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Dedicated to Professor Ákos Pintér on the occasion of his 50th birthday.

Abstract. We investigate polynomial values of sums of products
of consecutive integers. For the degree two case we give effective
finiteness results, while for the higher degree case we provide in-
effective finiteness theorems. For the latter purpose, we also show
that the polynomials corresponding to the sums of products we
investigate, are indecomposable.

1. Introduction

The polynomial values of combinatorial polynomials have a vast liter-
ature. Here we only mention the papers [2, 5, 8, 10], and the references
given there. In this paper, we consider the problem of describing the
polynomial values of a family of polynomials related to the sums of
products of consecutive integers.

For k = 0, 1, 2, . . . put

fk(x) =
k∑
i=0

i∏
j=0

(x+ j).

The first few such polynomials are:

f0(x) = x, f1(x) = x+ x(x+ 1) = x(x+ 2),

f2(x) = x+ x(x+ 1) + x(x+ 1)(x+ 2) = x(x+ 2)2,

f3(x) = x(x+ 2)(x2 + 5x+ 5), f4(x) = x(x+ 2)(x3 + 9x2 + 24x+ 17).

In general, fk(x) is a monic polynomial with positive integer coefficients
and of degree k + 1.

These polynomials were introduced by Hajdu, Laishram and Tengely
[9], who considered their power values, i.e. the Diophantine equation

fk(x) = yn.
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They proved effective finiteness results on the above equation, and they
gave all solutions when 1 ≤ k ≤ 10 such that k 6= 2 if n = 2. Along
the way, they also proved that for k ≥ 3, all the roots of fk(x) are
real and simple. We mention that this problem is related to several
classical questions; e.g., to the power values of products of consecutive
integers (see the fundamental paper of Erdős and Selfridge [7]). For a
more precise account, we refer to the paper [9].

The structure of the paper is the following. In the next section, we
give our main results. Then we formulate some lemmas and auxiliary
results. Finally, we prove our statements in separate sections.

2. New results

Let g(x) ∈ Q[x] be an arbitrary polynomial, and consider the Dio-
phantine equation

(1) fk(x) = g(y) (x, y ∈ Z).

Our first result gives a general (partly effective) finiteness theorem
for (1).

Theorem 1. Let k ≥ 3. (i) For deg g ∈ {0, 2}, there exist an ef-
fectively computable constant C1(k, g) depending only on k and g such
that max(|x|, |y|) < C1(k, g) for each integer solutions of equation (1).

(ii) For deg g ≥ 3, equation (1) has only finitely many integer so-
lutions x, y, unless we have g(x) = fk(h(x)), where h(x) ∈ Q[x] with
deg(h) > 0.

Clearly, in the exceptional cases deg g = 1 and g(x) = fk(h(x)),
equation (1) can have infinitely many integer solutions x, y. Further,
in the cases k ≤ 2 equation (1) can also have infinitely many solutions,
which can be described easily.

We note that in the proof of part (ii) of our Theorem 1 we use
the ineffective finiteness criterion of Bilu and Tichy [4] combined with
Theorem 3. Thus, part (ii) is an ineffective statement.

Consider now the equation

(2) fk(x) = ayn + b,

in integers x, y, n with n ≥ 2, where a, b, k are given integers with
k ≥ 0. The following theorem extends Theorem 2.1. of [9], where only
the case a = 1, b = 0 has been considered.

Theorem 2. For k ≥ 3, we have max(|x|, |y|) < C2(k, a, b) for each
integer solutions of equation (2). Further, if |y| > 1, then we have n <
C3(k, a, b). Here, C2(k, a, b) and C3(k, a, b) are effectively computable
constants depending only on k, a, b.
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Note that our second assumption is necessary for bounding n in (2):
obviously, n cannot be bounded in the case y ∈ {−1, 0, 1}.

Finally, we prove the indecomposability of the polynomial fk(x).
This plays an important role in the proof of part (ii) of Theorem 1. By
a decomposition of a polynomial F (x) over a field K we mean writing
F (x) as

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ K[x]),

which is nontrivial if

degG1(x) > 1 and degG2(x) > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are
said to be equivalent if there exists a linear polynomial `(x) ∈ K[x]
such that G1(x) = H1(`(x)) and H2(x) = `(G2(x)). The polynomial
F (x) is called decomposable over K if it has at least one nontrivial
decomposition over K; otherwise it is said to be indecomposable.

