisting

of 44 task blocks in a randomised order.

Four sets of pictures were used as stimuli. In the naming task and in

the categorical task there were 100 pictures of objects in each session. The

visual tasks had 120 pictures of which 20 were target images with a cross

in the middle and were not used in the analysis. The pictures were line

drawings of objects or scrambled images. Scrambled images were created

from the object images and their identifiability was tested with subjects not

participating in the actual MEG study. 74% of the scrambled images could

not be identified. The naming agreement for objects was also assessed with

subjects not participating in the actual study (22 subjects, nine males, mean

age 26 years, range 19 - 33 years) and for an object to be included in the

set 16 subjects had to agree on the naming. The names varied from 3 to 11

letters in length, and there were no compounds.

Categorisation between living and nonliving objects was evaluated by nine

subjects that did not take part in the measurement sessions (5 males, mean

age 26.7 years, age range 20 - 32 years). The number of living and nonliving

objects was the same in the three tasks where objects were used. There

was no statistical difference between the picture sets in naming agreement,

categorisation agreement, word length or word frequency (Kruskal-Wallis

test, p > 0.05 (Kruskal et al. 1952)). There was no significant difference

between any sets in luminance (one-way ANOVA, p > 0.05).

MEG was recorded using a Vectorview whole-head MEG (Elekta Oy,
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Helsinki Finland) with 306 channels. For blink rejection, vertical and hor-

izontal electro-oculograms (EOG) were recorded. Mouth movements were

monitored with electromyogram (EMG) and speech responses were collected.

Indicator coils were placed so that the position of the head in relation to the

MEG sensor array could be determined. One subject was left out during the

analysis as they had too many incorrect answers in one task.

4.2 Applying the pipeline

First the measurement data was processed with the Elekta Maxfilter software

package. tSSS was applied to remove artefacts in the data and transformed it

the head position to be same in both measurements (Taulu et al. 2006). The

effect of eye blinks was further reduced using fastICA (Nolte et al. 1999).

Epochs were created using trials with correct answers from -0.4 to 1.2 s

relative to onset of the stimulus. The quality of the artefact removal was

then visually checked, and epochs with remaining artefacts were left out of

the analysis. The number of epochs for each day across conditions was then

equalised. The Freesurfer pipeline was used to create the cortical surfaces

from the anatomical MRIs, and a boundary-element model was created for

the forward operator (Dale et al. 1999; Fischl et al. 1999a).

For computations of oscillatory power and connectivity analysis, fre-

quency bands of interest were defined as 17 - 25 Hz (high β), 31 - 45 Hz

(low γ) and 60 - 90 Hz (high γ). The choice of frequency bands mostly fol-

lows Liljeström et al. (2015) but a larger low gamma band was chosen as

evidence of coherent oscillations has been found in these frequencies (Palva

et al. 2005). Averaged CSDs were computed in the 0 - 600 ms time range for

each condition. Additionally a ”baseline” CSD was calculated using data in

the -200 - 0 ms time range. This was done to create a baseline for subject’s

brain activity, so that task-related effects could be compared to the state

where the subject is not performing a task. In the power and connectivity

analysis, the CSD matrix was averaged for each frequency band of interest.
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For power and connectivity results I will mainly focus on the 17 - 25

Hz frequency band and the contrast ”naming vs visual”. Based on the ex-

perimental design, the ”naming” condition was expected to differ from the

”visual” condition.

To inspect the stability of the CSD matrices, the CSD matrices for each

subject and for each measurement day were calculated for the ”naming”

condition and for each data segment. The CSDs for one task should be similar

across the measurement days. Then, 80% of these single-trial CSDs were

sampled without replacement and averaged. The sampling was repeated 1000

times. After this step, all subjects had 1000 mean CSDs for the ”naming”

condition for each measurement day. We focused on only the real-valued

sensor power as the computations for oscillatory power discard the complex

part. This also makes the visualisation and the use of statistics easier. The

similarity of the sensor power between the two days was compared with

Pearson’s correlation coefficient, which is a quantitative measure of linear

correlation (Hauke et al. 2011). Instead of just three frequency bands, the

frequency bands were selected so that they covered frequencies from 3 to 90

Hz to detect also changes in the correlation coefficient outside of the chosen

frequency bands. The mean correlation coefficient values between the two

measurement days for randomly sampled CSDs can be seen in figure 4.1.

