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Since the beginning of the digital age, the amount of available data on human
behaviour has dramatically increased, along with the risk for the privacy of the
represented subjects. Since the analysis of those data can bring advances to
science, it is important to share them while preserving the subjects’ anonymity. A
significant portion of the available information can be modelled as networks, intro-
ducing an additional privacy risk related to the structure of the data themselves.
For instance, in a social network, people can be uniquely identifiable because of
the structure of their neighborhood, formed by the amount of their friends and the
connections between them. The neighborhood’s structure is the target of an iden-
tity disclosure attack on released social network data, called neighborhood attack.
To mitigate this threat, algorithms to anonymize networks have been proposed.
However, this problem has not been deeply studied on multiplex networks, which
combine different social network data into a single representation. The multiplex
network representation makes the neighborhood attack setting more complicated,
and adds information that an attacker can use to re-identify subjects.
This thesis aims to understand how multiplex networks behave in terms of
anonymization difficulty and neighborhood attack. We present two definitions
of multiplex neighborhoods, and discuss how the fraction of nodes with unique
neighborhoods can be affected.
Through analysis of network models, we study the variation of the uniqueness
of neighborhoods in networks with different structure and characteristics. We
show that the uniqueness of neighborhoods has a linear trend depending on the
network size and average degree. If the network has a more random structure, the
uniqueness decreases significantly when the network size increases. On the other
hand, if the local structure is more pronounced, the uniqueness is not strongly
influenced by the number of nodes. We also conduct a motif analysis to study the
recurring patterns that can make social networks’ neighborhoods less unique.
Lastly, we propose an algorithm to anonymize a pair of multiplex neighborhoods.
This algorithm is the core building block that can be used in a method to prevent
neighborhood attacks on multiplex networks.
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neighborhoods, anonymization, privacy

Language: English

iii



Preface
This Master’s Thesis was submitted in fulfillment of the requirements for
acquiring a Master’s degree, according to the NordSecMob double degree
programme, at Aalto University and Technical University of Denmark. This
thesis was prepared at the Department of Computer Science at Aalto Uni-
versity, and has been supervised by Prof. Mikko Kivelä and Prof. Sune
Lehmann Jørgensen.

I would like to express my deep gratitude to Prof. Mikko Kivelä for giving
me the opportunity to work with him in the Complex Systems group at
Aalto University. Thanks to his knowledge, guidance, and availability I
have learned a lot during this period. I am also very thankful to Prof.
Sune Lehmann Jørgensen for always being supportive, helping and guiding
me with his valuable advice. Moreover, I would like to thank the members
of the Complex Systems group for creating a friendly working atmosphere,
and for helping me whenever needed.
I wish to thank all the NordSecMob staff for their availability and for
organizing this program. This experience allowed me to spend time both
in Finland and Denmark, and to significantly broaden my mind. In these
two years, I have met many people who are now good friends. I would like
to thank all of them for being part of this journey. Thanks also to all my
friends in Italy and around the world, for being part of my life and always
being supportive.
I wish to thank also the people that gave me a hand or advice during the
thesis process, in particular Enrica, for her useful advice on English writing,
and Kristian, for his help in writing the Danish version of the abstract.
Additionally, I wish to thank Eda, for always being next to me even in the
most stressful days.
Finally, I am extremely grateful to my family, for having always supported
me in any moment of my life and being there since the very beginning.

Espoo, Finland, November 29, 2018

Daniele Romanini

iv



Symbols and Abbreviations

Abbreviations
ER Erdős-Rényi (model/network/graph)
WS Watts-Strogatz (model/network/graph)
RGG Random Geometric Graph

Symbols

G Graph (network)
M Multiplex network
〈k〉 Average degree
n Number of nodes
m Number of edges
V Set of vertices
E Set of edges
C Clustering coefficient
pk Probability of a node to have degree k
L Layer
ovE Edge Overlap proportion
SP Significance Profile
µ Mean
σ Standard deviation
Mind Multiplex network containing the non-overlapping

edges of a multiplex network M
Mov Monoplex network containing the overlapping edges

of a multiplex network M
Magg Monoplex network resulting from the aggregation of

a multiplex network M
I Isomorphism classes set
|I| Cardinality of I (Number of isomorphism classes in

set I)

v



vi

I Isomorphism type
[0] Node isomorphism
[0, 1] Node-layer isomorphism
O Occurrence Frequency
Nτ Neighborhood of type τ
N⊂ Non-Inclusive Multiplex Neighborhood
N⊆ Inclusive Multiplex Neighborhood
Na Aggregated neighborhood
UNτ Uniqueness of neighborhoods of type τ
U

(a)
N Aggregated (or monoplex) uniqueness

U⊂[I] Multiplex inclusive uniqueness according to isomor-
phism of type I

U⊆[I] Multiplex non-inclusive uniqueness according to iso-
morphism of type I

U
(a)
k Aggregated (or monoplex) degree uniqueness

U
(M)
k [0] Multiplex node degree uniqueness

U
(M)
k [0,1] Multiplex node-layer degree uniqueness

F Frequency (of a neighborhood’s subgraph in a net-
work)

P Proportion (of a neighborhood’s subgraph in a net-
work)
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Chapter 1

Introduction

Over the last few decades, digitalization has caused an increase in the amount
of generated data. Their analysis could lead to a significant improvement in
science and a better understanding of human behaviour. However, most of
this data cannot be shared because of obvious privacy risks. Data are made
of attributes regarding, for example, people, and they could contain sensitive
information that cannot be made publicly available, as their ensemble could
lead to the re-identification of the subjects, also leaking private attributes.
Since we live in an interconnected world, most of those data can be modelled
as networks, or graphs, where nodes represent entities, and edges represent
the relations between them.

In networked data, an additional privacy risk is represented by the
structure of the data themselves. For instance, a certain node could be
unique in a dataset given the amount of its connections, or the structure
of its neighborhood, such as how its friends are connected. Indeed, if a
person has four friends in a social network, and all the other people have a
number of friends different than four, then that person is easily re-identifiable.
The knowledge of the neighborhood’s structure is the target of a known
identity disclosure attack, called neighborhood attack [ZP08], on released
social networks data. A considerable amount of anonymization techniques
have been developed against this and other types of attacks [ZP11; TP10;
Liu+15; ZCÖ09]. Those methods aim to modify the data before their
release, to prevent privacy leaks and, at the same time, keep the utility of
the data, to be still useful for analysis and research. Nonetheless, some data
can be hard to anonymize, because of the high amount of unique values in
them. Uniqueness is indeed an important feature to study for anonymization
purposes, since the reason why re-identification of entities occurs is that
they are somehow unique. The more information the dataset carries, likely,
the higher the uniqueness is and, with it, the identity disclosure risk.

1



CHAPTER 1. INTRODUCTION 2

Despite the utility of the diversity of available data, a further danger
is caused by the variety of data sources, which can be linked together to
uncover the identity of the target individuals. For example, the interactions
between individuals in social systems happen in different social contexts,
and, as each of those contexts can be seen as a network, their combination
can be represented as a multiplex network [Kiv+14]. A multiplex network
is composed of various interconnected layers, where each layer is a network
itself representing either a social context or a temporal slice. For example,
in the former case, one layer can represent Facebook friendships and another
one Twitter connections or phone calls, while in the latter, each layer can be
the view of the system during a particular time period. Multiplex networks
carry with them more information than networks represented as a simple
graph, and, since more and more systems can be represented with this tool,
anonymization techniques should be extended to this new type of systems.
Moreover, given the complex anatomy of those networks, the uniqueness
of structures such as neighborhoods should be studied to understand what
it depends upon, and, consequently, the difficulty of the anonymization
problem applied to such data.

1.1 Motivation and objective

The motivation of this thesis derived from the lack of a clear understanding
on how the network structure influences the formation of unique neighbor-
hoods, leading to an easier re-identification of the entities in social networks
in a neighborhood attack. Networks are of different shapes and sizes, and
the diversity of those features can be linked to the probability of having
neighborhoods that are either similar or diverse to each other, and, conse-
quently, unique. Moreover, the use of multiplex networks to represent social
graphs can lead to a further threat in some cases, since the attacker could be
equipped with additional information that can be crucial to the success of
the neighborhood attack. Since multiplex networks can be shared in different
ways, for example with or without the layer’s label or by aggregating them
into a single layer, it is also crucial to determine the best strategy for sharing
data to minimize the identity disclosure risk.

To understand and quantify the privacy risk associated to the uniqueness
of neighborhoods in both simple and multiplex networks, and consequently
the best strategy for sharing multiplex data, we systematically study how
the uniqueness value changes by generating network with different network
models. Network models are tools to generate networks with a particular
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structure, given parameters such as the number of nodes and edges. Changing
those parameter and measuring the amount of unique neighborhoods in
different settings can give us an idea of how the organization of the nodes
in a network influences the uniqueness. While doing this experiment with
multiplex networks, another essential feature to take into account is the
amount of edges that are shared between the layers, which can represent, for
example, distinct social contexts. If two contexts do not have any similarity,
then the fraction of unique neighborhoods could be totally different compared
to the case in which there are clear similarities in the way nodes are linked.

The aim of neighborhoods anonymization algorithms is to modify group
of similar neighborhoods as little as possible, by adding or removing edges
or nodes, to make them equal to each other. If two neighborhoods are
already similar, then few additions or deletions of edges or nodes are needed.
On the other hand, if neighborhoods would be entirely different to each
other, reaching the anonymization would imply major data modifications,
lowering their actual utility and reliability for studies. We want to study
the recurrent patterns that form neighborhoods in social networks, making
them to be similar, or equal, to each other. The presence of those patterns
lowers of the fraction of unique neighborhoods in social networks, allowing
anonymization algorithms to work. This analysis can also lead us to figure
out the differences in the neighborhoods between empirical data and network
models, which are randomly built, without following rules that can be at
the base of real-world social networks.

Since more and more data can be represented as a multiplex network, it
is important not only to study the risk given by the uniqueness of neigh-
borhoods in such data, but also to move towards the development of a
neighborhoods anonymization algorithm for multiplex networks. For this
reason, we also want to discuss problems that need to be taken into account
while developing an anonymization algorithm and propose a method to make
a pair of multiplex neighborhoods equal to each other. This is the central
ingredient for a full network anonymization algorithm, and can be fit in one
of the existing anonymization’ frameworks working on simple networks.

1.2 Contribution and thesis structure

Aiming to understand the uniqueness and structure of neighborhoods in
simple and multiplex networks, we first present, in Chapter 2, the necessary
background information, describing the tools we use in the whole document.
We start the chapter by defining networks and multiplex networks, along
with their basic features. We then define the problem of determining whether



CHAPTER 1. INTRODUCTION 4

two networks, or network’s neighborhoods, present the same structure, called
graph isomorphism. After that, we illustrate the network models with which
we conduct the simulations to determine the uniqueness of neighborhoods
in networks with specific structures, and the tool to reveal the structure of
neighborhoods. Finally, we present the concept of privacy in social networks
and the different definitions that exist nowadays, and the techniques with
which data can be anonymized, along with their limitations.

To evaluate the development of an anonymization algorithm on multiplex
network to protect against neighborhood attack, in Chapter 3, we survey
the existing methods working on simple networks. We also summarize
the state-of-the-art in the anonymization of multiplex or similar types of
networks to protect against other types of attack. This will be helpful when
considering the right approach of working with more complicated network
structure such as multiplex networks.

The multiplex network representation added a degree of freedom to
the networks’ framework, and most of the concepts related to those can
be ambiguous. Therefore, to avoid confusion, it is important to define
basic principles clearly when working with these systems. Neighborhoods
in multiplex network can also be defined in multiple ways. The chosen
definition depends on the attacker’s knowledge in the neighborhood attack
scenario, and can influence the fraction of nodes with a unique neighborhood.
We present two definitions of multiplex neighborhoods and the hypothesis
we make for our study in Chapter 4, where we also define the uniqueness
of neighborhoods in both simple and multiplex networks. We then study,
in Chapter 5, the variation of the uniqueness of neighborhoods in some
of the network models presented in Chapter 2. We adapt network models
to a multiplex setting, to understand the difficulty of the neighborhoods
anonymization problem in various settings, and consequently decide the best
strategy for sharing multiplex network data, which can either be sharing the
data with or without layers’ label, or aggregating the data from different
layers into a single-layer. We generate networks with different parameters
and features, such as network size, average degree or, in the case of multiplex
networks, the number of overlapping edges between different layers. We also
show that the degree of the nodes, which is the amount of edges connected
to it, is not enough to characterize neighborhoods, and the number of nodes
with a unique degree is not necessarily the same with unique neighborhoods.
For one of the models (the Erdős-Rényi model), we present the equations to
determine the amount of nodes with a unique degree combination both in a
simple and in a multiplex network.

In Chapter 6 we compute the uniqueness of some real-world datasets
with different sizes and features and then compare them with the network
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models presented in Chapter 5, to understand if models can be used as a
proxy for real world-networks and which is the best one.

We analyze the basic patterns recurring in neighborhoods of two of the
presented datasets in Chapter 7, where we analyzed networks of calls and
text messages both in a normal and a multiplex setting, revealing some of
the structural differences between them and random networks.

At the end, in Chapter 8, we build upon the anonymization algorithms
presented in Chapter 3, to discuss their possible adaptation to multiplex
networks, pointing out the main features of multiplex networks that should
be taken into account and the reasons why existing algorithms cannot be
easily used for that kind of systems. As a first effort to reach this, we
propose an algorithm to anonymize a pair of multiplex neighborhoods with
two layers. The presented method could be used as the basic step to develop
a complete anonymization method for multiplex networks.

We conclude by summarizing the main results of our study and discussing
possible future work in Chapter 9, to improve both the understanding of
uniqueness and structure of neighborhoods in multiplex networks, and the
development of an anonymization method.



Chapter 2

Background and Preliminaries

In this chapter, we present the necessary background information used
throughout the whole document. We start by defining networks, and the
type of networks we mostly use in this thesis, multiplex networks, along
with the general framework they belong to, multilayer networks. We then
present the graph isomorphism problem, which is the problem of determining
whether two networks are isomorphic or not. This is a central concept since
neighborhoods can be seen as networks themselves, thus, if they have the
same structures, they are said to be isomorphic. We also describe the
network models we use for our experiments and, at the end, we give an
overview of the concept of privacy in social network data.

2.1 Complex Networks

Networks, or graphs, are mathematical objects that consist of nodes (or
vertices) and edges, that link pairs of nodes together [New18]. Networks are
used for modelling different kind of systems, from biological ones (where
nodes represent, for example, proteins, and edges the interaction among
them), to public transportation networks (where the edges connect locations)
and social networks (where nodes are people or organizations, and edges
represent some relationship among those, such as phone calls, meetings,
or social media friendships). There are different types of networks, with
different characteristic. For example, a graph can have multiple edges among
two nodes (in this case we talk about a multigraph), the edges can have a
direction from one node to another (directed graph), the nodes or the edges
can be labelled (node-labelled or edge-labelled graph) or weighted (weighted
network). In this thesis, we focus on undirected, unlabelled and unweighted
social networks, without multiple edges between two nodes, and without

6
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self-loops (such as without edges from a node to itself). In this section,
we introduce some basic definition of networks, which we use throughout
the document. We do the same in the next Section 2.2 with multiplex net-
works, the tool we use to represent a combination of different social networks.

We define a graph (or network) as a set of vertices (or nodes) and a
set of edges G = (V,E). An edge is a tuple of two nodes (unordered, since
we are referring to undirected graphs). All the edges that are linked to a
node n are said to be incident to n. The degree k of a node is the number
of edges that are incident to it. The average degree 〈k〉 of a network is the
average number of edges that are incident to a node in that network. The
average degree is obtained by the formula:

〈k〉 =
2m

N
, (2.1)

where m is the total number of edges and N is the total number of nodes
in the network.

To define neighborhoods, one of the central concepts of this thesis, we first
need to define the concepts of subgraph and induced subgraph. A subgraph
G∗ = (V ∗, E∗) of a graph G = (V,E) is a graph where the set of vertices
V ∗ is a subset of V (V ∗ ⊆ V ), and the edges set E∗ is a subset of the edges
E between the nodes in V ∗ (E∗ ⊆ {(vi, vj) ∈ E|vi, vj ∈ V ∗}).

An induced subgraph G[V ∗] is a subgraph of G = (V,E) that contains all
the edges between the vertices in V ∗ (where V ∗ ⊆ V ). Thus, in an induced
subgraph, the edge set E∗ is E∗ = {(vi, vj) ∈ E|vi, vj ∈ V ∗}.

Two nodes connected by a link are called neighbors. A neighborhood
N (v) of a node v in a graph G is then the subgraph induced by set of v’s
neighbors. Thus, indicating with V v the set of neighbors of v, and with Ev

the set of edges existing between the vertices in V v, a neighborhood N (v)
in a graph G is defined as:

N (v) = G[V v] = (V v, Ev) . (2.2)

An example of neighborhood of a node is shown in Figure 2.1.
A network can be represented by a square matrix n× n called adjacency

matrix A, where rows and columns represent the nodes, and the elements
aij take values 1 or 0, based on whether an edge between the corresponding
pair of nodes exists in the network or not. More formally:

aij =

{
1, if (i, j) ∈ E
0, if (i, j) /∈ E . (2.3)
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Figure 2.1: A node and its neighborhood. The red node represents the
central node and the pink edges the edges connecting it to its neighbors.
The neighborhood is composed by the black nodes and the green edges.

The adjacency matrix representation is useful to compare networks during
the anonymization process. We present anonymization algorithms that use
this representation in Chapter 3, and we also use it in the algorithm we
propose in Chapter 8.

The nodes in a network can have different degrees. As we discuss in the
Chapters 3 and 5, the degree is a feature that can make nodes re-identifiable,
since there can exist only a few nodes with a given degree. The degree
distribution P (k) is the distribution of the degrees occurring in the network.
With the degree distribution, we can estimate the probability of randomly
picking a node with degree k, by computing:

P (k) =
nk
n
, (2.4)

where nk is the number of nodes in the network with degree k, and n is the
number of nodes. The degree distribution is a central concept in the study of
networks. In most of the real-world networks, we can observe a heavy-tailed
distribution, such as with tails that are not exponentially bounded. In
particular, there has been wide attention to the study of scale-free networks,
such as networks whose degree distribution follows (asymptotically) a power
law:

P (k) ∼ k−γ , (2.5)
where γ is the degree esponent [Bar+16]. A power law distribution should
follow a straight line when plotted on a log-log scale. This kind of degree
distribution is typical of networks that have many nodes with small degrees
and there are few big hubs (a group of nodes densely connected, such as with
high degree). Degree distributions close to power law are often observed in
real networks, like the ones we analyze in Chapter 6.

Another important notion (relevant also in our analysis, since it directly
characterizes a specific neighborhood) is the local clustering coefficient of
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a node [WS98], which measures how much a node is “clustered” with its
neighbors. The local clustering coefficient of a node ni is defined as the
fraction of the existing edges between the neighbors of ni out of all the
possible edges between its neighbors, and it is computed by:

Ci =
m(
ki
2

) =
2m

ki(ki − 1)
. (2.6)

By averaging the local clustering coefficient of all the nodes in the network,
we otbain the average local clustering coefficient :

C = 〈C〉 =
1

n

∑
i

Ci . (2.7)

In reality, social networks present a low clustering coefficient, mean-
ing that they are sparse (and, as mentioned before, there are just a few
nodes that are densely connected, forming hubs, thus with a high value of
clustering). We show some examples of real-world networks with different
clustering coefficient values in Chapter 6, and we relate it with the difficulty
of the anonymization problem.

2.2 Multilayer Networks

As mentioned in the previous section, the classic representation of a network
is a set of nodes and edges. However, the systems around us can be
very complex, and, with the amount of information growing, we need more
powerful tools that can capture more realistic features. For example, systems
are dynamical, and they have a complex behaviour that changes over time,
or the entities interact in different contexts, or in different ways (for instance,
people can communicate with both phone calls or sms). A tool to model
these complex systems through the use of networks consists of multilayer
networks [Kiv+14], which we introduce in this section, along with some of
the related definitions and measures. We also present multiplex networks, a
particular type of multilayer networks, on which we focus our study.

Multilayer networks are a combination of networks, each one represented
in one layer, with possible additional edges that cross different layers. Those
edges that link nodes belonging to different layers are inter-layer edges, while
the edges between nodes in the same layer are intra-layer edges. There can
be different types of layering, and each one of those is called aspect. Aspects
can be seen as the dimension of a space. Every node of the network can be
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present in one or multiple layers, where a layer is defined as a combination of
elementary layers, each one corresponding to an aspect. Thus, if a network
has n aspects, we would need n elementary layers to identify a specific layer.
However, in this thesis, we focus on networks with a single aspect, since
most of the real-data can be represented in this way.

A multilayer network can be formally defined with a quadruplet M =
(VM , EM , V, L), where V is the set of all the vertices in the network; L =
{La}da=1 is the sequence of the elementary layers in each aspect, and, as
mentioned before, we can exploit those to define all the layers in the network
as L̂ = L1 × · · · × Ld; VM represents the set of vertex-layers tuples (or
node-layers), such as the set of vertices that are present in certain layers,
and it is defined as VM ⊆ V × L1 × · · · × Ld ; EM ⊆ VM × VM is defined as
the set of edges between two vertex-layer tuples.

The concept of multilayer networks is comprehensive and general, de-
pending, for instance, on the admitted type of inter-layer edges. As an
example, inter-layer edges could link nodes representing different entities
in different layers or not. In this thesis, we focus on a particular type of
multilayer networks, called multiplex networks, where the inter-layer edges
link the same node across different layers. Multiplex networks are equivalent
to edge-colored multigraphs. A multiplex network M can be defined as
M = {Gα}bα=1 = {(Vα, Eα)}bα=1, such as a sequence of graphs, where the set
of nodes is Vα and the set of edges is Eα ⊆ Vα × Vα. Since a multiplex net-
work is defined as a sequence of graphs, we can call a single graph monoplex
network.

If the set of nodes is the same in each layer, then the network is said to be
fully interconnected (or node-aligned). However, in this document, we also
treat networks where there can be missing nodes in some layers, thus that
are not fully interconnected. In multiplex networks, layers can be coupled
together in different ways: if they have a specific order (as in the case of the
multilayer representation of a temporal network, where each layer represent
a specific time-stamp), then the inter-layer edges connect nodes just from
one layer to another, creating a network with ordinal coupling; conversely,
if such an order does not exist (as in the case where each layer represent a
different social context), then the network has categorical coupling, and the
inter-layer edges connect nodes across all the layers.

A multilayer network can be aggregated over different aspects, reducing
the amount of them. For example, if we aggregate a multiplex network with
one aspect, we obtain a monoplex (or single-layer) network where the set
of vertices and the set of edges are the union of, respectively, the set of
vertices and edges present in the layers we are aggregating. We then miss
the information regarding the original layers of the nodes and edges. We say
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that the edges that link the same nodes in different layers are overlapping,
and we define the edge overlap as the proportion (or the amount) of edges
that are overlapping in the considered layers. Similarly, the degree overlap
of a node in a given layer combination is the number of links, incident to a
node, shared between those layers.

2.3 Graph isomorphism

To understand if a certain neighborhood is distinguishable from other neigh-
borhoods in the graph or not, we need to define graph isomorphism [For96].
Graph isomorphism is the problem to determine whether two graphs (or
networks) are equivalent to each other. In our context, two networks (or
neighborhoods) are isomorphic if they have the same structure.

Two graphs G and G′, with vertices set V and V ′, are said to be isomor-
phic (G ∼= G′), or belonging to the same isomorphism class, if there exists a
bijective function γ such that:

γ : V → V ′ . (2.8)

γ should relabel the vertices of G to the ones of G′ (and vice-versa), such
that the resulting relabeled graph Gγ = (V γ, Eγ) is equivalent to G′ (or
belongs to the same equivalence class):

V γ = {γ(v) | v ∈ V } , (2.9)

Eγ = {(γ(v), γ(u)) | (v, u) ∈ E} , (2.10)

Gγ = (V γ, Eγ) . (2.11)

γ is an isomorphism between G and G′. Note that the isomorphism relation
is edge preserving, as shown in Equation 2.10.
The graph isomorphism can also be defined for different types of graphs,
for instance for node-labelled graphs, in two different ways, depending on
whether we want to preserve the labels, or we admit the mapping of nodes to
other nodes having the same labels (thus preserving the labels’ equivalence
classes).

An isomorphism can also exist from a graph G to itself. In this case, we
talk about graph automorphism.

The graph isomorphism and automorphism are not known to be NP-
complete or to belong to the class of problems solvable in polynomial time
[GJ02].
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Given the amount of nodes n, one can compute the number of possible
graphs with those nodes. This problem is known as graph enumeration
[FP73] and can be applied to undirected or directed graphs. The number of
simple undirected graphs is given by

2(n2) = 2
n(n−1)

2 . (2.12)

Note that Equation 2.12 does not give the number of isomorphism classes for
unlabelled graphs (however, it gives this number for colored graphs, where
each node has a different color), since multiple graphs can belong to the
same isomorphism class. The number of isomorphism classes for simple
undirected graphs (or, in other words, the number of non-isomorphic simple
undirected graphs) is not easy to compute. However, we can say that this
number grows rapidly as n grows, and there are tools [McK83] that list all
the non-isomorphic graphs with a given amount of vertices.

In the context of graph anonymization, we need to edit a graph g1 to
make it equivalent to another graph g2, in such a way that, after the editing,
the two graphs belong to the same isomorphism class. The edit operations
ei can be vertex or edge insertion, deletion, or substitution. We can limit
the number of allowed operations based on the application. The set of
edit operations necessary to transform a graph into another is the edit path
P(g1, g2), and the measure of dissimilarity between the two graphs is the
graph edit distance (GED) [SF83]. GED between two graphs g1 and g2 is
defined as

GED(g1, g2) = min
(ei,...,ek)∈P(g1,g2)

k∑
i=1

c(ei) , (2.13)

where c(ei) ≥ 0 is the cost of the edit operation ei.
Graph edit distance has applications also in fields as pattern recognition,

in particular in fingerprint or face recognition. Optimal algorithms for solving
graph edit distance transform the problem into the one of the shortest path
finding. However, many non-optimal methods have also been developed
[Gao+10].

Another problem related to graph edit distance is graph matching [BJ00]
or network alignment, which is the problem of finding similarity between
graphs. Indeed, one can first try to find an alignment between two graphs
to compute the minimum edit path between those (this would also be useful
when it comes to anonymization, discussed in 3). Some of the developed
methods for computing the graph edit distance are based on matching
sub-structures of the two graphs, and also neighborhoods. Graph alignment
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is a widely studied problem on its own, and numerous algorithms have been
developed specifically for it [Kuc+10; SXB08; Lia+09].

2.4 Isomorphism in Multilayer Networks

The problem of isomorphism in multilayer networks is presented in [KP18].
The main points of the paper that are interesting for this thesis are the
existence of different types of isomorphism for multilayer networks, and the
possibility of reducing the problem to the one of the isomorphism in vertex-
colored graphs. Different types of isomorphism, in our context, corresponds
to different neighborhood attack’s scenario, depending whether only the
nodes’ labels are shared, or also the layers’ label are known or not.

The different kind of isomorphism in multilayer networks depend on
the nature of the mapping given by the bijective function that defines
the isomorphism. Given two multilayer networks M and M ′, the types of
isomorphism that we can have are:

• vertex isomorphism;

• layer isomorphism;

• vertex-layer isomorphism.

The vertex isomorphism is defined similarly to the one in simple graphs,
with the difference that the vertices are identified with vertex-layer tuples.
The bijective function γ (or a vertex map) should relabel the vertices of
a multilayer graph M , such that Mγ = M ′, keeping unaltered the layers’
labels. In particular it is defined as following:

V γ
M = {(γ(v),α) | (v,α) ∈ VM} , (2.14)

Eγ
M = {((γ(v),α), (γ(u),β)) | (v,α), (u,β)) ∈ EM} , (2.15)

Mγ = (V γ
M , E

γ
M , V

γ,L) . (2.16)

In the equations above, VM is, as before, the set of vertex-layer tuples, and
α is the vector of layers in which a vertex v is present.

Indicating with a the elementary layers’ indices, and with d the aspects’
ones, we have layer isomorphism between M and M ′ if there exists a layer
map δ : L̂→ L̂′ that relabels all the existing elementary layers α of M such
that M δ = M ′, in the following way:

Lδ = {Lδaa }da and Lδaa = {δa(α) | α ∈ La} , (2.17)
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V δ
M = {(v, δ(α)) | (v,α) ∈ VM} , (2.18)

Eδ
M = {((γ(v), δ(α)), (γ(u), δ(β)) | (v,α), (u,β)) ∈ EM} , (2.19)

Mδ = (V δ
M , E

δ
M , V,L

δ) . (2.20)

When both a vertex map and a layer map exist, then we can say that
there is a vertex-layer map ζ = (γ, δ) that relabels both the vertices and the
layers of M , such that M ζ = M ′. In this case, there exists a vertex-layer
isomorphism between M and M ′.