Theorem 3. The polynomial fk(x) is indecomposable over C for any
k ≥ 0.

3. Lemmas and auxiliary results

In this section, we give some results needed to prove our theorems.
First, we recall the finiteness criterion of Bilu and Tichy [4]. To do this,
we need to define five kinds of so-called standard pairs of polynomials.

Let α, β, δ be nonzero rational numbers, µ, ν, q > 0 and r ≥ 0 be
integers, and let v(x) ∈ Q[x] be a nonzero polynomial (which may be
constant). Denote by Dµ(x, δ) the µ-th Dickson polynomial, given by

Dµ(x, δ) =

bµ/2c∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.

For properties of Dickson polynomials, we refer to [11].
Two polynomials F (x) and G(x) are said to form a standard pair

over Q if one of the ordered pairs (F (x), G(x)) or (G(x), F (x)) belongs
to the list below. The five kinds of standard pairs are then listed in
Table 1.

Now we state a special case of the main result of [4], which will be
crucial in the proof of Theorem 1 (ii).

Lemma 1. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials such that
the equation f(x) = g(y) has infinitely many solutions in rational inte-
gers x, y. Then f = ϕ◦F ◦λ and g = ϕ◦G◦κ, where λ(x), κ(x) ∈ Q[x]
are linear polynomials, ϕ(x) ∈ Q[x], and F (x), G(x) form a standard
pair over Q.
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kind standard pair parameter restrictions
first (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg v(x) > 0
second (x2, (αx2 + β)v(x)2) -
third (Dµ(x, αν), Dν(x, α

µ)) (µ, ν) = 1

fourth (α
−µ
2 Dµ(x, α),−β −ν

2 Dν(x, β)) (µ, ν) = 2
fifth ((αx2 − 1)3, 3x4 − 4x3) -

Table 1. Standard pairs

Let f(x) ∈ Z[x] be a nonzero polynomial of degree d and height H.
Further, let a be a nonzero integer. Consider the Diophantine equation

(3) f(x) = ayn.

The next lemma is a special case of a result of Bérczes, Brindza and
Hajdu [1]. For the first results of this type, we refer to [12] and [13].

Lemma 2. If f(x) has at least two distinct roots and |y| > 1, then,
in (3), we have n < C4(d,H, a), where C4(d,H, a) is an effectively
computable constant depending only on d,H and a.

The following result is a special case of an effective theorem of
Brindza [3].

Lemma 3. If, in (3), either n = 2 and f(x) has at least three ze-
ros of odd multiplicities, or n ≥ 3 and f(x) has at least two zeros
of multiplicities coprime to n, then for each solutions of (3) we have
max(|x|, |y|) < C5(d,H, a), where C5(d,H, a) is an effectively com-
putable constant depending only on d,H and b.

We recall Lemma 3.3 from [9], which describes the root structure of
the polynomial family fk(x).

Lemma 4. We have f0(x) = x, f1(x) = x(x + 2), f2(x) = x(x + 2)2.
Besides this, for every k ≥ 3, all the roots of the polynomial fk(x) are
real and simple. In particular, 0 is a root of fk(x) for all k ≥ 0, and
−2 is a root of fk(x) for all k ≥ 1. Moreover, for k ≥ 3, fk(x) has a
root in each of the following intervals:

(−1, 1), (−1.5,−1), (−3,−1.5), (−4,−3), (−5,−4), . . . , (−k − 1,−k).

In the next three lemmas we make some observations on the roots
of the derivative f ′k(x) of the polynomial fk(x).

Lemma 5. For k ≥ 3, all the roots of the polynomial f ′k(x) are real
and simple.
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Proof. This follows from Lemma 4 by Rolle’s theorem. �

In what follows, we use the following notation. For i ≥ 0, we let
Pi(x) = x(x+ 1) · · · (x+ i). Then, fk(x) = P0(x) +P1(x) + · · ·+Pk(x).

Lemma 6. For k ≥ 6, we have f ′k(0) > 0, f ′k(−1) < 0, f ′k(−2) > 0,
f ′k(−3) < 0, f ′k(−4) > 0, f ′k(−5) < 0.