The correlation coefficients for within the same day were larger than the

correlation coefficients between the two days across frequency bands an sub-

ject in at least 99% cases, when comparing the randomly sampled mean CSDs

with each other for each subject. When the CDSs were compared between the

two measurement days, the correlation coefficient varies markedly between

subjects in different frequency bands, as the smallest mean correlation coeffi-

cient value is 0.48 (figure 4.1c). This implies that the CSDs for the ”naming”

task are not similar on the first and second measurement day for all subjects.

Some subjects have mean correlation coefficient value higher than 0.90 in all

frequency bands, and for others the mean correlation coefficient varies in the

different time windows.
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The ”fsaverage” brain was morphed into each subject to allow group-level

analysis. This morphed source space with 5124 source points on the cortex

was used to create the forward operator for each individual and for each mea-

surement day. For one subject, the source locations in the forward operator

further than 7 cm away were left out to limit the number of possible con-

nections. We visually confirmed that the remaining source locations covered

the entire cortex. From the remaining source locations, source pairs were

created for all-to-all connectivity so that all pairs were at least 4 cm apart

from each other. The forward operators were restricted to contain the same

source locations. When oscillatory power was calculated, no source locations

were left out.

Power estimates were calculated for each subject and for each day. The

results were summarised by selecting the source orientation that maximised

the power. Group-level estimates were computed by taking the average of

the data across subjects. Contrasts between two conditions were formed by

calculating the difference between group-level conditions and dividing by the

baseline. The resulting group-level contrasts ”naming vs visual” (17 - 25 Hz,

0 - 600 ms) for each day can be seen in figure 4.2. Visual inspection of the

power results shows that the results for the separate days appear similar in

that some of the areas with oscillatory power detect are same for both days.

Positive (red) values indicate that the group-level power estimate for the

naming condition is larger than for the visual condition, and negative values

(blue) indicate that the power estimate for the visual condition is stronger.

The strength of the contrast differs between the days, but the locations are

similar.
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(a) The mean Pearson correlation coefficients for the first measurement day.

(b) The mean Pearson correlation coefficients for the second measurement day.

(c) The mean Pearson correlation coefficients between the first and second measurement

day.

Figure 4.1: The mean Pearson correlation coefficients for the randomly sam-

pled mean CSD diagonals for the ”naming” task.



CHAPTER 4. APPLICATION TO REAL DATA 38

(a) Group-level power results for the first measurement day.

(b) Group-level power results for the second measurement day.

Figure 4.2: Group-level power results for the ”naming vs visual” contrast

in the 17 - 25 Hz frequency band and 0 - 600 ms time range. The contrast

values were divided by the baseline condition.
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The subject-level connectivity was computed for each condition for each

day and each frequency band. To compare the similarity of the connectivity

results between the two days, for each subject, Pearson’s correlation coeffi-

cient was calculated between the coherence values of two measurement days.

The correlation coefficient was computed for each frequency band of interest

and for each condition. The subject-level Pearson correlation coefficients are

presented in figure 4.3. The coefficient values were calculated for the coher-

ence values between the source pairs. The subject-level correlations show

that for some subjects, the conditions have a high correlation coefficient. For

frequency band 17 - 25 Hz and the condition ”naming” in figure 4.3a, 11 out

of the 19 subjects have Pearson correlation coefficient value larger than 0.9,

and the smallest value is 0.85. Additionally, the same subjects have smaller

coefficients across all three frequency bands. In the 60 - 90 band (figure 4.3c),

the coefficient values are higher than in the 31 - 45 Hz or 60 - 90 Hz band for

most of the subjects. The largest correlation values can be found in the 60

- 90 Hz band. Subject kv 21 is an exception, performing best in the 31 - 45

Hz band and having the lowest values in both low gamma and high gamma

band.
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(a) Pearson’s correlation coefficient for frequency band 17 - 25 Hz.