Since the set of vertices V in a mutlilayer network can be seen as the
“0th aspect”, we can indicate, through a particular notation, that two multi-
layer networks are isomorphic with respect to certain aspects. This concept
allows us to define partial isomorphism, in which the labels’ permutation
is allowed only in certain aspects (for example, if there are two aspects,
one can define a vertex-layer isomorphism permuting the layer labels in
just the first aspect). In particular, M ∼=0 M

′ indicates the existence of
a vertex-isomorphism, M ∼=1 M

′ corresponds to a layer isomorphism and
M ∼=0,1 M

′ to a vertex-layer isomorphism.

For practical computations matters, the authors of [KP18] reduce the mul-
tilayer networks’ isomorphism problem to the colored graphs isomorphism
problems. In this way, it is possible to make use of Bliss [JK07], the back-
end used by Pymnet [Kiv17] (a multilayer network software library) for
isomorphism-related computations. Figure 2.2 shows an example of a reduc-
tion of a multilayer network with a single aspect to a vertex-colored graph.
We can distinguish two cases for this reduction, based on the isomorphism
type and the network type:

• vertex isomorphism: one can assign different colors to the nodes present
in different layers (identified with vertex-layer tuples), and connect
together the same nodes across different layers with additional “white”
nodes;

• vertex-layer isomorphism: conversely to the vertex isomorphism, each
vertex-layer tuple is assigned to the same color (since it is not ), but still
the same nodes across different layers are connected with additional
“white” nodes. Moreover, all the nodes present in the same layers are
linked to another “black” node, representing the layer itself.

The reduction is also possible for networks with multiple aspects (examples
of those cases are presented in [KP18]). As mentioned before in Section 2.2,
we focus however on networks with just one aspect.
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Figure 2.2: Reduction of a multilayer network (on the left) with a single
aspect to a vertex-colored network, according to vertex-isomorphism (in the
center) and vertex-layer isomorphism (on the right). Figure adapted from
[KP18].

One approach to determine if two graphs G and G′ are isomorphic is to
compute a certain function f , called complete invariant, on each of them.
If the output of the function is the same for both G and G′, then they
are isomorphic (or vice-versa). The complete invariant for vertex-colored
graphs is then the same then the one for multilayer networks reduced to them.

The graph enumeration problem in multilayer networks can be defined
in different ways, depending on the actual type of graph we want to rep-
resent with the framework of multilayer networks. The number of fully
interconnected multiplex networks with n nodes and b layers is:

2b(
n
2) . (2.21)

In the same paper, the number of isomorphism classes for vertex and vertex-
layer isomorphism of multiplex networks is computed by listing all the
possible graphs up to 5 nodes and 3 layers. The number of classes grows
very quickly with both layers and nodes. For example, with 3 layers, the
classes of 3 vertices are 36 for vertex-layer isomorphism and 120 for vertex-
isomorphism; the classes of 4 vertices are 2381 for vertex-layer isomorphism
and 12496 for vertex-isomorphism; the classes of 5 vertices are 1540146
for vertex-layer isomorphism, and 9156288 for vertex isomorphism. The
number of classes given by vertex-layer isomorphism is always lower or equal
than the ones given by vertex-isomorphism, since there exist more graphs
that can be mapped to the same equivalence class according to vertex-layer
isomorphism. An example is shown in Figure 2.3.

2.5 Random networks models

In this section, we introduce some models used to generate random networks.
Each of this models generates random networks with different structural
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Figure 2.3: Two multiplex networks that are not vertex isomorphic, but
are vertex-layer isomorphic

properties, and the study of those can be useful to understand complex
phenomena such as disease spreading [New02]. We will instead exploit some
of those models to study how the structure of complex networks influences
the re-identification of a node and, consequently, changing the difficulty of
the anonymization problem. In particular, we will study the uniqueness of
neighborhoods in the Erdős - Rényi, Watts-Strogatz and Random Geometric
Graph models. We will instead use the Configuration model as a null model
to study recurrent neighborhood structures in real-world social networks.

2.5.1 Erdős - Rényi model

The Erdős - Rényi (ER) model [ER60] generates random networks with size
n. Two variants of the model exist:

• G(n, p): a graph is generated by connecting each pair of nodes with
probability p. In this model, the probability of each graph with n

nodes and m edges is pm(1− p)(n2)−m

• G(n,m): a graph is generated by placing m edges at random in the
network of n nodes. This procedure corresponds to uniformly draw a
graph from all the possible graphs with n nodes and m edges.

In any random graph, any quantity can be seen as expected value, or
ensemble average, of the actual quantity. In the G(N, p) model, the number
of edges is, on average:

〈m〉 =

(
n

2

)
p = p× n(n− 1)/2 , (2.22)

and the average degree as:

〈k〉 =
2〈m〉
n

= (n− 1)p ≈ np . (2.23)
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In G(n, p), there are n− 1 independent trials for each node to generate
a link to other nodes. Thus, we can obtain the degree distribution formula:

P (k) = Bin((n− 1), p) =

(
n− 1

k

)
pk(1− p)n−1−k . (2.24)

The degree distribution, for network size that goes to infinity (n → ∞),
becomes a Poisson:

P (k)→ 〈k〉
k

k!
e−〈k〉 . (2.25)

When the average degree is small, there is a relatively few amount of edges,
thus we say that we are in a sparse regime, and the network is tree-like. The
expected clustering coefficient of an ER graph is p, since the probability
of having an edge between any pair of nodes is p. In a sparse regime,
c = p << 1. On the other hand, when p = 1, all the nodes are connected to
each other, thus the clustering coefficient is also equal to 1.

2.5.2 Watts-Strogatz model

The Watts-Strogatz (WS) model [WS98] is a random graph model that
addresses the limitation of the ER model to have a low clustering coefficient.
Watts-Strogatz model is a compromise between a regular graph, such as a
lattice and an fully random graph. This model can (at least partially) explain
the small-world phenomena (from here, the name “small-world” network),
and its topology has been used to study also the spreading of infectious
diseases.

The algorithm to generate Watts-Strogatz graphs takes as an input the
number of nodes n, the mean degree k, that should be an even integer, and
a parameter β, that is the probability of rewiring an edge. In the first step,
the algorithm generates a regular lattice with n nodes, each one connected
to k other nodes, that are the neighbors (k

2
per side). The generated graph

has n k
2

edges. In the second step, the algorithm goes through every node
ni clockwise, and rewire every edge connecting ni to its k

2
neighbors with

probability β. The other endpoint of each rewired edge is chosen uniformly
at random, avoiding self-loops and multi-edges.

Thus, with β = 0, the generated graph is just a regular lattice, while
with β = 1, the generated graph is a random graph similar to ER, but not
the same since every node is anyway connected to at least k

2
other nodes.

Rewiring has the effect of decreasing the average path length in the network,
creating a short-cut between two nodes.
Figure 2.4 shows three different graphs generated with the WS model, with
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different values of β.
The clustering coefficient C is, in the ring lattice topology, equal to:

C =
3(k − 2)

4(k − 1)
. (2.26)

As k increases, C tends to 3
4
, becoming independent from the network size

[BW00]. C has a value closer to the ring lattice one for small values of β. As
β increases, the clustering coefficient drops, as in random networks, and, in
the limiting case, is inversely proportional to the network size and assumes
a value equal to:

C =
k

n− 1
. (2.27)

A drawback of the WS model is the unrealistic degree distribution. Most
real-world networks are scale-free, presenting a heavy-tailed distribution in
which there exist nodes with various degrees.

β=0 β=1

Figure 2.4: Three different cases of the Watts-Strogatz model, depending
on different values of the parameter β. As β grows, randomness increases.

2.5.3 Random Geometric Graph model

A Random Geometric Graph (RGG) [Pen+03] is a model for spatial networks,
constructed by placing n nodes in a space (according to a given probability
distribution), and then connecting a pair of nodes with a link with if
the distance between them is within a certain radius. In social networks,
Geometric Random graphs can be used to model interactions of people in a
space, since two nodes are more prone to interact if they are close to each
other. This model leads to the creation of networks with local structures
(such as communities). Thus, if the radius is relatively small, the network
will be locally dense, but globally sparse.
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There exist various types of random geometric graphs, and we focus
on Soft Random Geometric Graphs. A Soft Random Geometric graph is
constructed by uniformly and randomly placing n nodes in the space. If
two nodes are within a given radius, they are connected with a specified
probability (normally an exponential distribution). An interesting result of
the study of Soft Random Geometric Graphs is that, in a high dense regime
(such as when the average degree is high, and consequently the network is
dense), with an exponential distribution controlling the connections, there
is a unique giant component and just isolated nodes. Thus, if we enforce
the graph to be without isolated nodes by controlling the parameters of
the model, in particular the radius, the network will be fully connected
[Pen+16].

The expected average degree of RGG is roughly:

〈k〉 ≈ π(n− 1)r2 , (2.28)

where n is the number of nodes and r is the radius.
The network is sparse until the radius is Θ(ln(n)). After this value, the

network is dense. With n→∞, we can have an indication of whether the
expected average degree grows quicker or slower than ln(n) by computing
the ratio nr2

ln(n)
. The reason of multiplying r2 by n is that, from Equation

2.28, with a fixed average degree, the value of r2 depends also on n.

2.5.4 Configuration model

The configuration model (originally introduced in [BC78]) is a model that
generates random networks with a fixed degree sequence. The configuration
model was mainly developed to provide a more realistic variant to the
ER model, that produces a non-realistic degree sequence. Indeed, real-
world networks do not present a Poisson distribution, but a heavy-tailed
one, meaning that most nodes have a tiny degree [New18]. We use the
configuration model as a null model in Chapter 7, to analyze the structure
of the neighborhoods of real data, through a tool called network motifs, as
explained in Section 2.6. The configuration model is a common choice as
a null model, mainly to understand if some particular properties of a real
network are related to its degree sequence or are actually relevant. This
model is commonly used, for example, both for network motifs detection
and modularity calculation1.

1Network modularity measures the division of the network into module [New06]. High
modularity means that there are densely connected nodes organized in “modules”, that
are though sparsely connected to each other
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To generate a network, the configuration model takes a degree sequence
[k1, k2, k3, ..., kn] as an input, and outputs (after having checked that the
degree sequence is realizable through the Erdős-Gallai test [EG60] 2) a
network with the same degree sequence (thus with the same size). In
practice, the output is uniformly drawn by the set of all the networks with
the given size and degree sequence. Different variants of the configuration
model exist [Fos+18]. The generative algorithm of the model used in Chapter
7 consists of a loop that, iteratively, picks a pair of stubs (such as nodes
with a number of edges incident to them, corresponding to their degree, as
shown in Figure 2.5), uniformly drawn from the set of existing stubs (one
for each degree of the input degree sequence), and connects them by joining
a link from both. The procedure is repeated until no links are left. This
method could lead to the creation of multiple edges or self-loops. However,
the algorithm we adopt is the one presented in [MW90], which takes care of
eliminating this kind of cases by rewiring the edges involved in self-loops or
multiple connections.

k1=2

k4=2

k2=1

k3=3

Figure 2.5: Examples of stubs

2.6 Network Motifs

Network motifs are induced subgraphs that are recurrent in networks. We
make use of network motifs in Chapter 7 to understand the patterns that
compose neighborhoods in social networks. Network motifs have been origi-
nally presented in [Mil+02], where are defined as “basic building blocks of

2The Erdős-Gallai theorem states that a sequence of integers di can be a degree
sequence if the sum of the integers di is even and, for every ki such that 1 ≤ k ≤ n, the
following condition holds:

∑k
i=1 di ≤ k(k − 1) +

∑n
i=k+1 min(di, k)
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complex networks”. They have been used for studying both biological net-
works, such as protein interactions [Won+11] and social networks [JKM08],
and recently also multilayer networks, such as brain networks [Bat+17] and
corporate networks [Tak+18].

To be defined as motif, a subgraph (or, more precisely, an isomorphism
class) should occur in a network a number of times that is statistically
significant, and to decide that, each subgraph count is compared to the
number of occurrences in a null model, such as a random network specifically
chosen to compare with the network we are analyzing. Since the compu-
tation of large subgraphs can be expensive, normally the motifs analysis
is restricted to graphs with a small size, for example with five nodes at
most. Depending on the type of network we are analyzing, motifs can be
either uncolored, undirected, colored or directed graphs. For each isomor-
phism class of subgraphs of our interest that occurs in the original network,
we should count the realization of that class in the null model. Being
the null model a random network, we should generate it many times and
count the subgraphs realization every time, and then compute the mean
and the variance for any subgraph realizations. At this point we can com-
pute the so-called Z-Score for each subgraph G′ in the network G, defined as:

Z(G′) =
FG(G′)− µR(G′)

σR(G′)
, (2.29)

where FG(G′) is the frequency of the G′ in the original network, µR(G′) and
σR(G′) the mean and the variance of the occurrences of G′ in the null model.
If the Z-Score is sufficiently high, then G′ is over-represented in the network
G in comparison to the null model R, and can be called motif. Conversely,
if the Z-Score sufficiently low, then the G′ is under-represented in the G
compared to the null model R, and it is called anti-motif. Practically, a
certain threshold is normally chosen to classify a subgraph as a motif or
anti-motif. If µR is equal to FG, the subgraph occurs, on average, the same
amount of times in the null model and in the network; if σR is zero, then
either the number of realization of the null model is not enough, or the
subgraphs count has every time the same value (for example, this can happen
for isolated nodes in the network, when the null model has the same degree
sequence of the original network). The number of subgraphs in a graph is
assumed to be normally distributed, and, for this reason, each of them has
a mean and a variance. More realization of the null model we do, better
estimation of the real mean and variance we obtain.

Since the value of the Z-Score can be affected by the network size, if
we want to compare various networks, we can normalize the length of the
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Z-Score, computing the significance profile SP for each motif i, as:

SPi =
Zi√∑
i Z

2
i

. (2.30)

An alternative measure to the Z-Score for motifs detection is the p-value,
interpreted as the probability that a subgraph is higher in the original network
than in the null model. If the p-value is higher than a certain threshold,
then the corresponding subgraph is considered as a motif. However, we just
use the Z-Score in our study.

The choice of the null model influences motif detection [SZ15]. The null
model can be built specifically for a certain study, or can be one of the
well-known random graph models, such as Erdős - Rényi or the configuration
model.

The most simple methods to discover motifs is an exhaustive search
of subgraphs in the network. However, this is infeasible in big networks.
For this reason, many more efficient algorithm based on different sampling
techniques have been developed [Kas+04; Wer06].

2.7 Privacy definitions

With the increasing amount of personal data and data analysis techniques,
the risk for users’ privacy has dramatically raised and, consequently, the
study and development of privacy-preserving techniques for data analysis
has seen great attention among scientists. The existing privacy-preserving
and anonymization methods rely on different definitions of privacy, that have
been mainly developed for data like vectors. Only later, those definitions
have been extended to networks.

Some of the most popular existing definitions of privacy are:

• naïve anonymization: replacing the entities/users (or, in graphs, the
nodes) IDs with random numbers. We can also consider a network
naïvely anonymized when all attributes associated to nodes are dropped
(thus the graph is transformed in an unlabelled graph);

• random perturbation/noise injection [Kar+03]: randomly modifying
or distorting the data; an alternative is to replace the data with some
drawn from the same probability distribution to which some noise has
been injected with either an additive or multiplicative approach;

• k-anonymity [Swe02]: each entry in the released dataset it is indistin-
guishable from at least other k − 1 entries (or, in other words, each
equivalence class contains at least k values);
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• `-diversity [Mac+06]: it is a group based anonymization for labelled
data, where the labels or attributes can either be sensitive or not; an
equivalence class (which non-sensitive attributes have been anonymized,
or generalized to a certain value) present in a dataset satisfies `-diversity
if it contains at least ` different values for the sensitive attributes fields.
A released dataset satisfies `-diversity if all its equivalence classes
satisfy `-diversity;

• t-closeness [LLV07]: an equivalence class present in a dataset satisfies t-
closeness if the distance between the distribution of a sensitive attribute
present in this class and the distribution of the same attribute in the
whole dataset is no more than a threshold t. A dataset satisfies t-
closeness if all its equivalence classes satisfy t-closeness (the distance
is meant to be the distance between two probability distributions);

• differential privacy [Dwo06; Dwo08; D+14]: is a technique that is
applied to queries on datasets, ensuring the privacy of the response.
Given two adjacent datasets x and x′ (such as that they differ for one
element), an algorithm A, which takes a dataset as an input, is ε− δ
differentially private if, for all subsets S of the image of A, S ⊆ im(A),
the following holds: Pr(A(x) ∈ S) ≤ eε Pr(A(x′) ∈ S) + δ. This
formula means that the probability of observing S in two adjacent
datasets x and x′ (for example, a perturbed one and its original copy)
differ by an additive and multiplicative factor. ε is called the privacy
budget and δ is optional, depending on the definition we want to
use. Algorithms that respect the differential privacy definition ensure
a randomized response, protecting, in this way, the privacy of the
individuals represented in the dataset the query is run on.

Those techniques can be applied to data attributes to modify them (or, in
the case of differential privacy, to queries to ensure a private, randomized
response) and to suppress the uniqueness of the attributes, and make the
entities less identifiable. In a dataset, information related to entries are
called quasi-identifiers. Quasi-identifiers are attributes that do not allow to
identify an entry themselves uniquely, but that create a unique identifier
combined with other quasi-identifiers. In the literature, some studies showed
this property of quasi-identifiers with real data. For example, [De +13;
PMS18; D+15] have uniquely identified individuals based on, respectively,
locations visited, metadata associated to social media usage, and credit card
transactions.

k-anonymity is one of the first formal definition of privacy, with a formal
probabilistic interpretation of re-identification. l-diversity and t-closeness
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were developed to strengthen the definition of privacy given by k-anonymity,
addressing some attacks on it.

Differential privacy is instead a modern concept that provides stronger
privacy guarantees with a more flexible definition. It has seen increasing
attention among scientists, and it has started to be applied also to networks
[TC12; Che+14]. Differential privacy was initially developed just to address
some particular queries, while, recently, the study of methods for data
sharing has also increased [Zha+17]. Some methods have been developed to
perform specific network analysis tasks, such as mining frequent subgraphs
[SY13], estimating the degree distribution [Hay+09], performing exponential
random graphs estimation [LM14]. Most of those methods, however, aim
to protect just some information, such as the ones related to nodes (node
differential privacy [Kas+13]) or edges (edge differential privacy).

In the next chapter, we see how some of these concepts of privacy
are applied to networks and, in particular, what is the role of network’s
neighborhoods in privacy and anonymization.

2.8 Tools used

The code developed for producing the results of this thesis has been written
in Python 2.7 [Ros95]. The library used for constructing and analyzing
multilayer networks is Pymnet [Kiv17], and the software for conducting
graph isomorphism tests is Bliss [JK07] (and its Python wrapper PyBliss).



Chapter 3

Literature Review on Neighborhood
Attack

In this chapter, we present the main literature on neighborhood anonymiza-
tion and privacy in social networks (Section 3.1). We also survey the
methods that have been developed to prevent neighborhood attack (Section
3.3). Moreover, we illustrate the existing methods for anonymizing multilayer
networks and edge-labelled graphs (Section 3.4). The focus of this thesis is
neighborhood attack on multiplex networks (a particular type of multilayer
networks) and, despite no methods currently exist to address this problem,
an overview of both neighborhood attacks on classical single-layer social
networks and other types of attacks on multilayer networks (or edge-labelled
graphs, that are, for certain aspects, similar to multiplex networks) can be
useful to understand the current state in the understanding of this problem.

3.1 Neighborhoods and privacy

More and more data can be modelled as networks nowadays, for instance,
social media connections or phone calls. Since networks can be interesting
objects also just for their structure, without attributes associated to nodes,
one can think that a naïve anonymization approach could be enough for
sharing them. However, some structural features can make a node unique
and thus re-identifiable in a network, such as the amount of its connections
(degree) or the structure of its neighborhood. In this sense, privacy definitions
have been adapted to networks, to modify the data to reach, for example,
k-degree anonymity [LT08] and k-neighborhood anonymity [ZP08]. The
k-neighborhood anonymity tries to prevent the neighborhood attack, such as
the re-identification of a node based on its neighborhood.

25
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Another approach to anonymize networks, based on modifying neighbor-
hoods, is neighborhood randomization [FW15]. This approach consists in
changing the endpoint of an edge within the local neighborhood of a node.
Neighborhood randomization provides link privacy, and it is one type of
random perturbation method. In particular, it is a link perturbation method.
Alternative link perturbation methods, not aiming to protect neighborhoods,
add a certain amount of edges randomly to the network [YW09] while
deleting the same amount, or perform random edge switching.

An alternative to the classical neighborhood attack is the neighborhood-
pair attack [NA13], which consists in the re-identification a node based on the
structure of neighborhoods of two connected vertices. Since the attacker’s
knowledge is broader than a normal neighborhood attack scenario (where
only the structure of a target’s node neighborhood is known), this attack
has higher re-identification risk than the classical neighborhood attack.

[Hay+07] and [Hay+08] study and formalize the risks of some structural
attacks on social networks, in particular the ones in which the attacker’s
knowledge consists in the degree and the neighborhood subgraph of a node at
various levels (or hops). For example, the attacker can know only the degree
of a node, or, additionally, the degree of its neighbors, etc.. Equally, the
neighborhood graphs can be 1-hop or of higher order. Specifically, the first
paper [Hay+07] studies the re-identification risk for both degree attacks and
subgraphs (or neighborhood) attacks at various levels on some single-layer
real world dataset. The second paper [Hay+08] studies the degree attacks
at various levels in both real-world data, synthetic data (such as power law,
tree, or grid topology graphs) and ER random graphs. In particular, for
the latter, the authors distinguish three cases, corresponding to different
regimes and edge probabilities: sparse, dense, super dense. They conclude
that n the dense and super-dense regime, a node is easily identifiable. In the
dense regime, a node is identifiable when the attacker’s knowledge includes
at least the degree of the neighbors, besides the degree of the node itself. For
networks in the sparse regime, as most real-data are, the re-identification
probability depends on the network size. We also study how the uniqueness
changes in ER graphs and other graph models in Chapter 5. However,
differently from those previous works, we also take into account the full 1-
hop neighborhood subgraph of a node. [NS09] presents a de-anonymization
method. This work also illustrates that the re-identification is easier if
the attacker has, besides the knowledge of certain subgraphs, even partly
additional information coming from another social graph, showing how
different percentage of node and edge overlap ovE affect the attack’s success
probability. In Chapter 5 we also study the effect of edge overlap in multilayer
networks, but more rigorously, and focusing only on neighborhoods. We



CHAPTER 3. LITERATURE REVIEW ON NEIGHBORHOOD
ATTACK 27

properly define the concept of multiplex neighborhoods (in Chapter 4) and
systematically analyze how different values of edge overlap, average degree
and networks size affect the fraction of nodes that are easily re-identifiable
in different network models.

In general, networks are harder to anonymize than other types of data
(such as vectors of values), because, besides the possible attributes of nodes,
there are also links, that can reveal information about relations between
nodes. An even more difficult task can be the anonymization of multilayer
networks, since there are multiple types of links. Few methods are addressing
the anonymization of networks with multiple types of links, and some of
those are discussed in Section 3.4.

3.2 Neighborhood attack: an overview

In this section, we present an overview of the existing methods to prevent
neighborhood attack in social networks, that we discuss in more details
in the next sections. In a neighborhood attack, the attacker’s goal is to
identify one or more nodes ti in a released network dataset based on their
neighborhood structure. The attacker’s initial knowledge consists of one
or more graphs Pi corresponding to ti’s neighborhoods. To perform the
attack, the attacker has to extract the neighborhoods of all the nodes, and
then perform isomorphism tests of the resulting graphs against the initially
known graphs Pi. All the extracted neighborhoods isomorphic to Pi are
candidates for the target ti. If there is just one candidate, then the victim
ti has been identified, and the attack has been successful.

There exist various types of neighborhood attack based on the attacker
knowledge, that can be, for example:

• 1 or more hop-neighborhood structure: the attacker knows just the
neighborhood structure. If the attacker knows, for example, also the
2-hop neighborhood structure, the nodes can be more easily identifiable
(however, most of the literature focus on 1-hop neighborhood attack);

• labelled neighborhood : in this case, the attacker knows also the labels
of the neighbors of the target node;

• partial knowledge of the neighborhood : the attacker does not know all
the neighborhood structure, but just a part of it.

Obviously, the higher the knowledge of the attacker, the higher the risk of
re-identification is. For instance, in some cases, it could be enough to know
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the structural information about the neighborhood to identify a node in a
network, but, in some other cases, the attributes associated to the nodes
(either the central node or the neighbors) can be crucial to identify the
target uniquely.

Neighborhood attacks can be also classified based on the type of networks
they are applied to, that can be labelled, unlabelled, weighted or unweighted.

The aim of neighborhood attacks countermeasures is to anonymize the
network (mainly extending the concept of k−anonymity [Swe02] to the one
of k−neighborhood anonymity [ZP08]), in order to suppress the uniqueness
of certain neighborhoods by adding some noise (e.g. adding or removing
edges or vertices from some neighborhoods) to the original data. In this
way, for each existing neighborhoods, there will be at least other k − 1 that
are indistinguishable (i.e. that are isomorphic), given the assumed attacker
knowledge. The successful attack probability for each neighborhood will
then decrease from 1 (case of presence of unique neighborhoods’ structure)
to 1

k
.
Almost all the presented neighborhood anonymization algorithms in

this chapter consist of two main steps: grouping (or clustering) the most
similar nodes with at least k members each; transforming the graphs in
each group to make them isomorphic to each other, through the application
of edit operations. The main edit operation used in the literature is edge
addition. By only adding edges or nodes, the resulting anonymized graphs
is a subgraph of the original. Finding an optimal solution to the k −
neighborhoodanonymization [ZP08] problem means minimizing the number
of edit operations needed to anonymize the network, and it is an NP-Hard
problem, which becomes NP-Complete for edge-labelled graphs with k ≥ 3
[ZP11].

The anonymization algorithms proposed in the literature are tested both
on empirical datasets and network models (mainly Erdős - Rényi networks).
To measure the quality of the anonymization, some network measures before
and after anonymization, such as: average degree, average local clustering
coefficient, average shortest path length between pairs of randomly picked
nodes, amount of edges/nodes.

3.3 Neighborhood attack on social networks

In this section, we present the literature about the neighborhood attack in
social networks. Table 3.1 shows a summary of the papers about this topic,
the specific considered problem and the main steps of the adopted method
to anonymize the network.
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We start by illustrating the first paper considering this problem (in
Section 3.3.1), along with its minor improvements and modification. Sec-
tion 3.3.2 presents methods addressing label-neighborhood attack and net-
works dynamic publishing, Section 3.3.3 illustrates neighborhood attacks
on weighted networks, while Section 3.3.4 refers to more general methods
treating other structural attacks.

3.3.1 Seminal work on neighborhood attack and its im-
provement/modification

The authors of the seminal work [ZP08] on neighborhood attack have defined
a k-anonymity approach (later extended to a `-diversity one with another
work, [ZP11]). They consider node-labelled graphs, with the labels forming
a hierarchy (for example, there are general labels like “doctor”, which are
at a higher level of the hierarchy, while others, more specific, like “dentist”,
that are at a lower level). There is also a meta-symbol * which is the most
general label (i.e. the root of the hierarchy). To perform neighborhood
anonymization, they allow edge addition and label generalization.

Finding an optimal solution (e.g. adding the minimum amount of edges)
to reach the anonymity is a NP-Hard problem1. To conduct isomorphism
test, the neighborhoods are represented through a neighborhood component
code (an alternative approach to the computation of a complete invari-
ant). The neighborhood component code (NCC) is the ensemble of the
minimum-DFS code [YH02]2 of all the neighborhood components, which are
the maximal connected subgraphs in the neighborhood of the target node
(Neighboorhood(u), if u is the target node). Two neighborhoods of two dif-
ferent nodes u and v are then isomorphic if and only if NCC(u) = NCC(v).
Figure 3.1 shows the neighborhood of a node and its components.

The neighborhoods’ connected components are used during the anonymiza-
tion process to align two networks, in order to do less modifications as
possible. The heuristic that [ZP08] adopts to anonymize two neighborhoods,
consists in matching neighborhood’s components pairs (starting with the

1The proof consists in reducing the k − neighborhood anonymity problem to the
k − dimensional perfect matching [HSS03] (such as the problem of finding a maximal
matching in a k-partite k-uniform balanced hyper-graph). The extended version of the
work [ZP11] presents the whole proof.