Proof. Observe that

(4) f ′k(x) =
k∑
i=0

P ′i (x) =
k∑
i=0

i∑
j=0

Pi(x)

x+ j

= 1 + [(x+ 1) + x] + [(x+ 1)(x+ 2) + x(x+ 2) + x(x+ 1)]

+ [(x+ 1)(x+ 2)(x+ 3) + x(x+ 2)(x+ 3) + x(x+ 1)(x+ 3)

+x(x+ 1)(x+ 2)] + · · ·

holds for each k ≥ 0, whence f ′k(0) > 0 immediately follows.
By considering the first few summands of (4), we obtain

(5) f ′k(−1) = P ′0(−1) + P ′1(−1) + P ′2(−1) + P ′3(−1) + · · ·
= 1 + [−1] + [(−1)(−1 + 2)] + [(−1)(−1 + 2)(−1 + 3)] + · · · .

We infer that P ′i (−1) < 0 for i ≥ 2, so f ′k(−1) < 0 if k ≥ 2.
Similarly,

(6) f ′k(−2) = P ′0(−2) + P ′1(−2) + P ′2(−2) + P ′3(−2) + · · ·
= 1 + [−1− 2] + [(−2)(−2 + 1)] + [(−2)(−2 + 1)(−2 + 3)] + · · ·

implies that P ′i (−2) > 0 for i ≥ 2, and that f ′k(−2) > 0 if k ≥ 3.
Analogously one can observe that f ′k(−3) < 0 if k ≥ 4; further that

f ′k(−4) > 0 if k ≥ 5; and that f ′k(−5) < 0 if k ≥ 6. �

Let α1 > α2 > · · · > αk denote the roots of f ′k(x). Clearly, fk(x) has
a local extremum at each αi. Moreover, for k ≥ 6, Lemmas 5 and 6
imply that

(7) 0 > α1 > −1 > α2 > −2 > α3 > −3 > α4 > −4 > α5 > −5.

Further, let β0 = 0 > β1 > · · · > βk denote the roots of fk(x). Ob-
viously, 0 = β0 > α1 > β1 > α2 > β2 > · · · . Moreover, for k ≥ 6,
Lemma 4 implies that
(8)

0 = β0 > −1 > β1 > −
3

2
> −2 = β2 > −3 > β3 > −4 > β4 > −5 > β5.
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Lemma 7. For k ≥ 13 we have

(9) |fk(α1)| > |fk(α3)| > |fk(α5)| ,
and

(10) |fk(α2)| > |fk(α4)| .

Proof. First, we show that the inequality |fk(α1)| > |fk(α3)| holds. By
(8), we have β1 < −1

2
< β0. Then

(11)

∣∣∣∣fk (−1

2

)∣∣∣∣ ≤ |fk(α1)| .

On the other hand, for k ≥ 6, −3 < α3 < −2 by (7), whence

(12) |fk(α3)| ≤ max
−3≤t≤−2

|fk(t)| .

Observe that for any i ≥ 4, k ≥ 6 and −3 ≤ t ≤ −2, we have

(13) |Pi(t)| ≤ 3 · 2 · 1

2
· 1

2
· 2 · 3 · · · · · (i− 2) =

3

2
(i− 2)! .

Furthermore, again for i ≥ 4, we have

(14)

∣∣∣∣Pi(−1

2

)∣∣∣∣ =
1

2
· 1

2
· 3

2
· 5

2
· · · · · 2i− 1

2

=
2i− 1

4i
·
(

2i− 2

i− 1

)
· (i− 1)! ≥ 2i− 1

8
√
i− 1

· (i− 1)! .

Here we used the well-known inequality

(15)
4n

2
√
n
≤
(

2n

n

)
,

which is valid for any n > 0, and can be easily verified by induction.
Combining (11) – (14), we have

(16) |fk(α1)| − |fk(α3)| ≥
∣∣∣∣fk (−1

2

)∣∣∣∣− max
−3≤t≤−2

|fk(t)|

≥

∣∣∣∣∣
3∑
i=0

Pi

(
−1

2

)∣∣∣∣∣−
3∑
i=0

max
−3≤t≤−2

|Pi(t)|

+
k∑
i=4

(
(2i− 1)

√
i− 1

8
− 3

2

)
(i− 2)!

