
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Tuomas Savolainen

Fast scale and illumination invariant

method for region labeling

Master’s Thesis

Espoo, December 23, 2018

Supervisor: Assistant Professor Juho Kannala

Advisor: Assistant Professor Juho Kannala

The document can be stored and made available to the public on the open internet

pages of Aalto University. All other rights are reserved.

Aalto University

School of Science

Master’s Programme in Computer, Communication and Infor-

mation Sciences

ABSTRACT OF

MASTER’S THESIS

Author Tuomas Savolainen

Title Fast scale and illumination invariant method for region labeling

Major Computer Science Code SCI3042

Supervisor Assistant Professor Juho Kannala

Advisor Assistant Professor Juho Kannala

Date December 23, 2018 Pages vi + 59

This work describes how to find 3D objects in 2D images. The images may contain

various illumination conditions and backgrounds. Furthermore the distance and

the rotation of the camera with respect to the object can be arbitrary. The

method described in this work provides a way to reduce computation time of

the 3D object localization problem by searching only from the regions of the

image that include a combination of the most common colors of the object. The

accuracy and speed of the implementation is tested on images taken under various

illuminations and backgrounds.

Keywords GPU, parallel programming, machine vision, inertial measure-

ment

Language English

ii

Aalto-yliopisto

Perustieteiden korkeakoulu

Tietotekniikan maisteriohjelma

DIPLOMITYÖN

TIIVISTELMÄ

Tekijä Tuomas Savolainen

Työn nimi Nopea mittakaava- ja valaistusinvariantti metodi alueiden luokitteluun

Pääaine Tietotekniikka Koodi SCI3042

Valvoja Apulaisprofessori Juho Kannala

Ohjaaja Apulaisprofessori Juho Kannala

Päiväys 23. joulukuuta 2018 Sivumäärä vi + 59

Tämä työ kuvailee miten kolmiulotteisia esineitä voi löytää kaksiulotteisis-

ta kuvista. Kuvat voivat sisältää vaihtelevia valaistusolosuhteita ja taustoja.

Lisäksi kameran etäisyys ja avaruuskulma suhteessa esineeseen on mielivaltai-

nen. Tässä työssä esitetty menetelmä antaa tavan vähentää kolmiulotteisen esi-

neen löytämisen laskenta-aikaa etsimällä ainoastaan niistä kohdista, joissa on yh-

distelmä esineen yleisimpiä värejä. Menetelmän tarkkuus ja nopeus on testattu

kuvilla, jotka on otettu erilaisilla valaistuksilla ja taustoilla.

Asiasanat näytönohjain, rinnakkaisohjelmointi, konenäkö, liikkeen mit-

taus

Kieli Englanti

iii

Acknowledgements

I would like to thank all my teachers, friends and family for your continuous

support during my studies. Without your help and advice any off this would

not have been possible.

Espoo, December 23, 2018

Tuomas Savolainen

iv

Contents

1 Introduction 1

2 Background 3

2.1 Light and color . 3

2.2 Global illumination . 3

2.3 Pinhole camera model and projective space 6

2.4 Frequency space and image compression 8

2.5 Boundary functions and gradient in 2D 10

2.6 Region connectivity . 12

2.7 Computation model and processor architecture 13

2.8 Parallel processing and memory 14

2.9 Related work . 15

3 Methods 17

3.1 Defining use case . 17

3.2 Collecting test data . 19

3.3 Inertial Measurement Unit calibration 20

3.4 Inertial Measurement Unit testing 22

3.5 Setting accuracy and speed targets 23

4 Implementation 25

4.1 Overview . 25

4.2 Transforming colors . 26

4.3 Finding borders . 26

4.4 Connecting regions . 26

v

4.5 Filtering results . 27

5 Results 35

5.1 Detection accuracy . 35

5.2 Processing speed . 36

6 Discussion 41

7 Summary 43

A Code samples 50

A.1 Find regions . 50

A.2 Normalise colors . 52

A.3 Remove edges . 52

A.4 Make positive . 53

A.5 Find red pixels . 54

A.6 Find white pixels . 55

A.7 Find red regions . 55

A.8 Find white regions . 56

A.9 Capture IMU . 57

A.10 Capture camera . 58

vi

Chapter 1

Introduction

Guiding a person or a robot through an unknown terrain requires simul-

taneous localization and mapping of the environment. Only recently have

commercially available digital cameras, graphical processing units (GPUs)

and inertial measurement units (IMUs) reached required functionality, per-

formance and price point for consumer market. Drones, self driving cars

and smart phones pave the way for a smarter future. The commercial and

academic interest in building context aware devices by combining data with

machine learning from cameras, IMUs, lasers and other sensors has grown

significantly in the last decade. Enabling developers to create real life ap-

plications with all these new devices requires extensive background work on

the underlying technologies.

As the manufacturing process reaches the known limits of the quantum

physics, we can’t simply shrink components to gain performance improve-

ments according to Moore’s law. The short term solution is to increase the

core count with current state of the art silicon manufacturing and on the

software side focus more on parallel algorithms. To address the issues re-

lated in building a system capable of real time sensing we focus on a specific,

but common problem in visual odometry: tracking objects in time.

Recently M. Rad (2018) and Tremblay et al. (2018) have demonstrated how

to determine distance and orientation of arbitrary 3D object in cluttered en-

vironments. Our work focuses on reducing the time complexity of the two

1

CHAPTER 1. INTRODUCTION 2

most time consuming operations in the state-of-the-art methods. First we

propose a method for filtering the image based on the normalized color in-

formation: this reduces the search space from complete image to collection

of smaller images. Second we investigate the use of IMU for estimating the

camera orientation between frames, this should speed up object recognition

by restricting the possible orientations of the tracked object with respect to

the camera.

We begin by briefly explaining how the adaptability of human visual system

is able to interpret shape under various conditions and how this adaptability

relates to existing algorithms in digital cameras. Next we present briefly the

main changes in computing architectures due to parallelization. We then

discuss the difficulty of tracking based on inertial measurement units under

general and restricted motion. Then we continue by demonstrating an ex-

ample program and evaluate it on real world data. Finally we conclude with

remarks on future directions and lessons learned during this study.

Chapter 2

Background

2.1 Light and color

Let us begin by exploring what light is and what we mean by color. Physically

the visible light is electromagnetic radiation with wavelength in range 400

to 700 ∗10−9m Seppänen et al. (2005). Wavelengths above or below this

range cannot be directly observed by humans, although they can be seen

by birds and other animals Wilkie et al. (1998). The trichromatic color

system of humans is based on neural responses to three main colors: red,

green and blue, see figure 2.2. This sensitivity can be determined by simple

test of subjective brightness of monochromatic light at certain wavelength vs

white light (monochromasy test), see Trezona (1987). Natural light, or light

emitted by the Sun is polychromatic i.e. it consists of multiple wavelengths

as can be seen in figure 2.1.

2.2 Global illumination

In order to detect objects from images we need to consider how images are

captured. Firstly the image depends on the type of camera used. In general

a camera generates a two-dimensional projection of the three-dimensional

world. Objects in 3D (scene) are projected to 2D surface (camera sensor).

Instead of capturing coordinates (X, Y, Z) of the surface in the scene, a cam-

3

CHAPTER 2. BACKGROUND 4

300 350 400 450 500
wavelength [nm]

0

200

400

600

800

ra
di
an

t e
ne

rg
y
[m

icr
ow

at
t/c

m
^2

]

Radiant energy of Sun as function of wavelength at 2.8 km

Figure 2.1: Sun’s spectrum, see Stair et al. (1954) for details

era is only capable of capturing the light traveling through it lens to it’s

image sensor. The color of a point in a direction Ψo in a scene is determined

by the sum of emitted and reflected intensity, for complete description of the

rendering equation see Immel et al. (1986):

I (Ψo)total = I (Ψo)emitted + I (Ψo)reflected (2.1)

A consequence of the equation 2.1 is that the direction, shape and material

of every surface in the scene affects every surface in the scene. Hence the

name global illumination. In order to distinguish which points in the image

correspond to an object that we are tracking we need to know a priori the

emittance and reflectivity of the objects surface. In our case the object is a

painted soda can which reflects paint colors red and white more than other

colors. Another consequence of the equation 2.1 is that any movement will

cause change in illumination, whether it’s camera, light source or scene object

CHAPTER 2. BACKGROUND 5

400 450 500 550 600 650 700
wavelength [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 re
la
tiv
e
lu
m
in
ou
s e

ffi
cie

nc
y
(h
et
er
oc
ho
ro
m
as
y)

Red
Green
Blue

Figure 2.2: Human color vision, see Trezona (1987)

moving. Therefore the total intensity can vary greatly between different

images. To solve this problem with variance of illumination intensity, the

camera sensors use auto-white balance algorithm. The auto-white balance

sets the cameras gain in analog to digital conversion (ADC) to match the

brightness of the scene, in photography this process is called dynamic range

and it is explained in detail in Jourlin and Pinoli (1995). The dynamic range

algorithms solve questions such as: what is the range of intensity values,

what is the required resolution (i.e. bit depth) of the values, and how fast

is the light intensity changing in time? The theory and practice of ADC is

beyond the scope of this work and the reader is directed to Pearson (2011)

for gentle introduction and Arpaia et al. (1999) for more in-depth review.