2Minimum DFS (Depth First Search) Code: canonical representation of a graph,
representing the edges through vertex pair IDs, sorted by the order in which the DFS
algorithm visits them. A graph can have multiple DFS code, but the minimum DFS code
is the one that respects a linear order on the label set of the vertices, if there is any.
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Problem Graph type
Dynamic
publishing

Anonymization
method Paper Section

(1-)neighborhood anonymization
Labelled nodes No

Neighborrhood isomorphism
checked through DFS code
of the neighborhood

Edge addition

Label generalization
according to label hierarchy

[ZP08] 3.3.1

Neighborrhood isomorphism
checked through DFS code
of the neighborhood

Edge addition

Label generalization
through l-diversity

[ZP11] 3.3.1

Neighborrhood isomorphism
checked through DFS code
of the neighborhood

Edge addition; Node addition
(if the edges to be added is to a node
above a certain distance, to minimize
changes in nodes’ distance)

Label generalization
through l-diversity

[OWK14] 3.3.1

Unlabelled nodes No

Neighborhood isomorphism
checked through adjacency matrix

Edge addition

[TP10] 3.3.1

Unlabelled nodes;
weighted network No

Neighborhood isomorphism
checked through adjacency matrix
and neighborhood matrix (that includes
edges’ weights)

Edge addition; Weight modification

[Liu+15] 3.3.3

Label neighborhood
anonymization Labelled nodes No

Neighborhood isomorphism
checked through neighborhood
label sequence similarity

Edge addition; Node addition

Label generalization
through super-label creation

[Wan+14] 3.3.2

General structural attacks Unlabelled nodes Yes

Partition the network in blocks,
then align those to make them
automorphic
Edge addition; Node addition

Nodes ID generalization
for dynamic publishing

[ZCÖ09] 3.3.4

Labelled nodes Yes

Creation of k-pairwise isomorphic
subgraphs
Edge addition; Edge deletion

Nodes ID generalization
for dynamic publishing

[CFL10] 3.3.4

Table 3.1: Overview of the papers regarding neighborhood attack on social
networks presented in this document.
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Figure 3.1: A neighborhood of a generic node u and its neighborhood
components Ci, which are the connected components in the neighborhood
(Figure adapted from [ZP08]).

ones with the highest amount of vertices) and making them isomorphic if
they are not already.

To assess the quality of the anonymization, the authors compute an
anonymization cost. The anonymization cost takes into account three factors
(which different impact can be tuned by three parameters): the nodes label’s
changes (with the so-called normalized central penalty3); information loss
due to adding edges; number of vertices introduced to a neighborhood to
make it anonymous. The choice of neighborhoods pair from the two networks
that need to be anonymized is done by matching the degree of the central
node. If there are no matching pairs are found, then the pair with the
minimum anonymization cost is chosen.

A later extended version of the seminal paper [ZP11] contains an ` −
diversity method for anonymizing a social network where nodes are labelled.
In fact, the previous approach can lead to information leak when, in the
presence of labelled graphs, the attacker does not know the labels of the
neighborhood of the target node. Indeed, with k−neighborhoodanonymity,
with labelled graphs, two neighborhoods with the same structure and the
same labels associated are identified by a neighborhood attack, the attacker
gets to know the information carried by the labels in any case (even though
the exact neighborhood is not identified). The considered types of networks
in [ZP11] have nodes with both sensitive and non-sensitive labels (that
represent, for example, information that people want to share or not).
A social network is considered to satisfy ` − diversity, if, after having
partitioned the network’ nodes in groups (called equivalence groups) and
anonymized those, in every equivalence group of nodes, at most 1

`
of the

3Normalized central penalty : supposing that a node with a label l1 needs to be
generalized to l2, the normalized central penalty is size(l2)

size(∗) , where size(l2) is the number
of l2 descendent that are leafs in the hierarchy, and size(∗) is the number of leafs in the
label hierarchy.
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vertices are associated with the most frequent sensitive label. Thus, the
attacker that knows the 1-neighborhood structure of a victim can infer its
sensitive label with a probability not larger than 1

`
(thus, the larger `, the

better). This approach gives stronger privacy than k − anonymity and, in
any case, the k − neighborhood anonymity is still respected.

The paper [TP10] proposed an alternative to the seminal work [ZP08]
in terms of matching the neighborhood components, representing them
with an adjacency matrix instead of the neighborhood component code.
In the adjacency matrices, the vertices are listed in decreasing order of
degree and labels (according to the hierarchy). The isomorphism test is
then done by checking both the adjacency matrix and nodes’ labels. In the
case of neighborhoods of different size, the comparison is done on the first
sub-matrices of the adjacency matrices of the components with the largest
amount of nodes. Instead, in case of no match, edges or vertices need to be
added for making two neighborhoods isomorphic. In this way, it is possible
to compute the difference of two node-aligned adjacency matrices with the
same power, obtaining the position of the edges that need to be added to
make them isomorphic. This approach with adjacency matrix can also be
easily extended to more than 1-hop neighborhood.

One problem in the neighborhood anonymization methods presented
until now in this section consists in consequence of edge addition. Indeed,
fake edges could significantly change the distance between nodes. [OWK14]
proposes an algorithm to minimize those changes. This method differs from
the seminal one in the anonymization process, in particular when an edge
needs to be added to a neighborhood, consequently including an additional
node to the neighborhood itself. In this work, the “new” chosen node is the
one that has the smallest distance (computed by Dijkstra’s shortest path
algorithm) from the central node of the neighborhoods. If all the possible
distances are higher than a certain threshold (chosen by the user), then a
fake node is added.

3.3.2 Label neighborhood attack

In this section, we present the label neighborhood attack problem, intro-
duced in [Wan+14]. In the label neighborhood attack, the attacker has
a background knowledge not just of the neighborhood structure, but also
about the labels of the nodes in it (conversely to the attacks presented
in subsection 3.3.1, where the nodes are labelled, but the attacker knows
just the structure of the target’s neighborhood). The labels can be both
sensitive and non-sensitive. During the anonymization process, the nodes
and their neighborhoods are grouped, considering not only the neighborhood
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structure, but also the additional constraint of having in each group nodes
with a certain amount of different sensitive labels (such as attributes which
privacy needs to be protected). To make neighborhoods isomorphic, the
adopted method allows edge addition (and, if needed, fake nodes addition).
In the end, the network should respect `-graphic-diversity, defined as:

(`−Graphic−Diversity): For each node u ∈ V(G) that attaches with
a sensitive label, there must be at least l − 1 other nodes with the same
labelled neighborhood graph, with different sensitive labels.

Also in this work, the nodes with higher degrees are considered first for
anonymization, mainly treating the nodes with the lowest degree to add in
neighborhoods when needed. A difference between this work and the seminal
one [ZP08] is that labels do not form a hierarchy, but the generalization is
done by creating a super-label, which contains multiple single labels. The
information loss due to the application of this technique is measured by

LGC(lu, l
′
u) = 1− |lu ∩ l

′
u|

|lu ∪ l′u|
, (3.1)

where lu is set of node u’s labels in the original network, while l′u is the one in
the anonymized network. The rest of the information loss is measured as in
the seminal work. The full algorithm performance is evaluated by comparing
the degree distribution of the network before and after the anonymization,
the average local clustering coefficient, and the average shortest path length
between nodes with different labels.

3.3.3 Neighborhood attack on weighted social networks

The paper [Liu+15] is about the k−neighborhood anonymization of weighted
unlabelled networks. Here, the allowed edit operations to reach k −
neighborhood ismorphism are edge addition and weight modification. To
represent neighborhoods, the authors use two matrices: the usual adjacency
matrix (without the central node) and the neighborhood matrix, consist-
ing of two rows, one representing the neighbors and the other the weight
assigned to the edges between the central node and its neighbors (there
could be also a weight of 0 in the case a weight is not assigned). The
grouping of similar neighborhoods is based on those two matrices, and the
various groups (or clusters) are sorted based on the number of neighbors and
number of neighbors’ mutual edges. The sorting process is repeated every
time a modification of neighborhoods occurs. Once two neighborhoods are
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made structurally isomorphic by edge addition (with the constraint that
just one new neighbors can be added to each neighborhood in the process),
the weights in the neighborhood matrix can be permuted or, if this is not
enough, they can be modified. To measure the method’s performance, the
authors compute the edge addition rate and the weight change rate.

3.3.4 Protecting the privacy in social networks against
general structural attacks

The two papers presented in this section are about k-automorphism [ZCÖ09]
and k-isomorphism [CFL10], two techniques that addresses the graph
anonymization problem to prevent structural attacks, including, but not
limited to, neighborhood attacks. Both methods are based on first partition-
ing the nodes in groups that do not share any node, called non-overlapping
groups. For the anonymization purpose, k-automorphism allows edge and
vertex addition, while k-isomorphism allows edge addition and deletion.
k-automorphism is applied to unlabelled graphs, while k-isomorphism to
labelled ones. k-isomorphism implies k-automorphism, and, in general, gives
stronger privacy guarantees. Both methods address dynamic releases, gener-
alizing the vertices ID to protect the privacy, even if in a slightly different
way. Indeed, the one in the k-isomorphism paper is more flexible because
the time snapshots are treated independently from each other.

The k-automorphism method [ZCÖ09] is based, as most of the methods
presented above, on partitioning the graph in k blocks, and then aligning two
graphs by edge addition, or, more specifically, edge copy, in order to obtain
a network in which, for each vertex, there is another symmetric vertex. The
authors defines the anonymization cost as follows:
Anonymization Cost: Given an original network G and its anonymized
version G∗, the anonymization cost in G∗ is defined as:

Cost(G,G∗) = (E(G) ∪ E(G∗))− (E(G) ∩ E(G∗)) , (3.2)

where E(G) is the set of edges in G, and E(G∗) is the set of edges in G∗.
The method also handles dynamic network release, which is the process of

continuously sharing networks that changes over time. Each release is done
at different time-stamps and consists of a network itself. Each vertex has
associated a vertex ID in order to keep track of it in each release. This IDs are
then generalized (such as grouped together, for example, two vertices with
IDs 1 and 2 become both {1,2}), respecting the definition of k-automorphic
network above. Thus, if the output of k-1 automorphic functions, that take
the same vertex as input, at different times is not the same, the vertices’ IDs
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are generalized. In the case that vertices are also added or deleted during the
dynamic release of the network, the anonymization becomes more difficult,
because the attacker could know about the presence or absence of a vertex
at different timestamps. In those situations, the generalization aims to have
the same generalized IDs present in all releases.

The method is evaluated by comparing the average shortest path length
between some pairs of vertices, the local average clustering coefficient, and
degree distribution before and after the anonymization.

K-isomorphism [CFL10] has been developed to address some issues of
k-automorphism, which protects nodes privacy but can also not protect links
privacy. For example, in a k-clique, where all the nodes are connected to all
the other nodes by an edge, the attacker cannot precisely indicate two nodes
that are target of its attack. Indeed, when looking only at the structure
of the network, all the nodes are indistinguishable to each other. However,
the attacker can still know that there is at least an edge that connects the
two nodes. K-isomorphism aims to protect information related to both
nodes and links. In the anonymization procedure, the network is partitioned
into groups of disjoint graphs, with the same number of vertices. Then the
graphs within a group are anonymized with edge addition or deletion.

The dynamic release of networks is handled by defining a vertex mapping
table in which each vertex ID is mapped to other vertices through some
isomorphic functions. The list of ID’s isomorphic to each vertex (called
“compound”) replaces the actual vertex ID of every vertex in the subgraph.
Regarding vertex deletion in successive releases, the single vertex ID be
present in the compound anymore, and in the vertex addition case, the new
ID will be present in a compound as the other vertices. In each release,
k-isomorphism should be maintained, by performing the anonymization
algorithm again.

Finally, the amount of modification introduced by the algorithm are
evaluated by comparing the degree distribution and shortest path length
of some randomly selected nodes. k-isomorphism performs better than
k-automorphism in the comparison of dynamic network release, since it
measures the proportion of generalized vertex IDs relative to all vertex IDs
in each release.
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3.4 Anonymization of multilayer and edge-labelled
graphs

In this section, we present the main literature about the anonymization of
multilayer networks and edge-labeled graphs. We are interested in multiplex
networks, which are, as defined in Section 2.2, both a type of multilayer
networks and, in particular, edge-labelled multigraphs. This section can
give us an overview of the state of the art of anonymization on those kinds
of systems, that are very close to the ones of our interest.

Table 3.2 gives an overview of the papers we present, along with the
considered problem and a summary of the used techniques. We first present,
in Section 3.4.1 the summary of the results of two papers regarding the
complexity of edge-labelled graph anonymization. Then, in Section 3.4.2,
we present other two works about label-bag anonymization, which is the
problem of making a node indistinguishable from the others based on the
labels of the edges incident to it. Finally, in Section 3.4.3, we summarize a
regarding k-degree anonymization in multilayer networks.

3.4.1 Complexity of neighborhood attack in edge-labelled
graphs

[KSV11] and [Che+13] present and prove the hardness of different edge-
labelled social network anonymization techniques, reducing the problems
to a table k-anonymization problem, where the rows of the table represent
the entries, and the columns the various attributes associated to them. The
table anonymization problem is NP-Hard.

The paper considers the anonymization of the label sequence of a node,
such as the list of the edges’ labels that are incident to each vertex. This

Problem Graph type Dynamic
publishing

Anonymization
method Paper Section

Label-Bag Anonymization:

k-anonymization of a node based
on its label bag (set of the labels
of the edges that are incident to it)

Edge-labelled graphs;

unlabelled nodes
No Edge addition [Li+14] 3.4.2

k-degree anonymization of multi-layer
(time varying) networks

Multilayer (time-varying);

unlabelled nodes
Yes Temporal degree

vector modification [RMT15] 3.4.3

Table 3.2: Overview of the papers regarding multi-layer networks and
edge-labelled graphs anonymization presented in this document.
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problem is called Label Sequence-Based Subset Anonymization Problem
(LS-SAP), and it is defined as follows:

Definition (Label Sequence-Based Subset Anonymization Prob-
lem (LS-SAP)): Given an edge-labeled graph G = (V, E, Σ), X ∈ V ,
and an integer k, find an edge-labeled graph G′ = (V,E ∪ E ′,Σ ∪ Σ

′) such
that X is k-anonymous in G′ and the number edges added, |E ′|, is minimized.

LS-SAP is NP-Hard, and NP-Complete for k ≥ 3. This complexity is the
same as the k-neighborhood anonymization problem. In fact, k-neighborhood
anonymization is reduced to k-label sequence anonymization, since, in both
the problems, edges needs to be added to make two graphs isomorphic.

3.4.2 Label-Bag anonymization

The label-bag anonynimization problem [Li+14] is the problem of anonymiz-
ing edge-labelled graphs, equivalent to LS-SAP introduced in the previous
section. A label-bag (LB) is indeed the ensemble of labels of edges incident
to a vertex. The anonymization method proposed still has a grouping step,
where the aim is to group nodes with similar label-bag. Different grouping
strategy, such as hierarchical clustering or feature-based grouping (based
on the similarity of the label bags, like Jaccard similarity), are discussed
and compared. In every group, the union of the label bags of the nodes
within the group is called Target Label Bag (TLB). Instead, the union of
the label bags of the nodes within the same group, not counting the node
itself, is called Residual Label Bag (RLB). TLB and RLB are used for the
edge addition. The edges are added between two nodes that have at least
a common label in their RLB and that are not directly connected already.
The process is then iterated until the graph is LB k-anonymous (the RLBs
should be empty at the end).
An improved version of the method is presented in [Li+], where the edge
addition is done taking into account also the maximization of the utility,
trying to minimize the distance between the measures of the network before
and after anonymization, such as degree distribution, average local clustering
coefficient, average shortest path length between randomly chosen nodes.
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3.4.3 k-degree anonymization of multilayer networks

[RMT15] studies the k-degree anonymization of multilayer (undirected and
unlabelled) social networks, focusing on temporal networks. In the considered
temporal networks, each layer corresponds to a particular temporal slice. The
difference between this work and the others addressing dynamic network
publishing, it is that here one can keep track of a single node during
different timestamps, while in previous works (for example in the papers
presented in 3.3.2 and 3.3.4) the vertices ID were generalized, thus there was
not a real one-to-one correspondence between nodes in different temporal
snapshots. The nodes grouping and consequent anonymization is based on
their temporal degree vector (the vector containing the degree of the node
in each layer). After having anonymized the nodes, it might be necessary to
enforce realizability of the various degree sequences, to respect the Erdős-
Gallai theorem. This step is done by solving a linear programming problem,
projecting an unrealizable degree sequence to the nearest realizable one.
The cost of the anonymization is computed by:

cost C(D,D∗) =
n∑
i=1

T∑
i=1

di − d∗i
Tn(n− 1)

, (3.3)

where D and D∗ are the matrices formed by the temporal degree vectors, n
is the number of nodes, T the temporal slices, d and d∗ the single degree
vectors.
The grouping step is done with a modified version of the k-means clustering
algorithm, run multiple times, selecting the realization with the lowest cost.
However, since this approach is not really suitable for large graphs, a greedy
algorithm is also presented as an alternative.
The authors found that the more correlated the temporal slices are, the
easier defining anonymity groups is, and the higher the temporal resolution
is (for example from one month to one week), the higher the anonymization
cost is.



Chapter 4

Multiplex Neighborhoods

The aim of this chapter is to define the neighborhoods and the settings of the
neighborhood attacks in multiplex networks. We will need these definitions
in the next chapters, where we want to understand the difficulty of the
anonymization problem to prevent neighborhood attacks on networks. The
major obstacle for the existing anonymization algorithms presented in the
previous Chapter 3 is the presence of unique neighborhoods (at least if we
consider k-anonymity, with k = 2), because they are easily identifiable by an
attacker that knows the target nodes’ neighborhood structure and performs
an exhaustive subgraph search on the complete network. Understanding the
difficulty of the problem given simple network features (such as the number
of nodes, average degree, or, in the multiplex case, number of layers and
proportion of overlapping edges between different layers) is important to
assess the privacy risk when it comes to data sharing.

In order to conduct an analysis on how the uniqueness varies in both
network models (Chapter 5) and empirical data (Chapter 6), we need to
first define multiplex neighborhoods, and understand how an attacker can
extract those from the network in order to look for the target node. We show
that multiplex neighborhoods can be defined in multiple ways, and this also
affects the isomorphism classes to which each neighborhood belongs and,
consequently, the uniqueness value of the network (which is, as we define
in subsection 4.1.4, the number of unique neighborhoods in the network).
We also define the different types of uniqueness we discuss (according to
the network type, monoplex or multiplex, or to the isomorphism type we
consider) and, finally, illustrate the hypothesis under which we work (e.g.,
the types of dataset we are taking into account) and the attacker model for
the neighborhood attack in multiplex networks (Section 4.2).

39
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4.1 Neighborhoods in Multiplex Networks

In this Section, we present two possible definitions of multiplex neighbor-
hoods (subsection 4.1.1) and discuss how they can lead to different uniqueness
values (subsection 4.1.2). We then discuss how an attacker can practically
extract those neighborhoods from a network, to perform the neighborhood
attack (subsection 4.1.3). We also present the different definitions of unique-
ness, which is a central concept in this thesis (subsection 4.1.4), and discuss
about the count of isomorphism classes for multiplex neighborhoods and, in
general, for multiplex network (subsection 4.1.5).

4.1.1 Multiplex neighborhoods definition

A 1-hop multiplex neighborhood is the multiplex version of the 1-hop neigh-
borhood in a normal graph (the definition can be naturally extended to
multiple hops, but we focus just on nodes’ immediate neighbors), as defined
in Section 2.1. We defined the neighborhood of a node v in a simple network
G as the subgraph induced by v’s neighbors (Equation 2.2). Similarly, to
define multiplex networks’ neighborhoods, we need to first define multiplex
subgraph:

A multiplex subgraph M∗ of a multiplex network M={Gi}di=1 with
layers L̂ is defined as:

M∗ = {G∗i }di=1 , (4.1)
where G∗i is a subgraph of Gi, such as the graph in layer Li of M . M∗ has
the same layer set L̂ as M .

Given a multiplex network M , with layers L̂, and all the monoplex
networks Gi in each layer Li (according to the definition in Section 2.2), we
identify two different ways of defining a multiplex neighborhood of a node v
in a multiplex network M :

• Non-Inclusive Multiplex Neighborhood (N⊂(v)) is a multiplex
network with the same layers Li as in M . Each single-layer network
of N⊂(v) in layer Li is the induced subgraph Gi[V

⊂(v)
i ] of Gi, where

V
⊂(v)
i ⊂ VGi is the set of neighbors of v in layer Li:

N⊂(v) = {Gi[V
⊂(v)
i ]}di=1 = {V ⊂(v)i , E

⊂(v)
i )}di=1 (4.2)

N⊂(v) is generally not node-aligned, because some nodes that are
neighbors of v in L1, can also not be neighbors in L2, and thus are not
included in the network;
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• Inclusive Multiplex Neighborhood (N⊆(v)) is a more inclusive
version of N⊂(v). Each single-layer network of N⊆(v) in layer Li is the
induced subgraph Gi[V

⊆(v)
i ] of Gi, where V

⊆(v)
i ⊂ VGi is the vertex set

composed by the nodes in VGi that are neighbors of v in at least one
of the layers L̂ (and not just in that specific layer Li). More formally:

N⊆(v) = {Gi[V
⊆(v)
i ]}di=1 , (4.3)

where:

V
⊆(v)
i = (

d⋃
h=1

V
⊂(v)
h ) ∩ VGi . (4.4)

N⊆(v) is a node-aligned network if the neighbors of v are present
in all the layers L̂. The neighborhood computed according to this
definition is called inclusive since it can include nodes that are not
immediate neighbors in some of the layers of the network (conversely
to the previous definition). We can simplify the notation of the vertex
set of N⊆(v) in each layer Li. We can say that V ⊆(v)i is composed by
V
⊂(v)
i and V ∩(v)i , which are other nodes that are neighbors of v in a

layer different from Li.

N⊂(v) and N⊆(v) do not include v (the central node) as a node. Both N⊂(v)
and N⊆(v) are multiplex induced subgraph of their original network M .
Moreover, N⊂(v) can be defined as a multiplex subgraph of N⊆(v). Indeed,
the vertex set of N⊆(v) in each layer includes both the immediate neighbors
of v, that are always in the vertex set of the respective layer of N⊂(v), plus
other nodes (neighbors of v in other layers). An example of Non-Inclusive
and Inclusive multiplex neighborhoods is shown in Figures 4.1 a and b.

A multiplex network M can be aggregated into a single-layer (or mono-
plex) network Magg, that combine into a single-layer all the edges and nodes
of M . Thus, we can define an aggregated neighborhood Na(v) as the
neighborhood of v in the network Magg, resulted from the aggregation of the
multiplex network M . Being Na(v) a neighborhood in a monoplex network,
definition 2.2 is still valid for it.

4.1.2 Multiplex neighborhoods isomorphism

In this subsection, we compare the two neighborhood definition we presented
in the previous section in terms of isomorphism classes count. This is
relevant to our study because the number of possible isomorphism classes
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Figure 4.1: An example of Non-Inclusive and Inclusive multiplex neighbor-
hood of the same node. The red node is the central node and the pink edges
connect it to its neighbors. Figure a represent the Non-Inclusive multiplex
neighborhood, and b the Inclusive multiplex neighborhood; c shows the
aggregated neighborhood computed on the full aggregated network (corre-
sponding to the aggregation of the Inclusive multiplex neighborhood in b); d
shows the aggregation of the Non-Inclusive neighborhood represented in a.

that can be obtained with one or another definition affects the number of
unique neighborhoods in a network.

As we have seen in the previous section, the vertex set V ⊆(v)i of each
graph in the layers of N⊆(v) includes both the nodes in the vertex set
V
⊂(v)
i of N⊂(v), plus possible other node-layer tuples (V ∩(v)i ) and the edges

between them. For this reason, computing the neighborhood of the same
node v according to both definitions can lead to different results. However,
since definition N⊂ is less inclusive, there is a higher chance that more
neighborhoods would be mapped to the same isomorphism class. For
instance, in a network, there can be two neighborhoods X and Y , where
X is equal to the Inclusive neighborhood in Figure 4.1 b, while Y has the
same nodes as X, but without the edge between the two nodes that are not
neighbors of the central node. In this case, X and Y are not isomorphic
with neighborhood definition N⊆, but are isomorphic with neighborhood
definition N⊂. The respective N⊂ would look like the one in Figure 4.1 a.

As discussed in Section 2.4, two multiplex networks M and M ′ are
isomorphic if there exists a vertex map γ such that V γ

M = VM ′ . This
applies also to multiplex neighborhoods, since they are multiplex networks
themselves. However, we can also say that, if two multiplex networks are
isomorphic, according to at least node-isomorphism, an existing vertex map
relabels the nodes of one network to the one of another for each layer of the
networks. If two Inclusive multiplex neighborhoods N⊆(v) and N⊆(v′) of
two nodes v and v′ are isomorphic, there exists a vertex map γ such that,
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for each layer Li:
V
⊆(v) γ
iN⊆(v) = V

⊆(v)
iN⊆(v′) . (4.5)

Since in Inclusive Multiplex Neighborhoods, for each layer Li, there can be
two different type of nodes, V ⊂(v)i and V ∩(v)i , we can say that:

γ(v) = ξ(v) if v ∈ V ⊂(v)iN⊆(v) , (4.6)

γ(v) = η(v) if v ∈ V ∩(v)iN⊆(v) , (4.7)

and consequently:
V
⊂(v) ξ
iN⊆(v) = V

⊂(v)
iN⊆(v′) , (4.8)

V
∩(v) η
iN⊆(v) = V

∩(v)
iN⊆(v′) . (4.9)

If only the vertex map ξ exists, then the two considered neighborhoods are
isomorphic only if we consider their Non-Inclusive version N⊂(v) and N⊂(v′).
If two neighborhoods are isomorphic according to the Inclusive definition,
they are also isomorphic according to the Non-Inclusive one. In fact, if a
vertex map γ exists, then also ξ exists. Moreover, for each layer Li:

Ei(N⊆(v))γ = Ei(N⊆(v′)) =⇒ Ei(N⊂(v))ξ = Ei(N⊂(v′) . (4.10)

Since:
Ei(N⊂(v))ξ = {(xξ, yξ)|(x, y) ∈ Ei(N⊂(v))} , (4.11)

and since any pair of vertices x, y in one layer Li of N⊂(v) belongs also to
N⊆(v), then all the edges between them would belong also to N⊂(v). This
is because N⊂(v) is a multiplex subgraph of N⊆(v), and V ⊂(v)i ⊂ V

⊆(v)
i . In

one layer Li, there might be an edge between a node z ∈ V ⊂(v)i that is an
immediate neighbor of v and one h ∈ V ∩(v)i that is not. In this case, this
edge (z, h) would be included in Ei(N⊆(v)), but not in Ei(N⊂(v)), since
h /∈ V

⊂(v)
i . In fact, for each layer Li of N⊆(v), the sets V ⊂(v)i and V

∩(v)
i

are disjoint. What has been just said can be also extended to node-layer
isomorphism. Indeed, two neighborhoods that are node-layer isomorphic
considering the Inclusive definition, then are also node-layer isomorphic
considering the Non-Inclusive definition.

The number of possible isomorphism classes (both for vertex-isomorphism
and vertex-layer isomorphism) that can be obtained by computing the
neighborhoods of a network using definition N⊆ is always higher or equal
than the one obtained using definition N⊂. Indeed, the number of possible
isomorphism classes grows with the number of nodes, in simple and in
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multiplex network (as it is shown in [KP18]), and N⊆ has in general more
nodes than N⊂.

We can also compareN⊂(v) andN⊆(v) with the aggregated neighborhood
Na(v). Na(v) contains all the edges that exist in every layer between the
nodes that are neighbor of v in at least one layer. Indeed, by aggregating
N⊆(v) we can always obtain Na(v). Conversely, when aggregating N⊂(v),
some of the edges observable with eitherNa(v) orN⊆(v) may not be included.
An example of this case is shown in Figure 4.1: in Figure 4.1 b we can observe
an additional edge in N⊆(v) compared to N⊂(v); the same edge can be
observed in the aggregated neighborhood in Figure 4.1 c; aggregating N⊂(v)
would not allow to observe the additional edge present in N⊆(v), as can be
seen from Figure 4.1 d.
N⊆(v) always contains at least the same amount of information of Na,

since the number of nodes and edges is the same in both neighborhoods,
and, additionally, N⊆(v) contains the information on which layers the nodes
and links are located. Thus, we can state that the number of possible
isomorphism classes according to both node and node-layer isomorphism
that can be obtained using definition N⊆(v) is higher or equal than the
ones obtained with Na(v)1. On the other hand, it is hard to compare the
number of isomorphism classes that can be obtained using N⊂ and Na,
since N⊂ contains information about the location of some of the nodes (the
immediate neighbors of the central node), but may not contain information
about the location of the nodes that are not immediate neighbors and the
edges between them. We discuss how this result is related to the uniqueness
of neighborhoods in Section 4.1.4.