(b) Pearson’s correlation coefficient for frequency band 31 - 45 Hz.

(c) Pearson’s correlation coefficient for frequency band 60 - 90 Hz.

Figure 4.3: Pearson’s correlation coefficient for the coherence values for each

subject and each condition between the measurement days. The values were

calculated for the three frequency bands of interest the time window 0 - 600

ms.
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In the group-level analysis, the Pearson correlation coefficient was calcu-

lated for the mean coherence values of the source pairs across all subjects, for

each condition. The results are shown in figure 4.4. Then the signed mean

difference between the ”naming” and ”visual” conditions across subjects was

computed. Two-tailed t-test for related samples was used to calculate the

t-value and p-value for the ”naming” vs ”visual” contrast, and connections

with p ≥ 0.0005 or larger were removed. These contrasts were clustered using

hierarchical clustering so that only clusters with size of at least 20 connec-

tions survived. Thresholding was done to remove spurious connections from

the data. For the visualisation with a circular connectogram, the cortex was

first parcellated using the Destrieux parcellation provided in the Freesurfer

software (Destrieux et al. 2010). This parcellation was modified so that the

average surface area of each parcel was 110 mm2 , as shown figure 4.5.

Figure 4.4: Pearson’s correlation coefficient for the group-level coherence

values between the source pairs in the time window 0 - 600 ms.
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Figure 4.5: Parcellation scheme used for summarising connectivity for visu-

alisation. Regions not included are marked in black.

These thresholded contrasts on the parcellated cortex were then visualised

using circular connectograms. Additionally, the number of connections from

each source point was computed and visualised in a degree map. To see how

the choice of statistical threshold affected the connectivity results, the con-

nectograms were also thresholded using p-value 0.005. The connectograms

are shown in figure 4.6. The degree maps are shown in figure 4.7. The degree

maps share sources that had significant connections and the locations of the

sources are often the same or close by. However, the degree-map for the

second measurement day contains more sources than the one for the first.

Some sources that exist in the degree-map for one day, did not survive the

statistical testing and clustering in the other.

To compare the similarity of the connectograms, the Jaccard index be-

tween the two days was calculated. Jaccard index is defined as the size of

the intersection of two sets divided by the size of union of the two sets (Real

et al. 1996). Here the intersection is the pairs that remain in both connectiv-

ity patterns, and the union is the pairs that appear only in one connectivity

pattern. No weighting was used. To calculate the p-values for the results,

the same number of pairs as in the connectogram was randomly sampled
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from all possible pairs 1000 times and for each contrast. The p-value was

calculated as the percentage of Jaccard indices of randomly sampled pairs

higher or equal to the measured Jaccard index. The Jaccard indices for the

contrasts thresholded with p=0.0005 are in table 4.1. The Jaccard indices

for the contrasts for p=0.005 are in 4.2.

The group level connectivity results show that that the connectograms for

the two measurement days (Fig. 4.6a) do not share all the same connections,

and for all contrasts and all frequency bands the Jaccard index is small (table

4.1). Only ”naming vs scrambled” has a significant Jaccard similarity index

value (p ≤ 0.05) in all the frequency bands, but each contrast has a significant

Jaccard index in at least one of the frequency bands.
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(a) Connectograms for the ”naming vs visual” contrast, p=0.0005.

(b) Connectograms for the ”naming vs visual” contrast, p=0.005.

Figure 4.6: Group-level connectivity results for the 17 - 25 Hz frequency

band for first and second measurement day, cluster threshold = 20. The

scale is the number of existing connections between two labels, divided by

the number of possible connections between the labels.
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(a) The degree map for ”naming vs visual” contrast for the first day.

(b) The degree map for ”naming vs visual” contrast for the second day.

