Supplemental Information

Supplemental Figures

Α	C	Gal				G	al	
WT + GAL1p-gtr1 ^{S20L} + C		*	~	WT + $GAL1p$ - $gtr1^{S20L}$ + C	•	٠	芔	14
$gtr1\Delta + GAL1p-gtr1^{S20L} + C$				$gtr1\Delta$ + $GAL1p$ - $gtr1^{S20L}$ + C	6			
$ego1^{N175/s}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + C	• •	۰	**** *1*	ego1 ^{N175Is} gtr1 Δ + GAL1p-gtr1 ^{S20L} + EGO1	۲			
$ego3^{A49P}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + C		4	1	ego 3^{A49P} gtr1 Δ + GAL1p-gtr1 ^{S20L} + EGO3				
$gtr2^{E42^*}gtr1\Delta + GAL1p-gtr1^{S20L} + C$		٠		$gtr2^{E42^*}gtr1\Delta + GAL1p-gtr1^{S20L} + GTR2$	0			
$gtr2^{E_{185^{+}}}gtr1\Delta + GAL1p-gtr1^{S20L} + C$			-	$gtr2^{E185^*}gtr1\Delta + GAL1p-gtr1^{S20L} + GTR2$	۲			
$gtr2^{C231W}gtr1\Delta + GAL1p-gtr1^{S20L} + C$	• •	1	4.	$gtr2^{c231W}gtr1\Delta$ + GAL1p-gtr1 ^{S20L} + GTR2				
$gtr2^{L283fs}gtr1\Delta + GAL1p-gtr1^{S20L} + C$			3	$gtr2^{L283fs}gtr1\Delta$ + GAL1p-gtr1 ^{S20L} + GTR2				
tor 1^{A1928D} gtr 1Δ + GAL 1p-gtr 1^{S20L} + C		0	25	$tor1^{A1928D}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + TOR1	۰	۲	彩	
$tco89^{Q140ls}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + C		8	5.	$tco89^{Q140fs}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + TCO89				
$vam6^{\Omega 391^*} gtr1\Delta + GAL1p-gtr1^{S20L} + C$	• •	3	100	Vam6 ^{Q391+} gtr1∆+ GAL1p-gtr1 ^{S20L} + VAM6				
$vps41^{N465/s}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + C		绿		$vps41^{N465fs}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + VPS41	۲			
$vps33^{L18P}$ gtr1 Δ + GAL1p-gtr1 ^{S20L} + C		\hat{S}_{i}^{i}	di la	vps33 ^{L18P} gtr1 Δ + GAL1p-gtr1 ^{S20L} + VPS33	.@			
vps11 ^{Q76*} gtr1∆+ GAL1p-gtr1 ^{S20L} + C				vps11 ^{Q76⁺} gtr1∆ + GAL1p-gtr1 ^{S20L} + VPS11				
$apl6^{M1V}gtr1\Delta + GAL1p-gtr1^{S20L} + C$	•			$apl6^{M1V}gtr1\Delta + GAL1p-gtr1^{S20L} + APL6$				
apl6 ^{™613R} gtr1∆+ GAL1p-gtr1 ^{S20L} + C	• •			apl6 ^{M613R} gtr1 Δ + GAL1p-gtr1 ^{S20L} + APL6				
apm3 ^{₩31*} gtr1∆+ GAL1p-gtr1 ^{S20L} + C		¢,	e.	apm3 ^{₩31*} gtr1∆ + GAL1p-gtr1 ^{S20L} + APM3				
akr1 ^{₩725*} gtr1∆+ GAL1p-gtr1 ^{S20L} + C	• •	0	$e^{i \xi}$	akr1 ^{w725*} gtr1 Δ + GAL1p-gtr1 ^{S20L} + AKR1				
В				GAL1p-gtr1 ^{S20L}				