4.1.3 Multiplex neighborhoods extraction

In the light of neighborhood attack, the choice of using definition N⊂ or
N⊆ depends on the attacker’s background knowledge: we can use N⊂ if the
attacker knows just about the single neighborhoods of the target node in
different social networks, while N⊆ implies that the attacker also knows
about the existence of the neighbors and the links between those in all the
considered social networks, even if they are not neighbors of the target in
one of the networks. We can give a practical example with online social
networks such as Facebook and Twitter, assuming v as the target node of a

1This statement is based on the fact that the number of multiplex isomorphism classes
is higher than the ones of simple graphs, as shown in [KP18]
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neighborhood attack:

Example: N⊂(v) is built by extracting the network of v’s friends on
Facebook and of v’s followers on Twitter separately, and then combine them
in a multiplex network. If f1 and f2 are two friends of v on Facebook, and
they also have a Twitter account, but they do not a follow v on Twitter,
then f1 and f2 are not included in the Twitter layer of the neighborhood.
Conversely, N⊆(v) would include both f1 and f2 in the Twitter layer, as
well as an edge between those in the case they follow each other.

In this thesis we mostly focus on definition N⊂, and we conduct all the
experiments in the next Chapters 5, 6 and 7 according to it. This is probably
a more realistic approach, since it is easier for the attacker to access the
neighborhoods of a target node, while, in N⊆, the attacker also needs to
know the connections of nodes that are not the primary target. However,
the analysis in this document can be extended to N⊆ following the same
methodology.

To extract neighborhoods N⊂ from a network, we first extract the single-
layer neighborhoods in all the layers and then build the corresponding
multiplex neighborhood. Conversely, to extract N⊆, we extract the induced
subgraph formed by all the nodes that are neighbors of the central node
in at least one layer. However, since we do not include the central node in
the neighborhood’s graph, we need to distinguish the two types of possible
node-layer tuples: the ones that are in the neighborhood of the central
node, and the ones that are not. Indeed, to compute the fraction of unique
neighborhoods in a network, it is necessary to map each neighborhood to
an isomorphism class, for example through the computation of the complete
invariant (a unique string corresponding to one and only one isomorphism
class). If the two different node-layer types are not distinguished, then all
the node-layer tuples would be interpreted as actual neighbors, potentially
leading to the mapping of two neighborhoods that are different to the same
isomorphism classes.

4.1.4 Multiplex neighborhoods uniqueness

We want to study the uniqueness of neighborhoods in a network. A neighbor-
hood in a networkM is unique if the number of times that the corresponding
isomorphism class (which in this case we call neighborhood isomorphism
class) occurs in M is exactly 1. Before introducing the definition for the
uniqueness of neighborhoods, we need first to define the occurrence frequency
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ONτ (v) of a neighborhood Nτ (v) (τ depends on the type of the neighborhood,
which can be multiplex inclusive, non-inclusive or aggregated) in a network
M (monoplex or multiplex), with vertex set V . We define ONτ (v) as the
number of neighborhoods in M that are isomorphic to Nτ (v):

ONτ (v) =
∑
v′∈V

δ(Nτ (v) ∼= Nτ (v′)) , (4.12)

where

δ(Nτ (v) ∼= Nτ (v′)) =

{
1, if Nτ (v) ∼= Nτ (v′)
0, otherwise

. (4.13)

We can then define the uniqueness of neighborhoods UNτ (or, simply, unique-
ness) of a network M with n nodes as following:

UNτ =
∑
v∈V

δ(ONτ (v) = 1)

n
, (4.14)

where:

δ(ONτ (v) = 1) =

{
1, if ONτ (v) = 1

0, otherwise
. (4.15)

Thus, the uniqueness of neighborhoods corresponds to the fraction of
neighborhood structures that occur one and only one time in the network. If
the value of uniqueness is equal to one (maximum uniqueness), it means that
there are only unique neighborhoods in the networkM , thus no neighborhood
is isomorphic to any other. Conversely, if UNτ = 0 (minimum uniqueness),
every neighborhood occurs at least two times in M , and if UNτ = 0.5, half
of the neighborhoods occur just one time in M .

To simplify the notation, depending on the neighborhood type τ (multi-
plex inclusive, non-inclusive, or aggregated), the graph type G, the isomor-
phism type I, and the aggregation level A, we can consider the uniqueness
as a function of a quadruplet:

UNτ = U(G,Nτ , I,A) , (4.16)

where G is either a multiplex network M or a monoplex network G; I can be
either node (indicated with [0]) or node-layer isomorphism (indicated with
[0, 1]); A can indicate an aggregation, assuming value 1, or not, assuming
value 0. We can define simplified notation for every case of uniqueness we
consider:
• Aggregated (or monoplex) uniqueness (U (a)

N ):

U
(a)
N = U(G,Na, [0], 1) , (4.17)
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([0] is indicated as the isomorphism type since in a monoplex network
there are no layers, thus only nodes can be considered for isomorphism).
The aggregated (or monoplex) uniqueness is the uniqueness of neigh-
borhoods in the aggregated network, or, in general, in a monoplex
network. Indeed, an aggregated network, in our case, is always a
monoplex network:

• Multiplex (node or node-layer) inclusive uniqueness (U⊆[I]):

U⊆[I] = U(M,N⊆, I, 0) , (4.18)

where I is either [0] or [0, 1] depending on the isomorphism type used.
the multiplex (node or node-layer) inclusive uniqueness is the unique-
ness of neighborhoods in multiplex networks, where the neighborhoods
are defined as inclusive multiplex neighborhoods N⊂, according to the
definition in Section 4.1 (node or node-layer depend on the isomorphism
type used).

• Multiplex (node or node-layer) non-inclusive uniqueness (U⊂[I]):

U⊂[I] = U(M,N⊂, I, 0) , (4.19)

where I is either [0] or [0, 1] depending on the isomorphism type
used. The multiplex (node or node-layer) non-inclusive uniqueness
is the uniqueness of neighborhoods in multiplex networks, where the
neighborhoods are defined as non-inclusive multiplex neighborhoods
N⊂, according to definition in the previous Section 4.1 (node or node-
layer depend on the isomorphism type used).

Since the number of possible isomorphism classes with a given number
of nodes is strongly related with the uniqueness of neighborhoods (in fact,
higher the number of possible isomorphism classes, higher the number of
possible neighborhoods, higher the uniqueness), based on the conclusion from
Section 4.1, we can say that with definition N⊆, the uniqueness is always
higher (or equal) than in the aggregated network, while this is not always
true if we use definition N⊂. Hence, the uniqueness U⊆[I] of a multiplex
neighborhood (or, in general, of a multiplex network) computed according
to definition N⊆ respects the following inequality:

U
(a)
N ≤ U⊆[I] , (4.20)

where U (a)
N is the uniqueness in the aggregated network Magg, as defined

above.
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We also define the degree uniqueness, as the fraction of nodes with a
unique degree in a network. We call those nodes unique degree nodes. In
multiplex networks, unique degree nodes are the ones where the combination
given by the degrees in all the layers is unique, where the degree in a layer
is the degree of the monoplex networks in that layer (thus by counting
just the intra-layer edges). However, this definition is valid just for node-
isomorphism, while in node-layer isomorphism the layers are interchangeable,
thus also the degrees in those so are. In Chapter 5, we discuss and study the
degree uniqueness, especially for Erdős-Rényi networks. Studying the degree
uniqueness is important since there are methods that anonymize a network
with respect to the nodes’ degree (even in multiplex network, for instance
[RMT15]), as we have seen in Chapter 3. The uniqueness of degree (or, in
multiplex network, of degrees’ combination) is relevant to our study since
we can show that the neighborhood anonymization is, in general, a more
difficult problem than the degree anonymization and we can analyze the
cases in which degrees are able or not to represent the full neighborhoods in
terms of uniqueness.

Based on the uniqueness definition as a quadruplet (Equation 4.16),
indicating the degree (or degree combination) as k, and considering the
degree as a special case of a neighborhood, we define the various types of
degree uniqueness as following:

• aggregated (or monoplex) degree uniqueness (U (a)
k ): fraction of unique

degree nodes in monoplex networks (or in aggregated multiplex net-
works). Defined as:

U
(a)
k = U(G, k, [0], 1) ; (4.21)

• multiplex node degree uniqueness (U (M)
k [0] ): fraction of unique degree

nodes in multiplex networks, with respect to node isomorphism. De-
fined as:

U
(M)
k [0] = U(M,k, [0], 0) ; (4.22)

• multiplex node-layer degree uniqueness (U (M)
k [0,1]): fraction of unique

degree nodes in multiplex networks, with respect to node-layer isomor-
phism. Defined as:

U
(M)
k [0,1] = U(M,k, [0, 1], 0) ; (4.23)

In Chapter 5 we study the uniqueness of Non-Inclusive neighborhoods
U⊂[I] in three network models, by analyzing how the network structure
influences it with different model parameters. If the uniqueness is higher in a
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network with certain parameters value compared to others, it means that the
number of possible neighborhoods (or neighborhood isomorphism classes)
under those specific conditions is greater. Given the difficulty of computing
the number of possible neighborhood isomorphism classes |I| (especially in
multiplex networks), the simulations can also help us to understand the
variation of |I| in different settings. Another interesting insight that can
be obtained from this study is the understanding of the conditions under
which the uniqueness of neighborhoods of N⊂ is higher or lower than the
uniqueness of aggregated neighborhoods Na.

Since we are going to present simulations in which networks are generated
from models, there exists more than one possible graph with the same features
(network size, average degree, edge overlap in the case of multiplex networks),
and all the possible graphs define a probability distribution. Based on that,
we can define the expected uniqueness value of a network H (monoplex or
multiplex) as:

〈U (H)
Nτ 〉 =

∑
Gi∈H

〈U (Gi)
Nτ 〉 · P (Gi) , (4.24)

where the sum is over all the possible graphs Gi, P (Gi) is the probability of
the graph Gi to occur, and U (Gi)

Nτ is the uniqueness value in that particular
graph.

4.1.5 Multiplex networks’ isomorphism classes count

Multiplex networks are systems that can be decomposed in different sub-
systems to be studied, mainly separating the edges that are overlapping
across the layers (thus shared between the layers), and the ones that are
not. This decomposition analysis can give us an interesting perspective on
the count of possible isomorphism classes in a multiplex network, which is
normally hard to compute).

For our analysis, we consider networks with just two layers, thus the
overlapping edges are shared among all layers. In general, we can think of a
multiplex network (or, equivalently, a multiplex neighborhood) as a system
composed of two different systems:

• Mind: a multiplex network which contains all the edges that are not
overlapping across different layers (thus each layer is independent of
any other);

• Mov: a single-layer network which contains just the overlapping edges.
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With this in mind, we can say that the number of isomorphism classes |IM |,
hence of possible neighborhoods, of a generic multiplex network M with
n nodes, is given by three factors: the number of isomorphism classes of
Mind (|IMind

|, which is the number of possible multiplex isomorphism classes
with the number of nodes of Mind); the number of isomorphism classes of
Mov (|IMov |); the effect due to the interaction between these two systems.
If the fraction of overlapping edges ovEis zero or one, such as there are no
overlapping edges or all the edges are overlapping, we can write:

|IM | =
{
|IMind

|, if ovE = 0 ,

|IMov |, if ovE = 1 .
(4.25)

From the above equation, if there is complete overlap (ovE = 1), the number
of isomorphism classes does not grow with the number of layers, and the
problem of counting multiplex isomorphism classes is reduced to the count
of single-layer ones. When there is no overlap (ovE = 0), the computation is
simple just in the case the layers do not share any node, and it would be:

|IMind
| =

d∏
i=1

|IMLi
| , (4.26)

where i indicates the index of the layers, and d is the higher layer’s index.
The reason for the presence of the product is that one needs to compute all
the possible combination of graphs across all the layers. In the case of a
multiplex network with only two layers, the above Equation 4.26 becomes:

|IMind
| = |IML1

| × |IML2
| , (4.27)

where |IML1
| and |IML2

| are the number of isomorphism classes of the graphs
in layer L1 and L2, respectively. If the layers of the network share some
nodes, then all the isomorphism classes cannot be computed in this way,
since, in the count, there would be included also the ones with overlapping
edges.

4.2 System and attacker model

We consider the problem of identity disclosure in sharing social networks
data, such as a list of nodes, representing entities, and edges, representing
relationships between a pair of nodes. In particular, we take into account
neighborhood attacks on undirected and unlabelled multiplex networks with
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one aspect. We call this kind of attack multiplex neighborhood attack. We
focus on the re-identification of a node in data that are claimed to be
“anonymized” by dropping the nodes’ attributes (this is what is usually
called naïve anonymization).

The attacker’s background knowledge consists of the neighborhood struc-
ture of one or more particular nodes, in various social networks. We model
the ensemble of these social networks as a unique system, such as a multi-
plex network (with a single aspect), where each layer represents one social
network. In our case, the attacker knows the complete 1-hop neighborhood
of a node (consisting in the neighboring nodes, plus the edges among them),
across all the layers of the network. We focus on multiplex neighborhoods
of type N⊂, presented in the previous Section 4.1. Thus, the attacker knows
the neighborhood of the target in every single social network and, after
that, it combines this knowledge to a multiplex network by connecting the
same nodes with intra-layer edges. The layers of the multiplex network can
either represent networks with different types of relationships (for example,
Facebook friendships, phone calls or text messages) or the same kind of
relationships at different time-stamps (in this case, we talk about a temporal
network, and the layers have a particular order given by the time, that
cannot be modified).

Some neighborhood structures can be unique (in the case there is no
other isomorphic neighborhood structure) already in a single-layer network
(composed by just one social network, but not as a result of the aggregation
of multiple layers), while others can belong to the same isomorphism class.
Anonymizing the network with methods similar to the ones presented in
Chapter 3 can be harder if the attacker is equipped with the knowledge
of various single-layer networks. The attacker can indeed combine the
information coming from different layers to make the re-identification easier.
Intuitively, more layers are shared, easier the attack would be (given that
the attacker knows the node’s neighborhood structure in all of them), and
harder the anonymization is (both because of the presence of more unique
structure, and from a computational point of view). However, as explained
in the previous in subsection 4.1.4, there are cases in which sharing of the
aggregated network (a monoplex network with all the links existing between
nodes in all the single-layer networks considered) could be worse than sharing
the multiplex network, since we can lose information about where the edges
are actually located (or, in other words, which social network they belong
to).

A variant of the multiplex neighborhood attack is the one where the
attacker knows the whole 1-hop neighborhood in some of the layers, while
he/she has a partial knowledge of the neighborhood in others. As an
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example, with a three-layer multiplex network, the attacker could possess
the knowledge of a neighborhood across two layers, while knowing just the
degree of the target nodes in a third layer. This case is the same as knowing
the entire neighborhood in all the three layers, if, in the third one, there are
no edges among the neighbors of the target nodes. However, in our analysis,
we do not take this option into account.

We assume that the attacker has access to the system composed by dif-
ferent social networks represented already as a multiplex network. In reality,
the adversary could have access to different datasets separately, and could
either perform the neighborhood attack separately on each monoplex net-
work, and then combine the findings to identify its target (the neighborhood
that matches its knowledge in all the graphs are the possible targets), or
construct a multiplex network from the data and perform then the multiplex
neighborhood attack.

Technically, to perform the multiplex neighborhood attack, the attacker
needs to match the known neighborhood graph with one (or more) of the
neighborhoods in the original system. Thus, it is needed to perform an
isomorphism test against all the 1-hop neighborhoods of the dataset, until
(s)he finds all the matching subgraphs. If the target node’s neighborhood
is unique, then the attack is successful; otherwise, the more isomorphic
subgraphs are present in the network, the lower the success probabilities are.
In fact, in this case, the adversary either has to guess which neighborhood
is the right one or needs to exploit additional information to identify the
victim.

The attacker can also possess or not the information regarding the layer’s
labels (for example, because the data are shared with or without them). In
this case, the re-identification problem becomes more difficult: being the
layer interchangeable, less unique neighborhoods would be present. This
scenario is not applicable to temporal networks, where the layers’ order
(such as “timestamp 1”, “timestamp 2”, “timestamp 3”...) is crucial. However,
if the temporal network has, for instance, more than two timestamps, and
the attacker knows the neighborhood computed from just two consecutive
timestamps, but not exactly which ones, then the attacker would need to
conduct multiple isomorphism tests with all the possible consecutive layers
combinations.

The types of isomorphism that the attacker should take into account are
the following:

• vertex isomorphism in the case of known layer’s labels (and with
temporal networks);

• vertex-layer isomorphism in the case of unknown layer’s labels.
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These types of isomorphism have been introduced in Section 2.4. If the
networks are shared by aggregating the layers in a single one, then also the
attacker should have (or should build) an aggregated single-layer network
from his/her background knowledge and, in this case, the type of isomor-
phism used in the isomorphism tests is the classical graph isomorphism,
defined in Section 2.3. However, in this case, the attack may fail since the
aggregation of a multiplex neighborhood of type N⊂ can lead to a different
aggregated neighborhood than the one actually present in the aggregated
graph.



Chapter 5

Uniqueness of neighborhoods in ran-
dom networks

In this chapter, we study the uniqueness of neighborhoods in three random
network models, to understand how different network structures influence
the formation of unique neighborhoods, and, consequently, the difficulty of
the anonymization problem. Indeed, it can be more difficult to anonymize
a network if the number of unique neighborhoods is higher. Our aim is to
gain a deeper understanding of the problem that anonymization methods
try to solve. A better overview of the situation can guide the creation of an
apposite algorithm for anonymization, especially in the case of multiplex
networks, where the complexity of the system is higher than in simple
networks.

As mentioned in Section 3.1, previous studies [Hay+07; ZP11] assessed
the uniqueness of neighborhoods in empirical data, without performing
an analysis of the factor which this feature depends on. Another paper
[Hay+08] studied the uniqueness of nodes, based on their neighbors’ degree,
at various hops, only in Erdős-Rényi networks.

We analyze and discuss that the proportion of unique neighborhoods’
structures increases with the average degree and decreases with the network
size. In fact, the bigger the network is, the more chances of having isomorphic
classes are present.

With the definition and hypothesis specified in Chapter 4, we conduct
simulations with three network models, Erdős-Rényi, Watts-Strogatz, and
Random Geometric Graphs and their multiplex versions, varying the network
size, average degree, and, in the multiplex case, the edge overlap proportion
between different layers. Our aim is to understand how different structures
behave in terms of anonymization difficulty. In particular, we consider the
data sharing of a multiplex network in three different settings: the layers’

54
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labels are shared; the layers’ labels are not shared; the layers are aggregated
in a single-layer. These three settings correspond to different attackers’
knowledge, and, consequently, they lead to different attacks, mainly because
of distinct isomorphism tests that the attacker has to conduct while searching
for the target node.

We also present some formulas to determine the proportion of unique
degree nodes and triangles in Erdős-Rényi networks. Those equations are
useful in our study since unique degree nodes can be enough to explain the
uniqueness of neighborhoods when the average degree is relatively small,
and, consequently, there are no edges between the neighbors of a node.

5.1 Simulation method

As stated above, the aim of this chapter is to get an idea on how network
features affect the uniqueness in three network models, Erdős-Rényi (ER),
Watts-Strogatz (WS) and Random Geometric Graph (RGG), both in their
monoplex and multiplex versions.

In the next sections, we explain how we build the multiplex version of
the three considered network models, Erdős-Rényi, Watts-Strogatz, and
Random Geometric Graph, and illustrate the results related to those. We
first present in detail the process of building each model with the desired
features, then show how the uniqueness in those models varies with size,
average degree and proportion of edge overlap, which is the proportion of
edges that are shared, i.e. overlapped, between two different layers. We have
generated networks from different models from sizes from 100 to 10000, and
for a range of average degrees from 0.1 until 90, computing the amount of
of nodes with unique neighborhoods and, for the Erdős-Rényi model, nodes
with unique degree (regarding which we also present some equations). Nodes
with unique degree correspond to the ones with unique neighborhoods if
there are no triangles in neighborhoods (i.e. if the local clustering coefficient
is equal to zero). For each combination of parameters we have generated
5 networks, computed the uniqueness in each of those and then taken the
mean and variance of the obtained uniqueness values. The plots in this
section are based on the computed mean. The variance of each of the results
is very low and, when the standard deviation is plotted as an error bar, it is
almost not visible). Therefore, it is not taken into account since negligible.

We are going to show how the uniqueness varies with network size and
average degree, to understand how long it takes for a system to pass from
uniqueness 0 to uniqueness 1, assuming a growth process either in the size or
in the amount of edges (and consequently in the average degree). Moreover,
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we want to understand what are the edge overlap values that lead to greater
or lower values of uniqueness. After presenting some results of complete
simulations for each of the model, we compare them better in Section 5.6.
In that section, we run simulations to specifically find a certain uniqueness
value, in particular 0.5, such as when half of the nodes in the network have
unique neighborhoods, with a modification of the binary search algorithm.

For simplicity, we consider multiplex network models with just two layers,
fully interconnected, and with the same amount of edges and average degree
in each layer. Each model has three main parameters: network size n,
expected average degree 〈k〉 and edge overlap ovE. The considered value of
average degree is the average degree of the aggregated network, that is the
average degree that the network would have if aggregated into a single-layer.
Since we conduct simulations with network models, we always refer to the
uniqueness values as expected uniqueness (e.g. 〈UNτ 〉).

5.2 Multiplex Network models

To study the uniqueness in various settings, we want to build multiplex
networks that have different factors of correlations between the layers. Indeed,
in real-world data, two different networks with the same nodes could be
strongly correlated to each other, sharing a high amount of edges, and this
correlation would be reflected by a high value of edge overlap. Contrarily,
two network could also be almost completely uncorrelated, with a low value
of edge overlap). For example, if two layers represent different contexts and
the nodes represent people, a high value of edge overlap would mean that
people interact in the same way and with the same other entities across all
the contexts. Conversely, a low value of edge overlap would reflect an almost
independent behaviour of the represented entities across the considered
contexts.

Exploiting the possibility of seeing a multiplex network as a system com-
posed by one system with two layers with independent (i.e. not overlapping)
edges, and a second system with only one layer that contains the overlapping
edges, called the overlapping layer), we can construct a multiplex network
with a desired edge overlap value starting from monoplex networks. In fact,
we can always build a multiplex network with two layers starting from the
independent generation of each of the two layers, which, for large-enough
networks, will not have any overlapping edge. We can then generate an
additional layer with the desired amount of overlapping edges, which will
then be copied to both of the other two layers.
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The average degree 〈ka〉 of the aggregated network is given by the sum of
the average degree of the independent layers (two times, one for each layer)
plus the average degree of the overlapping layer. Every multiplex network
with different edge overlap values but with the same average degree would
then result in the same single-layer network if aggregated.

The expected number of edges 〈mi〉 in each layer is computed by:

〈mi〉 =
〈ka〉 n

2
× 1

2
. (5.1)

This is obtained by reversing Equation 2.1 of the computation of the average
degree divided by two, since in each layer the average degree is half of the
average degree in the aggregated network.

We can also compute the average degree and the number of edges in
each of the system that form a multiplex network M : Mind, the system with
two independent layers, and Mov, the system with a single layer containing
the overlapping edges.

In the overlapping layer, the average degree 〈kov〉 and the number of
edges mov are:

〈kov〉 = 〈ka〉 × ovE , (5.2)

mov =
〈kov〉 n

2
. (5.3)

While in each of the independent layers, the average degree 〈kind〉 and the
number of edges mind are:

〈kind〉 =
〈ka〉 − 〈kov〉

2
=
〈ka〉 − (〈ka〉 × ovE)

2
, (5.4)

mind =
〈kind〉 n

2
, (5.5)

Thus the expected number of edges in each of the resulting layers is

〈mi〉 = mind +mov . (5.6)

Consequently, also the average degree in each layer is: Thus the expected
number of edges in each of the resulting layers is :

〈ki〉 = kind + kov . (5.7)
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5.3 Erdős-Rényi model

In this section, we present the simulation results we obtained with the
multiplex version of the Erdős-Rényi model. Moreover, we present formulas
to determine the fraction of unique degree nodes in monoplex and multiplex
Erdős-Rényi networks. The nodes with unique degree are uniquely identifi-
able in a network. For this reason, it is important to understand whether
the degree is enough to describe the uniqueness (and, consequently, the
re-identifiability) of the nodes, or more complete structure such as neighbor-
hoods are needed. We also present the formula to determine the fraction of
neighborhoods with at least a triangle in a Erdős-Rényi network. In this
way, we can understand the gap between the fraction of nodes with unique
degree and the ones with unique neighborhoods. Indeed, the presence of
triangles causes the diversity of neighborhoods even with the same degree.

5.3.1 Multiplex Erdős-Rényi model

The Erdős-Rényi network is by nature a random network and, because of
the way a network is generated from this model, two different large sparse
ER networks with the same amount of nodes would share almost no edges.
Thus, if we build a multiplex ER network in which the monoplex networks
in each layer are generated according to the ER model, we would obtain
no overlapping edges if the network size is large enough and the average
degree small enough to have a sparse network. However, we want to obtain
multiplex networks that have some correlation across the layers, represented
by a certain amount of overlapping edges. Moreover, we would like to
control the amount of correlation between the layers, hence the amount of
overlapping edges. For this reason, we generate a multiplex network with
a given value of edge overlap that, aggregated, would give an ER network
with the desired number of nodes and average degree.

The multiplex version of the Erdős-Rényi model is built in various steps.
First, given the number of nodes, the average degree and the proportion
of overlapping edges in each pair of layers, we compute the number of
edges needed in each layer, according to Equation 5.1. Once we have the
number of wanted edges in each layer, we randomly add edges to the two
layers separately, without overlapping them. Finally, we generate another
monoplex ER graph with a number of edges (that are not already present
in the other layers) given by the overlapping proportion, and we copy those
edges to each of the layers. The amount of necessary edges in all the layers,
and in the overlapping layer, can be obtained from the equations presented
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in Section 5.2.

5.3.2 Unique degree nodes in monoplex Erdős-Rényi
networks

In this section, we study and provide a formula for the fraction of unique
degree nodes in a monoplex Erdős-Rényi networks (U (a)

k ). In Section 5.3.4,
we extend the same calculations for multiplex ER networks. Unique degree
nodes are important since if in a neighborhood of a node there are no edges
between the neighbors, that neighborhood is entirely described by the degree
of the central node, and the local clustering coefficient of the central node is
equal to zero. If all the nodes in the network have local clustering coefficient
equal to zero, then the nodes with unique degrees would also be the ones
with unique neighborhoods. In other words, the uniqueness of neighborhoods
is explained completely by nodes with unique degrees when the average
local clustering coefficient of a network is equal to zero. When the average
degree starts increasing, at some point, depending on the network size,
the neighborhoods would also includes triangles. Triangles are formed by
the edges between the neighbors, since there are always edges between the
central node to its neighbors. When triangles are present, unique degree
nodes would not be enough to describe neighborhoods’ uniqueness. We
provide formulas to compute the number of neighborhoods with at least one
triangle in Section 5.3.3.

When triangles appear, the local clustering coefficient value increases,
and, while unique degree nodes still have unique neighborhoods, they are not
the only uniquely identifiable nodes. Indeed, nodes with the same degree can
have different neighborhoods because of a different amount or disposition
of triangles in the neighborhood (e.g. one node of degree 3 has two edges
between its neighbors, while another with the same degree has just one edge
between its neighbors). This behaviour of Erdős-Rényi networks can be seen
in Figure 5.1, for network with 100 and 2500 nodes. In this figure we can see
that triangles appear quite soon when the average degree starts increasing,
and the unique degree’s nodes fraction remains relatively low. Moreover, the
actual uniqueness of neighborhoods corresponds to the degree uniqueness
when the average degree is small (〈U (a)

k 〉 = 〈U (a)
N 〉).

〈U (a)
N 〉 increases after triangles appear in neighborhoods, since, as men-

tioned before, the degree of nodes is not enough to describe the uniqueness of
neighborhoods anymore. The point where the curves representing 〈U (a)

N 〉 and
〈U (a)

k 〉 diverge corresponds to an average degree value which is higher as the



CHAPTER 5. UNIQUENESS OF NEIGHBORHOODS IN RANDOM
NETWORKS 60

network is bigger (as can be noticed also from Figure 5.1). Indeed, in a big
network, compared to a small one, there are more possibilities to have two
nodes with the same average degree and also with the same neighborhood,
and that is the reason why, generally, in bigger networks, there would be a
smaller fraction of unique degree nodes and also of unique neighborhoods
(in Figure 5.1, we can see that the values of 〈U (a)

k 〉 are higher in the network
with 100 nodes compared to the one of 2500). Thus, the uniqueness of
neighborhoods of relatively large networks in their sparse region can be
totally explained by the degree uniqueness, and triangles become less and
less determinant to identify unique neighborhoods as the network size grows
(this can be noticed by the gap from the neighborhood with triangles and
unique neighborhoods curves in Figure 5.1). However, we need triangles to
identify unique neighborhoods when networks start becoming more dense.
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Figure 5.1: Expected uniqueness of neighborhoods (red line), degree
uniqueness (red dashed line) and proportion of neighborhoods with at least
a triangle (blue line) in ER networks of size 100 (a) and 2500 (b).