Figure 4.7: The group level degree maps or the 17 - 25 Hz frequency band

for first and second measurement day, p=0.0005 and cluster threshold = 20.

The scale is defined as the number of connections for a source, divided by

the number of possible connections of that source.
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Table 4.1: Jaccard index for the connectograms (p=0.0005, cluster thresh-
old 20) in the frequency bands of interest. Jaccard index is reported with
4 floating point precision and the p-values are rounded to one significant
number.
Frequency band First condition Second condition Jaccard index p-value

17 - 25 Hz

Categorical Naming 0.0714 0.0009
Categorical Scrambled 0.0360 0.003
Categorical Visual 0.0297 0.01
Naming Scrambled 0.0306 0.04
Naming Visual 0.0185 >0.05
Scrambled Visual 0.0236 >0.05

31 - 45 Hz

Categorical Naming 0.0316 0.005
Categorical Scrambled 0.0083 >0.05
Categorical Visual 0 >0.05
Naming Scrambled 0.0374 0.02
Naming Visual 0.0398 0.007
Scrambled Visual 0.0061 >0.05

60 - 90 Hz

Categorical Naming 0.0078 >0.05
Categorical Scrambled 0.0241 >0.05
Categorical Visual 0.0313 0.01
Naming Scrambled 0.0714 0.001
Naming Visual 0.0429 0.001
Scrambled Visual 0.0050 0.01
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Table 4.2: Jaccard index for the connectograms (p=0.005, cluster threshold
20) in the frequency bands of interest. Jaccard index is reported with 4
floating point precision.
Frequency band First condition Second condition Jaccard index p-value

17 - 25 Hz

Categorical Naming 0.2131 <0.001
Categorical Scrambled 0.2295 <0.001
Categorical Visual 0.1970 <0.001
Naming Scrambled 0.2629 <0.001
Naming Visual 0.2273 <0.001
Scrabled Visual 0.2118 <0.001

31 - 45 Hz

Categorical Naming 0.1511 <0.001
Categorical Scrambled 0.1607 <0.001
Categorical Visual 0.1765 <0.001
Naming Scrambled 1 <0.001
Naming Visual 1 <0.001
Scrabled Visual 0.1549 <0.001

60 - 90 Hz

Categorical Naming 0.1638 <0.001
Categorical Scrambled 0.1878 <0.001
Categorical Visual 0.2140 <0.001
Naming Scrambled 0.2817 <0.001
Naming Visual 0.2430 <0.001
Scrabled Visual 0.1556 <0.001
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Discussion

My two goals in this thesis were to introduce a code library and a pipeline

that is based on the DICS method and to demonstrate its functionality with

a real MEG dataset. I have now discussed the pipeline available in the Conpy

library in chapter 3 and shown how it can be applied in chapter 4. Here I

will discuss the results shown in chapter 4. Then, I will use these results to

discuss the current state and future of the pipeline.

As stated in chapter 4, the randomly sampled CSDs from the same mea-

surement day are very similar (figures 4.1a and 4.1b), which implies that the

CSDs for the naming task are stable. However, the comparison between the

two measurement days shows variation in the Pearson correlation coefficient.

This may be due to artefact removal: if it has been more successful for one

measurement day than for the other, it may affect the similarity results. How-

ever, if there were noisy data segments in the data of one measurement day, it

should also affect the correlation coefficients in the within-day comparisons.

Subject may also have performed differently during the two measurement

days. Research has suggested that different factors like sleep deprivation

(Dinges et al. 1997) and stress (Warm et al. 2008) can affect subject’s perfor-

mance. Additionally, the performance can be affected by non-physiological

factors like personality characteristics (Rose et al. 2002).