≥ −14 +
k∑
i=4

(
(2i− 1)

√
i− 1

8
− 3

2

)
(i− 2)! ,

and the last expression above is positive for k ≥ 6.
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Next, we verify the inequality |fk(α3)| > |fk(α5)|. Similarly as above,
by (8), we notice that β3 < −5

2
< β2. Thus,

(17)

∣∣∣∣fk (−5

2

)∣∣∣∣ ≤ |fk(α3)| .

Besides, by (7), we have −5 < α5 < −4 for k ≥ 6, whence

(18) |fk(α5)| ≤ max
−5≤t≤−4

|fk(t)| .

Observe now that for any i ≥ 6, k ≥ 6 and −5 ≤ t ≤ −4, we have

(19) |Pi(t)| ≤ 5 · 4 · 3 · 2 · 1

2
· 1

2
· 2 · 3 · · · · · (i− 4) = 30(i− 4)! ,

while, again for i ≥ 6, we have, by (15), that

(20)

∣∣∣∣Pi(−5

2

)∣∣∣∣ =
5

2
· 3

2
· 1

2
· 1

2
· 3

2
· 5

2
· · · · · 2i− 5

2

=
15(2i− 5)

4i−1
·
(

2i− 6

i− 3

)
· (i− 3)! ≥ 15(2i− 5)

32
√
i− 3

· (i− 3)! .

From (17) – (20), we get

(21) |fk(α3)| − |fk(α5)| ≥
∣∣∣∣fk (−5

2

)∣∣∣∣− max
−5≤t≤−4

|fk(t)|

≥

∣∣∣∣∣
5∑
i=0

Pi

(
−5

2

)∣∣∣∣∣−
5∑
i=0

max
−5≤t≤−4

|Pi(t)|

+
k∑
i=6

(
15(2i− 5)

√
i− 3

32
− 30

)
(i− 4)!

≥ −336 +
k∑
i=6

(
15(2i− 5)

√
i− 3

32
− 30

)
(i− 4)! .

One can easily check that the last expression is positive when k ≥ 13,
whence |fk(α3)| > |fk(α5)| holds for k ≥ 13.

Finally, we prove (10). Similarly as before, we start by noticing that,
by (8), β2 < −3

2
< β1, which yields

(22)

∣∣∣∣fk (−3

2

)∣∣∣∣ ≤ |fk(α2)| .

On the other hand, since, by (7), −4 < α4 < −3 for k ≥ 6, we have

(23) |fk(α4)| ≤ max
−4≤t≤−3

|fk(t)| .
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Let i ≥ 5, k ≥ 6 and t ∈ (−4,−3). Then

(24) |Pi(t)| ≤ 4 · 3 · 2 · 1

2
· 1

2
· 2 · 3 · · · · · (i− 3) = 6(i− 3)! .

By (15), we obtain, again for i ≥ 5, that

(25)

∣∣∣∣Pi(−3

2

)∣∣∣∣ =
3

2
· 1

2
· 1

2
· 3

2
· 5

2
· . . . · 2i− 3

2

=
3(2i− 3)

2 · 4i−1
·
(

2i− 4

i− 2

)
· (i− 2)! ≥ 3(2i− 3)

16
√
i− 2

· (i− 2)! .

Using (22) – (25), we obtain

(26) |fk(α2)| − |fk(α4)| ≥
∣∣∣∣fk (−3

2

)∣∣∣∣− max
−4≤t≤−3

|fk(t)|

≥

∣∣∣∣∣
4∑
i=0

Pi

(
−3

2

)∣∣∣∣∣−
4∑
i=0

max
−4≤t≤−3

|Pi(t)|

+
k∑
i=5

(
3(2i− 3)

√
i− 2

16
− 6

)
(i− 3)!

≥ −67 +
k∑
i=5

(
3(2i− 3)

√
i− 2

16
− 6

)
(i− 3)! .

We obtain that the last expression above is positive for k ≥ 9. Thus,
inequality (10) holds for k ≥ 9, which completes the proof. �

The following lemma is a slight modification of Lemma 3.3 of [9] and
describes the root structure of the polynomials fk(x) + 1.