A complete overview of the trend of unique degree nodes’ in a monoplex
network until the dense region is shown in Figure 5.2. It is clear that
when the network is dense, the unique degree nodes start to decrease,
until the network becomes complete (〈ka〉 = n − 1), and there are no
unique degree nodes anymore since all the nodes are connected to each
other. Obviously, when the network is complete, also the uniqueness of
neighborhoods decreases since all the neighborhoods are the same (we discuss
more about the uniqueness of neighborhoods in ER in Section 5.3.5). In
the dense regime, the behaviour of multiplex network can be a bit different
from the monoplex ones. Indeed, since we study multiplex network with
an average degree of the corresponding aggregated network as a parameter,
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the networks in each single-layer are not themselves complete when the
〈ka〉 = n− 1, implying the existence of different neighborhood isomorphism
classes in the multiplex system. However, in this thesis, we mainly focus on
multiplex networks in the sparse regime, since dense networks are rare in
reality (and also require higher computational resources to be generated).

The expected proportion of unique degree nodes 〈U (a)
k 〉 in simple graphs

can be determined by the following formula:

〈U (a)
k 〉 =

∞∑
k=0

pk(1− pk)n−1 , (5.8)

where pk is the probability of a node to have degree k, according to the
degree distribution, according to the degree distribution formula (Equation
2.24):

pk =

(
n− 1

k

)
pk(1− p)n−1−k

=
(n− 1)!

k!(n− 1− k!)

( 〈k〉
n− 1

)k(
1− 〈k〉

n− 1

)n−1−k
.

(5.9)

The range of degrees to sum over in Equation 5.8 includes all the possible
values, from zero to n − 1 (when the network is complete). Indeed, the
probability to have nodes with degree equal or greater than the number of
nodes is 0 in graphs without self-loops and multi-edges. Figure 5.2 shows,
for a small network of size 50, that the curve obtained with Equation 5.8
corresponds to the one given by the simulation. From Figure 5.2 we can see
that the curve has a convex shape, and the maximum fraction of nodes with
unique degrees is reached when the average degree is half of the maximum
one (n−1

2
). This means that, if we take the first derivative of Equation 5.8,

and we evaluate it at k = n−1
2
, it would result being equal to zero:

d 〈U (a)
k 〉

dk

∣∣∣∣
〈k〉=n−1

2

= 0 . (5.10)

From the same Figure 5.2, it is clear that the maximum fraction of unique
degree nodes in the network is 7%. The nodes with unique degrees would
never be able to explain the uniqueness of neighborhoods U (a)

N of an ER
network if U (a)

N = 1. As an example, in a very small ER network with 4
nodes, with 〈k〉 = 4−1

2
= 1.5, 〈U (a)

k 〉 is approximately equal to 0.25. The
value of 〈U (a)

k 〉 will then decrease as the network size increases. The fraction
of unique degree nodes will be able to explain the whole uniqueness of
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Figure 5.2: Fraction of unique degree nodes in ER monoplex network, with
network size equal to 50, with different average degree values (horizontal
axis). Both the theoretical line (in blue) according to Equation 5.8 and the
curve derived by the simulations (in orange) are shown. The values from the
simulation are computed as the mean of 100 network generation (the error
bar corresponding to the standard error of the mean is not shown since the
values are negligible).

neighborhoods just in sparse networks, when the local clustering coefficient
is low, as shown in Figure 5.1.

5.3.3 Triangles in Erdős-Rényi networks

As mentioned above, when triangles appear in neighborhoods, the formula for
unique degree nodes is not sufficient to explain neighborhoods’ uniqueness. In
this section, we show how to compute the expected fraction of neighborhoods
with at least one triangle.

The probability to have at least one triangle in a neighborhood of a
nodes with degree k is:

pN k
a(4)

= 1− (1− p)(k2) = 1− (1− p) k(k−1)
2 , (5.11)

where p is the parameter of the Erdős-Rényi model (the probability to add
an edge between a pair of nodes).

From Equation 5.11 we can obtain the expected fraction of neighborhoods
with at least one triangle Na(4) in an ER graph, by summing over all the
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possible degrees and multiplying pNk4 by the degree distribution:

〈#Na(4)

n
〉 =

∞∑
k=0

(pNk4 × pk) . (5.12)

The trend of 〈#Na(4)

n
〉 can be seen in Figure 5.1.

5.3.4 Unique degree nodes in multiplex Erdős-Rényi
networks

In this Section, we extend the formulas to compute the fraction of unique
degree nodes (provided in Section 5.3.2) to multiplex networks. We show
how to compute multiplex degree uniqueness with respect to both node and
node-layer isomorphism.

In multiplex ER network, unique degree nodes are the ones where the
combination of the degree in all the layers is unique, as defined in Section
4.1.4. To obtain a valid formula for unique degree nodes in multiplex
networks, in Equation 5.8, we need to substitute pk with pk1k2 (the probability
of a node to have degree k1 in layer L1 and degree k2 in layer L2), if there
are two layers, or pk1pk2pk3 if there are three layers, etc. For simplicity, here
we present formulas for multiplex networks that are fully interconnected
and with only two layers.

In addition to the notation presented in Section 4.1.4, we need to define
the following notation, which will be useful to present the formulas for
unique degree nodes in multiplex networks:

• pk1k2[0]: probability of a node to have degree k1 in layer L1 and degree
k2 in layer L2, with respect to node isomorphism;

• pk1k2[0,1]: probability of a node to have degree k1 in layer L1 and degree
k2 in layer L2, with respect to node-layer isomorphism;

• pkov : probability of a node to have degree k in the overlapping layer.

We should also remember the decomposition of a multiplex network M into
two systems Mind (the multiplex network with two independent layers), and
Mov (the monoplex network containing the overlapping edges), defined in
Section 4.1.4. This notation will be useful to study the degree of nodes,
since the degree of a node in each of the layers is not always independent,
because of the overlapping edges, which contribute to the actual degree of
the nodes.
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In the case of a network with two layers and node isomorphism, Equation
5.8 becomes:

〈U (M)
k [0] 〉 =

∞∑
k1,k2

pk1k2[0](1− pk1k2[0])n−1

=
∞∑
k1=0

∞∑
k2=0

pk1k2[0](1− pk1k2[0])n−1 ,
(5.13)

where the first sum is over all the possible combinations of k1 and k2. To
compute pk1k2[0], we need to take into account the independent degrees of
the two layers in the network Mind, and the ones in the overlapping layer
Mov:

pk1k2[0] =
∞∑

kov=0

pkov(pk1−kov)(pk2−kov) . (5.14)

When the overlapping proportion is equal to zero, pk1 and pk2 are independent.
Conversely, when the overlapping proportion is equal to 1, then the degrees
in both layers are the same, and the probability of unique degree nodes is
equal to the one in a single layer network:

pk1k2[0] =

{
pk1pk2 , if ov = 0

pkov , if ov = 1 .
(5.15)

In node-layer isomorphism, the probability pk1k2[0,1] to have nodes with
a given degree combination is the same as in node isomorphism just when
k1 = k2. Otherwise, pk1k2[0,1] is equal to having either one of the possible
combinations of degrees k1 and k2 in the two layers:

pk1k2[0,1] =

{
pk1k2[0], if k1 = k2

pk1k2[0] + pk2k1[0], otherwise .
(5.16)

Moreover, in node-layer isomorphism, to obtain the proportion of nodes
with unique degrees, it is not needed to sum over all the combination of k1
and k2 as in Equation 5.13, but just on the unique combinations not taking
into account the possible permutations of degrees (for example, if we have
already summed with k1 = 1 and k2 = 2, we do not need to sum again with
k1 = 2 and k2 = 1):

〈U (M)
k [0,1]〉 =

∞∑
k1 6=k2

pk1k2[0,1](1− pk1k2[0,1])n−1 . (5.17)
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The equations presented in this section are valid for networks that are
large and sparse. The sparsity condition is needed since, when the network
is dense, we may not be able to properly control the overlap since there
might be edges overlapping by chance. In the following, we show that the
presented equations are valid for large and sparse networks.

The number of edges mov in the overlapping layer Mov is given by the
total number of edges ma, in the aggregated network, multiplied by the
overlapping proportion ovE, which can be seen as the parameter p of the
ER network Mov:

mov = pov ×ma . (5.18)

Since m = 〈k〉 n
2

(obtained by solving the formula for the average degree in
Equation 2.1 for m), and p = 〈k〉

n−1 (from Equation 2.23), we obtain:

mov = pov ×ma =
〈ka〉 × ovE
n− 1

× 〈ka〉 n
2

. (5.19)

With n→∞, we can cancel out n and n− 1, and Equation 5.19 becomes:

mov = pov ×ma →
〈ka〉2

2
× ovE , (5.20)

which does not depend anymore on the network size. In summary, in large
networks, the number of edges depends just on the expected average degree
and not anymore on the network size. Thus, if the average degree has a
value for which the network is sparse, the presented equations will work,
since we are able to properly control the edge overlap value. When the
average degree is high, instead, the number of edges is also high, and there
could be edges that are overlapping by chance.

Figure 5.3 shows that the theoretical lines computed with Equations
5.13 and 5.17 are overlapping with the ones of networks generated with
the ER multiplex model, with edge overlap values of 0, 0.5 and 1 and 100
nodes. With edge overlap equal to one, the unique degree nodes’ proportion
is the same with respect to both node and node-layer isomorphism, as well
as in monoplex networks. The fraction of unique degree nodes with respect
to node isomorphism is higher than the one with respect to node-layer
isomorphism since, in this last case, the isomorphism is less strict (being the
layers interchangeable), and two classes that are not node isomorphic can
be node-layer isomorphic. The degree uniqueness in the multiplex case is
significantly higher than in the monoplex one, and the maximum values are
reached when the edge overlap ovE = 0.5. This means that, at ovE = 0.5,
there is more variety of degree combinations across the layers. Moreover,
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the degree uniqueness in multiplex networks is higher than in monoplex ones
(or, equally, in multiplex networks with ovE = 1), thus, in the multiplex
case, there is a greater number of nodes uniquely identifiable knowing just
the combination of their degree in all the layers.

Figure 5.5 shows the trend of the degree uniqueness and neighborhoods’
uniqueness in multiplex networks with the same edge overlap values as Figure
5.3, for networks with size 100 and 5000. The behaviour of the neighborhoods
uniqueness with respect to the degree uniqueness is similar as in the monoplex
case. The only difference is that, with certain values of overlap (e.g 0.5, in
Figure 5.5 d), the neighborhoods uniqueness curve diverges significantly from
the degree uniqueness curve before than in the monoplex case. Also, when
there is no overlap (e.g. Figure 5.5 c), the multiplex curves diverge before the
the monoplex ones, but not so in advance as with ovE = 0.5. In big networks,
the fraction of nodes with unique degrees combination is less than in small
ones, thus nodes with unique degree combination would be significantly less
identifiable in big networks than in small ones, as can be seen from the
gap between the curves of degree uniqueness and neighborhoods uniqueness
in Figure 5.5, which is noticeably different in a network with 100 nodes
(Figures 5.5 a and b), where the degree uniqueness reaches values between
0.6 and 0.8, right after the neighborhoods uniqueness is 1, and 5000 nodes
(Figures 5.5 c and d), where the degree uniqueness is less than 0.1 (the
degree uniqueness would reach higher values when the average degree is very
high, and the neighborhoods uniqueness has reached the value one for an
average degree of less than 90, as can be seen in Figure 5.5).

5.3.5 Unique neighborhoods in Erdős-Rényi graphs

In the previous sections, we discussed the unique degree uniqueness in ER
networks, mentioning its relation with the neighborhoods’ uniqueness. In
this section, we discuss more in depth the trend of the latter, both in the
monoplex and multiplex case. We later conduct the same analysis with
networks generated with WS (Section 5.4.2) and RGG (Section 5.5.2) graphs,
to compare the neighborhoods’ uniqueness in graphs with different structure.

Figure 5.4 shows the uniqueness trend for small monoplex networks
with 100, 200 and 300 nodes with the all the possible values of average
degree, from zero to n−1. Despite the different network size, the uniqueness
of neighborhoods goes to the maximum value (one) almost immediately.
Differently from the degree uniqueness, the neighborhoods’ uniqueness
does not reach its maximum value when the average degree is half of the
possible maximum one (〈k〉 = n−1

2
), but before it. However, when the

network is complete, all the nodes are connected to each other, thus all the
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Figure 5.3: Fraction of unique degree nodes in ER multiplex networks of
size 100 with different average degree (on the horizontal axis), with respect
to both node (indicated in the legend with N) and node-layer isomorphism
(indicated in the legend with NL), with edge overlap values of 0, 0.5, and 1.0.
The continuos lines are given by the values computed with the simulations,
while the dashed lines are given by the values computed with the theoretical
formula.

neighborhoods are the same, and there is no uniqueness. The neighborhoods’
uniqueness starts decreasing only when the network is almost complete.
Indeed, the number of unique neighborhoods is high even when the network
is dense, but not complete. As for unique degrees’ nodes, this behaviour in
the almost complete region may not be observable in multiplex networks,
since, in our experiments, the maximum average degree (n− 1) is the one in
the aggregated network, thus, even if when 〈k〉 = n− 1, not all the networks
in each layer may be complete, depending on the value of edge overlap ovE.

We have now seen that the uniqueness reaches its maximum value quite
soon when the average degree increases, despite the network size. To have
a better overview of the uniqueness variation with respect to both average
degree and number of nodes, Figure 5.6 a shows the uniqueness’ trend in
monoplex ER networks varying those two parameters. We can see that
the uniqueness goes to zero faster, smaller the average degree is. On the
other hand, the uniqueness increases to one almost immediately with all the
network sizes. For instance, with average degree of two, it has already reached
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Figure 5.4: Uniqueness of neighborhoods variation in monoplex ER net-
works of size 100, 200 and 300, for the complete range of average degree of
each network.

one with relatively small network size (this has been also seen in Figure 5.4).
This trend means that there would be more unique neighborhoods as the
average degree increases, at least in the sparse region. Indeed, the higher
the average degree is, the higher the possibility of neighborhood formation
is, since, being more nodes present in a neighborhood, for example, more
combination of triangles would be possible. The uniqueness in multiplex
networks would have a similar trend than Figure 5.6.

In multiplex networks, the edge overlap value also influences the unique-
ness values (as it has been seen for degree uniqueness in Figure 5.3). Figure
5.5 shows the proportion of unique neighborhoods in networks of 100 and
5000 nodes, for multiplex networks with edge overlap of 0.0, 0.5 and 1.0.
With respect to the uniqueness, the edge overlap equal to 1.0 have the the
same behaviour in both type of isomorphism and is the same as in mono-
plex networks (indeed, with ovE = 1, the two layers are exactly the same).
Independently from value of edge overlap, the uniqueness with respect to
node-layer isomorphism is always lower than node isomorphism, as expected
(and as it is also valid for degree uniqueness). From those figures, we can
also see that with edge overlap of 0.5 (Figures 5.5 b and d), the multiplex
uniqueness is higher than in the monoplex one. This difference becomes
more evident as the network size increases (see the difference between the
network with 100 and 5000 nodes). However, with ovE = 0 (Figures 5.5 a
and c), the uniqueness in the monoplex network (which is the same as in
the aggregated one) is not always lower than in the multiplex ones. As can



CHAPTER 5. UNIQUENESS OF NEIGHBORHOODS IN RANDOM
NETWORKS 69

be seen from Figure 5.5 c, the monoplex/aggregated uniqueness becomes
higher than the multiplex one when the average degree increases. This is
justified by the way neighborhoods are extracted (as explained before in
Section 4.1).

The influence of different edge overlap values on the uniqueness is shown
in Figure 5.7 a, where there is also a comparison between the different
type of isomorphism and the aggregated networks in terms of uniqueness
(for networks with 5000 nodes). With edge overlap value equal to 1, the
uniqueness points of multiplex and monoplex networks again correspond.
The areas where the aggregated uniqueness is higher than the multiplex
uniqueness are the ones with low overlapping proportion and seem wider as
the average degree increases. In fact, with low overlapping values, there are
less shared edges between the layers, thus there are more possibilities that
two nodes x and y could be neighbors of another node n in one layer but
not in another one. Moreover, the chances that those two nodes x and y are
also connected to each other are greater when the average degree is higher
(since there are more edges in the network in general).

From Figure 5.7 a, it also emerges that an overlapping proportion of 0.5
(or, however, near 0.5) leads to the maximum amount of uniqueness. This
means that, with overlapping proportion of 0.5, there are more possibilities in
neighborhood formation, thus higher chances of having different isomorphism
classes. This result is also related to the isomorphism classes count (discussed
in Section 4.1.5) or graph enumeration problem. Indeed, as said before, the
graph enumeration is a difficult problem, especially in multiplex networks,
and the pick of uniqueness at overlap of 0.5 suggests that there are generally
more multiplex networks with this edge overlap value.

We can get an idea on how fast the uniqueness’ transition from the
minimum to the maximum value is, by looking at Figures 5.8 a and b, that
show the uniqueness transition from value 0 to 1 with different network
size and average degree in multiplex ER networks with respect to node
isomorphism. We can see that the transition from UNτ = 0 to UNτ = 1
is quite fast relatively to the width of the two areas with extreme values.
Also from this Figure, we can see that UNτ is generally higher in bigger
and more dense networks with ovE = 0.5 compared to ovE = 0. Despite
the differences in the values between the shown multiplex with respect to
node isomorphism and node-layer isomorphism and aggregated networks,
the width of the area in between UNτ = 0 and UNτ = 1 is almost the same
in those other cases.
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Figure 5.5: Expected uniqueness of neighborhoods (continuos lines) and
fraction of unique degree nodes (dashed lines) in ER multiplex and monoplex
networks of size 100 and 5000 with different edge overlap values, with respect
to node and node-layer isomorphism. a: 100 n, 0.00 ovE = 0; b: 100 n, 0.5
ovE = 0.5; c: 5000 n, 0.00 ovE = 0 d: 5000 n, ovE = 0.5. The legend for
all the figures is placed in figure a. Agg. stands for aggregated network; N
stands for node isomorphism; NL stands for node-layer isomorphism.

5.4 Watts-Strogatz model

Similarly to what we did for the ER model, we conduct experiments to
determine the uniqueness in Watts-Strogatz networks. The graphs gener-
ated with the WS model have a different structure compared to the ER
ones. We want to study the networks’ anonymization difficulty in different
settings, thus we use different models to represent various graph structures
and understand their behaviour in terms of uniqueness. We first present
the multiplex version of the Watts-Strogatz model we use, and then the
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Figure 5.6: Expected uniqueness of neighborhoods (vertical axis) in mono-
plex network models, with different network size (horizonatal axis) and
different average degree (in different colors). The values of average degree
are reported in the labels. a: ER (the lower values refers to the lower lines.
The average degree increases as the lines move towards higher values of
uniqueness); b: WS (with β = 0.5); c: RGG.

simulation results.

5.4.1 Multiplex Watts-Strogatz model

In an ER network, any pair of nodes have the same independent random
probability to be connected to each other, leading to a low clustering
coefficient. However, real-world networks have a higher value of local
clustering coefficient, since the nodes tend to be organized in a certain way,
depending on the modelled context. As explained in Chapter 2, Section
2.5.2, Watts-Strogatz model addresses this limitation of ER. To generate a
multiplex version of a Watts-Strogatz networks, we exploit the ring-lattice
structure to control the correlation between the different layers. We keep the
edges that have not been rewired in all the layers, and split the rewired edges
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Figure 5.7: Expected uniqueness of neighborhoods (vertical axis) in net-
work models in multiplex networks with respect to node and node-layer
isomorphism, and in monoplex networks, with different overlapping propor-
tion (horizontal axis) and different average degree (in different colors). The
values of average degree are reported in the labels. The smaller average
degree corresponds to the bottom lines, and the higher ones are the top
lines. a: ER; b: WS (for monoplex networks, instead of the edge overlap
proportion, the probability of rewiring β is reported); c: RGG. The legend
of a and b is the same and is placed in the upper right corner.

between the layers. The meaning of rewiring edges is to shorten the average
path length, going towards a randomized structure as the probability of
rewiring increases. With this method of generating a multiplex WS network,
we keep the “more organized” part of the system (represented by the ring
lattice) unchanged in all the layers: this can represents, for example, entities
that, in different contexts (represented by the layers), behave partially in a
known way, but also have a certain amount of unpredictable behaviour.

Practically, the multiplex Watts-Strogatz graph is built by first generating
a monoplex Watts-Strogatz network (with the algorithm described in Section
2.5.2) and then copying the non-rewired edges in both layers, and copying
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Figure 5.8: Heatmaps representing the variation of the uniqueness of
neighborhoods value (in color: the blue area corresponds to a uniqueness
of 1, while the yellow area correspond to a uniqueness of 0) in multiplex
networks with respect to node isomorphism. The horizontal axis represents
the network size, while the vertical axis represents the average degree.
Figures a and b are about ER networks with edge overlap of 0.0 and 0.5,
respectively. Figure c reports the values for the WS model, and d for RGG.

half of the remaining edges in one layer and the other half in the other
layer. Thus the edges that stayed in their original place in the ring lattice
would be the overlapping ones, while the others would not overlap. The
probability of rewiring β controls the overlap, and can be computed given
the desired ovE (at least in large and sparse networks, since in small and
dense networks there can be overlap by random chance, since, in this case,
a randomly rewired edge could lead to the creation of an edge that already
exists in the initial ring lattice configuration):

β = 1− ovE . (5.21)

In fact, if ovE = 1, then β = 0, and all the existing edges would stay in the
original place as part of the ring-lattice. Conversely, if ovE = 0, then β = 1,
there would be no edges in the ring lattice, and, consequently, no overlap.
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5.4.2 Unique neighborhoods in Watts-Strogatz graphs

The Watts-Strogatz (WS) model has a different parameter compared to
ER, the probability of rewiring β, with which we control the overlap in the
multiplex networks (we have explained in subsection 5.4.1 how we construct
a multiplex WS graph) which leads to different configurations even in the
monoplex networks. With β equal to zero, the network remains in its initial
configuration, such the ring lattice one, with uniqueness equal to zero (in
both the monoplex and multiplex versions), since all the nodes are linked
to k neighbors. The average degree needs to be at least 2 (and, in general,
an even integer), since the model requires each node be connected to k/2
neighbors on each side (as explained in Section 2.5.2). For this reason,
differently from the ER network, there are different values of uniqueness in
a WS monoplex network with different β.

The influence of the parameter β even in the monoplex version is visible
in Figure 5.7 b, where the uniqueness with different values of β are compared
for a network with 10000 nodes with respect to all the considered types
of isomorphism. We can see that the uniqueness’ trend is similar both in
the multiplex and monoplex cases (due to the way the network is built,
always starting from a monoplex network with a given β). In general, the
uniqueness with respect to node isomorphism is higher than the one with
respect to node-layer isomorphism (as expected), and the uniqueness in the
aggregated network is generally higher than in the multiplex one with high
values of β (which correspond to low value of overlapping proportion, as in
Equation 5.21).

With ovE = 0, the values of uniqueness are similar to the ones in ER
networks (Figure 5.7 a), since, with maximum probability of rewiring, the
network reaches a configuration close to an ER graph (thus the uniqueness
would behave in the same way). From Figure 5.7 b, we can also notice
that the maximum value of uniqueness is reached at 0.75 of overlapping
proportion (β = 0.25), instead of 0.5 in ER. This means that there is a
higher amount of neighborhoods’ isomorphism classes when the network is
closer to the ring lattice and less than half of the edges have been rewired.
When the overlapping proportion increases, at the same value of ovE, the
uniqueness in WS networks is generally higher than in ER networks (see for
example Figures 5.7 a and b, with average degree 10, 20 and 30), also in the
monoplex case. This can also be seen from Figure 5.8 c, showing the area
with U⊂[0] equal to one and zero in multiplex WS networks with ovE = 0.5.
The area with U⊂[0] = 1 is wider than in the corresponding ER graph with
the same edge overlap value (Figure 5.8 b), and, according to what we have
discussed in relation to Figure 5.7 b, it would be bigger with ovE = 0.75,
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and, on the other hand, for ER, it would approach to the values in Figure
5.7 a.

With a fixed network size, assuming a growth in the values of the average
degree, WS graphs take a different amount of time to pass from UNτ = 0 to
UNτ = 1, depending on the probability of rewiring. This can be seen from
the already presented Figure 5.7 b, but also from Figure 5.6 b, which shows
the uniqueness in monoplex WS networks with β = 0.5. If β was equal to 1,
the figure would have been similar to the one about an ER network (Figure
5.6 a), while, if β was lower (e.g. at 0.25, but not close to 0), the uniqueness
lines would have appeared even more flat, close either to the bottom or the
top of the figure, showing a very fast uniqueness transition from 0 to 1 with
increasing average degree. Indeed, in WS network, by increasing the average
degree, the uniqueness shifts from 0 to 1 faster than in ER networks (as it
can also be seen from Figure 5.7 b, where the width of the zone between 0
and 1 is smaller then in ER networks).

Basically, with high edge overlap proportion ovE (thus with low proba-
bility of rewiring β), the network presents some more organized structure
compared to a random configuration, and this leads to higher values of
uniqueness, since some neighborhoods would also be more dense and the
network would not always be locally tree-like. On the other hand, if the
overlapping proportion is too high, there would be almost no uniqueness
since the network would approach the ring lattice structure which does not
present any unique neighborhood itself.

5.5 Random Geometric Graph model

In this section, we present the result of the simulations on a multiplex
version of the Random-Geometric Graph. This model can represent an
additional network structure, more realistic than the previously considered
models. Nodes in the network are indeed organized in groups (delimited by
a radius), and this makes the Random Geometric Graph a more realistic
model compared to either Erdős-Rényi or Watts-Strogatz.

5.5.1 Multiplex Random Geometric Graph model

As the Watts-Strogatz model addresses the limitation of the Erdős-Rényi
model to have low clustering coefficient, it does not take into account the
possibility of being locally dense, but globally sparse, as it is typical of
real-world networks (which, for instance, have communities). Even though
a WS graph presents a certain kind of local structure given by the ring
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lattice, it does not have local structures that are densely connected, as a
Random Geometric Graph has. To generate the multiplex version of the
RGG model, we exploit the local structures (formed by nodes distant to
each other within a certain radius) to control the overlap. The overlap can
be interpreted as the correlation between groups of nodes (that are located
within a certain radius) across different contexts (for example, if those dense
regions are communities of people, we can model the correlation of their
behaviour across different social networks).

A multiplex Random Geometric Graph consists of multiple layers (two
in our case) generated as a Soft Random Geometric Graph, where nodes are
placed in the same position across all the layers, and the radius value within
which two nodes are connected with a certain probability is also equal for
all layers. We place the nodes uniformly at random in a bi-dimensional
space. The length of the radius and the probability that two nodes are
connected depend on the overlapping proportion. Indeed, we can control
the overlap by changing the probability of connecting two nodes within a
certain radius: for example, with ovE = 1 (all the edges are equally present
in each layer of the network) all the nodes within a certain radius would
be connected to each other and, since the nodes are in the same position
in all the layers, all the edges would overlap; whereas, if ovE = 0.5, half of
the possible edges would be present between nodes within a certain radius
and, in a large enough network, this would result in just half of the edges
overlapping.

The probability p that there is a link between two nodes within a certain
radius is indeed equal to ovE (with 0 < ovE ≤ 1). From this consideration
and the formula for average degree in RGG (Equation 2.28), we can obtain
the radius value needed for a certain overlap (the radius value is necessary
to generate the network in each of the layers). We can obtain the average
degree 〈ki〉 of the network in each layer Li by incorporating the probability
of an edge to be present within a certain radius in Equation 2.28:

〈ki〉 ≈ pπ(n− 1)r2 , (5.22)

Since:
p = ovE , (5.23)

Equation 5.22 becomes:

〈ki〉 ≈ ovE π (n− 1) r2 . (5.24)

The radius value is obtained by solving the above Equation 5.24 for r:

r =

√
〈ki〉

π (n− 1) ovE
=

√
2m
n

π (n− 1) ovE
. (5.25)
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We can also obtain the average degree in each layer in relation to the one in
the aggregated network 〈ka〉 from the above formula and Equations 5.2, 5.4
and 5.7. Indeed, from Equation 5.7:

〈ki〉 = 〈kind〉+ 〈kov〉

=
〈ka〉(1− ovE)

2
+ (〈ka〉 × 〈ovE〉)

=
〈ka〉(1 + ovE)

2
,

(5.26)

which, solved by 〈ka〉, while plugging the formula of 〈ki〉 from Equation 5.24,
becomes:

〈ka〉 =
2 〈ki〉

1 + ovE

= [ovE π (n− 1) r2] × 2

1 + ovE
.