Most algorithms in digital cameras work on the ”gray world” assumption:

on average the world is gray Barnard et al. (2002). If we calculate the average

intensity of the image, and set it as half of the range of the observed values,

CHAPTER 2. BACKGROUND 6

we can assign intensity value to every pixel in the image. Since the intensities

are captured in this relative manner, the absolute intensity values are hard

to estimate from captured image without calibration emitters. If we want

to track objects (soda cans) between images independent of whether they

are in sunshine or shadow, we need to normalize the intensity between and

within images. One way to normalize colors, used in our sample program is

the following:

(R,G,B) → (R/α,G/α,B/α), α =

⎧⎨⎩1 if R = G = B = 0

max(R,G,B) otherwise

(2.2)

i.e. divide each component of the color triplet (R,G,B) by the maximum of

the components and if the components are all zero leave it as is. For a review

of different methods for color normalization see Healey and Slater (1994). In

this normalized color space we can now define red:

Red(r, g, b) =

⎧⎨⎩1 if (r = 1) ∧ (r > g · 2) ∧ (r > b · 2)

0 otherwise
(2.3)

and similarly white:

White(r, g, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (r = 1) ∧ (g > 0.6) ∧ (b > 0.6) ∧ (r > g) ∧ (r > b)∧

(g < b+ 0.3) ∧ (b < g + 0.3)

0 otherwise

(2.4)

The use of normalized color spaces enables us to create two sets of boundary

functions: one defined by colors and one defined by changes in light intensity.

There exists many ways to combine these local color descriptors with local

shape descriptors, but even the simplest color information can improve object

recognition results, see Fernandez-Maloigne et al. (2013).

2.3 Pinhole camera model and projective space

The pinhole camera model is the simplest projective camera model. In pin-

hole camera all rays travel from the scene through one point in front of the

CHAPTER 2. BACKGROUND 7

camera and get projected onto the cameras sensor. The projection matrix P

describes how world coordinates [X, Y, Z] are projected to image coordinates

[x, y]. Notice that the projection in general is not one to one mapping. In

fact only the closest object along the ray from the camera is visible. The

camera produces only finite sample of the illumination in the scene:

{x ∈ [−x0, x0] |x0 ∈ Z+} , {y ∈ [−y0, y0] |y0 ∈ Z+} (2.5)

,where 2x0 is the width and 2yo the height of the camera sensor in pixels.

The right handed coordinate system’s origin is in the lower left corner of

the camera sensor, with the point (xy, yo) located at center of the the image

respectively. The Projective matrix is camera intrinsic matrix K multiplied

by extrinsic matrix E

P = KE (2.6)

In order to avoid nonlinear equations in projective transformations homo-

geneous coordinates are used to form a system of linear equations. A point in

R3 can be written with homogeneous coordinates by adding one dimension:{
(x, y, z, h), | h ̸= 0, (x, y, z) ∈ E3

}
(2.7)

For simplicity h = 1 is usually preferred.

The intrinsic camera matrix defined according to Sturm et al. (2011)

assuming square pixels is:

K =

⎡⎢⎣f 0 xo

0 f yo

0 0 1

⎤⎥⎦ (2.8)

, where the point (xy, yo) is located at center of the image as before and f

is the focal length of the camera. The extrinsic matrix can be written with

inverse of rotation matrix R and translation vector C describing the camera

position and rotation in world coordinates.

E = [R | t] =

[
RT −RTC

0 1

]
(2.9)

CHAPTER 2. BACKGROUND 8

The Tait–Bryan chained rotation matrix can be defined with rotations

along x-axis, y-axis and z-axis as:

R = RxRyRz =

⎡⎢⎣1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

⎤⎥⎦
⎡⎢⎣ cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

⎤⎥⎦
⎡⎢⎣cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤⎥⎦
(2.10)

We can then get the screen coordinates (x, y) from projected coordinates

(x′, y′, w) by: ⎡⎢⎣x
′

y′

w

⎤⎥⎦ = KE

⎡⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎦ ⇒

[
x

y

]
=

[
x′/w

y′/w

]
, w ̸= 0 (2.11)

2.4 Frequency space and image compression

Fourier analysis is a common tool in signal analysis for transforming 1D

signal from time space to frequency space. Signals can be decomposed to

a sum of orthogonal components in higher dimensions in a similar manner.

In image analysis we are specifically interested in discrete two dimensional

Fourier transform, defined according to Burger and Burge (2016) as:

G(m,n) =
1√
MN

M−1∑
u=0

N−1∑
v=0

g(u, v)ei2π
mu
M ei2π

nv
N (2.12)

, where g(u, v) is the intensity at row = u, column = v, M is the number of

rows and N is the number of columns. Related and highly useful transform,

discrete cosine transform is used in JPEG images according to Wallace (1991)

as:

G(m,n) = C(u)C(v)

[
7∑

x=0

7∑
y=0

g(u, v)cos(
(2x+ 1)uπ

16
)cos(

(2x+ 1)vπ

16
)

]
(2.13)

,where

C(u), C(v) =

⎧⎨⎩1/
√
2 if u, v = 0

1 otherwise
(2.14)

CHAPTER 2. BACKGROUND 9

According to Wallace (1991) this 8x8 block compression concentrates most

of the signal to lower spatial frequencies. Thus JPEG acts as a low-pass filter

on the image. The use of JPEG has three benefits:

1. Most camera pipelines output JPEG’s at no additional cost or delay

2. JPEG decoders are considerably faster than PNG decoders for the same

resolution

3. JPEG compression acts as a low-pass filter and smooths the image. For

reference see figures 2.3 and 2.4.

Figure 2.3: Original png image

CHAPTER 2. BACKGROUND 10

Figure 2.4: The difference of png and jpeg image computed in frequency

space and projected back to image space. Notice how the parts of the image

with high frequency content such as edges undergo most change.

2.5 Boundary functions and gradient in 2D

In order to track objects we need some way of distinguishing them from the

background. If we consider each color channel (red,green,blue) separately,

we can calculate how fast each color changes in both vertical and horizontal

directions simply by calculating a gradient. The gradient tells us how fast the

color is decreasing or increasing. Assuming that the background has different

color as the object in front the color changes rapidly on the boundaries. Cor-

respondingly the color should change slowly inside a homogeneously colored

object. Since we don’t know the actual background a priori we can’t assign

a threshold value to the boundaries between the object and the background.

On the other hand we know that the values should change slowly inside our

CHAPTER 2. BACKGROUND 11

object. And given that all image segmentation methods try to cluster the

pixels of the image in spatial domain, as pointed out by Pal and Pal (1993),

we should try to remove small discontinuities inside the object by removing

edges, see appendix A.3. Another way to view this is that we wish to remove

high frequency noise from the image and in order to do it we need to calculate

the location of this noise with the gradient. The Prewit gradient operators

used in our sample program are defined according to Haralick (1987) as:

vertical = 1/6

⎡⎢⎣−1 0 1

−1 0 1

−1 0 1

⎤⎥⎦ , horizontal = 1/6

⎡⎢⎣−1 −1 −1

0 0 0

1 1 1

⎤⎥⎦ (2.15)

The vertical borders are obtained by applying the convolution operation on

image’s red, green and blue channels separately, the calculations for red chan-

nel are shown:

1

6

⎡⎢⎣−1 0 1

−1 0 1

−1 0 1

⎤⎥⎦ ∗

⎡⎢⎢⎣
r0,0 · · · r0,j−1

...
. . .

...

ri−1,0 · · · ri−1,j−1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
h1,1 · · · h1,j−2

...
. . .

...

hi−2,1 · · · hi−2,j−2

⎤⎥⎥⎦ = GredX

(2.16)

Similarly for horizontal borders:

1

6

⎡⎢⎣−1 −1 −1

0 0 0

1 1 1

⎤⎥⎦∗
⎡⎢⎢⎣
r0,0 · · · r0,j−1

...
. . .

...

ri−1,0 · · · ri−1,j−1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v1,1 · · · v1,j−2

...
. . .

...

vi−2,1 · · · vi−2,j−2

⎤⎥⎥⎦ = GredY

(2.17)

The magnitude of the gradient is simply:

G =
√

G2
redX +G2

redY =

⎡⎢⎢⎢⎣
√
h21,1 + v21,1 · · ·

√
h21,j−2 + v21,j−2

...
. . .

...√
h2i−2,1 + v2i−2,1 · · ·

√
h2i−2,j−2 + v2i−2,j−2

⎤⎥⎥⎥⎦
(2.18)

CHAPTER 2. BACKGROUND 12

Figure 2.5: Pixel pi,j and it’s neighbors

2.6 Region connectivity

Using the thresholds of red and white in equations 2.3 and 2.4 we can con-

struct two binary images Br and Bw for red and white pixels respectively.

Given a binary image B we can start to label different regions. We wish to

create symbol image S from B in the following manner:

Define region Rk as a set with label k, so that pixel pi,j belongs to set Rk if

the pixel in symbol image S has value k:

{pi,j ∈ Rk|S(pi,j) = k} (2.19)

further require that all regions are disjoint sets, since no pixel can belong to

two regions:

Rk ∩Rm = {} (2.20)

Within any region all it’s pixels are connected to each other. The four-

connectivity is defined in the following way: take a pixel pi,j in a binary

image. If the pixel value is zero (0) it’s does not belong to any region, if

it is one (1) it is part of a region. If the pixel pi,j has non-zero pixel above

(pi−1,j), below (pi+1,j), left (pi,j−1) or right (pi,j+1) it is connected to that

pixel, see figure 2.5. Two pixels that are connected have the same label and

they belong to the same region. We a use simple one scan connected labeling

technique to create a Symbol image S from a binary image B. The method

is similar to AbuBaker et al. (2007).