The power results (figure 4.2) would suggest that the source level power

48
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estimates are stable, as we have located the same areas with strongest dif-

ferences for both days. However, the power results of the two measurement

sessions are not identical. Larger differences are visible in the connectivity

results. The variance between subjects and the high correlations within sub-

jects may indicate that the difference in group-level connectivity results is

caused by differences between the subjects. The differences in the subject-

level correlations could also explain the correlation values for the group-level

comparison in figure 4.4. The degree-maps share some of the sources but are

not identical (figure 4.7). The differences may be due to spurious connections

that were not successfully removed or result from the difference between the

CSD matrices.

If the assumption is that the artefact removal has been successful, these

results imply that some subjects did not perform the same in the two separate

measurements. The other explanation for the difference between the two

measurement days is that the pipeline described in this thesis is not stable.

The results may also be affected by the low number of samples.

For this dataset, there are several different approaches that can be taken

to attempt to pinpoint the cause of the differences. First, randomly sampling

all other tasks could be used to attempt to explain the differences in the

contrasts: if only the ”naming” task is stable, it would possibly lead to

differences in contrast level results. Another analysis approach, like minimum

norm estimates (Gramfort et al. 2014), could be used for comparison. If the

other analysis approach leads to unstable results, this would imply that the

data itself is unstable. The data segments from the separate days could be

averaged together to sample 80% of them 1000 times. If the pipeline results

from these randomly sampled data segments are stable, the reason for the

differences may be that we have too few samples in each condition. In this

scenario joining the data from the two measurement days together would

create more stable results.

Based on the similarities in sensor power within one measurement day,

the CSD calculation can be considered stable as the CSDs calculated from
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the same data have correlation coefficient higher than 99% on average. This

could imply that the difference in group level results between the two mea-

surement days is not caused by the CSD calculations, but instead from other

factors like instability in the later steps in the pipeline or intra-subject dif-

ferences. However, it is important to note that these results apply only for

the ”naming” task. The next step would be to calculate the CSD similar-

ity for the randomly sampled CSDs for all other conditions to see if they

result in comparable similarity values. Additionally, here we focused only

on the diagonal values with the sensor power. Consequently, there might

be larger variation outside the diagonals, which could have an effect on the

connectivity results.

The differences outside of the diagonal may explain the results for subject

kv 21, who has Pearson coefficient 0.9492 for the CSDs, but the correlation

between the connectivity results in the same band is below 0.75. The differ-

ences can result from imperfect preprocessing, meaning that some artefacts

remain in the data for one day but not in the other. Subject kv 21 does,

however, have lower similarity values than the other subjects.

The variation in the p-values for Jaccard indices (table 4.1) may imply

that the connectivity results are unstable. However, each contrast that in-

cludes ”categorical” or ”naming” condition is significant in either the 17 - 25

Hz or 31 - 45 Hz frequency band. Thus the task-related effects for these two

conditions may be more stable in these two frequency bands and not others.

The instability in the other frequency bands could be due to the task-related

effects being too weak. For comparison, the results for p=0.005 with the same

clustering threshold contain a larger number of connections and have signifi-

cant and markedly larger Jaccard indices across all the frequency bands and

for all conditions. However, the connections that survive the thresholding

with p=0.005 do not survive the stricter p=0.0005 threshold. This implies

that the shared connections in the connectograms for p=0.005 are not stable

enough to survive stricter thresholding. One possibility is that the p-value

0.0005 is too strict and connections with true physiological cause are also
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removed.

On the group level the conditions have large correlation values (above 0.8,

figure 4.4) in each frequency band as the average across all subjects is calcu-

lated. Therefore, one cause for the differences in connectograms can be the

computation of the signed mean difference between conditions, as the group

level results for each condition appear relatively stable. Taking the difference

may lower the similarity between the two measurement days, and the varia-

tions within and between subjects in statistical testing then further reduce

the similarity. This further supports the theory that the group-level results

are not similar enough to survive the statistical thresholding. Pearson cor-

relation coefficient assumes that the relationship between the two measures

is linear, which can lead to misleading results. However, Pearson correlation

coefficient is used to measure the strength of the variables’ relationship, mak-

ing it suitable for this master’s thesis (Hauke et al. 2011). Additionally, the

choice of a suboptimal interaction metric would not explain the differences

that result when comparing two group-level conditions.