			Ģ	àlu		Gal				Glu				Gal					
	WT	•	•	٠	時	•	•	*	tes.	ကု	apm3∆ gtr1∆	•		0	*	0	•		
	gtr1∆	•	•		4					AP	aps3∆ gtr1∆	•	٠	9	÷.	•	1		
ĴĊ1	tor1 Δ gtr1 Δ	٠	0	1						kr1	akr1∆ gtr1∆	•	•	4	\$	٠	0	碜	1
TOF	tco89∆ gtr1∆	•	•	*	\$	•	•	\$	24	A	$vps11\Delta qtr1\Delta$	•	0	-	e:	0	0		
	ego1∆ gtr1∆	۰	•	۲	*	•	•	۵	4		$v_{DS}16\Delta atr1\Delta$	•	0	-	5	۰	0		
00	ego2∆ gtr1∆	•	•	3	4	٠	•	÷	ę.	S	$vps18\Delta gtr1\Delta$	•	0	0	ŝ	۲	0		
Ш	ego3∆ gtr1∆	•	•	0	4	۰		۲	×.	ЧОР	$vps33\Delta gtr1\Delta$	•	0	۲	85	•	0		
	gtr2∆ gtr1∆	•	•		1	٠	•	*	÷.	_	$vam6\Delta gtr1\Delta$	•	٥	۲	0°				
က္	apl5∆ gtr1∆		•	•	ų,ja		•	鼎	14		vps41∆gtr1∆		•	0	3	•	0	13	×.
AP	apl6∆ gtr1∆	۰	•	0	H\$	0	1												

Figure S1. Analysis of Suppressors of the Gtr1^{S20L}-Mediated Growth Inhibition, Related to Table 1

(A) Complementation analysis of the mutations (see Table 1) that suppress the $Gtr1^{S20L}$ -mediated growth inhibition. The ability of the indicated double mutants to grow when $Gtr1^{S20L}$ was overproduced from the galactose-inducible *GAL1* promoter was analyzed in the absence (empty plasmid control; + C) and presence (+ *GENE*) of the respective indicated (plasmid-expressed) wild-type genes after cells were spotted (10-fold serial dilutions) and grown for 3 days at 30°C on galactose (Gal).

(B) To independently confirm the results from our selection for mutations that suppress the growth inhibition of overproduced $Gtr1^{S20L}$, the respective genes were deleted in a $gtr1\Delta$ background. Strains were analyzed as in (A).

Figure S2. Construction of a Functional Pib2²⁰⁰-GFP, Related to Figures 2J-L

(A) Schematic depiction of GFP integration sites in Pib2. The positions for the integration of GFP were chosen so that they would not interfere with the FYVE domain, the C-terminal tail motif, or with any region with a potential secondary structure according to Jpred 4 (<u>http://www.compbio.dundee.ac.uk/jpred/</u>). For further details, see also (Kim and Cunningham, 2015; Michel et al., 2017). Of note, our attempt to fuse GFP at either N-or C-terminus of Pib2 ended up with impairing its function (data not shown).

(B, C) Strains expressing genomically-tagged Pib 2^{200} -GFP (B) and Pib 2^{200} -mCherry (C) are fully functional, while Pib 2^{610} -GFP is partially functional with respect to rapamycin sensitivity. Indicated strains were streaked and grown for 3 days on YPD plates containing, or not (control), indicated concentrations of rapamycin.

(D) Pib2²⁰⁰-GFP and Pib2⁶¹⁰-GFP normally mediate TORC1 activation by glutamine. Indicated strains were grown to mid-log phase in SD-proline medium (-) and stimulated with 3 mM glutamine for 2 minutes (+). TORC1 activity was assessed as in Figure 3C.

(E, F) GFP-Tor1 colocalizes with Vps27-mCherry in WT and $ego1\Delta$ cells (E), and Pib2²⁰⁰-GFP colocalizes with FM4-64 in WT and $gga1\Delta$ $gga2\Delta$ cells, but only assembles on endosomes in WT cells (F). See also Figure 2. Scale bars, 5 µm (white).

Figure S3. Vph1 is Essential to Ensure Vacuolar TORC1 Activity and Artificial Tethering of mCherry-Tor1^{11954V} to Endosomes Depletes Vacuolar TORC1 Activity, Related to Figures 4A and 4E

(A) Loss of Vph1 abolishes the glutamine-stimulated phosphorylation of the vacuolar TORC1 reporter, but only mildly affects the respective phosphorylation of the endosomal TORC1 reporter. Indicated dilutions of the WT sample were compared to 100% of the *vph1* Δ sample (both from Figure 4A), this latter serving as a reference of endosomal reporter (ET) phosphorylation in response to 3 mM glutamine stimulation. Similar signal intensity was obtained with 70% of the WT sample (compare ET phosphorylation in lanes 2 and 8), indicating that loss of Vph1 slightly compromises endosomal TORC1. Remarkably, in these same samples, phosphorylation of the vacuolar reporter (VT) was not detected in *vph1* Δ even after prolonged exposure of the immunoblots (compare VT phosphorylation in lanes 2 and 8), indicating that Vph1 is specifically required for glutamine-triggered vacuolar TORC1 activation.