CHAPTER 2. BACKGROUND 13

2.7 Computation model and processor archi-

tecture

For over fifty years after the invention of the integrated circuit, in the year

1947, the number of transistors per square meter increased according to

Moore’s law, see Schaller (1997). By the end of the 90’s the researchers

noticed however that the memory speed was lagging behind CPU speed, see

Wulf and McKee (1995). This phenomenon was aptly named memory wall :

the new instructions can’t be red into the processor as fast as it consumes

them, thus creating a barrier for achieving peak performance. The super-

scalar or vector processing was proven to increase computation throughput

in the super computers, but the adoption of instruction level parallelism

was not widespread outside scientific computation community, see Rau and

Fisher (1993). Despite the fact that the manufacturing process is reaching

the electron wall limit in the near future see Zhirnov et al. (2003), the num-

ber of transistors per square meter has been keeping up with Moore’s law

very accurately. The power density is described by the following formula, see

Bergman et al. (2008):

P = CρfV 2 (2.21)

where: P is power density, C is total capacitance, f is the clock frequency

and V the is voltage respectively. Requiring higher clock frequencies also

requires higher operating voltages to enable faster charge and discharge of

capacitance, thus high clock-rates increase the power density dramatically,

see Brodtkorb et al. (2010). Therefore modern architectures feature lower

voltage levels and smaller frequencies, but higher core counts, see Bergman

et al. (2008). At the same time as the vector processing capabilities of the

CPUs have increased the GPUs have become a major platform for general

purpose computing. Some companies have gone one step further and started

creating custom hardware such as Tensor Processing Unit for efficient 8-bit

integer matrix multiply, see Jouppi et al. (2018). Because of the memory wall

problem the most import thing in computing remains keeping all processors

fed with new instructions, see Bauer et al. (2011).

CHAPTER 2. BACKGROUND 14

On a modern platform the total execution time of the program is determined

by the serial code’s ratio to the parallel code according to Amdahl’s law,

see Amdahl (1967). Transition from the serial code to the parallel code

requires knowledge of the parallel architectures and algorithms. The gain in

performance comes at a cost: in order to get the most performance per watt

out of the new computing platforms the programmer needs to be aware of

the low level implementation details.

2.8 Parallel processing and memory

In order to determine the labels of the image at the same rate as the images

are captured we need to adapt the program to use the parallel computing

platform. When reading from and writing to the memory we need to consider

two things: first what is the bandwidth of the transaction (in MB/s) and two

what is the delay from data transforms (in ms). For example reading an im-

age file from the Hard Disk Drive (HDD) to the Random Access Memory

(RAM) as an array of colors is limited by the bandwidth of HDD read speed

and has a delay associated with the conversion of the packed image format

to an array of bytes. There exists many ways to improve the disk IO-speed

among them using Redundant Array of the Independent Disks (RAID), flash

based memory such as Solid State Drives (SSD), hidden caches etc. which

are explained in detail by Micheloni et al. (2013). The choice of programming

language has also a significant impact on the performance. Interpreted lan-

guages such as Python are great for prototyping and testing. Unfortunately

the dynamic resource allocation can become a major bottleneck in a parallel

program. The convenient abstractions of Python hide away the details of

memory management at the cost of memory and speed. The problem be-

comes even more profound when using GPUs that require explicit memory

transfers with proper alignment for achieving peak performance. We used

Python with SciPy library for writing the initial version of the program, see

Jones et al. (2001–) for details on SciPy. After achieving reasonable accu-

racy we then continued by rewriting the entire program in C++ with Simple

Fast Multimedia Library (SFML), see Haller and Hansson (2013) for further

CHAPTER 2. BACKGROUND 15

Figure 2.6: Compute grid consists of 103 blocks along x-axis and 77 blocks

along y-axis. Each block consists of 16 threads in x-direction and 16 threads

in y-direction.

details on SFML. Finally we parallelized the program with CUDA and opti-

mized it for throughput (fps). Most of the workload was done on the compute

grid depicted in figure 2.6. The limits of the disk IO, CPU, memory and GPU

were analyzed for the final version.

2.9 Related work

Visual odometry is used in many different fields. Robots use visual odometry

to complement inertial tracking in simultaneous localization and mapping.

Virtual reality and augmented reality applications rely extensively on track-

CHAPTER 2. BACKGROUND 16

ing the movement of the user with respect to a static object. Recently the use

of neural networks for image segmentation Shelhamer et al. (2017), object

recognition Rad and Lepetit (2017) and finally 3D pose estimation M. Rad

(2018) has been extensively studied. Building on the advances of neural net-

works for solving the subproblems it was demonstrated that tracking objects

position and orientation with respect to monocular RGB camera is possible

with reasonable accuracy. The state-of-the-art of method uses a combina-

tion of synthetic and photo-realistic data for training a deep neural network

Tremblay et al. (2018). While Tremblay et al. (2018) achieves impressive

geometrical accuracy it can’t operate in real-time on high-resolution images.

The most time consuming task in the pose estimation is according to Rad

and Lepetit (2017) the segmentation of the image. Our work specifically tries

to reduce the segmentation time by reducing the original large image to a

set of small candidate images. Furthermore when only the camera is moving

and not the tracked object itself the inertial data should provide a reasonable

estimate for change in objects orientation with respect to the camera. This

should lead to further time savings in the pose prediction.

Another closely related task to ours is tracking objects in long image se-

quences. In long image sequences it is desirable to both determine if the

target is in the image and what is the 2D bounding box of the target. Val-

madre et al. (2018) presents a collection of video sequences spanning a total

of 14 hours with various backgrounds for evaluating long term tracking. Val-

madre et al. (2018) define true positive as finding the bounding box which

overlaps with the ground truth. Unlike Valmadre et al. (2018) our method

however does not require initial bounding box for the object to be tracked,

rather the algorithm creates multiple probable bounding boxes for each im-

age. Combining our work, state of the art 3D pose estimation and temporal

techniques from long term video tracking could provide means for real-time

high-resolution tracking.

Chapter 3

Methods

3.1 Defining use case

There are many ways to create 3D reconstructions of a static environment.

Most methods use a combination of laser distance measurements coupled

with image data from digital cameras. When estimating a scene from the

cameras alone the scene can be constructed up to a scaling factor. With or

without lasers the location and orientation of the camera must be know with

respect to the inertial frame of reference (world coordinates). The simplest

and most laborious way is to directly measure the camera angles and loca-

tions using inclinometers and measuring tape. The second approach is to

use automatic or annotated point correspondences between images in order

to determine the camera pose and location. The more involved and compu-

tationally expensive operation is to fuse the data from both image and laser

data and minimize the re-projection error from estimated projection matri-

ces. Since Inertial Measurement Units (IMUs) are cheap and ubiquitous on

modern devices, many algorithms use them in addition to lasers.

We present a method that uses a combination of calibration object, IMU,

camera and GPU for fast visual odometry. The object we choose for cal-

ibration should be easily available, ”distinguishable” from it’s background

and have relatively simple 3D-geometry. Simple soda can will work fine for

demonstration. Given a center-point of a soda can it’s borders can be de-

17

CHAPTER 3. METHODS 18

termined by gradient or sobel operators. With borders of a cylinder we can

compute it’s relative distance and orientation with respect to camera. If we

know a priori the height of the can we can also determine the scale of the

projective transform and thus also the distance to the can. In the general

case of four or more 3D to 2D point correspondences the projective transform

can be efficiently computed with perspective-n-point algorithm, see Lepetit

et al. (2008). For further details on how to obtain the pose and distance

in the case of a cylinder see Huang et al. (1996). Another way to obtain

distance of the can with unknown height is to use the IMU’s data.

From IMU (Invensense MPU9255) we get magnetic field, acceleration and

rotation along x-axis, y-axis and z-axis. Taking the tailor series of the accel-

eration function near zero we get:

a(t) = a(0) +
a′(0)

1!
t+

a′′(0)

2!
t2 . . . (3.1)

Integrating the first term:∫∫
a(0)dt =

∫
(a(0)t+ v(0))dt =

1

2
a(0)t2 + v(0)t+ s(0) (3.2)

∫∫ ∆t

0

a(0)dt =
1

2
a(0)(∆t)2 + v(0)(∆t) + s(0) (3.3)

And the higher order terms:∫∫
(
a′(0)

1!
t+

a′′(0)

2!
t2 . . .)dt =

1

6
a′(0)t3 +

1

12
a′(0)t4 + . . . (3.4)

If the sampling rate is high enough, the ∆t is small and we can neglect the

higher order terms:

∆t≪ 1 ⇒ 1

6
a′(0)(∆t)3 +

1

12
a′(0)(∆t)4 + · · · ≈ 0 (3.5)

Therefore the displacement vector is approximately:

d⃗ =
1

2
a⃗(0)(∆t)2 + v⃗(0)(∆t) + ⃗s(0) (3.6)

We could similarly directly integrate the angular velocity to get estimate of

angular change.

CHAPTER 3. METHODS 19

Figure 3.1: The distance d can be calculated from similar triangles

Using a calibrated camera without cropping and a known focal length we

can get the distance to the soda can from similar triangles, see figure 3.1:

f

hs
=

d

hr
(3.7)

where: f is focal length, hs is the height of the can on the sensor, d is the

distance to the can and hr is the foreknown height of the can. Since in general

the can is not on the camera axis and perpendicular to it, we need to correct

the formula for perspective distortion.

3.2 Collecting test data

The initial program was created in Python using a 284 images of soda cans

with various orientations and backgrounds. Once the program was finalized

it was tested on 90 out of sample images collected on a different camera.

The 90 test images were captured with Sony IMX219 8-mega-pixel camera

on Raspberry Pi 3B without cropping using 1640 (width) x 1232 (height)

resolution. The images were taken by first using auto-white-balance to de-

termine exposure settings and then taking 10 images with the same setting

CHAPTER 3. METHODS 20

Figure 3.2: IMU and camera setup with camera coordinate frame

with simultaneous IMU capture see appendix A.9 and A.10.