Lemma 8. For k ≥ 2 all roots of the polynomial fk(x)+1 are real and
simple. Further, fk(x) + 1 has a root at −1 as well as a root in each
the following k intervals:

(−k − 1,−k), (−k,−k + 1), . . . , (−3,−2) and (−0.5, 0).

Proof. The proof is just an adaptation of the proof of Lemma 3.3 of [9]
to the polynomials fk(x)+1. Clearly, fk(−1) = −1 for any k ∈ N, thus
−1 is a root of fk(x) + 1. Since fk(0) + 1 = 1 and fk(−0.5) + 1 < 0,
we see that the continuous function fk(x) + 1 has a zero in the interval
(−0.5, 0).

It is easy to see that for any fixed k ∈ N and any i = −2,−3, . . . ,−k,
− k − 1, we have

(−1)i(fk(i) + 1) > 0.
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Thus, the polynomial fk(x) + 1 has a root in each of the intervals

(−k − 1,−k), (−k,−k + 1), . . . , (−3,−2).

This proves the lemma. �

The next statement is due to Dujella and Gusić [6].

Lemma 9. Let f(x) ∈ Z[x] be monic and decomposable over C. Then
f(x) is decomposable over Z.

The following result is also due to Dujella and Gusić [6].

Lemma 10. Let f(x) = xn + axn−1 + · · · ∈ Z[x] and suppose that
f(x) = G(H(x)) for some monic polynomials G(x), H(x) ∈ C[x] with
degG = m, degH = k. Then we have m ≤ gcd(a, n). In particular, if
gcd(a, n) = 1, then f is indecomposable over C.

Proof. The second statement is a theorem of Dujella and Gusić [6].
Its proof also implies the first statement, so for convenience we recall
the proof from [6]. Assume that f is decomposable over C. Then, by
Lemma 9, f is decomposable over Z; i.e., there exists monic polinomials
G(x), H(x) ∈ Z[x] such that f(x) = G(H(x)), degG = m, degH = k,
m, k ≥ 2. Since f(x) = (xk + ck−1x

k−1 + . . .)m + · · · with ck−1 ∈ Z, we
have n = mk and a = mck−1, which implies gcd(a, n) ≥ m ≥ 2. �

Now we start to investigate whether a linear transformation of fk(x)
can be a linear transformation of a polynomial belonging to some stan-
dard pair.

Lemma 11. Let c1, c0, e1, e0 ∈ Q with c1 6= 0. Then the polynomial
fk(c1x+ c0) is not of the form e1x

q + e0 with q ≥ 3.

Proof. Suppose that fk(c1x + c0) = e1x
q + e0 with some fixed q ≥ 3.

Then clearly e1 6= 0 and q = k + 1. By Lemma 4, every root of the
polynomial fk(x) is real, so all the roots of fk(c1x + c0) are also real.
This is obviously not true for the polynomial e1x

q +e0 for q ≥ 3. Thus,
the desired conclusion follows. �

Lemma 12. Let c1, c0, e1, e0 ∈ Q with c1 6= 0. Then the polynomial
fk(c1x+ c0) is not of the form

e1Dν(x, δ) + e0,

where Dν(x, δ) is the ν-th Dickson polynomial with ν > 3 and δ ∈
Q \ {0}.

Proof. Suppose that

(27) fk(c1x+ c0) = e1Dν(x, δ) + e0
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holds for some c1, c0, e1, e0 and ν, δ as in the statement. Then clearly
e1 6= 0 and k+ 1 = ν; in particular, k ≥ 3. Equating the coefficients of
xk in (27) we obtain

(28) ck1

(
1 +

(k + 1)(k + 2c0)

2

)
= 0,

which, since c1 6= 0, implies that

(29) c0 = −k
2 + k + 2

2(k + 1)
.

Similarly, comparing the coefficients of xk−2 in (27), we obtain

(30)
ck−21

48

(
48 + (k − 1)(k5 + 6c0k

4 + (12c20 + 4c0 + 3)k3+

+ (8c30 + 12c20 + 18c0 − 16)k2 + (8c30 + 24c20 − 28c0 + 28)k+

+ 48c0 − 48)) = 0.

Substituting (29) into (30) we get

(31)
k4 − 2k3 − 5k2 + 12k + 18

6(k + 1)2
= 0,

which implies that k /∈ Z, a contradiction. �

4. Proof of Theorem 3

Put fk(x) = xk+1 + ckx
k + ck−1x

k−1 + · · · + c1x. Clearly, ci ∈ Z for
all i.