(B) mCherry-Tor1^{I1954V} mediates phosphorylation of both endosomal and vacuolar TORC1 reporters, while its artificial hooking to endosomes (through a fusion with a FYVE domain) specifically impairs its ability to phosphorylate the vacuolar reporter in glutamine-stimulated cells. *tor1* Δ cells expressing mCherry-Tor1^{I1954V} (Control; C) or FYVE-mCherry-Tor1^{I1954V} (FYVE; F) were grown as in Figure 4E, and stimulated with increasing concentrations of glutamine for 2 min. Upon stimulation with 3 mM glutamine, both constructs similarly triggered maximal phosphorylate the vacuolar reporter (VT). Of note, only FYVE-mCherry-Tor1^{I1954V} sustained, as expected, ET phosphorylation after stimulation (or not) with very low levels of glutamine (*i.e.* < 5 μ M).

Figure S4. SILAC-Based Quantification of TORC1-Responsive Vps27 Phosphosites *In Vivo*, Related to Figure 5C

Bar diagram lists the phosphosites identified on purified Vps27 comparing SILAC labeled cycloheximide treated to untreated control cells. *: sites identified as increased by a minimum of 80% (average value, n = 2).

Figure S5. TORC1 Impinges on Vps27 to Inhibit ESCRT-Driven Degradation of Vacuolar Membrane-Resident GFP-Pho8, Related to Figure 5F

Cells expressing, or not (-), indicated Vps27 alleles from plasmids were grown exponentially (-) and then treated with rapamycin (200 ng ml⁻¹; +) for 4 hours. Corresponding cell extracts were subjected to immunoblot analyses using anti-GFP antibodies to measure the levels of GFP-cleavage from plasmid-expressed GFP-Pho8. The levels of Vps27 variants were analyzed by immunoblot analysis using anti-Vps27 antibodies.

Supplemental Table

Peptide	Positions	PEP	Score	Phospho-Ser/Thr Probabilities
P1-Vps27-Sc	159	5.2E-110	115	LTL <mark>S</mark> (0.008)N <mark>S</mark> (0.024)P <mark>T(0.966)</mark> AMFDS(0.002)K
P2-Vps27-Sc	274	0.0014	62	AIELS(0.01)LKE <mark>S(0.99)</mark> R
P3-Vps27-Sc	279	5.8E-56	88	N <mark>S</mark> (0.013)A <mark>S</mark> (0.929) <mark>S</mark> (0.058)EPIVPVVESK
P3-Vps27-Sc	280	8.6E-23	69	N <mark>S</mark> (0.001)A <mark>S</mark> (0.088) <mark>S(0.911)</mark> EPIVPVVESK
P1-Vps27-Ec	155	1.38E-10	117	LTLS(0.994)NS(0.006)PTAMFDSK
P1-Vps27-Ec	157	< 4.0E-128	362	LTLSNS(1)PTAMFDSK
P2-Vps27-Ec	274	0.0007	125	AIELSLKES(1)R
P3-Vps27-Ec	277	1.3E-38	165	NS(1)ASSEPIVPVVESK
P3-Vps27-Ec	280	4.0E-128	218	NSASS(1)EPIVPVVESK
P4-Vps27-Ec	339	1.1E-08	72	QMQPQQPS(1)PQPQPIHSVDLSDEEK
P5-Vps27-Ec	495	8.9E-37	161	ANS(0.003)S(0.997)PTTNIDHLK

Table S1. TORC1-Controlled Phosphorylation Sites in Vps27^a, Related to Figure 5A

^aVps27 isolated from *S. cerevisiae* (Vps27-Sc) or codon-optimized Vps27 (coexpressed with Hse1) isolated from *E. coli* (Vps27-Ec) were phosphorylated by TORC1 *in vitro*. Subsequent MS-analysis allowed the identification of the same 3 phosphopeptides (P1-3) in Vps27-Sc (green shading) and in Vps27-Ec (blue shading) and two additional ones in Vps27-Ec (P4/5; blue shading). The phospho-Ser/Thr localization probabilities indicate the positions of the most likely phosphorylated amino acid residues. Sites marked in blue and the ones marked in yellow (*i.e.* Thr¹⁵⁹ and Ser²⁷⁹ that were identified as potential TORC1 target sites in Vps27-Sc [phospho-Ser/Thr probability > 0.9]) were exchanged to alanines to create the Vps27^{10A} for the *in vitro* TORC1 kinase assay in Figure 5B. The sites marked in red were exchanged to phospho-mimetic aspartates to create Vps27^{7D} for *in vivo* studies in yeast. PEP: posterior error probability; Score: Andromeda score.