3.3 Inertial Measurement Unit calibration

The dynamics of the camera movement in the scene are described by differ-

ential equations. If we attach the camera to a system with known dynamics

such as a specific car or a simple pendulum, we know before hand the approx-

imate shape of these equations from Newtonian physics. If we knew exactly

the initial conditions i.e. the camera pose and location at t = 0 and the dy-

namics of the system we could also define exactly the trajectory of the camera

in time. In practice we always have some error in initial conditions, model

of dynamics and the inertial measurements. The purpose of IMU calibration

is to minimize the initial and accumulated error of the camera trajectory.

CHAPTER 3. METHODS 21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

0.7

0.8

0.9

1.0

ac
ce

le
ra
tio

n
[m

/s
^2

]

Accelerometer readings for a static camera

ax
ay-9
az

Figure 3.3: Static IMU and measurement noise

A static IMU standing on a ground will ideally show the direction and mag-

nitude of the acceleration due to gravity. Errors due to thermal noise, quan-

tification inaccuracies and other sources will introduce white noise to the

measurements as can be seen in figure 3.3. For more detailed analysis of

various error terms see Unsal and Demirbas (2012). Since acceleration is

integrated twice to obtain trajectory, see equation 3.6, the random walk due

to the inherent errors in acceleration measurement increases quadratically

in time. In our experimental capture system the image capture rate, was

unfortunately 0.33 fps and therefore it was not feasible to use IMU for actual

filtering. We will instead settle for explaining the limitations and require-

ments for using IMU in future applications.

CHAPTER 3. METHODS 22

3.4 Inertial Measurement Unit testing

In order to test the IMU calibration we devised a test using a simple pendu-

lum. The dynamics of simple pendulum with small initial angle are described

by simple harmonic motion, see Giancoli (2016):

θ(t) = θ0cos(ωt) (3.8)

,where θ is angle as a function of time t, ω is angular velocity and θ0 is initial

displacement angle. This equation assumes that the pendulum is released

from rest at a small angle θ0 see figure 3.4. Therefore in the beginning t is

zero and θ is θ0. After time equal to π
2ω

has passed the angle θ is zero and

the angular velocity θ̇ is at it’s maximum, see figure 3.5.

Figure 3.4: Simple pendulum at rest and with initial displacement angle

θ0(dotted)

CHAPTER 3. METHODS 23

6 8 10 12 14 16 18 20
time [s]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
an

gl
e
[ra

d]
 o
r a

ng
lu
la
r v

el
oc

ity
 [r

ad
/s
]

simple harmonic motion [rad]
rotation angle theta [rad]
derivative of theta [rad/s]
measured angular velocity [rad/s]

Figure 3.5: Simple pendulum measurements

3.5 Setting accuracy and speed targets

Modern mobile cameras are capable of capturing images with high frame

rates and resolutions. As mentioned before, analyzing the video and sensor

data in real time would enable sought after applications such as simulta-

neous localization and mapping (SLAM) and augmented reality (AR). The

low price of mobile cameras has enabled adding them to cars, bikes, drones

etc. Real time processing on these remote systems imposes several design

challenges on power consumption and network connectivity. Currently the

processing of visual data on the mobile device is still too resource intensive

and it’s better to resort to offloading it to cloud, see Noreikis et al. (2017).

However the OpenGLES and OpenCL are both including more and more

general purpose programming interfaces while device manufacturers provide

even more powerful mobile GPU’s. In the near future it is possible to compute

at least some of the visual computation on the device on it self. Therefore

we decided to investigate how the current accelerometer and camera data

could be processed on high performance CPUs and GPUs. In this work we

present simple yet practical way of utilizing GPU, camera and IMU to ob-

CHAPTER 3. METHODS 24

tain first estimates of the tracked objects. The idea is to first prefilter the

data on the edge device and then send it to the cloud for further analysis

(image recognition, 3D construction etc.). In order to match the frame rate

of the digital cameras we decided that the target system should run over 30

fps on modern multi-core desktop processor such as Intel R⃝ CoreTM i7-7700

3.6Ghz with modern GPU such as Nvidia GeForce GTX 1070. The accuracy

of detecting a target in a single image was set at 80− 90%, with a few false

positives.

Chapter 4

Implementation

4.1 Overview

The initial version of the program was developed using Python with SciPy

library, see Jones et al. (2001–). This enabled fast visualization and testing

of different approaches. When the target was found in 95% of images in the

284 ’training’ images we started to rewrite it in C++. The C++ program

was an order of magnitude faster than the Python implementation, but still

worked only at approximately 2fps. Next the most time consuming parts

of the code were parallelized and rewritten using CUDA to enable GPU ac-

celeration. With removal of unnecessary memory allocations and expensive

transfers between CPU and GPU a frame rate of over 30 fps was achieved.

Finally the parallel implementation was tested on 90 out of sample images.

The program takes a number of image files, finds the targets in them

(soda cans) and writes the locations and the shapes of these cans to a file.

The program flow is shown in figure 4.1. We start with an image containing

a soda can. The first step is to normalize the image colors according to

equation 2.2, for code sample see appendix A.2. Next we remove the edges

obtained from the image using Prewit gradient operator defined in equation

2.15, for code sample see appendix A.3. After that we normalize the image

again according to equation 2.2 and make all values positive, see appendix

25

CHAPTER 4. IMPLEMENTATION 26

A.4 . After that we generate two binary images: one for pixels that are red

and another for white pixels see A.5 and A.6. The binary images are then

scaled down by finding the continuous blocks in the red and white binary

images, see appendix A.7 and A.8. The scaled down images are then labeled

according to 4-way connectivity as defined in section 2.6, see appendix A.1

for code. If there is white regions that are near the red regions we have a

match. Finally we calculate the midpoint and the size of the red region in

pixels and save it to file.

4.2 Transforming colors

As described in the section 2.2 it is necessary to normalize colors in order to

handle scenes with different illuminations. The image color normalization is

defined in equation 2.2 at page 6. For reference see how input image 0 in 4.2

is normalized to 4.3 and similarly input image 1 in figure 4.4 is normalized

to 4.5.

4.3 Finding borders

After removing the edges from the image (see flow chart in 4.1), we normalize

the image again in order to distinguish between colors. For reference see how

the images 0 and 1 are normalized in figures 4.6 and 4.7.

4.4 Connecting regions

Tracking of the object is based on the objects colors. The red and white

pixels used in tracking the soda can are defined according to equations 2.3

and 2.4. If enough red or white pixels are close to each other they form red

and white blocks. The masks used to compute these blocks are show in figure

4.12 for red blocks and in figure 4.13 for white blocks.

CHAPTER 4. IMPLEMENTATION 27

4.5 Filtering results

Theoretically the best way to determine the accuracy of the tracking would

be to re-project the image of the target into the captured image and compare

it pixels by pixel. Unfortunately this kind of technique has several challenges.

Most notably determining the global illumination is hard and very resource

intensive task, if we were to project the object into the scene we would also

have to project the illumination of the scene on the object. Secondly, since

the rotation of the target is arbitrary at least in one dimension (around it’s

vertical axis), comparing the label to all of the possible rotations would be

time consuming. Thirdly the measured location of the object is just an ap-

proximation and even a small deviation from the ideal position in the scene

will change the pixel values thus making the comparison hard. One possi-

bility would be to track the borders of the target and compare them to the

target. On the other hand if we knew accurately were the borders of the

can are, we could directly compute it’s location and orientation according to

Huang et al. (1996).

Therefore we want to discuss the option of using the IMU for checking if

the rate of change in region size and IMU readings are consistent in time.

The IMU library (RTIMU, Richards-Tech) uses Spherical Linear Quater-

nion interpolation or SLERP for short, see Dam et al. (1998). According

to SPORTILLO (2015) the RTQF fusion algorithm is used for pose estima-

tion. In RTQF the pose is interpolated between the predicted state from

gyroscope reading and measured state from gyroscope and accelerometer. A

default value of 0.02 was used in interpolation, which means that most of the

quaternion comes from the gyroscope reading. Because the magnetometer

readings vary by location and time, see Courtillot and Le Mouel (1988) it is

necessary to calibrate magnetometer.

CHAPTER 4. IMPLEMENTATION 28

Figure 4.1: Program flow

CHAPTER 4. IMPLEMENTATION 29

Figure 4.2: Captured image 0

Figure 4.3: Normalized image 0

CHAPTER 4. IMPLEMENTATION 30

Figure 4.4: Captured image 1

Figure 4.5: Normalized image 1

CHAPTER 4. IMPLEMENTATION 31

Figure 4.6: Edge removed and normalized image 0

Figure 4.7: Edge removed and normalized image 1

CHAPTER 4. IMPLEMENTATION 32

Figure 4.8: Red pixels of image 0

Figure 4.9: Red pixels of image 1

CHAPTER 4. IMPLEMENTATION 33

Figure 4.10: White pixels of image 0

Figure 4.11: White pixels of image 1

CHAPTER 4. IMPLEMENTATION 34

Figure 4.12: Red region

Figure 4.13: White region

Chapter 5

Results

5.1 Detection accuracy

The accuracy of the region labeling was tested on the ninety test images

described in section 3.1. The algorithm found the target in 78 images out

of the 90 test images. These 78 images contained also false positives due

to other red regions in these images, see example image 2.3 and image with

detected regions (marked with blue color) in 5.2. Observations: most false

positives are present in the scenes where the soda can is surrounded with

white and red patterns as expected see wh0 - wh9 in table 5.1. Tilting the

can also has severe effect on detection accuracy as can be seen in sf0 - sf9

in table 5.1. Another key observation is that the reddish regions i.e. regions

that have R > G and R > B are treated just as ’red’ and thus different

shades of red are indistinguishable from each other.