(5.27)

Since we do not admit multi-edges (i.e. multiple edges between the
same pair of nodes), the number of nodes within a certain radius is limited,
consequently also the possible amount of edges is. For this reason, when the
expected average degree is high, especially for small networks, the actual
average degree reached with this computation is lower than the expected.
Moreover, the equation of the original (monoplex) model, 5.22, would be
an exact equality (and not approximate, as it is) while assuming periodic
boundaries. We are not using periodic boundaries, thus some nodes may
not be linked by an edge even if they should be. This situation is especially
noticeable with small and dense networks.
However, to remedy the problem of obtaining an average degree smaller
than expected (especially in dense networks), we can use a heuristic, such
as increasing the radius value by an additional factor based on the network
size (such that more nodes would be connected with a link). For example,
we can modify Equation 5.25 by increasing the expected average degree by
an additional value, that, instead of being 2m

n
, would be, for example, 2.2m

n

(in this case the additional factor is 0.2m
n

). We have empirically seen that
the following additional factors would give networks with average degree
close to the expected value:

• 0.2m
n

, for network size n ≤ 1000;

• 0.15m
n

, for 1000 < n ≤ 10000;

• 0.05m
n

, for 10000 < n ≤ 100000.
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In Equation 5.25, if ovE = 0, then r →∞, and all the nodes are within the
same distance radius (practically, we need to select a radius large enough
to contain all the nodes, for example 100000). The network becomes then
similar to an ER graph, where two nodes are connected with a certain
probability, regardless of their position. In this case, the probability p
is given by the formula in Equation 2.1. Since the average degree 〈k〉 in
Equation 2.1 is the one of the aggregated network, to obtain the probability
that two nodes are connected in each layer, we need to divide p by two
(since there are two layers), thus:

p =
〈ka〉

2
× 1

n− 1
. (5.28)

5.5.2 Unique neighborhoods in Random Geometric Graphs

In Random Geometric Graphs, the overlap is controlled by the radius value
and the average degree. In Section 5.4.2 we have seen that, in WS graphs,
a more organized structure leads to higher values of uniqueness compared
to networks with more randomness. RGG graphs present even more local
structures than WS graphs, since a group organization emerges from the
fact that nodes are connected to each other within a certain radius.

Figure 5.6 c shows the variation of uniqueness in a monoplex RGG
network with different network size and average degree. We can see that,
the uniqueness’ curves decrease very slowly with the growth of the network
size, and certainly more slowly than in ER networks. In node and node-layer
isomorphism (not shown here), we have almost the same flat behaviour. We
can see this kind of trend also from Figure 5.8, that shows the uniqueness
in RGG with respect to node isomorphism with edge overlap equal to 0.5.
The flat behaviour can be explained by the fact that the network present a
always a “community structure” [D+18], and there would be always group
of nodes independently on the size (as it is typical of real world networks).
This trend would not be present anymore if the edge overlap value is equal
to zero. Indeed, in this case, the radius would go to infinity and the network
would not present any local structure anymore, but two nodes would be
connected with a certain probability despite their distance, and the network
would be exactly like an ER graph (the uniqueness would behave as, for
example, in Figure 5.6 a).

The networks generated with the RGG model present a similar trend in
terms of uniqueness for all the overlapping proportion (excluding 0). This
is justified by the non-significant variation in the radius value, despite the
difference in the edge overlap. Indeed, for instance, in a multiplex network
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of 10000 nodes and average degree 〈k〉 = 10, the radius value with ovE = 1
results to be 0.018 (according to Equation 5.25), and the number of edges
in each layer 50000; with the same settings, changing the overlapping value
to ovE to 0.5, leads to a radius equal to 0.022, or to 0.029 when ovE = 0.25;
when instead ovE = 0, the radius goes to 2.82, which is a significantly higher
value compared to the one corresponding to other overlapping values.

However, besides the uniqueness’ flat trend being very similar, the edge
overlap value plays a role in computing the actual uniqueness value. Indeed,
as can be seen from Figure 5.7 c, as for the WS model, the maximum
uniqueness corresponds to an edge overlap of almost 0.75. In this Figure
we can see, as in the other models, that with low overlapping values, the
aggregated uniqueness is higher than the multiplex one.

5.6 Uniqueness’ linear trend and models com-
parison

In this section, we present the results of a more precise of the uniqueness’
trend in random networks. Having now an overview on how the uniqueness
behaves with different network models, we estimated better its variation
through a modified version of a binary search algorithm. Through this
analysis, we have discovered that the uniqueness has a linear trend depending
on network size and average degree. We first present the adopted algorithm
for our analysis (subsection 5.6.1) and, then, the results (subsection 5.6.2).

5.6.1 Binary Search

To better compare the uniqueness of neighborhoods in different models, we
run a binary search algorithm that looks for a certain value of uniqueness in
a network generated according to a model with a given number of nodes, in
a range of average degree values delimited by two extremes. In particular,
we have seen in the previous sections of this chapter that the uniqueness
transition from value 0 to value 1 is relatively fast, thus 0.5 as uniqueness
value (which corresponds to having half of the neighborhoods in the network
unique) can give us a good idea of this trend in function of average degree
and network size (as it is similar shown in the heatmaps of Figure 5.8).
With a binary search algorithm, we can have a better estimate of the curve
corresponding to UNτ = 0.5.

Our algorithm is a stochastic and continuos version of the classical binary
search algorithm [Wei]. The binary search algorithm searches for a target
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value in a certain range, evaluating first the extreme values of the interval
and, if those are not the ones we are looking for, evaluating the middle value.
If the middle value corresponds to the target value, the algorithm stops,
otherwise we continue the search process with a new interval corresponding
to either the lower part of the interval (delimited by the original lower
extreme and the middle value), or the upper part (delimited by the middle
value and the original upper extreme).

In our binary search algorithm, with a given network model and network
size, the target value is the value of average degree corresponding to unique-
ness of neighborhoods of 0.5. To decide on which side of the interval to move,
we exploit the fact that, with a fixed network size, the uniqueness grows
with the average degree (at least in the sparse region). Thus, if a certain
average degree value we are evaluating gives a uniqueness value higher than
the one we want, we move to the left (or lower) part of the interval, which
is the one containing lower values; otherwise we move to the right part, by
always computing the middle value of the new interval. The binary search is
a recursive algorithm, and it continues until we find the value corresponding
to 0.5 uniqueness, or the extremes of the interval we are evaluating are too
close to each other.

To compute the uniqueness value corresponding to each average degree,
we generate five networks with that average degree and the given network
size, and we take the mean of the corresponding uniqueness values. Since we
want to be sure every time we decide on which new interval to evaluate, and
also when to stop, we compute a confidence interval (at 99% confidence level
in our case) of the mean of the uniqueness value of the networks generated
with certain parameters and we check whether the target uniqueness value
is contained in that interval: if it is not, we move either to the right or the
left side; if it is, we do new simulations to have a better estimation of the
real mean and, if after a maximum number of simulation (we chose 30) the
target uniqueness value is still in the interval, then the evaluated average
degree is the one we are looking for, otherwise, we continue with the search.
We also set a tolerance level to the target uniqueness value (we chose 0.02,
thus if we find an average degree corresponding to either 0.52 or 0.48, the
search process is considered successfully ended).

Every time we decide on where to move, we do it at 99% confidence
level, thus the total confidence level of the whole process is 0.99D where D
is the number of decisions taken. With 30 decisions (the maximum number
of simulations we allowed), we obtain a confidence interval of 73%, which is
an acceptable confidence level.
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5.6.2 Results

We have ran the binary search algorithm illustrated in subsection 5.6.1 for
multiplex networks with overlapping proportion of 0.0, 0.5 and 1 for all the
three network models previously presented (ER, WS, RGG), for network
sizes from 100 to 10000 and with an interval of average degree between 1 to
100.

In Figure 5.9 we can see the results of the algorithm with respect to node
and node-layer isomorphism with all the three evaluated network models. We
have plotted the results in a log-log scale. The reported curves correspond
to a uniqueness value of 0.5 (the middle of the uniqueness transition areas
in the heatmaps in Figure 5.8), and, below the curve, there is the area
with uniqueness lower than 0.5 (almost all 0, since we have seen that the
transition from 0 to 1 is fast), while above the curves, the uniqueness value
would be equal to or at least near 1. When the curves’ trend is to increase,
it means that the general uniqueness is decreasing at the same network size.
In other words, with a fixed average degree and higher number of nodes, the
uniqueness would be lower. Thus, to obtain the same value of uniqueness
we need to increase both network size and average degree.

We can observe that the uniqueness decreases linearly in function of
network size and average degree, therefore we fit a straight line to the curves
(the fitted lines have equations log(y) = m× log(x) + c). We can see that,
apart from an edge overlap value equal to 1, the node isomorphism generally
leads to higher uniqueness than the node-layer one. In ER networks, when
the overlap is equal to 0, the behaviour is almost the same as in monoplex
networks and, in general, the lines corresponding to different overlap values
are almost parallel to each other.

The 0.5 uniqueness lines of ER networks are among the ones with greater
slope compared to the other lines. When the other networks have edge
overlap value equal to 0, the behaviour is similar to the one of ER networks
(as we have also seen in the previous sections). This means that, with high
randomness in the structure (represented by the ER networks), when the
network size and average degree grow, the uniqueness goes significantly
down.

When we increase the amount of local structure, such as with WS or
RGG models, the uniqueness decreases more slowly. Indeed, when passing
from WS to RGG, the slope of the lines decrease. Obviously, at an infinite
size, also in Random Geometric Graphs there would be no uniqueness,
but the uniqueness value is less dependent on the size. In fact, the lines
corresponding to uniqueness equal to 0.5 are almost parallel to the horizontal
axis. With edge overlap of 0.5, the uniqueness area in RGG is higher than
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with overlap of 1.0. This is expected since, with total overlap, the network
has the same neighborhoods of its aggregated version. The edge overlap of 0
for WS is not reported since, with that value, all the edges are overlapping,
thus the there is no uniqueness. (this is due to the way we construct the
network, explained in Section 5.4.1). However, in WS, there can be different
configurations even in the monoplex networks, thus we have reported the
uniqueness with probability of rewiring β = 0.5 in monoplex network. We
can see that the corresponding line is parallel to the ones of multiplex
networks with overlapping proportion of 0.5. However, as expected, the
uniqueness is lower. To observe a higher uniqueness value in the aggregated
network than in the multiplex one, we would need to lower the probability
of rewiring, as can be seen in Figure 5.7).

To conclude, as we go from a more organized and locally dense structure
towards more randomness and less density in the network structure, the
uniqueness in networks would depend more and more on the size and average
degree value, and, in general, tend to decrease as these two parameters grow.
Overall, we have higher values of uniqueness that depends less and less
on the size when the network local structure is more pronounced. This is
also confirmed by the fact that, in multiplex WS and RGG, the peak of
the uniqueness is with an edge overlap value of 0.75 (Figure 5.7), which,
in both models, means that there is more cohesion in the structure than
randomness. Indeed, we have complete randomness with edge overlap of
0.00 and a minimum amount of it with edge overlap equal to 1. With edge
overlap higher than 0.75, thus closer to 1, the uniqueness decreases, since
the number of isomorphism classes naturally decreases, as there are fewer
possibilities of diverse neighborhoods formation.
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Figure 5.9: Lines representing 0.5 uniqueness in three network models,
ER, WS and RGG (from left to right), estimated with a binary search
algorithm, in a log-log scale. Figures a, b and c represent the uniqueness
with respect to node isomorphism; Figures d, e, f represent the uniqueness
with respect to node-layer isomorphism. The horizontal axis is the network
size n, while the vertical axis is the average degree 〈k〉. The area below the
line is the one with uniqueness < 0.5, while above the lines the uniqueness
is > 0.5. The edge overlap values reported are 0.0 (in blue), 0.5 (in red)
and 1 (in green). The edge overlap equal to 1.0 is not reported for the WS
model since the uniqueness is always equal to zero. However, in the Figures
regarding the WS model (b and e), the monoplex uniqueness is reported
with probability of rewiring β equal to 0.5 (in magenta). The continuos lines
are the ones obtained with the simulations during the binary search process,
while the dashed lines are the corresponding linear fit (that have equations
log(y) = m× log(x) + c).



Chapter 6

Uniqueness of neighborhoods in em-
pirical networks

In Chapter 5, we have studied, through the usage of network models, how the
uniqueness of neighborhoods changes with the network structure and how
the multiplexity can influence it. On top of this, it is also crucial to study
how the uniqueness varies in empirical data, and understand if the models
can be used as a proxy for real-world networks in terms of anonymization
difficulty.

In this chapter, we analyze how the uniqueness varies in some empirical
networks with different features, such as size, average degree and cluster-
ing coefficient. We first introduce the considered datasets in Section 6.1,
along with their basic network features, then, in Section 6.2 we show the
distribution of the neighborhood structures’ occurrence frequency, compare
them and discuss how the uniqueness of each network relates to its network
features. Finally, in Section 6.3, we discuss if the presented datasets are
comparable to the models analyzed in the previous chapter in terms of
uniqueness (still according to the neighborhood definition N⊂, presented in
Chapter 4).

6.1 Datasets

We consider three different social network datasets. We analyze the network
data in a multiplex setting, considering also each single-layer separately
and aggregating all the layers into a single one. This analysis can also
help to understand the best strategy to share data to minimize the nodes
re-identification risk based on neighborhood attack or, alternatively, to
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anonymize data with an appropriate algorithm prior to the actual sharing,
without modifying the network radically with, for example, edges addi-
tion. The different ways to share multiplex data can either be sharing the
layer separately, aggregating them, or sharing them directly as a multiplex
network.

The datasets we analyze are communication networks, including mainly
calls and text messages. These kinds of datasets are common and interesting
for research [Sto+14; Kiv+12], and the identity disclosure risk in sharing
them is clear, since communication habits, along with some auxiliary infor-
mation (such as the context, the timestamp or the group of users present in
the dataset, or nodes’ metadata), can be a fingerprint uniquely associated
to one user. The analyzed datasets are the following:

• (CopNet) Copenhagen Network Study [Sto+14]: a dataset of various
interactions (phone calls, text messages, face-to-face interactions, Face-
book friendships) among about 800 students of Technical University
of Denmark. We consider 7 months of data (from January to July) of
year 2014. The face-to-face interactions are recorded with the Wi-Fi
signals of the mobile phones that were distributed to the students
taking part of the experiment, thus a single person results to interact
with others very often, especially during lectures’ time at university.
For this reason, we thresholded the face-to-face interactions selecting
the ones occurring just in the weekends or every evening after 18, with
a distance corresponding to 1.5 metres or less (measured by signal
strength). Moreover, to avoid selecting meetings occcurring by chance,
we considered just the interactions that happened at least once every
month.

• (CountryCalls) Country-scale mobile phone calls dataset [Kar+11;
Kiv+12]: a dataset of phone calls and text messages among the
subscribers of a mobile operator in an European country, during a
period of 7 months (from January to July) in year 2007.

• (CompanySms) Company text messages [Wu+10]: a temporal net-
work of text messages (SMS) among the members of a company over
a period of one month. We built two different networks with the
same data: one dividing the data in two snapshots of time, building a
two-layers network (called CompanySms2 ), and one with three time
snapshots, building a three-layers network (CompanySms3 ).

Tables 6.1 and 6.2 illustrate basic network measures of the considered
single-layer and multi-layer networks. The same tables show also the unique-
ness of the respective networks (in the monoplex or aggregated networks, or
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according to node or node-layer isomorphism for multiplex networks), ex-
pressed in terms of fraction of unique nodes with respect to the total amount
of nodes; the edge overlap is expressed in terms of amount and fraction of
overlapping edges relative to the total amount of edges (intra-layers) present
in the multiplex network. For multiplex networks, the values reported in
the table of average degree and clustering coefficient (corresponding to the
average local clustering coefficient) refer to the ones in the aggregated net-
works. The uniqueness values of the multiplex networks of CompanySms
are expressed just according to node-layer isomorphism since in a temporal
network layers have a specific order and it does not make sense to share
them without labels.

In Section 6.2, we discuss how the network features of each dataset relate
to the uniqueness of neighborhoods.

6.2 Data features and uniqueness of neighbor-
hoods

In this section, we discuss the basic features of each of the datasets introduced
in Section 6.1 and relate them to the number of unique neighborhoods in
the networks.

As it can be seen from Tables 6.1 and 6.2, CopNet is the smallest
considered dataset, while CountryCalls is the biggest one. The uniqueness
score of each network built from CopNet is significantly higher than the
networks in CountryCalls. This seems to confirm the finding of the previous
chapter about the decrease of uniqueness with the network size. All the
single-layer datasets in CopNet present almost the same uniqueness value
(≈ 0.2), besides the one of Facebook’s friendships (FB), whose uniqueness is
definitely higher 0.874). This is because the average degree of this network
is also the highest of the dataset (20.837 compared to ≈ 4.5 of the other
networks), leading to more chances of neighborhood formation.

Being the average degree of FB (in CopNet) that high, it also dominates
the other datasets when combined into a multiplex network (or aggregated),
as can be noticed from the average degree values in Table 6.2. This is also
visible from the degree distribution in Figure 6.1 (plotted as Complementary
Cumulative Distribution1, with logarithmic axis, so that we can zoom on

1this is not the classical definition of the Complementary Cumulative Distribution
(1-CDF), since it gives the probability P (X ≥ x), that a variable X takes value greater
or equal than x.
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Net. name n m 〈k〉 C U
(a)
N

Call - CopNet 695 1606 4.622 0.233 0.201
Sms - CopNet 707 1607 4.546 0.225 0.198
F2F - CopNet 495 1025 4.141 0.278 0.159
FB - CopNet 810 8439 20.837 0.330 0.874
Call - CountryCalls 5193086 10660902 4.105 0.214 0.024
Sms - CountryCalls 4303611 8857642 4.116 0.122 0.025
CompanySms2 - layer 1 31908 32313 2.025 0.049 0.016
CompanySms2 - layer 2 33417 33998 2.035 0.044 0.015
CompanySms3 - layer 1 26309 24249 1.843 0.040 0.011
CompanySms3 - layer 2 28025 26644 1.901 0.038 0.011
CompanySms3 - layer 3 26883 24764 1.842 0.037 0.012

Table 6.1: Dataset’s single-layer networks’ basic measures (number of
nodes n, number of edges m, average degree 〈k〉, clustering coefficient C)
and uniqueness.

Net. name n m
(total) ovE

m
(agg.)

〈k〉
(agg.)

C
(agg.) U

(a)
N U⊂[0] U⊂[0,1]

Call-Sms (CopNet) 731 3213 1217
(0.379) 1996 5.461 0.245 0.281 0.511 0.481

Call-Sms-F2F (CopNet) 753 4238 1717
(0.405) 2521 6.696 0.245 0.339 0.695 0.645

Call-Sms-FB (CopNet) 836 11652 2960
(0.254) 8687 20.782 0.324 0.854 0.938 0.931

F2F-FB (CopNet) 828 9464 706
(0.074) 8758 21.155 0.330 0.864 0.909 0.889

Call-Sms (CountryCalls) 5559145 19518544 5626536
(0.288) 13892008 4.997 0.202 0.044 0.135 0.127

CompanySms 2 44090 66311 14089
(0.212) 52222 2.369 0.059 0.022 0.053 -

CompanySms 3 44090 75657 23435
(0.309) 52222 2.369 0.059 0.022 0.087 -

Table 6.2: Dataset’s multiplex networks’ basic measures (number of nodes
n, number of total edges m (total), edge overlap ovE, number of total edges
in the aggregated network m(agg.) average degree in the aggregated network
〈k〉, clustering coefficient in the aggregated network C), and uniqueness in
the aggregated networks, and in the multiplex networks with respect to
node and node-layer isomorphism.

the tails of the distribution). FB has, in general, nodes with much higher
degree compared to Call and Sms, and, in a multiplex setting, the networks
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F2F-FB and Call-Sms-FB, when aggregated, have almost the same degree
distribution as the monoplex FB. Furthermore, this affects the occurrence
frequency of neighborhoods (defined in Equation 4.12.), shown in Figure 6.2
as a Complementary Cumulative Distribution of the Occurrence Frequencies
ONτ (v). From the Complementary Cumulative Distribution of ONτ (v), we
can see how many neighborhoods occur one time by looking at the difference
between the second and the first represented value. From the definition of
Complementary Cumulative Distribution, the first value is always one, since
all the classes are occurring a number of times greater or equal than one.
The bigger the gap between the first and the second value, the higher the
uniqueness in the network is. From this representation we can also read the
k-anonymity of the network as 1− CDF (ONτ (v) = k).

From Figure 6.2 b we can see that most of the classes in the network Call-
Sms-Fb are unique or have a low occurrence frequency, while the multiplex
network without the Facebook layer, Call−Sms, presents a more widespread
distribution. The occurrence frequency of the monoplex networks are even
more distributed, and the number of neighborhoods with occurring less
times also decreases if the multiplex network is aggregated.

In bigger datasets as CopNet and CountryCalls (Figures 6.2 c and d), the
number of neighborhoods that are k−anonymous for low values of k is high
and does not vary significantly. This means that most of the neighborhoods
that are k− anonymous are also (k+ 1)− anonymous with low values of k.
This does not happen in the smaller datasets, since there is less amount of
neighborhoods and, consequently, less possibilities that two neighborhoods
would belong to the same isomorphism class.

CompanySms presents a significantly lower clustering coefficient com-
pared to the other datasets, around 0.05 compared to ≈ 0.2 in almost all
the cases. It also presents a lower average degree of ≈ 2 against 4 or 5 in
CopNet and CountryCalls , as well as a lower average degree, ≈ 2 against 4
or 5 in CopNet and CountryCalls. With such a low value of average degree
and density, it is normal that CompanySms is the presented dataset with the
lowest uniqueness value. Indeed, triangles contribute towards the formation
of unique neighborhoods, that, otherwise, would be described by just the
degree.

Taking into account the consideration of Chapter 5, according to which
the uniqueness decreases with the network size, and being CountryCalls
significantly bigger than CompanySms, one would expect that CountryCalls
had a lower uniqueness value. However, as discussed previously in the same
Chapter 5, there are other factors to take into account, such as average
degree and local clustering coefficient. Indeed, the values of average degree
and local clustering coefficient in CompanySms are less than a half compared
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Figure 6.1: Degree distribution of the presented datasets as a Comple-
mentary Cumulative distribution, both for the monoplex and aggregated
multiplex networks: Monoplex networks of CopNet (a); Multiplex networks
of CopNet (b); CountryCalls(CC) (c); CompanySms2 (d).

to the other two datasets (CopNet and CountryCalls), thus, with less edges
per node (indicated by the average degree), there are less possibilities of
neighborhoods formation. Additionally, CountryCalls presents more nodes
with higher degrees than CompanySms (as can be noticed from the degree
distribution in Figure 6.1 c and d), and, since nodes with many connections
are rare, they also contribute to the uniqueness (or at least, to the rarity) of
neighborhoods in the network. For instance, if there is only one node with
many connections, that node is surely unique because of its degree.

The similarity of single-layer networks in some datasets (such as Call and
Sms of CopNet and CountryCalls, or the various layers of CompanySms)
can be seen from the similar average degree and number of nodes, but it is
also reflected on the degree distribution (Figure 6.1) and in the occurrence
frequencies of the neighborhoods (Figure 6.2).
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Figure 6.2: Complementary Cumulative distribution (1-CDF) of the Oc-
currence frequency of neighborhoods in the presented datasets: Monoplex
networks of CopNet (a); Multiplex networks of CopNet (b); Country Calls
(c); CompanySms2 (d). The vertical axis can also be read as the k-anonymity
of neighborhoods. When specified in the legend, N and NL stand for mul-
tiplex network with neighborhood computed, respectively, with respect to
node isomorphism and node-layer isomorphism; Agg. stands for aggregated
network.

For the presented multiplex networks, passing from node to node-layer
isomorphism to the aggregated network, the number of classes occurring just
one time decreases, especially when the network is aggregated, along with
the other classes occurring a low amount of times. This happens because,
passing from node to node-layer isomorphism (and also to the aggregated
network), the requirements for two neighborhoods for being isomorphic
become less strict, thus there would be more neighborhoods in the same
isomorphism class. In this case, the aggregation of multiplex networks leads
to a lower uniqueness value in comparison with multiplex cases. In Chapter
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5 we have seen that, with the neighborhood definition we are using (N⊂),
it is not always given that the uniqueness in the aggregated network (U (a)

N )
would be lower than the one in the multiplex networks (U⊂[I]). However,
we have also seen that U (a)

N is often higher than U⊂[I] in network models
when the average degree is not very small. However, the presented datasets
have a relatively low average degree (from 2 to 5, or 20 for the Facebook’s
friendships network in CopNet), thus this result is also in line with the
findings in the previous chapter.

In terms of anonymization difficulty, knowing how many classes occur a
certain amount of time is important, since, if we want to reach k-anonymity,
we need to anonymize classes occurring less than k times. The fact that there
are classes occurring several times in the network (i.e. that are isomorphic
to each other), and that other classes are similar to each other, is due to
the presence of similar parts in the neighborhoods’ graphs. The similarity
of neighborhoods’ classes allows the anonymization to be possible without
radical modification to the network. In Chapter 7, through a motif analysis,
we study the recurring patterns in neighborhoods that cause the similarity
between them.

6.3 Data and models

In this section, we discuss whether the models analyzed in Chapter 5 are
comparable to the presented datasets in terms of uniqueness. We have
generated networks with similar features of some the dataset, choosing, for
the multiplex networks, the ones with two layers and having similar number
of nodes and edges in both layers (since we considered models with equal
number of layers and edges in both layers).

The models of the size of the biggest dataset, CountryCalls, resulted to
have uniqueness equal to zero in the case of Erdős-Rényi (ER) and Watts-
Strogatz (WS). From the results of the previous chapter, this was expected,
since the uniqueness in ER goes to zero quite fast with the network size,
while in WS is usually slower. However, in this case, an edge overlap value
of 0.288 (as it is for the Call-Sms network in this dataset) means that the
probability of rewiring is more than 0.7, which is already close to a random
configuration in the WS model. Conversely, the simulation of the Random
Geometric Graph shows a uniqueness value greater than zero, meaning
that, despite the uniqueness goes to zero towards infinity, probably the size
of 5 millions is not yet enough for reaching the minimum uniqueness of
zero. The uniqueness for RGG of size similar to CountryCalls is shown in
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Table 6.3, and it results to be a similar value for the monoplex case. In
the multiplex case, instead, the uniqueness value in RGG is similar the one
of the aggregated network of Call-Sms, but not of its multiplex (which is
more than double than in the model). This may be due to the fact that,
in a real network, there can be much more diversity in the neighborhood
formation than in a model, and this is even more noticeable in the multiplex
case, where the number of possible isomorphism classes is much higher than
in the monoplex one. However, in the model of size of CountryCalls, the
aggregated uniqueness U (a)

N is slightly higher that the multiplex uniqueness
U⊂[I]. This trend can be explained by the neighborhood definition we adopt,
and, as it has been shown in Figure 5.7, U (a)

N can be higher than U⊂[I] with
relatively low value of edge overlap and average degree.

The models with similar features as CompanySms2, also resulted in a
uniqueness value close to zero for ER and WS in most of the cases. An
exception is in the single-layer networks with size ≈ 30000 (in the dataset
CompanySms), where the uniqueness value in WS is 0.0003, which is still
very low, but not exactly zero. The RGG, in this case, presents a lower
value of uniqueness than in the model in both the monoplex and multiplex
case (however, it is still comparable).

Regarding the smallest dataset, CopNet, the networks are still in the
area of low uniqueness for an ER network of almost 700 nodes. Precisely,
the obtained value is 0.02. For the WS model, for probability of rewiring of
0.7 - 0.8, we have obtained a value of 0.01. These results are justified by
the fact that the dataset is more dense than the networks generated with
those models, which also do not explain the multiplex cases. Also in this
case, RGG better explains the multiplex networks of the datasets compared
to other models, with uniqueness values of ≈ 0.70. However, this value is
higher than the one in the dataset, including the single-layer/aggregated
neighborhood uniqueness which is significantly higher than the one in the
dataset. The reason for this can be that the network is still relatively small
and, with small networks, the variance could be also higher than in large
ones. In general, RGG is the most realistic of the presented models, therefore
it is normal that it is the one that best explains the datasets.