For the coefficient ck of xk in fk(x) we have ck = 1 + k(k + 1)/2.
If k is even, then gcd(k + 1, ck) = 1 and by Lemma 10, fk(x) is inde-
composable. If k is odd, then we have gcd(k + 1, ck) ≤ 2. Then, again
by Lemma 10, it follows that if fk(x) is decomposable, then the outer
polynomial of any decomposition has degree at most 2. Suppose that
we have

fk(x) = aG(x)2 + bG(x) + c.

By Lemma 9, we may suppose that a, b, c are integers and G(x) ∈ Z[x].
Then, clearly a = 1. Let u, v be the roots of the polynomial y2 +by+c.
Then we may write

fk(x) = (G(x)− u)(G(x)− v).

Since fk(0) = 0, we have either G(0) = u or G(0) = v. Thus, one of
u and v is an integer. Hence, both of u, v are integers. We now put
H(x) = G(x)− u. Then H(x) ∈ Z[x], and

fk(x) = H(x)(H(x) + d),
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where d = u − v. Observe that, by fk(−1) = −1, H(−1) = ±1 and
H(−1) + d = ±1, whence either d = 0 or d = ±2. If d = 0, then
fk(x) = H(x)2, which contradicts Lemma 4. If d = ±2, then we have
fk(x) + 1 = (H(x) ± 1)2, which contradicts Lemma 8. Thus, fk(x) is
indecomposable. �

5. Proof of Theorem 1 (ii)

Let k ≥ 3 and g(x) ∈ Q[x] be a polynomial with deg g ≥ 3. Suppose
that equation (1) has infinitely many solutions in integers x, y. Then by
Lemma 1, there exist λ(x), κ(x), ϕ(x) ∈ Q[x] with deg λ = deg κ = 1
such that

(32) fk(x) = ϕ(F (λ(x))) and g(x) = ϕ(G(κ(x))),

where F (x), G(x) form a standard pair over Q. Theorem 3 implies that

degϕ ∈ {1, k + 1} .
First, suppose that degϕ(x) = k + 1. Then, by (32), we observe that

degF (x) = 1. Thus fk(x) = ϕ(t(x)), where t(x) = F (λ(x)) ∈ Q[x] is
a linear polynomial. Clearly, t−1(x) ∈ Q[x] is also linear. By (32), we
obtain fk(t

−1(x)) = ϕ(t(t−1(x))) = ϕ(x). Hence,

g(x) = ϕ(G(κ(x))) = fk(t
−1(G(κ(x)))) = fk(h(x)),

where h(x) = t−1(G(κ(x))). So, if in this case equation (1) has infinitely
many solutions, then g(x) is of the form fk(h(x)), where h ∈ Q[x] with
deg(h(x)) ≥ 1.

Next, suppose that degϕ(x) = 1. Then there exist ϕ1, ϕ0 ∈ Q with

ϕ1 6= 0 such that ϕ(x) = ϕ1x + ϕ0. We study now the five kinds of
standard pairs. In view of our assumptions on k and deg g, it follows
that F (x), G(x) cannot form a standard pair of the second kind.

If it is of the third or fourth kind, then fk(λ
−1(x)) = e1Dν(x, δ) + e0

for some e0 ∈ Q, e1, δ ∈ Q \ {0}, which contradicts Lemma 12 since
ν = k + 1 > 3.

Suppose that F (x), G(x) form a standard pair of the fifth kind.
Then (32) implies either

(a) fk(x) = ϕ1(αλ(x)2 − 1)3 + ϕ0, or
(b) fk(x) = ϕ1(3λ(x)4 − 4λ(x)3) + ϕ0.

Case (a) implies a nontrivial decomposition of fk(x), which does not
exist by Theorem 3.

In case (b), we have k = 3. Putting λ(x) = λ1x+ λ0, we obtain the
equation

(33) x4 + 7x3 + 15x2 + 10x = ϕ1(3(λ1x+ λ0)
4 − 4(λ1x+ λ0)

3) + ϕ0.
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Comparing the coefficients on both sides, we easily get a contradiction.
This shows that F (x), G(x) cannot form a standard pair of the fifth
kind.