One possible improvement would be to consider the re-projection error ϵ from

projecting planar soda can logo on the detected surfaces. Another simpler

approach would be to detect ellipses and circles above the region resulting

from the top of the can. Unfortunately even detecting ellipses of a arbitrary

shape and size in a general image proves to be a non-trivial task. The brute-

force approach of searching the whole Hough Transform space of elliptical

space is also rather time consuming, see Davies (1989). Parallel version

using GPU with compressed parameter space would be considerably faster,

35

CHAPTER 5. RESULTS 36

Figure 5.1: The nine scenes used to take the 90 test images, 10 images were

taken at each scene

but we didn’t ourselves explore that option further, for reference see Ito et al.

(2011).

5.2 Processing speed

The purpose of the preprocessing is reduction in the execution time of the

final image processing pipeline, with negligible effect on the accuracy. There-

fore, as we discussed in the section 2.8 it is necessary to do the preprocessing

at rate of over 30 fps. We tested the performance of the program by running

it 100 times in a loop. For a single process the average frame rate was cal-

culated simply as the number of frames divided by the execution time. For

multiple processes the workload was divided between the processes and some

of the processes finished processing before others. In the case of multiple

processes the execution time was calculated by the slowest process. We also

CHAPTER 5. RESULTS 37

Figure 5.2: Detected regions of the image in figure 2.3, the regions are marked

with blue color

compared the execution times when using uncompressed png file format and

jpeg file format with compression setting at 80%. On a multi-core system,

see table 5.2 the fps varied between 28 and 92 for 1 process and 8 processes

respectively, see table 5.3 and figure 5.3.

Most of the time was spent on average in the sequential parts of the c++

code, as can be seen in figure 5.4. Loading image to the RAM amounted

to considerable portion of the time budget even when using jpeg file format,

some time savings could be achieved if the image stream from the camera

were forwarded directly to the GPU and decoded there. Further time savings

could be achieved if the image loading and the image processing were done

in parallel.

CHAPTER 5. RESULTS 38

1-pr
oce

ss p
ng

1-pr
oce

ss jp
eg

2-pr
oce

sses
 png

2-pr
oce

sses
 jpe

g

4-pr
oce

sses
 png

4-pr
oce

sses
 jpe

g

8-pr
oce

sses
 png

8-pr
oce

sses
 jpe

g
0

20

40

60

80

100

Fp
s

Framerate vs number of processes, cuda and c++

Figure 5.3: Increasing the number of processes to solve the problem increases

fps, but makes it quickly IO-bound. All images are 1640 (width) x 1232

(height)

CHAPTER 5. RESULTS 39

image true false

as0 1 2

as1 1 6

as2 1 5

as3 1 5

as4 1 6

as5 1 6

as6 1 6

as7 1 11

as8 1 11

as9 1 11

ca0 1 0

ca1 1 0

ca2 0 0

ca3 1 0

ca4 1 0

ca5 1 0

ca6 1 0

ca7 1 0

ca8 1 0

ca9 1 0

df0 1 14

df1 1 15

df2 1 14

df3 1 11

df4 1 11

df5 1 11

df6 1 11

df7 1 8

df8 1 10

df9 1 9

image true false

du0 1 15

du1 1 13

du2 1 14

du3 1 15

du4 1 14

du5 1 14

du6 1 12

du7 1 14

du8 1 15

du9 1 15

fu0 1 1

fu1 1 1

fu2 1 1

fu3 1 1

fu4 1 1

fu5 1 1

fu6 1 1

fu7 1 1

fu8 0 0

fu9 0 0

ro0 1 11

ro1 1 8

ro2 1 8

ro3 1 7

ro4 1 7

ro5 1 1

ro6 1 0

ro7 1 1

ro8 1 2

ro9 1 1

image true false

sf0 1 1

sf1 0 0

sf2 0 2

sf3 1 2

sf4 0 2

sf5 0 0

sf6 0 2

sf7 0 0

sf8 0 1

sf9 0 1

us0 1 0

us1 1 0

us2 1 0

us3 1 0

us4 1 1

us5 1 3

us6 1 1

us7 1 1

us8 1 1

us9 1 1

wh0 1 21

wh1 1 20

wh2 1 21

wh3 1 19

wh4 1 19

wh5 1 21

wh6 1 21

wh7 0 19

wh8 1 19

wh9 0 20

Table 5.1: True and false positives in 90 test images

CHAPTER 5. RESULTS 40

CPU Intel Core i7-7700, 3.6GHz 8-core

GPU NVIDIA GeForce GTX 1070, VRAM 8191MB

RAM HyperX Fury DDR4, 4 x 4GB 2.4GHz

HDD Sandisk HyperX Savage SSD 480GB, 560/530 MB/s

Table 5.2: Desktop system configuration

number of processes uncompressed png fps compressed jpeg fps

1 14.5 27.6

2 27.8 50.6

4 46.3 75.2

8 62.0 91.7

Table 5.3: Program performance, all images are 1640 (width) x 1232 (height)

0 10 20 30 40
% of execution time

other

cuda code

system calls

load image to RAM

sequantial c++ code

Execution time breakdown

Figure 5.4: Execution time breakdown of the program with jpeg file format

Chapter 6

Discussion

In this work we described a simple method for tracking colored objects. The

most important feature of the preprocessing in our work was to reduce the

computational load of the tracking in order to enable real-time functional-

ity. While our method produced quite many false positives in environments

where the background was similarly colored it managed to find the correct

targets relatively often. Thus the speed of the preprocessing should be ade-

quate compensation for it’s inaccuracy.

The use of IMU for additional constraints on the camera trajectory were also

explored. Unfortunately we could not obtain uncompressed images from the

camera’s video port because of the access restrictions to the camera’s frame

buffer. Instead we had to revert to starting two process at the same time: one

taking uncropped still frames at maximum frame rate and another recording

the IMU readings. This invalidated our assumption of small time elapsed

between captured images and rendered the use of IMU data mostly useless

in the context of non-restricted movement. It would be interesting to test

IMU filtering with high frame rate cameras.

We did not pay much attention to the shape of the objects, since current

methods using neural networks can accurately determine the pose of the ob-

ject by comparing it to the projections of the object’s 3D model, see M. Rad

(2018). The recent work by Tremblay et al. (2018) has demonstrated that is

possible to do near real-time recognition of multiple objects. As the cameras,

41

CHAPTER 6. DISCUSSION 42

sensors and the mobile computing platforms continue to evolve there will be

many interesting ways to solve the tracking and navigations problems.

Chapter 7

Summary

The theoretical and practical challenges of tracking objects with sensor fusion

in real environments were presented in this thesis. We briefly explained the

hardware and the software used to sense the physical environment. While

mapping robustly the entire three dimensional environment in real-time re-

mains one of the unsolved challenges, the new computing platforms, sensors

and, to increasing extent, the machine learning are pushing the boundary of

how the smart devices sense our surroundings.

By focusing on object tracking and it’s implementation with connected com-

ponent labeling we showcased how some of the resource intensive visual track-

ing load can be reduced by preprocessing the images on the graphics cards,

thus leaving more time for the post-processing such as recognition and inter-

pretation.

The possibility to utilize the inertial measurement unit was also investigated.

It was noted that using IMU still requires constrained environments and

proper calibration to be practically useful. In the future we would like to

explore which parts of the environment sensing could be learned instead of

being explicitly set, for instance could the program learn the proper normal-

ization of the colors on-the-fly? Finally, could you combine our method for

image preprocessing with the state-of-the-art 3D pose detection into a real-

time tracker suitable for mobile devices, robotics and augmented reality?

43

References

A. AbuBaker, R. Qahwaji, S. Ipson, and M. Saleh. One scan connected

component labeling technique. Signal Processing and Communications,

2007. ICSPC 2007. IEEE International Conference on, pages 1283–1286.

IEEE, 2007. DOI: 10.1109/ICSPC.2007.4728561.

G. M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. Proceedings of the April 18-20, 1967,

spring joint computer conference, pages 483–485. ACM, 1967. DOI:

10.1145/1465482.1465560.

P. Arpaia, P. Daponte, and L. Michaeli. Influence of the architecture on adc

error modeling. IEEE Transactions on Instrumentation and Measurement,

48(5):956–966, 1999. DOI: 10.1109/19.799654.

K. Barnard, V. Cardei, and B. Funt. A comparison of computational color

constancy algorithms. i: Methodology and experiments with synthesized

data. IEEE transactions on Image Processing, 11(9):972–984, 2002. DOI:

10.1109/TIP.2002.802531.

M. Bauer, H. Cook, and B. Khailany. Cudadma: optimizing gpu memory

bandwidth via warp specialization. Proceedings of 2011 international con-

ference for high performance computing, networking, storage and analysis,

page 12. ACM, 2011. ISBN: 978-1-4503-0771-0.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,

P. Franzon, W. Harrod, K. Hill, J. Hiller, et al. Exascale computing study:

44

REFERENCES 45

Technology challenges in achieving exascale systems. Technical report, De-

fense Advanced Research Projects Agency Information Processing Tech-

niques Office (DARPA IPTO), Tech. Rep, 2008. contract: FA8650-07-C-

7724.

A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.

Storaasli. State-of-the-art in heterogeneous computing. Scientific Pro-

gramming, 18(1):1–33, 2010. DOI: 10.3233/SPR-2009-0296.

W. Burger and M. J. Burge. Digital image processing: an algorithmic intro-

duction using Java. Springer, 2016. ISBN: 978-1-4471-6684-9.

V. Courtillot and J. L. Le Mouel. Time variations of the earth’s magnetic

field: from daily to secular. Annual Review of Earth and Planetary Sci-

ences, 16(1):389–476, 1988. 10.1146/annurev.ea.16.050188.002133.