Having a model such as RGG that has a similar bahaviour as the data
is important to anonymization purposes. Since we have identified a trend in
the model, we can compare the uniqueness of the datasets to the one in the
model and have an idea on “how far” the data are from being completely
anonymous, with UNτ = 0. We can then modify the data by changing
their size and average degree (i.e. thresholding), without introducing fake
nodes or edges, being guided by the models. Alternatively, we can use
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anonymization algorithms given that our data do not have uniqueness equal
to one and do not have features that collocate them in an area very far from
the anonymous one.

Model n 〈k〉 ovE U
(a)
N U⊂[0] U⊂[0,1]

Comparable Nets.
U

(a)
N U⊂[0] U⊂[0,1]

CopNet
Call

CopNet
Sms

CopNet
Call-Sms(Agg.)

CopNet
Call-Sms[0]

CopNet
Call-Sms[0,1]

ER
700-750 4.5-5 0.38

0.020 0.20 0.16
0.201 0.198 0.281 0.511 0.481WS 0.016 0.13 0.08

RGG 0.65 0.78 0.70
CompanySms2

layer1
CompanySms2

layer2 - - -

RGG 30000 20.837 0.330 0.009 0.021 0.016 0.016 0.015 - - -
- - CompanySms2 (Agg.) CompanySms2 -

RGG 45000 2 0.2 0.008 0.018 0.014 - - 0.022 0.053 -
CountryCalls

Call
CountryCalls

Sms
CountryCalls

Call-Sms (Agg.)
CountryCalls
Call-Sms[0]

CountryCalls
Call-Sms[0,1]

RGG 4500000-
5500000 4-5 0.2 0.046 0.044 0.036 0.024 0.025 0.044 0.135 0.127

Table 6.3: Mean uniqueness values of networks generated with models
(mean over 5 realizations) comparable to the presented datasets. Since
in some cases the values did not significantly change (at least in the first
decimal digits) when changing the network size or average degree, they are
reported in the same row.



Chapter 7

Neighborhood Motifs Analysis

Having now an idea on how the uniqueness of neighborhoods changes in
social networks, we want to understand the basic ingredients and patterns
that compose the neighborhoods, allowing some of them to be isomorphic or
similar to each other. The similarity of neighborhoods allows anonymization
algorithms to work without radically modifying the data. Moreover, in
Chapter 5, we focused on uniqueness in random networks, and we have seen
that the network structure and density influence the uniqueness value. Real-
world networks can have more variety in the local structure than random
networks, and, as analyzed in Chapter 6, models cannot always be used
as a proxy for the uniqueness of empirical data. This analysis can also
reveal more differences between the neighborhood structure of models and
real-world networks.

To better understand the structure of neighborhoods in real-world net-
works, we analyze the network motifs (introduced in Section 2.6) that form
the neighborhoods in the datasets CopNet and CountryCalls (presented in
Section 6.1), considering the systems with up to 2 layers composed by the
data regarding Calls and Sms from both networks.

Network motifs were defined as “basic building blocks of complex net-
works” in the original reference [Mil+02]. Similarly, we can define the
patterns that we are going to analyze as “basic building blocks of networks’
neighborhoods”, thus we can call them neighborhood motifs. In our case,
the considered subgraphs are just the ones in the immediate neighborhood
of the nodes (where, in the multiplex case, neighborhoods are defined as
Non-Inclusive Multiplex Neighborhoods, N⊂, according to the definition in
Section 4.1.1), thus we are excluding possible motifs that go beyond the
1-hop neighborhood of the central node.

Since we compute the patterns in the network formed by the neighbors
of each node, the central node will always be present in the resulting motifs,

94
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since it has incident edges to all its neighbors. For these reasons, a classical
motif analysis of the network may lead to different results.

The neighborhood motifs analysis can lead us to a deeper knowledge of
neighborhood structure and the relation of real-world networks with random
ones. Since we are interested in the connections between the neighbors
of a node for the motifs analysis, we need to choose a null model having
neighborhoods that are comparable to the datasets, for instance with the
same number of nodes in each neighborhood. For this reason, we chose
the configuration model (introduced in Section 2.5.4) as a null model, since
its degree sequence is the same as in the original network. The variant of
the configuration model we adopt takes also into account the overlapping
degree of each node, which is the number of edges incident to each node
that are shared between multiple layers. With this choice, from the analysis,
the differences in the structure of neighborhoods, caused by the presence
or absence of links between pairs of neighbors, would emerge, instead of
differences causes by another degree distribution. We compute both over-
represented and under-represented patterns (sometimes called anti-motifs) in
the social network datasets compared to the random networks. For multiplex
networks, we compute the subgraphs according to both node and node-layer
isomorphism, where the node-layer isomorphism is applied directly to the
subgraph, and not to the neighborhood it is extracted from.

Additionally, neighborhood motifs, in the context of social networks,
can help to understand how the social circle of the represented entities is
organized. Mainly, we could understand if the network is mostly locally
tree-like (the neighbors of a node are not connected to each other) or dense
(we can observe transitivity between neighbors). For instance, the presence
of densely connected nodes means that people hang out in groups (or at least
that the central nodes are part of a bigger company of friends). Moreover,
the multiplex representation allows us to distinguish the behaviour of a node
in different social contexts or, in the case of temporal networks, at different
timestamps.

7.1 Methods

We now present the methods we use for the neighborhood motifs analysis.
We start by explaining, in subsection 7.1.1, the two different ways we count
subgraphs in the neighborhoods (subsection 7.1.1), to check whether the
neighborhood size has an impact in the discovery of significant motifs; we
then explain the sampling method we adopt in presence of bigger neigh-
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borhoods (subsection 7.1.2), where it is computationally difficult to extract
all the possible subgraphs and, eventually, we show how we estimate the
sampling error (subsection 7.1.3).

7.1.1 Neighborhood motifs count and proportion

In this section, we explain the methods used to conduct the neighborhood
motifs analysis. We count the induced subgraphs that are present in each
neighborhood of each social network, and then compare the count to the
one in the realization of the null model, by computing the Z-Score (defined
Section 2.6). We count the motifs in each neighborhood in two different
ways, depending on whether we want to consider the neighborhoods equal
to each other or we want to normalize the count based on the neighborhood
size. Indeed, bigger neighborhoods can have more subgraphs occurring many
times, and they can contribute more towards the count of motifs, while
we are interested in the distribution of motifs across all the neighborhoods.
The methods we use to count the subgraphs in the neighborhoods are the
following:

1. Frequency, (F ): simple count of the subgraphs. Each subgraph counts
the same regardless the size of the neighborhood it is present in. We
indicate the frequency of a subgraph G in a neighborhood of a node v
as FG(N⊂(v)), and in the whole network as FG. The total count FG of a
specific subgraph G in the whole network is the sum of the frequency
of G in all the neighborhoods:

FG =
∑
v∈V

FG(N⊂(v)) , (7.1)

where V is the vertex set of the network;

2. Proportion, (P): fraction of the induced subgraphs of a certain size
present in a neighborhood out of the possible induced subgraphs of
the same size in that neighborhood. The number of possible induced
subgraphs is the binomial coefficient of the neighborhood size over the
subgraph (or motif) size (in fact, the number of possible motifs does
not grow linearly with the neighborhood size, but much faster, with
the binomial coefficient). We indicate the proportion P of a subgraph
G in a neighborhood N⊂(v) of a node v as:

PG(N⊂(v)) =
FG(N⊂(v))( |N⊂(v)|

|G|

) , (7.2)
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where |N⊂(v)| is the size of the neighborhood of v (equal to the degree
of v) and |G| is the size of the subgraph G. To count each subgraph in
the whole network, we simply sum the proportion PG obtained from
each neighborhood:

PG =
∑
v∈V

PG(N⊂(v)) , (7.3)

As mentioned at the beginning of this chapter, the null model we chose
is the configuration model. Since we are analyzing neighborhoods, we
want to evaluate the connection patterns between the neighbors of a node,
thus we want to compare those with a randomized version with the same
neighborhood sizes. In fact, in the configuration model, the degree sequence
is the same as the original network, thus the number of nodes with a given
neighborhood size are the same.

In our analysis, we focus on motifs of size (i.e. number of nodes) from
2 to 4 (included). This is because the computational time for extracting
and computing the isomorphism classes of bigger graphs increases quickly,
especially in the multiplex case. Furthermore, 4 is just a bit less than the
average degree of most of the considered datasets (as can be seen from
Tables 6.1 and 6.2), thus these small motifs could already give a good idea
of how the social circles of nodes is organized and what are the patterns
forming neighborhoods.

7.1.2 Counting and sampling subgraphs

We now illustrate how we count the subgraphs in the full network and how,
in presence of bigger neighborhoods, we estimate that count by sampling
some subgraphs out of all the possible ones.

To conduct the analysis, we first go through all the nodes in the network
and extract the non-inclusive neighborhood N⊂ of each of them. If the
neighborhood size is less or equal than 10, we go through all the combinations
of nodes in the neighborhood (where the number of nodes in the combinations
varies from 2 to 4, as the size of the motifs we are interested in), and compute
the induced subgraphs given by them. Otherwise, if the neighborhood size
is higher than 10, we conduct uniform sampling without replacement from
the possible combinations of nodes in the neighborhood. We replace the
single nodes, but not the full combination, thus a single node can still be
sampled multiple times as part of other induced subgraphs.

As mentioned above in subsection 7.1.1, the number of all the possible
subgraph of a certain size is given by the binomial coefficient of the number
of nodes in the neighborhood over the subgraph size (

( |N⊂(v)|
|G|

)
). After we
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have sampled the subgraphs, we need to estimate the real count. Indicating
with s the number of sample (sample size), and with SG the sampled count
of the graph G, we can compute the estimated frequency F̂G by multiplying
the sample proportion of G for the binomial coefficient, which is the total
number of possible combinations, or, in statistical terms, the population
size1:

F̂G =
SG
s
×
( |N⊂(v)|
|G|

)
. (7.4)

Once we have the frequency (or estimated frequency) for each subgraph
in each neighborhood, we can also compute its proportion, according to
Equation 7.2 (when we sample nodes, we need to substitute FG with F̂G,
and we indicate the estimated PG with P̂G). Finally, we can compute the
total Frequency or Proportion of each subgraph in the network, according
to Equations 7.1 and 7.3.

To obtain the Z-Score for each subgraph, we then need to do the same
calculation mentioned above with all the realization of the random networks,
thus compute FG and PG (or F̂G and P̂G) for each subgraph in the network,
and the corresponding µ and standard deviation σ.

The number of realization of the null model influences the Z-Score.
Indeed, each subgraph has a certain value of mean and variance associated
and, with more realizations, we can estimate better the real values. For the
CopNet dataset, we do 100 realization of the null model for each considered
network, while for CountryCalls , we do 100 realization. The reason of having
less realization in CountryCalls compared to CopNet is that CountryCalls
is significantly bigger, and big systems tend to self-averaging (moreover,
what counts to obtain significant results is also the number of data points,
which in CountryCalls is much bigger than in CopNet). The amount of
possible neighborhoods (and consequently the possible patterns in them)
that appear in big networks is higher than in small ones. In small networks,
we most likely need to do more realization of the null model to observe the
subgraphs that are present in the original network.
When we conduct sampling in multiplex networks, we sample combination
of nodes, and not of node-layer tuples. Thus, if a node is present in multiple
layers it is still considered a single node during the sampling process. We
chose the following sample size s, depending on the size of each subgraphs

1This is a classical way to estimate the count when we have a sampled proportion.
For example, if we want to estimate how many nodes of different types there are in a
population of 1000 nodes, and we sample 40 nodes of one type from a population with a
sample size equal to 100 nodes, the sample proportion of nodes of that type is 40

100 = 0.4.
To estimate the number of nodes of that type in the real population of 1000 nodes, we
compute 40

100 × 1000.
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Gi (in fact, the bigger the subgraph size, the higher the number of possible
combination of nodes is):

• s = 50, for |G| = 2;

• s = 150, for |G| = 3;

• s = 300, for |G| = 4.

We chose those values because they are slightly higher than the number of
possible combinations with a neighborhood size equal to 10 (size under and
with which we do not conduct sampling). In the next subsection 7.1.3 we
discuss how we estimate the error due to sampling.

7.1.3 Sampling error estimation

The number of samples affects the count estimation, and we should choose
it in order to minimize the error of the estimation. A way to estimate the
error is computing the standard error of a percentage, given the number of
samples n. This sampling error estimation method assumes:

• random sampling (as we do);

• the distribution where the samples come from is a normal distribution
(as it also assumed for the computation of the Z-Score);

• the number of samples is small compared to the population size with
large neighborhoods. This is our case, since the number of nodes’
combinations grows quickly with the neighborhood size.

We now show how we estimate the sampling error of each subgraph for each
neighborhood and, at the end, for the entire network by computing the
standard error.

In our case, the percentage pG is the sampled percentage of a subgraph G
with a specific size t, relative to the total amount of subgraphs of the same
size t sampled from a neighborhood. We indicate the number of samples
from a neighborhood as s. The standard error SEG of a subgraph G is then
estimated as:

SEG =

√
pG(1− pG)

s
. (7.5)

The number of samples s is at the denominator in Equation 7.5, thus increas-
ing it would lead to a lower error, thus to a better estimation of the actual
Frequency (and consequently, the Proportion) of a particular subgraph in
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the network’s neighborhoods.

With Equation 7.5, we compute the standard error for the percentage
of a specific graph G in a single neighborhood. However, we conduct the
sampling process on all the neighborhoods that are bigger than a certain
size (in our case, 10) in the whole network. Thus, we want to compute the
standard error SG for the percentage of G in the network. Since we conduct
sampling just on neighborhoods bigger than 10, we are actually estimating
the percentage of G for those neighborhoods, and we indicate it as p̂′G. The
neighborhoods we are not sampling from do not contribute towards the
sampling error.

To estimate the sampling error in the whole network we also need the total
number of samples, which is the number of samples for each neighborhood, s,
multiplied by the number of neighborhoods we sample from. The standard
error ˆSEG for a graph G in the full network becomes:

ˆSEG =

√
p̂′G(1− p̂′G)

s N2

. (7.6)

The concept of standard error is connected with the one of margin of
error. The margin of error is commonly used for estimating the error of
random sampling in surveys’ results. The margin of error can be computed
as amount of standard errors, depending on the size of the confidence
interval we want to obtain. A margin of one standard error corresponds
to a confidence interval of 68%, according to the z-table of the normal
distribution (z − value = 1). Similarly, 95% confidence interval corresponds
to 1.96 standard error, while 99% confidence interval corresponds to 2.58
standard error.

In our experiment, we obtained Standard Error values that are at maxi-
mum around 1%, even computing the margin of error for a confidence level
of 99%. We consider those values negligible, thus we do not discuss them
further.

There exists alternative ways to estimate the error. For instance, we
could simply repeat the sampling on the same graphs multiple times for the
same number of sample and then compute some measures like Coefficient of
Variation cv, which is the ratio of the standard deviation σ of a population
over the mean µ (cv = σ

µ
), or the error of the mean. However, this would

require additional sampling, and we could use the same computational power
to sample multiple times from the same network, which would lead to a
better estimation of the actual occurrence of a subgraph in the network.
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7.2 Results

In this Section, we illustrate the results of the neighborhood motif analysis
obtained with the methodology explained in Section 7.1. We start by com-
paring the distribution of the occurrence frequency of the subgraphs’ classes
in both the analyzed datasets and the corresponding null model, similarly to
what we have done for the neighborhood’s occurrence frequency in Chapter
6.2 (Figure 6.2). The number of times each class occurs in the network is
related to the uniqueness, since, the more times the class occurs, the more
likely the neighborhoods would be similar to each other, allowing an easier
anonymization process. On the other hand, if there would be subgraphs
occurring few times in the network, a high amount of neighborhoods would
belong to different isomorphism classes, increasing the uniqueness value and
making the anonymization problem harder. We then show the Z-Scores of
the subgraphs extracted form the analyzed datasets, both in the monoplex
and multiplex case, with the two counting methods introduced before in
subsection 7.1.1.

7.2.1 Class distribution

As we have seen in Section 6.2, in real-world data (and, in particular in the
analyzed datasets, such as CopNet and CountryCalls) most of the neighbor-
hoods’ classes occur just one time, while the amount of classes appearing
more times becomes lower with the increasing occurrence frequency. This
characteristic is also reflected in the degree distribution of real-world net-
work, whose trend is similar to the one of a power law (introduced Section
2.1). This means that the neighborhood classes, like the degree values,
are not all occurring the same amount of times, thus their distribution is
not completely random. Indeed, if each class had the same probability to
occur, the distribution would be uniform, and the plot would look like a
flat line. We can observe a similar behaviour in the distribution of the
occurrence frequency of subgraphs’ classes in neighborhoods, reported in
Figure 7.1 for the datasets CopNet and CountryCalls, and the mean of
the respective null models. We report all the possible monoplex networks
(Calls, Sms and aggregation of both Calls and Sms) and multiplex networks
(where one layer is Calls and the other Sms), with respect to both node and
node-layer isomorphism. Figures 7.1 a and c show the occurrence frequency
of subgraphs’ classes with respect to the Frequency of each subgraph (F ),
while Figures 7.1 b and d are with respect to the Proportion (P ) (defined
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before in subsection 7.1.1). Since the proportion P is the frequency scaled
also in function of the neighborhood size, some of the subgraph can have
occurrence value less than one. The occurrence frequency for a subgraph
could be less than one also if, for instance, a particular subgraph did not
occur in all the realization of the null model.

The number of multiplex subgraphs is much higher than the monoplex
ones, which, for sizes from 2 to 4, are just 17, as shown in Figure 7.2. For
this reason, the curves in Figures 7.1 c and d, representing the multiplex
classes, are much more dense than the curves in Figures 7.1 a and b, which
represents the monoplex classes.

Since the considered datasets have a significant difference in size, it is
normal that the occurrences of all the subgraph classes in them are higher in
CountryCalls (which has around five millions of nodes) compared to CopNet
(which has around eight-hundred nodes). In the monoplex case, the higher
amount of occurrences is in the aggregated networks. This is especially true
for CountryCalls , while for CopNet the classes in Calls and Sms also have
almost the same occurrences in the aggregated network. In fact, the Calls
and Sms layers in CopNet are similar to each other, as can also be noticed
from Table 6.1, or from the degree distribution in Figure 6.1. Moreover, the
amount of overlapping edges between the Calls and Sms networks in CopNet
is higher than in CountryCalls . Since less edges are shared, the aggregation
would lead to the formation of diverse classes when aggregated.

In Figure 7.1 c and d, we can notice that, in the null models of Coun-
tryCalls , there are less subgraph classes than in the dataset. This is due to
the fact that the configuration model is locally tree-like and its clustering
coefficient goes down as the size increases. Another interesting difference
between the original data and the corresponding null models is that the
distributions in the null models are more “flat”. This is particularly no-
ticeable in CountryCalls, where the classes are also mainly concentrated
in two specific areas in the frequency: mostly between 10 and 105, and
after 108 (besides the classes that occurs zero times). The diversity of the
classes distribution is again explained by the higher density of the datasets
compared to the configuration model.

7.2.2 Resulting motifs

In this section we present the results of the neighborhood motif analysis on
the considered datasets. We first illustrate the analysis on the single-layer
and aggregated networks (subsection 7.2.2.1), and then on the multiplex
ones (subsection 7.2.2.2). We also discuss some limitation of this analysis
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Figure 7.1: Occurrence frequency OG of monoplex and multiplex subgraph
classes (with size from 2 to 4) in data and models with respect to both
Frequency F and Proportion P : a - F of monoplex subgraphs; b - P of
monoplex subgraphs; c - F of multiplex subgraphs; d - P of multiplex
subgraphs. When specified in the legend, N stands for multiplex network
with neighborhood computed with respect to node isomorphism; NL for
node-layer isomorphism; Agg. for aggregated network. CC stands for Coun-
tryCalls , CN for CopNet . The analyzed datasets are indicated with Net.,
and the models with Mod..

and possible issues we have identified in the metric used to compare networks
and compute the significance level of the subgraphs.

7.2.2.1 Monoplex motifs

The monoplex networks we consider are, in both datasets (CopNet and
CountryCalls), the ones regarding calls, sms, and the corresponding aggre-
gated network. All the possible monoplex motifs with size from 2 to 4 are
illustrated in Figure 7.2.
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Figure 7.3 shows the Z-Score of the monoplex motifs in the analyzed
networks. From this figure, we can see that both Call, Sms and the aggre-
gated network present similar patterns in the neighborhoods. To compute
the Z-Score, the motif should appear in at least one of the realization of
the null model. If a particular subgraph is present in the original network
but has not appeared in the null model, then its estimated Z-Score goes to
infinity, since its mean and standard deviation are zero. This means that
subgraph is extremely rare in the null model, and, if it appeared in some of
the realizations, we were not able to see it with our sampling. In this case,
an higher amount of sampling could have helped.

All the motifs illustrated in Figure 7.2 appears in our datasets. However,
the more dense ones did not appear in the random networks corresponding
to CountryCalls. This is expected since the density of the configuration
model decreases when the network size grows [New18]. Indeed, with a fixed
degree sequence and a larger number of nodes, there are more possibilities of
picking neighbors, with a less probability of formation of dense groups. Since
CopNet is a smaller dataset, we could compute a Z-Score value for more
motifs. The only one not appearing in the null model of all the networks is
the one with 4 nodes completely connected (graph Q in Figure 7.2), while
the graph with 4 nodes and 5 edges (graph P in Figure 7.2) is not appearing
in the configuration model corresponding to Sms. Those are two most dense
motifs, thus it is also normal to not to see them in the random networks’
realizations.

There are no remarkable discrepancies in the motifs distribution com-
puted with the Frequency F or the Proportion PG. In CopNet , with the
Proportion P , we can see an higher Z-Score of the most dense motif P , and
a lower Z-Score of G. Overall, we have observed a lower variance when
considering the proportion P , and this is the reason why the absolute values
of the Z-Score are sometimes higher. In the Z-Score of the Frequencies F
of CopNet (Figure 7.3 c), some of the Sms’ and Calls’ motifs have Z-Score
shrinked towards 0 compared to the corresponding proportion P . Eliminat-
ing the effect due to the neighborhood size by computing the proportion
P , makes an actual difference then, uniforming more the neighborhoods an
also the motifs count.

The under-represented motifs (or anti-motifs) that emerged are the same
for both datasets and are, as expected, the ones without edges between the
neighbors (A, C, G in Figure 7.2).

The computed values of Z-Score are all very high. There is a huge
gap between the values of CopNet and CountryCalls . Being CountryCalls
significantly bigger than CopNet , its Z-Scores are noticeably high. As
discussed in Section 2.6, it is known that the network size influences the Z-
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Score. However, computing the Significance Profile to compare the networks,
in our case, did not give easily interpretable results. In fact, for example,
in the aggregated network of CopNet , the SP of subgraph J resulted to be
≈ 0.99, thus very close to the maximum value 1, while the other motifs had
a SP with absolute value less than 0.005. Even though the subgraph J has
a Z-Score significantly higher compared to the others, values of Z − Score
around 105 and 106 cannot be ignored, since they describe a characterizing
pattern of the networks, occurring a high amount of times.

Motif J is composed of two edges connecting two neighbors not com-
municating to each other. J is also much more significant in CountryCalls
compared to CopNet . This may be due to the fact that the networks of
calls and sms in CountryCalls have a relatively low edge overlap, thus the
aggregation leads to the appearance of non-communicating patterns in the
neighborhoods. In the context of calls and sms, this may mean that, in that
dataset, two people communicating through calls often do not use sms.

A B C D E F

G H I J K L

M N O P Q

Figure 7.2: List of all the monoplex neighborhoods motifs with size from
2 to 4. The red node is the central node and the pink edges link the central
node to the other nodes (in black) which are the neighbors. Thus, there
are always edges between the central node and the other nodes. The green
edges represent the edges present between the neighbors.

7.2.2.2 Multiplex motifs

We now discuss the results of the multiplex neighborhood motifs analysis
with respect to both node and node-layer isomorphism.
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Figure 7.3: Z-Score of the monoplex motifs in the datasets CopNet and
CountryCalls with respect to Frequency F and Proportion P : a) CopNet
- Frequency; b) CopNet - Proportion; c) CountryCalls - Frequency; d)
CountryCalls - Proportion. Each tick on the horizontal axis corresponds to
a motif. The corresponding motifs are reported in Figure 7.2. The legend is
the same for all the figures and is reported in b and d.

Figures 7.6 shows the Z-Score for the multiplex motifs appearing in
both the original network and in the respective random ones. Similarly to
what we have seen for monoplex motifs, we were not able to sample from
the random networks all the subgraphs existing in the networks. Since the
number of multiplex classes is much higher than the monoplex ones, the
difference between the amount of discovered motifs in the datasets and in
the random networks is significant.

Table 7.1 shows the number of discovered multiplex motifs for both the
datasets and the respective configuration models. As expected, there is a
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difference in the amount of classes between node and node-layer isomorphism.
Since with node-layer isomorphism layers’ labels are interchangeable, it is
normal that the number of motifs with this type of isomorphism is almost
half than the ones with respect to node-isomorphism.

There is also a lower amount of classes in the configuration model of
CountryCalls than in CopNet . As in the monoplex case, it is easier to
discover more classes in CopNet , since this dataset is significantly smaller
than CountryCalls , in which we are able to sample only the most common
subgraphs. Moreover, the configuration model of bigger networks is less
dense than in smaller ones. For the same reason, the motifs that we have
not sampled from the null models are the most dense ones. The presence
of denser motifs can also be noticed in Figure 7.6, where dense motifs
have a high Z-Score. Some of the motifs with a high Z-Score are shown in
Figures 7.4 a and b. Even here, the motif with the maximum Z-Score of
CountryCalls has less edges than the one of CopNet , as a confirmation of
the higher density of the latter. Figures 7.4 c and d show instead the motifs
with the minimum Z-Score from both datasets. As mentioned above, those
subgraphs are among the most common in the configuration model and do
not have any edge between the nodes, highlighting the sparse nature of this
model.

The motifs for which we could compute Z-Score have in general a low
amount of edges, while the ones not appearing in the null models have a lot

(b)

(d)(c)

(a)

Figure 7.4: Motifs with the maximum estimated finite Z-Score in CopNet
(a), and in CountryCalls (b), and with the minimum estimated finite Z-Score
in CopNet (c), and in CountryCalls (d) The red node is the central node
and the pink edges link the central node to the other nodes (in black), that
are the neighbors. The green edges represent the edges present between the
neighbors.
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of edges. Figure 7.5 shows some of these dense subgraphs, which have an
estimated infinite Z-Score.

Figure 7.5: Some of the dense multiplex subgraphs that do not appear in
the null models. The red node is the central node and the pink edges link
the central node to the other nodes (in black), that are the neighbors. The
green edges represent the edges present between the neighbors.

As can be noticed in Table 7.1, there are more subgraphs in CountryCalls
compared to CopNet . This is due to the difference in size of the datasets.
Given the variety of multiplex motifs, there exists also some with edges or
nodes just in one layer. From Figure 7.6, we can notice there are only few
differences in the distribution of classes with respect to the Frequency F and
the Proportion P . Overall, especially in CountryCalls , the absolute values
of the Z-Score with respect to P are higher than the ones with respect to F .

A lot of multiplex motifs resulted to have a Significance Profile lower
than 10−3, while having an high Z-Score. As we have briefly mentioned for
one of the monoplex motifs in subsection 7.2.2.1, subgraphs that have a
Z-Score, for example, higher than one thousands should be considered as
over-represented motifs. Indeed, in this case, the difference between their
frequency in the original network and the mean time of appearence in the
null model (or viceversa) is very high, and they cannot be ignored if our
aim is to study recurrent patterns.

The issue of not having reliable values of Significance Profile generally
emerges in large and dense networks, where the subgraphs occurring in
the datasets are very different in comparison with the null model. With
multiplex neighborhoods the problem is even more evident, since the number
of possible subgraphs is significantly higher than the monoplex ones, and
rescaling to length one the vector of the Z-Score values could not be the best
way to compare networks of different size. Moreover, computing patterns in
neighborhoods leads to extremely high Z-Score values in both the monoplex
and multiplex case, further highlighting a possible issue related to the
estimation of this values. This can be related the use of Z-Score itself, which
assumes a normal distribution of the subgraphs, which may not be the case
when it comes to networks’ neighborhoods.
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Figure 7.6: Z-Score of the multiplex motifs in the datasets CopNet and
CountryCalls with respect to Frequency F (in red) and Proportion P (in
blue), and node and node-layer isomorphism: a) CopNet - Node-isomorphism;
b) CopNet - Node-layer isomorphism; c) CountryCalls - Node-isomorphism;
d) CountryCalls - Node-layer isomorphism. The motifs are ordered by
number of nodes and edges. Each tick on the horizontal axis corresponds to
a motif. The legend is the same for all the figures and is reported in b and d.