Finally, consider the case when, in (32), F (x), G(x) form a standard
pair of the first kind over Q. Then we have either

(a) fk(λ
−1(x)) = ϕ1x

q + ϕ0, or
(b) fk(λ

−1(x)) = ϕ1αx
rv(x)q + ϕ0, where 0 ≤ r < q, (r, q) = 1 and

r + deg v(x) > 0.

The first case (a) is impossible by Lemma 11 since q = k + 1 ≥ 4.
In the second case (b), we have g(x) = ϕ1κ(x)q+ϕ0. Since deg g ≥ 3,

we have q ≥ 3. Put λ−1(x) = 1
λ1
x− λ0

λ1
. Taking derivatives in relation

(b), we obtain

(34)
1

λ1
f ′k

(
1

λ1
x− λ0

λ1

)
= ϕ1α (v(x))q−1 (rxr−1v(x) + xrqv′(x)),

which implies that the polynomial f ′k(x) has a root of multiplicity at
least q− 1 ≥ 2. This contradicts Lemma 5 and completes the proof. �

6. Proof of Theorem 1 (i)

The statement is trivial for deg g = 0. In the sequel, let deg g = 2.
Then there exist rational numbers a, b, c with a 6= 0 such that

(35) fk(x) = ay2 + by + c.

Obviously, we can rewrite (35) as

(36) fk(x) + v = a(y + u)2,

where u = b
2a

and v = b2−4ac
4a

. Thus, in view of Lemma 3, it is sufficient
to show that the polynomial fk(x) + s (s ∈ Q) has at least three zeros
of odd multiplicity. Assuming the contrary, we can write

(37) fk(x) + s = (Ax2 +Bx+ C)(w(x))2,

for some A,B,C ∈ Q, w(x) ∈ Q[x]. Taking derivatives in relation (37),
we obtain

(38) f ′k(x) = w(x)
(
(2Ax+B)w(x) + 2(Ax2 +Bx+ C)w′(x)

)
.

Hence, every root of w(x) is also a root of f ′k(x). Denote the roots of
w(x) by xi. For each root xi, by (37), we have

(39) fk(xi) = −s.
Moreover, the numbers xi are stationary points of the polynomial fk(x).
Thus, by Lemma 5, we get that fk(x) has degw equal extrema. Note
that degw depends on the choice of A,B,C and on the parity of k.
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If k is odd (i.e., deg fk = k+ 1 is even), then (37) implies that either
degw = k−1

2
(when A > 0) or degw = k+1

2
(when A = B = 0). In both

cases, it is easy to observe that fk(x) has k extrema, which are k−1
2

local maxima and k+1
2

local minima. For k ≥ 13, Lemma 7 yields that
fk(x) has three distinct local minima and two distinct local maxima
which is a contradiction.

If k is even, then, again by (37), we have A = 0, B > 0 and degw =
k/2. Furthermore, in this case fk(x) has again k extrema, but now
these are k/2 local maxima and k/2 local minima. Again, we get a
contradiction with Lemma 7 if k ≥ 13.

For k ≤ 12, an easy computation in e.g. Maple shows that the
discriminant of fk(x) + s, as a polynomial in s, has no rational roots
and thus fk(x) + s with 3 ≤ k ≤ 12 cannot be of the form shown in
(37). This completes the proof. �

7. Proof of Theorem 2

In view of part (i) of Theorem 1, we may assume that n > 2. For
the first statement in this case, we rewrite (2) as

(40) fk(x)− b = ayn.

In view of Lemma 3, it suffices to show that the polynomial on the left
hand side of (40) has at least two zeros of multiplicities coprime to n.
Indirectly, suppose that we have

(41) fk(x)− b = (Ax+B)(w(x))n,

for some A,B ∈ Q, w(x) ∈ Q[x]. Taking derivatives in relation (41),
we obtain

(42) f ′k(x) = w(x)n−1 (Aw(x) + n(Ax+B)w′(x)) .

Thus, every root of w(x) is a root of f ′k(x) of multiplicity at least n−1,
which contradicts Lemma 5 if n ≥ 3.

Assume now that (2) holds with some y 6= −1, 0, 1. Just as above,
one can easily see that fk(x)− b has at least two distinct roots. Hence,
by Lemma 2, the theorem follows. �
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