E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and ani-

mation. Technical report, Department of Computer Science University of

Copenhagen, 1998. DIKU-TR-98/5.

E. Davies. Finding ellipses using the generalised hough transform. Pattern

Recognition Letters, 9(2):87–96, 1989. DOI: 10.1016/0167-8655(89)90041-

X.

C. Fernandez-Maloigne, F. Robert-Inacio, and L. Macaire. Digital color imag-

ing, 2013. ISBN: 9781118561966.

D. C. Giancoli. Physics: principles with applications. Pearson, 2016. ISBN:

9781292066851.

J. Haller and H. V. Hansson. SFML Game Development. Packt Publishing

Ltd, 2013. ISBN: 9781849696845.

R. M. Haralick. Digital step edges from zero crossing of second directional

derivatives. In: M. A. Fischler and Firschein (eds.), Readings in Computer

Vision, pages 216–226. Elsevier, 1987. ISBN 978-0-08-051581-6.

REFERENCES 46

G. Healey and D. Slater. Global color constancy: recognition of objects by

use of illumination-invariant properties of color distributions. JOSA A, 11

(11):3003–3010, 1994. DOI:10.1364/JOSAA.11.003003.

J.-B. Huang, Z. Chen, T.-L. Chia, et al. Pose determination of a cylin-

der using reprojection transformation. Pattern recognition letters, 17(10):

1089–1099, 1996. DOI: 10.1016/0167-8655(96)00061-X.

D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for

non-diffuse environments. Acm Siggraph Computer Graphics, volume 20,

pages 133–142. ACM, 1986. DOI: 10.1145/15922.15901.

Y. Ito, K. Ogawa, and K. Nakano. Fast ellipse detection algorithm using

hough transform on the gpu. Networking and Computing (ICNC), 2011

Second International Conference on, pages 313–319. IEEE, 2011. DOI:

10.1109/ICNC.2011.61.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools

for Python, 2001–. URL http://www.scipy.org/. [Online; accessed March

24, 2018].

N. Jouppi, C. Young, N. Patil, and D. Patterson. Motivation for and eval-

uation of the first tensor processing unit. IEEE Micro, 38(3):10–19, 2018.

DOI: 10.1109/MM.2018.032271057.

M. Jourlin and J.-C. Pinoli. Image dynamic range enhancement and stabi-

lization in the context of the logarithmic image processing model. Signal

processing, 41(2):225–237, 1995. DOI: 10.1016/0165-1684(94)00102-6.

V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o(n) solution

to the pnp problem. International Journal of Computer Vision, 81(2):

155–166, 2008. ISSN 1573-1405. DOI: 10.1007/s11263-008-0152-6.

V. L. M. Rad, M. Oberweger. Feature mapping for learning fast and accurate

3d pose inference from synthetic images. Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 4663–4672.

IEEE, 2018. arXiv preprint arXiv:1712.03904v2.

http://www.scipy.org/

REFERENCES 47

R. Micheloni, A. Marelli, and K. Eshghi. Inside solid state drives (SSDs).

Springer, 2013. ISBN: 978-94-007-5145-3.

M. Noreikis, Y. Xiao, and A. Ylä-Jääski. Seenav: Seamless and energy-

efficient indoor navigation using augmented reality. Proceedings of the

on Thematic Workshops of ACM Multimedia 2017, pages 186–193. ACM,

2017. DOI: 10.1145/3126686.3126733.

N. R. Pal and S. K. Pal. A review on image segmentation techniques. Pattern

recognition, 26(9):1277–1294, 1993. DOI: 10.1016/0031-3203(93)90135-J.

C. Pearson. High-speed, analog-to-digital converter basics. Technical report,

Texas Instruments, January 2011. Application Report: SLAA510.

M. Rad and V. Lepetit. Bb8: A scalable, accurate, robust to partial occlusion

method for predicting the 3d poses of challenging objects without using

depth. 2017 IEEE International Conference on Computer Vision (ICCV),

pages 3848–3856. IEEE, 2017. DOI: 10.1109/ICCV.2017.413.

B. R. Rau and J. A. Fisher. Instruction-level parallel processing: history,

overview, and perspective. The Journal of Supercomputing, 7(1-2):9–50,

1993. DOI: 10.1007/BF01205181.

R. R. Schaller. Moore’s law: past, present and future. IEEE spectrum, 34

(6):52–59, 1997. DOI: 10.1109/6.591665.

R. Seppänen, M. Kervinen, I. Parkkila, L. Karkela, and P. Meriläinen. Maol-

taulukot: Matematiikka, fysiikka, kemia. Helsinki: Kustannusosakey-

htiö Otava, 2005. ISBN: 978-951-1-20607-1.

E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks

for semantic segmentation. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 39(4):640–651, 2017. DOI: 10.1109/T-

PAMI.2016.2572683.

D. SPORTILLO. Addressing the problem of interaction in fully immersive

virtual environments: from raw sensor data to effective devices. Master’s

REFERENCES 48

thesis, Università di Pisa, Scuola Superiore Sant’Anna, Pisa, Italy, 2015.

108 pages.

R. Stair, R. G. Johnston, and T. C. Bagg. Spectral distribution of energy

from the sun. Journal of Research of the National Bureau of Standards,

53(2):113–119, 1954. ISSN: 0160-1741.

P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto, et al. Cam-

era models and fundamental concepts used in geometric computer vision.

Foundations and Trends R⃝ in Computer Graphics and Vision, 6(1-2):1–

183, 2011. DOI: 10.1561/0600000023.

J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield.

Deep object pose estimation for semantic robotic grasping of household

objects. arXiv preprint arXiv:1809.10790, 2018.

P. Trezona. Individual observer data for the 1955 stiles–burch 2◦ pilot inves-

tigation. JOSA A, 4(4):769–782, 1987. DOI: 10.1364/JOSAA.4.000769.

D. Unsal and K. Demirbas. Estimation of deterministic and stochas-

tic imu error parameters. Position Location and Navigation Sympo-

sium (PLANS), 2012 IEEE/ION, pages 862–868. IEEE, 2012. DOI:

10.1109/PLANS.2012.6236828.

J. Valmadre, L. Bertinetto, J. F. Henriques, R. Tao, A. Vedaldi, A. Smeul-

ders, P. Torr, and E. Gavves. Long-term tracking in the wild: A bench-

mark. arXiv preprint arXiv:1803.09502, 2018.

G. K. Wallace. The jpeg still picture compression standard. Communications

of the ACM, 34(4):30–44, 1991. DOI: 10.1145/103085.103089.

E. S. Wilkie, P. M. Vissers, D. Debipriya, J. W. Derip, K. J. Bowmaker,

and M. D. Hunt. The molecular basis for uv vision in birds: spectral

characteristics, cdna sequence and retinal localization of the uv-sensitive

visual pigment of the budgerigar (melopsittacus undulatus). Biochemical

Journal, 330(1):541–547, 1998. ISSN: 0264-6021.

REFERENCES 49

W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the

obvious. ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

DOI: 10.1145/216585.216588.

V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff. Limits to

binary logic switch scaling-a gedanken model. Proceedings of the IEEE, 91

(11):1934–1939, 2003. DOI: 10.1109/JPROC.2003.818324.

Appendix A

Code samples

A.1 Find regions

std : : vector<std : : pair<uint32 t , u int32 t>> f i n d r (u in t 32 t ∗ r e g i)

{

for (int i = 0 ; i < N QUARTERCOLS; ++i)

{
r e g i [i] = 0 ;

}
// s e t l e f t column to ze ro

for (int i = 0 ; i < NQUARTERROWS; ++i)

{
r e g i [i ∗N QUARTERCOLS] = 0 ;

}
// s e t l a s t row to ze ro

for (int i = 0 ; i < N QUARTERCOLS; ++i)

{
r e g i [N QUARTERCOLS∗(NQUARTERROWS − 1) + i] = 0 ;

}
// s e t r i g h t column to ze ro

for (int i = 0 ; i < NQUARTERROWS; ++i)

{
r e g i [i ∗N QUARTERCOLS + (N QUARTERCOLS − 1)] = 0 ;

}

u in t32 t count = 0 ;

u in t32 t name = 1 ;

std : : vector<std : : pair<uint32 t , u int32 t>> my stack ;

std : : vector<std : : pair<uint32 t , u int32 t>> sums ;

bool f ound reg ion = fa l se ;

u i n t 32 t stx = 0 ;

u in t32 t sty = 0 ;

std : : pair<uint32 t , u int32 t> l o c a t i o n ;

50

APPENDIX A. CODE SAMPLES 51

for (int i = 1 ; i < NQUARTERROWS − 1 ; ++i)

{
for (int j = 1 ; j < N QUARTERCOLS − 1 ; ++j)

{
count = 0 ;

i f (r e g i [i ∗N QUARTERCOLS + j] == 1)

{
name += 1 ;

count = 1 ;

r e g i [i ∗N QUARTERCOLS + j] = name ;

my stack . push back (std : : make pair (i , j)) ;

}
s tx = i ;

s ty = j ;

while (my stack . s i z e () > 0)

{
l o c a t i o n = my stack . back () ; // g e t

my stack . pop back () ; // and remove l a s t e l ement from s t a c k

s tx = l o c a t i on . f i r s t ;

s ty = l o c a t i on . second ;

// go r i g h t

i f (r e g i [s tx ∗N QUARTERCOLS + sty + 1] == 1)

{
r e g i [s tx ∗N QUARTERCOLS + sty + 1] = name ;

count += 1 ;

my stack . push back (std : : make pair (stx , s ty + 1)) ;

}
// go up

i f (r e g i [(s tx − 1)∗N QUARTERCOLS + sty] == 1)