CopNet
(Node)

CopNet
(Node-layer)

CountryCalls
(Node)

CountryCalls
(Node-layer)

Data 582 343 847 450
Model 374 225 103 58

Table 7.1: Number of discovered multiplex subgraphs in the original
datasets and in the respective null models, with respect to node and node-
layer isomorphism.

7.3 Alternative approaches to network neigh-
borhood analysis

In this chapter, we have analyzed the structure of neighborhoods in so-
cial networks, through the discovery of the motifs forming them. To find
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neighborhood motifs we have performed an exhaustive search of induced
subgraphs on the network of each neighborhood, when their size was limited,
or we have uniformly sampled combination of nodes in the neighborhoods,
computing the induced subgraphs composed of those vertices. However,
different motifs finding (or subgraphs counting) algorithms exist [WR06;
MSK12], and they can be used as an alternative even for this kind of analysis.

Since each random graph has a certain probability to occur, also the
subgraph in it are. For this reason, instead of sampling from the null model,
we could have estimated the probability for a certain subgraph to occur
in the random network. In this way, we could have obtained an estimated
Z-Score value for each subgraph occurring in the original network.

We could have also used different null models for our analysis, such the
configuration model without edge overlap or also the Erdős-Rényi model.
In particular, the latter could have been compared to the configuration
model to understand the effect of the degree sequence when discovering
neighborhood motifs. Another possible model would have been one in which
we randomly shuffle the edges between a neighborhood. In this case, we
could observe patterns in neighborhoods and the density of the original
networks compared to the null model would not play a role.

Although the motifs analysis is mainly applied to monoplex networks,
there are also few studies concerning multilayer networks [Bat+17; Tak+18].
Most of the methods in the literature are based on different kinds of sampling
and can be useful in our case, especially in presence of large neighborhoods.
Moreover, we have taken into account networks with unlabelled nodes
and undirected edges. The amount of possible motifs increases when the
edges have directions and the nodes are colored. Methods like [WR06] and
[Kas+04] have been developed for the discovery of such motifs.

However, the conducted analysis is a simple method for the discovery of
the over-represented and the under-represented subgraphs in neighborhoods,
and it is easily extendable to higher-order neighborhoods, such as 2-hops or
more. Furthermore, we could extend the analysis to labelled data, computing
the neighborhood motifs for nodes with different features, for instance males
and females, or students studying different majors. To do that, we could
extract the label of the central nodes, and, in the case of genders, we could
conduct a chi-square test with bootstrapping, where the null hypothesis
is that each group has the same neighborhood motifs. This would mean
drawing sample with replacement, in order to overcome the difference in
the frequency of the groups. We could then compute the p-values for each
relevant induced subgraph obtained. [Psy+17] contains an analysis of the
role of gender using the CopNet dataset, also using motifs to study whether
men and women tend to form triangles with nodes of the same gender group.
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In a large-enough network, we could slightly modify our approach, in order
to discover the actual over and the under-represented neighborhoods (instead
of the patterns in them): we could treat the neighborhoods themselves as
motifs and compute the Z-score and SP of those.

[SP09] analyzes the structure of neighborhoods of a mobile phone call
dataset with a methodology very similar to ours, though considering only
monoplex networks. The authors extract the neighborhoods of every node
and compute the induced subgraphs present in them, focusing though only
on the connected ones, instead of considering also the non-connected motifs
as we do. This work also analyzes the different roles of each nodes in the
neighborhood based on their position. However, it does not perform a
proper motif analysis, since the found patterns are not compared with a null
model, and, consequently, metrics like Z-score and SP are not considered for
assessing the importance of the subgraphs, but only the frequency is used.

To conclude, some studies approached the analysis of neighborhoods from
different angles. For example, [PS10] analyzes network neighborhoods of
different orders based on the number of nodes, number of edges and density
(the number of edges out of all the possible edges) to detect anomalies in a
dynamic network, also comparing also the nodes to each other across differ-
ent neighborhoods orders. In our case, if we want to compare single nodes
to each other, we can extend our analysis by exploiting the multiplexity to
see how the neighborhoods of single nodes change across different layers.



Chapter 8

Neighborhood Anonymization in
Multiplex Networks

In this chapter, we are going to present an algorithm anonymizing a pair of
multiplex neighborhoods by adding nodes and edges. This method is the
core part for a full anonymization algorithm to prevent neighborhood attack
on multiplex networks. We also discuss the features of multiplex networks
that should be taken into account when developing an algorithm for this
kind of systems, either to prevent neighborhood attacks or mitigate similar
risks.

8.1 Neighborhoods pair anonymization

In this section, we illustrate an algorithm to make two multiplex neigh-
borhoods with two layers isomorphic to each other, according to node
isomorphism. A method similar to the one we present is necessary to build
any anonymization algorithm, since two or more neighborhoods need to
be modified to belong to the same isomorphism class. The anonymization
algorithms presented in 3 first group together similar neighborhoods, and
then make the neighborhoods in the same group isomorphic to each other.
If we consider k-anonymity with k = 2 we just need to suppress unique
neighborhoods, thus each group would contain only two neighborhoods. In
this case, the algorithm we present would be enough to anonymize them.
Otherwise, with k > 2, more neighborhoods need to be anonymized, but this
algorithm would still be useful since neighborhoods can be made anonymous
in pairs.

To minimize the number of modifications, the neighborhoods need to
be aligned to find similar nodes and edges that are already present. Our
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method contains a heuristic to align two multiplex neighborhoods based on
matching maximal connected components, inspired to the seminal paper
[ZP08], presented in 3. The connected components are extracted from the
aggregated version of the multiplex network, and then sorted by taking into
account multiplex features. After that, the matched connected components
are anonymized by computing the difference of their adjacency matrices and
consequently adding the missing edges.

A pseudocode version of the proposed algorithm is shown in Algorithm
1. Once the connected components are extracted from the neighborhoods,
they are sorted based on various features. The idea is to anonymize first the
bigger components, then the ones with a higher amount of nodes and edges.
For this reason, we sort the components according to the following order:
number of node-layer tuples, overlapping nodes (nodes shared between the
layers), nodes in layer one, nodes in layer two, number of total intra-layer
edges, number of overlapping edges, number of edges in layer one, number
of edges in layer two.

Algorithm 1 Neighborhood pair anonymization
Input: multiplex neighborhoods N1 and N2

Output: anonymized N1 and N2

1: Extract neighborhood components from N1 and N2;
2: Sort neighborhood component from N1 and N2;
3: while N1 ! ∼=0 N2 do
4: Comp1 ← next component of N1

5: Comp2 ← next component of N2

6: if Comp1 ∼=0 Comp2 then
7: continue
8: end if
9: if Comp1 ∼=agg Comp2 then
10: make Comp1 and Comp2 multiplex isomorphic
11: else
12: Sort nodes of Comp1 and Comp2
13: Add missing nodes to Comp1 or Comp2
14: Compute adjacency matrix difference |A|Comp1 − |A|Comp2
15: Add missing edges to Comp1 and Comp2
16: end if
17: end while

We then match the sorted connected components from each network
together, and anonymize them if they are not already isomorphic. However,
if they are not isomorphic in the multiplex version (indicated with ∼=0),
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but they are isomorphic in the aggregated network (indicated with ∼=agg),
the anonymization consists only in adding the missing edges in the correct
layers.

Otherwise, we anonymize the connected components by aligning the
nodes and computing the difference of the adjacency matrices, to locate
the missing edges (as it is done in methods presented in 3, such as [TP10]
and [Liu+15]). To align the nodes of each connected component, we sort
the vertices in descending order according to: degree in the aggregated
network, overlap degree distribution, degree distribution in layer one, degree
distribution in layer two. If necessary, we add nodes to the neighborhoods if
one of them has less nodes than the other. Instead, if one of the components
has less edges than the other, but the number of nodes in the neighborhoods
is already the same, we do not add new nodes but merge the connected
component with another existing node in the neighborhood. The algorithm
continues to match connected components and anonymize them until the
two multiplex neighborhoods are isomorphic.

Figure 8.1 shows two pairs of multiplex neighborhoods that have been
anonymized with Algorithm 1. In Figure 8.1 a, the two neighborhoods differ
of just one edge in layer 2. In this case, the algorithm just add the missing
edge without any further modification (Figure 8.1 b). The algorithm works
also not trivial examples: for instance, in Figure 8.1 c the two neighborhoods
have a different amount of nodes, and the algorithm adds the missing nodes
to the smaller neighborhood; In Figure 8.1 d there are nodes missing from
one of the layers in both the neighborhoods. In this case, the algorithm
adds the nodes to both neighborhoods and, when possible, adds a node-layer
tuple aligned to an already existing node.

The presented algorithm anonymizes a pair of neighborhoods with respect
to node isomorphism. To make them node-layer isomorphic, we can run the
algorithm two times switching the layer’s label in one of them, and then
keep the anonymized version of neighborhoods pair with less modifications
(in terms of added nodes and edges) from the original.

Since this algorithm is based on matching connected components in
the aggregated network, it can also work in monoplex networks. The only
modification needed is in the matching of the components and nodes in the
component. Indeed, we do not have to sort by measures typical of multiplex
networks such as number of nodes or edges in the layers.

Anonymization methods presented in 3 define a cost function to measure
the number of modifications applied to the network. This function is of
type αx+ βy, where x and y are the amount of modification, for instance in
terms of nodes and edges, and α and β are the weight that the user can put
on each type of modification. In our case, we can add even more variables
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(a)

(b)

(c) (d)

(e) (f)

Figure 8.1: Three pairs of multiplex neighborhoods with two layers before
anonymization (a, c, e) and after anonymization (b, d, f) with Algorithm 1.

to the cost functions. Those variables can correspond, for example, to the
number of nodes added in the full network, number of nodes or edges added
in only one-layer and number of overlapping edges added.

8.2 Preventing neighborhood attack on multi-
plex networks

The algorithm presented in Section 8.1 could be used as the main part for a
full multiplex network anonymization algorithm. In this section, we discuss
alternatives to the presented algorithm and how our method can be used in
a complete algorithm to prevent neighborhood attack.

An alternative to the proposed method could include different ways of
matching the two graphs and computing the missing edges or nodes to make
them isomorphic. However, there are currently no methods similar, for exam-
ple, to network alignment [Kuc+10; SXB08; Lia+09] for multiplex networks.
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Our algorithm is a heuristic that takes a step towards (non-exact) multiplex
graph matching. We can modify it by sorting the connected components
and the nodes in them by prioritizing different measures. Furthermore, to
match nodes, we could compute the correlation coefficient between a vector
of measures of pair of nodes in the two neighbors and match the nodes
with the highest correlation. The vector of measures could include, as an
example, the degree in the two layers and the overlapping degree. It is
anyway important to include multiplex measures while developing this kind
of algorithm, because the difference or similarity between the different layers
is what makes multiplex networks different from monoplex ones.

Incorporating the procedure proposed in Section 8.1 in a full network
anonymization algorithm would mean adding nodes to the network. If we
do not want to add new nodes, we could pick already existing nodes and
incorporate them in a neighborhoods. Those nodes could be low degree
nodes, as proposed for instance in the method presented in Section 3.3.2.
However, if the nodes that join the neighborhoods have neighbors themselves,
then the neighborhoods may have additional edges as well.

As most of the anonymization methods presented in Chapter 3 do, before
anonymizing a pair of neighborhoods, all the neighborhoods in the network
need to be organized in groups. Each group needs to contain neighborhoods
similar to each other, which then would be made isomorphic to each other. It
is important to group together neighborhoods that do not differ significantly,
since, in this way, the modification to the original data would be low. In the
case of simple networks, sorting the neighborhoods by number of nodes and
edges could be sufficient, but in a multiplex case there is always the diversity
between the layers to take into account. We can group neighborhoods with
a heuristic similar to the one of sorting connected components. Indeed, if we
sort the neighborhoods, we can group the ones that are closed to each other
in the sorted list. An alternative would be to develop new distance measures
for multiplex networks, such as graph edit distance [Gao+10] (discussed in
Chapter 2) or graph kernels [Vis+10; She+11]. Graph kernels in particular
would be very handy, since, with them, we can compute the distance between
two networks, which could be also all the extracted networks’ neighborhoods.
In general, tools existing for simple graphs needs to be extended to multiplex
networks to be used for this kind of algorithm, but also for other purposes.



Chapter 9

Conclusion

We now conclude this study by going through all its steps, summarizing its
results (Section 9.1), and discussing the possible future work to extend our
analysis (Section 9.2).

We have analyzed the uniqueness and structure of the neighborhoods in
complex social networks. Our aim has been to quantify the risk related to
neighborhood attack when social network data are shared, and to estimate
the difficulty of the anonymization problem to prevent identity disclosure
caused by this kind of attacks. We have conducted this study on multiplex
networks in different settings, depending on whether the layers’ labels are
present or not, or the data from different layers are aggregated into a single
one. We have defined multiplex neighborhoods and identified the differences
that this definition could cause in the uniqueness value.

To understand how different networks behave in terms of anonymization
difficulty, we have used three network models to generate networks with
different features. For every model, we have varied parameters such as the
number of nodes, average degree and, in the multiplex case, amount of
edges overlapping between different layers. We have measured the number
of unique neighborhoods in each of the networks, identifying the uniqueness’
trend in function of various parameters.

Since network models are not always similar to real-world social networks,
we have then analyzed the uniqueness of neighborhoods in some social
network data of human communications, such as phone calls and text
messages. We have compared the results of this analysis with the ones
derived by the study of network models, to determine whether models can
be used as a proxy for empirical data in terms of uniqueness, and which
model is more suitable to approximate social networks.

To further improve the understanding of the difference between data
and models, which always have a random ingredient in them, we have
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conducted an analysis of the recurrent patterns in social networks, through
an analysis of network motifs in neighborhoods. The recurrent structures in
neighborhoods are the reason why neighborhoods are similar to each other
and, consequently, possible to anonymize without radically modifying the
data.

Finally, we have proposed an algorithm to make a pair of multiplex
neighborhoods isomorphic. This method can be used as the core building
block for a full multiplex network anonymization algorithm, fitting in the
framework of existing anonymization methods. We have also discussed the
essential features of multiplex networks to take into account during the
development of this kind of algorithms.

9.1 Summary of results

This thesis identifies and quantifies the threat related to neighborhood attack
in multiplex networks, while discussing possible solutions to address this
problem. We have adopted a scientific approach for the understanding of an
engineering problem as the anonymization against neighborhood attack. Our
goal was to gain a more in-depth knowledge of the behaviour of networks in
terms of anonymization difficulty and how network’s structure and features
affect this. This understanding can give us an idea on the amount of
modification we should do to the data to make them anonymous (at least
from a neighborhood attack viewpoint) and, consequently, possible to share.

Mainly, we have seen that the uniqueness of neighborhoods is generally
higher when networks have a clear local structure and nodes are organized
in densely connected groups (e.g. communities). This structure is typical
of real-world data, in contrast to completely random situations, where the
uniqueness clearly decreases with the growing network size and average
degree. On the other hand, structures that connects all the nodes in the
same way, such as ring lattices, are already anonymous, since it is not
possible to distinguish between nodes.

The main obstacle for existing anonymization algorithm (that we have
surveyed in Chapter 3) is the existence of unique neighborhoods, since they
need to be anonymized even in the most basic settings (e.g. k-anonymity
with k = 2) to not to be easily re-identified. Furthermore, the distribution
of the occurrence frequency of neighborhoods in data shows that the number
of classes occurring one time is the highest fraction, while a lower amount
of classes are occurring more times. This means that the uniqueness of
classes is the hardest to suppress, while, for instance, it would be easier to
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make 3 − anonymous (k-anonymous with k = 3) neighborhoods that are
occurring two times.

To understand how multiplex networks influence the uniqueness of neigh-
borhoods, and to avoid the ambiguity that this representation can cause, we
have first defined multiplex neighborhoods in Chapter 4. We have identified
two different ways of defining neighborhoods in multiplex networks, and we
have called them Non-Inclusive Multiplex Neighborhood, N⊂, and Inclusive
Multiplex Neighborhood, N⊆. The choice of using one of another definition
depends on the attackers’ knowledge we want to model. The two neigh-
borhood definitions influence the uniqueness value in multiplex networks
because they have different information incorporated in them. In this thesis,
we have mostly focused on Non-Inclusive Multiplex Neighborhood, since it is
a more realistic approach when it comes to neighborhood attacks.

Non-Inclusive Multiplex Neighborhoods are built by extracting the neigh-
borhood of the target node separately from every layer and then combining
them into a multiplex network. Conversely, each layer of Inclusive Multiplex
Neighborhoods includes the nodes that are neighbors of the target node in
at least one layer and the edges between them. We have discussed that the
uniqueness of N⊆ is always higher (or, at least, equal) than the uniqueness of
N⊂. We have also shown that aggregating the layer of a multiplex network
into a single-layer network does not always lower the re-identification risk
when N⊂ is used. Indeed, the aggregated network could contain information
about links that we cannot observe with N⊂. This happens especially when
the edge overlap is low. This is explained by the fact that, if two layers
would share a lot of edges, then it is likely that two nodes that are part
of a neighborhood in one layer, would also be part of it in another one,
not adding significant information to the neighborhood when aggregated.
Instead, if the edges of two networks are mostly independent (i.e. with low
overlap), then the aggregation may reveal additional links, that an attacker
can use during the re-identification process.

On the other hand, the uniqueness of N⊆ is always higher (or equal) than
the one of aggregated neighborhoods Na, and, depending on the hypothesis
and settings of the neighborhood attack we want to protect against, this
should be taken into account when sharing network data.

The variation of the uniqueness of neighborhoods is strongly influenced
by the network structure, which makes the probability of having equal
or similar neighborhoods higher or lower. To represent different network
structures, we have conducted simulations with the multiplex version of
three network models (Erdős-Rényi, Watts-Strogatz, Random Geometric
Graph), showing that the best strategy to share data to minimize the risk
of neighborhood attack depends on various variables. As it was expected,



CHAPTER 9. CONCLUSION 120

in a multiplex setting, not sharing layers’ labels helps, since the amount of
available information is always lower (or, at the extreme, equal) than when
we share them. The difference in the uniqueness between those two types of
situation vanishes when the fraction of overlapping edges between the two
layers is close to one, since, concerning neighborhoods, the network is the
same as its aggregated version.

We have identified a linear trend in the variation of the uniqueness of
neighborhoods, in function of the average degree and network size. The
uniqueness depends on those two features when the networks are sparse (i.e.,
the average degree is not very high relative to the number of nodes). In
networks with nodes organized in densely connected groups, the uniqueness
presents an almost flat behaviour, meaning that the network size does
not radically influence it. This trend characterizing graphs with a clear
nodes disposition is due to the fact that, despite the size, the nodes would
always be locally densely organized, allowing the formation of a variety
of neighborhoods. However, if the structure is completely regular, the
uniqueness of neighborhoods dramatically decreases. Indeed, in structures
like ring lattices nodes are all anonymous, since they have already the same
neighborhoods.

The growth in the possibility of neighborhoods formation in locally
dense networks compared to sparse ones is explained by the locally tree-like
structure of the latter. This peculiarity reflects in a low probability of having
strongly connected neighborhoods and consequently, less diversity in the
neighborhood classes.

The tendency of the uniqueness to depend less on the network size as the
organization in the network increases is also confirmed by the uniqueness
variation in function of the edge overlap, in both Watts-Strogatz and Random
Geometric Graph. The uniqueness peak in both networks is with an edge
overlap around 0.75. This value corresponds to a network architecture
with a more pronounced local structure than a more random one, similar
to Erdős-Rényi graphs. Indeed, when the edge overlap is equal to 0, the
networks behave like an Erdős-Rényi one, while, when the overlap increases,
the typical local structures of the models appear. The uniqueness goes down
again when reaching value 1 of total overlap, since there is a loss in the
diversity between the two layers.

The behaviour of models such as the Random Geometric Graph approx-
imates quite well the uniqueness of empirical datasets. Real-world social
networks are indeed locally dense, since humans (or other social entities)
strongly tend to connect with a relatively small number of people. Even
in data, the uniqueness increases when the average amount of connections
per nodes increases, as a confirmation that the trend that we have seen in
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the models is also valid for real data. The difference between locally dense
social networks and random models that are locally tree-like can also be
noticed with the analysis of neighborhood motifs (Chapter 7). Comparing
empirical networks with a randomized version of the network with the same
degree sequence (the configuration model) shows the variety of classes that
are present in dense networks compared to sparse random ones.

Neighborhoods are structures that can be a serious threat when sharing
data. Easier anonymization approaches such as degree anonymization are
not enough to protect network data privacy since, as we have shown in
Chapter 5, the nodes with a unique degree are not sufficient to explain
unique neighborhoods. We have also presented equations to determine the
expected fraction of unique degree nodes in both monoplex and multiplex
Erdős-Rényi networks, taking into account the amount of edge overlap
between different layers. The fraction of unique degree nodes can explain
the fraction of unique neighborhoods only if the network is sparse and small,
or, in a monoplex case, when is completely connected. In this case, the
uniqueness would go to zero, since all the neighborhoods would have the
same structure. However, this is not always the case in a multiplex network,
because the amount of edge overlap should also be taken into account (at
least if we consider as average degree the one of the aggregated network, as
we do).

The linear trend of the uniqueness tells us the approximate uniqueness
value that a network would have with a given size and average degree.
Primarily, it can give us an idea on “how far” a network is from the area in
which all the nodes are anonymous (UNτ = 0). This information can be used
to modify the data by, for example, thresholding the edges or increasing
the size, to make neighborhoods anonymous. After the data have been
shared, it would also be possible to share the amount of thresholding that
has been done, allowing data analysts to estimate actual features of the
network such as the average degree. Modifying data in this way would not
imply the use of an algorithm that adds, for example, fake edges. This
approach is also useful for the design of data collection studies. In fact, it
would be possible to estimate network measures that are needed to have
a completely anonymous network that can be shared in the future (e.g.
number of participants). Therefore, in this case, there would be no more
need of anonymization algorithms that introduce noise to the data.

Anonymizing multiplex neighborhoods is a non-trivial problem that can
be addressed in the future and, as a first step, we have proposed a heuristic
to anonymize a pair of multiplex neighborhoods in Chapter 8. Our method
shows that features that are peculiar of multiplexity, such as overlapping
edges or overlap degrees, should be considered when adapting any algorithm
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to multiplex networks. In particular, the multiplexity should be taken
into account when it comes to anonymization, where keeping utility while
minimizing data modifications is crucial. However, the choice of using an
algorithm should be preceded by an analysis of the situation. Applying an
anonymization algorithm to a network where neighborhoods are all unique
could modify the data entirely. Since the goal is to share data where all the
neighborhoods are anonymous, then it is needed to understand the distance
of the data from the area with zero uniqueness. If the data are close enough
to this area, small modifications of those could be sufficient to share them
safely. On the other hand, if they are in an area with maximum uniqueness
that is far from the uniqueness’ transition from 0 to 1, applying any method
would imply losing data utility.

9.2 Future work

In this thesis, we have studied the problem of privacy and anonymization
of neighborhoods in multiplex networks. This work can be expanded in
multiple directions, for example by studying different systems or network
structures, or analyzing different neighborhood attacks’ scenario.

Although we have found the existence of a linear trend in the uniqueness
of neighborhoods with definition N⊂, future work can be directed towards
a more in-depth study of neighborhoods of type N⊆, to understand the
differences in such a situation. The choice of the neighborhood definition
may affect the behaviour of both network models and data, leading to
different results than the presented ones.

Moreover, a systematic study with systems with more than two layers
and that are not fully interconnected would be an interesting direction.
Increasing the number of layers would also most probably lead to a growth
in the uniqueness value, because of more information being available. This
analysis could bring new insight in the uniqueness variation depending on
the amount of overlapping edges, since they can be of different types: there
are edges shared among all the existing layers, but also some appearing
in just two out of all the present layers. Alternative models could also
be considered to study the uniqueness with a network structure different
than the already analyzed ones. We have also focused on networks with
sparse regime, but it would also be interesting to explore the dense regime
of multiplex networks, in order to understand if there is any substantial
difference compared to the monoplex case.

We have seen that the uniqueness of neighborhoods decreases with the
network size and average degree. To further explore this trend with real-
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world data, it would be possible to take subsets of data from the same
datasets, while keeping the average degree, and compute the corresponding
uniqueness. In the same way, one can vary the average degree keeping
the network size, by thresholding the edges’ weights to lower the amount
of connections (for instance considering the connections between people
happening at least a certain amount of times). Similarly, we can compare
the behaviour of the data with the one of models in terms of uniqueness
transition. Network models present only a relatively narrow area in which
the neighborhoods are neither all anonymous or all identifiable, while real-
word social networks may behave differently. The analysis on how some
real-world data would behave could give a better overview that can be used
for data sharing purposes in order to keep the anonymity of the subjects.

It would be also interesting to consider and analyze the uniqueness of
neighborhoods that go beyond 1-hop, extracting the neighbors of neighbors.
This would increase the uniqueness value and the re-identifiability, until the
situation where, at the limit, the attacker would know the identity of the
nodes in the full network.

Following the same framework of our equation for unique degree nodes
(in Chapter 5), it is possible to extend them to different network models.
This would allow to check, in other multiplex networks, whether the degree
uniqueness could explain at an higher (or lower) percentage the uniqueness
of neighborhoods.

The whole analysis of this thesis is done with unlabelled graphs, thus
considering k-anonymity as privacy definition. More advanced definitions
such as l-diversity can also be taken into account when doing an analysis of
the uniqueness with labelled data. This study can be done also on network
models, for example assigning a limited amount of labels to nodes according
to a certain probability, and measure how the uniqueness varies compared
to a situation where nodes’ labels are not present.

Nodes’ labels can also be used to extend our neighborhood motifs analysis.
For instance, as already discussed in Chapter 7, nodes’ metadata such
as genders can be considered to see which kind of motifs are associated
to different types of nodes. Additionally, we have identified problems in
our motif analysis related to both sampling and error estimation. The
computed error resulted to be very low and the employed uniform sampling
did not allow us to see some of the motifs in the random networks which
occurred in the datasets. To remedy this problem, we could estimate
the probability of occurrence of each subgraph in the null model. In our
analysis, we have used the configuration model with degree overlap, but
different alternatives can also be used, such as the configuration model
without considering the overlapping degrees, or the Erdős-Rényi model. The
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configuration model has the same degree sequence as the data, therefore
its degree uniqueness does not differ from the original network. We could
expand our analysis to understand more in-depth how the degree uniqueness
influences the neighborhoods’ uniqueness when the clustering coefficient
is sparse, comparing the uniqueness of the Erdős-Rényi model and the
configuration model.

Furthermore, the computed Z-Score and Significance Profiles strongly
depend on the network size. Even though this is known for network motif
analysis, with neighborhood motif analysis the values become almost mean-
ingless, making comparison problematic, since most of the times, especially
in multiplex networks, the Z-Score is very high while the SP very low. If one
conduct the analysis just considering the SP, then most of the subgraphs
would not emerge, making the final results different and, probably, not
reliable. For this reason, alternative measures for computing the significance
of patterns in networks, and, in particular, in smaller local structures like
neighborhoods, should be developed to obtain meaningful results that are
also comparable to each other.

The presented algorithm to anonymize a pair of neighborhoods can also
be modified and compared with alternatives. In particular, other possibilities
to align two multiplex neighborhoods and find their edit distance can be
considered. Moreover, this method should be tested along with a full network
anonymization algorithm, to understand how much data are modified with
the proposed heuristic. The test set should include different scenario based,
for example, on the structure of networks or different amount of edge
overlap. As we have seen, network structure and other features can radically
modify the uniqueness and, consequently, the hardness of the anonymization
problem. A prior analysis of the network and its features is needed to
understand the situation, and, eventually, develop methods that are specific
to each scenario. The understanding of the situation could also reveal that
varying the size or the number of edges (e.g. by thresholding or randomly
removing them), even for a limited amount, would be enough to make a
certain dataset anonymous.

To conclude, multiplexity is a characteristic that can be found in an
increasing amount of data, and can bring additional problems in terms of
privacy compared to simple social networks. Methods to preserve privacy
and anonymity in this kind of data should be developed, both addressing
neighborhood attacks and other threats. To maximize the utility and
performance of those methods, new basic tools for multiplex networks already
existing for normal graphs need to be created, in order to be used as building
blocks of privacy-preserving or anonymization algorithms. Examples of those
tools could include the development of a graph edit distance function for
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multiplex networks, or methods to group similar networks together, like graph
kernels, with the aim of anonymizing networks without radical modifications.
The development of these methods can also give us an idea of the actual
distance between the existing neighborhood classes, and consequently an
indication of the convenience of anonymizing the dataset. For example, the
neighborhoods of a dataset could be similar to each other even though they
are all unique. In this case, anonymizing them would require only small
modification. Instead, if all the neighborhoods are very distant to each other,
anonymizing them would mean to decrease the data quality and, therefore,
their utility.
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