There is also the possibility that the reason for the difference between

the measurement days is caused by preprocessing. This would mean that the

results using this pipeline depend on the steps performed before the appli-

cation. While preprocessing is an important step in MEG, different results

caused by small differences in the preprocessing pipeline would imply that

the pipeline is not stable. Therefore, the next step for this pipeline should be

inspecting how sensitive the pipeline is to the preprocessing. Making small

changes in the preprocessing parameters and applying the pipeline again af-

ter confirming that the preprocessing appears successful could yield more

information about the stability of the implementation. Large changes in the

results would imply sensitivity to the choices made in preprocessing step.

This can in turn cause misleading interpretation from the results.

I discussed some of the caveats of coherence as interaction metric in sec-

tion 2.1. Signal mixing caused by field spread appears as phase difference

of 0◦ or 180◦, so the spurious connections caused by the field spread could
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be avoided with the use of the imaginary part of the coherence. However,

this also makes coherence insensitive to the couplings with zero phase with

true physiological causes. Additionally, interpretation of imaginary coher-

ence when comparing two conditions is challenging (Gross et al. 2013). This

is why we chose to use coherence instead, and chose to reduce the effect of

field spread by inspecting only connectivity pairs further than the threshold

(here ≥ 4cm).

The canonical calculation of coherence attempts to find the orientations

that maximise the coherence. As suggested by Jalava (2009), only a discrete

number of tangential combinations are considered and the radial sources are

ignored to reduce the computational requirements. This approach results

in stable estimates and is well suited for studies where we are interested

in differences between experimental conditions. However, another criterion

for source orientation selection may be more suited, if we wish to estimate

absolute coherence. Our approach to optimise the source orientation for each

condition separately makes the solution less likely to prefer the condition

with less noise. However, using CSD across all conditions would maximise

the likelihood of field spread effects being removed in the contrasting step

(van Vliet et al. 2018).

Merging Conpy into MNE allows further development of the code to make

the implementation even more stable, usable and computationally efficient.

For example, implementing scaling that allows the use of magnetometers in

addition to gradiometers increases the amount of signal data we can use in

the computation. More options in different steps of the pipeline would give

the users more opportunities to use the included functions so that it is best

suited to their data and research question.
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Conclusions

In this thesis I have introduced the Conpy library and a pipeline that allows

us to map the oscillatory activity on cortical surface through power and

coherence. We have introduced an implementation of canonical calculation

of coherence, which finds the source orientations that maximise the coherence

value between two ECDs. This is a computationally fast way of gaining stable

connectivity results and allows the study of all-to-all connectivity with the

DICS beamformer. The statistics and parcel-level analysis make it easier for

researchers to interpret the results on different levels, from source points to

larger parcels.

The aim of this project was to make a pipeline that is straightforward to

use, with clear instructions and examples, so that all interested researchers

would be able to use it. Integrating this pipeline into a widely known MEG

data analysis toolbox allows us to reach a wider audience and to increase the

usability of this pipeline even further. The source code for this project was

made available so that other researchers interested in using DICS beamformer

could easily also develop it further to suit their own needs and research

interests of the scientific community. Releasing the source code also means

that our instructions will apply even if the functionality integrated in MNE

changes in the future.

I have discussed the mathematics behind this approach and shown the

53
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necessary steps of how to use this pipeline. I have shown how the pipeline can

be applied to a real world dataset and discussed the results of this application.

The dataset was well suited for this pipeline, as the same subjects took part

in the same experiment on two separate days. The contrasted connectivity

results imply that the oscillatory activity and connectivity differ between

the experimental tasks. From the connectivity results we conclude that, for

this particular dataset, the results for two measurement days differ, but the

sensor power and oscillatory power results imply that this is not caused by

the pipeline alone. Care should be taken on how to interpret the results, and

many parameters like minimum threshold between connectivity pairs should

be chosen based on the dataset at hand.
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