{
r e g i [(s tx − 1)∗N QUARTERCOLS + sty] = name ;

count += 1 ;

my stack . push back (std : : make pair (s tx − 1 , s ty)) ;

}
// go l e f t

i f (r e g i [s tx ∗N QUARTERCOLS + sty − 1] == 1)

{
r e g i [s tx ∗N QUARTERCOLS + sty − 1] = name ;

count += 1 ;

my stack . push back (std : : make pair (stx , s ty − 1)) ;

}
// go down

i f (r e g i [(s tx + 1)∗N QUARTERCOLS + sty] == 1)

{
r e g i [(s tx + 1)∗N QUARTERCOLS + sty] = name ;

count += 1 ;

my stack . push back (std : : make pair (s tx + 1 , sty)) ;

}
}
// end o f r e g i on

// save to sums

i f (count > 0)

{
sums . push back (std : : make pair (name , count)) ;

}
}

}

return sums ;

}

APPENDIX A. CODE SAMPLES 52

A.2 Normalise colors

g l o b a l void

normalise2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h)

{

int t i d x = blockIdx . x∗blockDim . x + threadIdx . x ;

int t i d y = blockIdx . y∗blockDim . y + threadIdx . y ;

i f ((t i d x > 0) && (t i dx < N COLS − 1) && (t i dy > 0) && (t i dy < N ROWS − 1))

{
f l o a t 4 ∗ row dest = (f l o a t 4 ∗) ((char ∗) dest img + t i dy ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t 4 t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t 4 ∗)

f l o a t 4 ∗ row source = (f l o a t 4 ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

// g e t max va l u e :

f loat max v = 0 . 0 ;

max v = fmaxf (fmaxf (row source [t i d x] . x , row source [t i d x] . y) , row source [t i d x] . z) ;

i f (max v <= 0 .0)

{
max v = 1 . 0 ;

}

row dest [t i d x] . x = row source [t i d x] . x / max v ;

row dest [t i d x] . y = row source [t i d x] . y / max v ;

row dest [t i d x] . z = row source [t i d x] . z / max v ;

// keep a lpha channe l t h e same

row dest [t i d x] .w = row source [t i d x] .w /255 . 0 ;

}

}

A.3 Remove edges

g l o b a l void

removeWhiteBorders2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h)

{

int t i d x = blockIdx . x∗blockDim . x + threadIdx . x ;

int t i d y = blockIdx . y∗blockDim . y + threadIdx . y ;

i f ((t i d x > 0) && (t i dx < N COLS − 1) && (t i dy > 0) && (t i dy < N ROWS − 1))

{
f l o a t 4 ∗ row dest = (f l o a t 4 ∗) ((char ∗) dest img + t i dy ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t 4 t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t 4 ∗)

f l o a t 4 ∗ row source = (f l o a t 4 ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

// remember to r e s e t a l pha channe l !

f l o a t 4 h o r i z o n t a l e ;

APPENDIX A. CODE SAMPLES 53

ho r i z o n t a l e . x = 0 .0 f ;

h o r i z o n t a l e . y = 0 .0 f ;

h o r i z o n t a l e . z = 0 .0 f ;

h o r i z o n t a l e .w = 0.0 f ;

row source = (f l o a t 4 ∗) ((char ∗) source img + (t idy −1) ∗ s p i t c h) ; // row above

ho r i z o n t a l e −= row source [t i d x − 1] ;

h o r i z o n t a l e −= row source [t i d x] ;

h o r i z o n t a l e −= row source [t i d x + 1] ;

row source = (f l o a t 4 ∗) ((char ∗) source img + (t i dy + 1) ∗ s p i t c h) ; // row be low

ho r i z o n t a l e += row source [t i d x − 1] ;

h o r i z o n t a l e += row source [t i d x] ;

h o r i z o n t a l e += row source [t i d x + 1] ;

h o r i z o n t a l e = ho r i z o n t a l e ∗0.16666666666 f ;

f l o a t 4 v e r t i c a l e ;

v e r t i c a l e . x = 0 .0 f ;

v e r t i c a l e . y = 0 .0 f ;

v e r t i c a l e . z = 0 .0 f ;

v e r t i c a l e .w = 0.0 f ;

row source = (f l o a t 4 ∗) ((char ∗) source img + (t i dy − 1) ∗ s p i t c h) ; // row above

v e r t i c a l e −= row source [t i d x − 1] ;

v e r t i c a l e += row source [t i d x + 1] ;

row source = (f l o a t 4 ∗) ((char ∗) source img + (t i dy) ∗ s p i t c h) ; // cu r r en t row

v e r t i c a l e −= row source [t i d x − 1] ;

v e r t i c a l e += row source [t i d x + 1] ;

row source = (f l o a t 4 ∗) ((char ∗) source img + (t i dy + 1) ∗ s p i t c h) ; // row be low

v e r t i c a l e −= row source [t i d x − 1] ;

v e r t i c a l e += row source [t i d x + 1] ;

v e r t i c a l e = v e r t i c a l e ∗0.16666666666 f ;

row source = (f l o a t 4 ∗) ((char ∗) source img + (t i dy − 1) ∗ s p i t c h) ; // cu r r en t row

//−= s q r t (h o r i z o n t a l e ∗ h o r i z o n t a l e + v e r t i c a l e ∗ v e r t i c a l e) ;

row dest [t i d x] . x = row source [t i d x] . x − hypotf (v e r t i c a l e . x , h o r i z o n t a l e . x) ;

row dest [t i d x] . y = row source [t i d x] . y − hypotf (v e r t i c a l e . y , h o r i z o n t a l e . y) ;

row dest [t i d x] . z = row source [t i d x] . z − hypotf (v e r t i c a l e . z , h o r i z o n t a l e . z) ;

row dest [t i d x] .w = 1 . 0 ;

}

}

A.4 Make positive

g l o b a l void makePositive2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h) {

// t h i s would have been n i c e r l o o k i n g w i t hou t manual l oop u n r o l l i n g

int t i d x = blockIdx . x∗blockDim . x + threadIdx . x ;

int t i d y = blockIdx . y∗blockDim . y + threadIdx . y ;

i f ((t i d x > 0) && (t i dx < N COLS − 1) && (t i dy > 0) && (t i dy < N ROWS − 1))

{
f l o a t 4 ∗ row dest = (f l o a t 4 ∗) ((char ∗) dest img + t i dy ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t 4 t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t 4 ∗)

f l o a t 4 ∗ row source = (f l o a t 4 ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

APPENDIX A. CODE SAMPLES 54

// remember to r e s e t a l pha channe l !

i f (row source [t i d x] . x < 0 . 0)

{
row dest [t i d x] . x = 0 . 0 ;

}
else

{
row dest [t i d x] . x = row source [t i d x] . x ;

}

i f (row source [t i d x] . y < 0 . 0)

{
row dest [t i d x] . y = 0 . 0 ;

}
else

{
row dest [t i d x] . y = row source [t i d x] . y ;

}

i f (row source [t i d x] . z < 0 . 0)

{
row dest [t i d x] . z = 0 . 0 ;

}
else

{
row dest [t i d x] . z = row source [t i d x] . z ;

}

row dest [t i d x] .w = 1 . 0 ;

}

}

A.5 Find red pixels

g l o b a l void

findRed2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h)

{

int t i d x = blockIdx . x∗blockDim . x + threadIdx . x ;

int t i d y = blockIdx . y∗blockDim . y + threadIdx . y ;

i f ((t i d x > 0) && (t i dx < N COLS − 1) && (t i dy > 0) && (t i dy < N ROWS − 1))

{
f loat ∗ row dest = (f loat ∗) ((char ∗) dest img + t i dy ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t 4 t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t 4 ∗)

f l o a t 4 ∗ row source = (f l o a t 4 ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

f loat r = row source [t i d x] . x ;

f loat g = row source [t i d x] . y ;

f loat b = row source [t i d x] . z ;

i f ((r == 1 . 0) && (r > 2.0∗ g) && (r > 2.0∗b))

{
row dest [t i d x] = 1 . 0 ;

APPENDIX A. CODE SAMPLES 55

}
else

{
row dest [t i d x] = 0 . 0 ;

}

}

}

A.6 Find white pixels

g l o b a l void

findWhite2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h)

{

int t i d x = blockIdx . x∗blockDim . x + threadIdx . x ;

int t i d y = blockIdx . y∗blockDim . y + threadIdx . y ;

i f ((t i d x > 0) && (t i dx < N COLS − 1) && (t i dy > 0) && (t i dy < N ROWS − 1))

{
f loat ∗ row dest = (f loat ∗) ((char ∗) dest img + t i dy ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t 4 t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t 4 ∗)

f l o a t 4 ∗ row source = (f l o a t 4 ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

f loat r = row source [t i d x] . x ;

f loat g = row source [t i d x] . y ;

f loat b = row source [t i d x] . z ;

i f ((r == 1 . 0) && (g > 0 . 6) && (b > 0 . 6) && (g < b + 0 . 3) && (b < g + 0 . 3) && (r > g) && (r > b))

{
row dest [t i d x] = 1 . 0 ;

}
else

{
row dest [t i d x] = 0 . 0 ;

}

}

}

A.7 Find red regions

g l o b a l void

f indRedBlocks2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h)

{

int t i d x = (blockIdx . x∗blockDim . x + threadIdx . x)∗4 ;

int t i d y = (blockIdx . y∗blockDim . y + threadIdx . y)∗4 ;

APPENDIX A. CODE SAMPLES 56

//now t i d x % 4 = 0 and t i d y % 4 = 0

i f ((t i d x > 1) && (t i dx < N COLS − 2) && (t i dy > 2) && (t i dy < N ROWS − 3))

{
f loat ∗ row dest = (f loat ∗) ((char ∗) dest img + (int (t i d y /4)) ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t ∗)

f loat ∗ row source = (f loat ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

i f ((row source [t i d x − 2] != 0 . 0) && (row source [t i d x − 1] != 0.0)&&

(row source [t i d x] != 0.0)&&(row source [t i d x +1] != 0 . 0) && (row source [t i d x + 2] != 0 . 0))

{
row source = (f loat ∗) ((char ∗) source img + (t i dy − 3) ∗ s p i t c h) ;

f loat above3 = row source [t i d x] ;

row source = (f loat ∗) ((char ∗) source img + (t i dy − 2) ∗ s p i t c h) ;

f loat above2 = row source [t i d x] ;

row source = (f loat ∗) ((char ∗) source img + (t i dy − 1) ∗ s p i t c h) ;

f loat above = row source [t i d x] ;

row source = (f loat ∗) ((char ∗) source img + (t i dy + 1) ∗ s p i t c h) ;

f loat below = row source [t i d x] ;

row source = (f loat ∗) ((char ∗) source img + (t i dy + 2) ∗ s p i t c h) ;

f loat below2 = row source [t i d x] ;

row source = (f loat ∗) ((char ∗) source img + (t i dy + 3) ∗ s p i t c h) ;

f loat below3 = row source [t i d x] ;

i f ((above3 != 0 . 0) && (above2 != 0.0)&&(above != 0 . 0)

&& (below != 0.0)&&(below2 != 0.0)&&(below3 != 0 . 0))

{
row dest [int (t i d x /4)] = 1 . 0 ;

}
else

{
row dest [int (t i d x /4)] = 0 . 0 ;

}
}
else

{
row dest [int (t i d x /4)] = 0 . 0 ;

}

}

}

A.8 Find white regions

g l o b a l void

f indWhiteBlocks2D (f loat ∗ dest img , f loat ∗ source img , int n rows , int n co l s , s i z e t d pitch , s i z e t s p i t c h)

{

int t i d x = (blockIdx . x∗blockDim . x + threadIdx . x) ∗ 4 ;

int t i d y = (blockIdx . y∗blockDim . y + threadIdx . y) ∗ 4 ;

//now t i d x % 4 = 0 and t i d y % 4 = 0

i f ((t i d x > 2) && (t i dx < N COLS − 2) && (t i dy > 3) && (t i dy < N ROWS − 3))

{
f loat ∗ row dest = (f loat ∗) ((char ∗) dest img + (int (t i d y / 4)) ∗ d p i t ch) ;

// source base addre s s i s e qua l t o

// o f f s e t in b y t e s from base addre s s = (char ∗)

APPENDIX A. CODE SAMPLES 57

// row number ∗ row in b y t e s = t i d y ∗ s p i t c h

// t h i s i s c onve r t ed to f l o a t t ype f o r a c c e s s i n g e l emen t s w i th : (f l o a t ∗)

f loat ∗ row source = (f loat ∗) ((char ∗) source img + t i dy ∗ s p i t c h) ;

int co l 0 = 0 ;

int co l 1 = 0 ;

int co l 2 = 0 ;

int co l 3 = 0 ;

int co l 4 = 0 ;

for (int i = 0 ; i < 7 ; i++)

{
row source = (f loat ∗) ((char ∗) source img + (t i dy + i − 3) ∗ s p i t c h) ;

i f (row source [t i d x − 2])

{
co l 0 |= (1 << i) ;

}
i f (row source [t i d x − 1])

{
co l 1 |= (1 << i) ;

}
i f (row source [t i d x])

{
co l 2 |= (1 << i) ;

}
i f (row source [t i d x + 1])

{
co l 3 |= (1 << i) ;

}
i f (row source [t i d x + 2])

{
co l 4 |= (1 << i) ;

}
}
i f ((co l 0&co l1) && (co l1&co l2) && (co l2&co l3) && (co l3&co l4))

{
row dest [int (t i d x / 4)] = 1 . 0 ;

}
else

{
row dest [int (t i d x / 4)] = 0 . 0 ;

}

}

}

A.9 Capture IMU

import RTIMU

import time

import math

import arrow

import numpy as np

SETTINGS FILE = ”RTIMULib”

s = RTIMU. Se t t i ng s (”RTIMULib”)

imu = RTIMU.RTIMU(s)

print (”IMU Name : ” + imu .IMUName())

i f (not imu . IMUInit ()) :

print (”IMU In i t Fa i l ed ”)

APPENDIX A. CODE SAMPLES 58

e x i t ()

else :

print (”IMU In i t Succeeded”)

t h i s i s a good t ime to s e t any f u s i o n parameters

imu . setSlerpPower (0 . 0 2)

imu . setGyroEnable (True)

imu . setAcce lEnable (True)

imu . setCompassEnable (True)

p o l l i n t e r v a l = imu . IMUGetPollInterval ()

print (”Recommended Po l l I n t e r v a l : %dmS\n” % p o l l i n t e r v a l)

time . s l e ep (2)

base name = ” gett ingc loser IMU”

print (” sav ing to f i l e s : ”+base name+” frame ”+str (0) . z f i l l (6)+” . png”)

#take image

#cap tu r e motion data be tweeen s h o t s

i x = 0

s t a r t t ime = str (arrow . utcnow ()) . r ep l a c e (” : ” , ”−”) . r ep l a c e (” . ” , ”−”)+” . txt ”

with open(”motion dump imu ”+sta r t t ime , ”w”) as o u t f i l e :

time1 = arrow . utcnow ()

time2 = arrow . utcnow ()

dt = time2−time1

motion data = []

while dt . seconds < 20 :

i f imu . IMURead () :

x , y , z = imu . ge tFus ionData ()

p r i n t (”% f %f %f ” % (x , y , z))

data = imu . getIMUData ()

acc = data [” a c c e l ”]

ax = acc [0] ∗ 9 . 8 1

ay = acc [1] ∗ 9 . 8 1

az = acc [2] ∗ 9 . 8 1

fus ionPose = data [” fus ionPose ”]

r o l l = math . degree s (fus ionPose [0])

p i t ch = math . degree s (fus ionPose [1])

yaw = math . degree s (fus ionPose [2])

motion data . append ([ax , ay , az , r o l l , p itch , yaw , str (dt . seconds)+” . ”+str (dt . microseconds) . z f i l l (6)])

#pr i n t (” r : %f p : %f y : %f ” % (math . d e g r e e s (f u s i onPose [0]) ,

math . d e g r e e s (f u s i onPose [1]) , math . d e g r e e s (f u s i onPose [2])))

#time . s l e e p (p o l l i n t e r v a l ∗1 .0/1000 .0)

time2 = arrow . utcnow ()

dt = time2−time1

for item in motion data :

o u t f i l e . wr i t e (str (item [0])+ ” ; ”+str (item [1])+ ” ; ”+str (item [2])+ ” ; ”+str (item [3])+ ” ; ”+str (item [4])+ ” ; ”+str (item [5])+ ” ; ”+item [6]+ ”\n”)

ix += 1

A.10 Capture camera

import time

import math

from picamera import PiCamera

import picamera

import picamera . array

from f r a c t i o n s import Fract ion

import arrow

from skimage import i o as sp io

import numpy as np

with picamera . PiCamera () as camera :

camera . r e s o l u t i o n = (1640 ,1232)

APPENDIX A. CODE SAMPLES 59

camera . r o t a t i on = 180

time . s l e ep (2)

base name = ” g e t t i n g c l o s e r ”

print (” sav ing to f i l e s : ”+base name+” frame ”+str (0) . z f i l l (6)+” . png”)

camera . shu t t e r speed = camera . exposure speed

camera . exposure mode = ” o f f ”

camera . awb gains = (Fract ion (0 , 1) , Fract ion (0 , 1))

bur s t capture = []

#take image

#cap tu r e motion data be tweeen s h o t s

i x = 0

output = np . empty ((1664∗1232∗3 ,) , dtype=np . u int8)

s t a r t t ime = str (arrow . utcnow ()) . r ep l a c e (” : ” , ”−”) . r ep l a c e (” . ” , ”−”)+” . txt ”

with open(”motion dump ”+sta r t t ime , ”w”) as o u t f i l e :

while i x < 10 :

camera . capture (output , ” rgb”)

base img = output . reshape ((1232 ,1664 ,3))

base img = base img [: 1 2 3 2 , : 1640 , :]

fname = base name+” frame ”+str (ix) . z f i l l (6)+” . jpg ”

sp io . imsave (fname , base img)

o u t f i l e . wr i t e (fname+” ; ”+arrow . utcnow () . i so fo rmat ()+”\n”)

ix += 1

	Cover page
	Contents
	1 Introduction
	2 Background
	2.1 Light and color
	2.2 Global illumination
	2.3 Pinhole camera model and projective space
	2.4 Frequency space and image compression
	2.5 Boundary functions and gradient in 2D
	2.6 Region connectivity
	2.7 Computation model and processor architecture
	2.8 Parallel processing and memory
	2.9 Related work

	3 Methods
	3.1 Defining use case
	3.2 Collecting test data
	3.3 Inertial Measurement Unit calibration
	3.4 Inertial Measurement Unit testing
	3.5 Setting accuracy and speed targets

	4 Implementation
	4.1 Overview
	4.2 Transforming colors
	4.3 Finding borders
	4.4 Connecting regions
	4.5 Filtering results

	5 Results
	5.1 Detection accuracy
	5.2 Processing speed

	6 Discussion
	7 Summary
	A Code samples
	A.1 Find regions
	A.2 Normalise colors
	A.3 Remove edges
	A.4 Make positive
	A.5 Find red pixels
	A.6 Find white pixels
	A.7 Find red regions
	A.8 Find white regions
	A.9 Capture IMU
	A.10 Capture camera

