
POLYNOMIAL VALUES OF (ALTERNATING) POWER
SUMS

ANDRÁS BAZSÓ

Abstract. We prove ineffective finiteness results on the integer
solutions x, y of the equations

bk + (a + b)
k

+ · · ·+ (a (x− 1) + b)
k

= g(y)

and

bk − (a + b)
k

+ (2a + b)
k − . . . + (−1)x−1 (a (x− 1) + b)

k
= g(y),

where g(x) ∈ Q[x], deg g(x) ≥ 3, and a 6= 0, b are given integers
with gcd(a, b) = 1.

1. Introduction and new results

Many diophantine problems have been investigated in the literature
concerning power sums of consecutive integers. It is well known that
the sum

Sk(n) = 1k + 2k + . . .+ (n− 1)k (1)

can be expressed by the Bernoulli polynomials Bk(x) as

Sk(n) =
1

k + 1
(Bk+1(n)−Bk+1) , (2)

where the polynomials Bk(x) are defined by the generating series

t exp(tx)

exp(t)− 1
=
∞∑
k=0

Bk(x)
tk

k!

and Bk+1 = Bk+1(0). Hence Sk can be extended to real values x, i.e.,
to the polynomial

Sk(x) =
1

k + 1
(Bk+1(x)−Bk+1) . (3)
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A classical problem of Lucas [16], from 1875, was the study of square
values of Sk(x). Later, in 1956, Schäffer [23] investigated n-th power
values, that is, the diophantine equation

Sk(x) = yn in integers x, y. (4)

For k ≥ 1, n ≥ 2 he proved an ineffective finiteness result on the
solutions x, y of (4) provided that (k, n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)}.
In the exceptional cases (k, n) he proved the existence of infinitely
many solutions. Moreover, Schäffer proposed a still unproven conjec-
ture which says that if (k, n) is not in the above exceptional set, then
the only nontrivial solution of equation (4) is (k, n, x, y) = (2, 2, 24, 70).
In 1980, Győry, Tijdeman and Voorhoeve [13] proved effective finiteness
for the solutions of (4) in the general case when, in (4), n is also unk-
nown. Several generalizations of (4) have been considered, e.g. in the
papers of Voorhoeve, Győry and Tijdeman [28], Brindza [10], Dilcher
[11] and Urbanowicz [25, 26, 27]. Schäffer’s conjecture has been confir-
med only in a few cases: for n = 2 and k ≤ 58 by Jacobson, Pintér and
Walsh [15]; and for n ≥ 2 and k ≤ 11 by Bennett, Győry and Pintér
[5]. For further generalizations of (4) and related results see the survey
paper of Győry and Pintér [12] and the references given there.

In [8], Bilu et al. considered the diophantine equations

Sk(x) = S`(y), (5)

and
Sk(x) = y (y + 1) (y + 2) . . . (y + (`− 1)) . (6)

They proved ineffective finiteness results on the solutions x, y of these
equations for k < l, moreover, they established effective statements for
certain small values of k and l.

For a positive integer n ≥ 2 and for a 6= 0, b coprime integers, let

Ska,b (n) = bk + (a+ b)k + (2a+ b)k + . . .+ (a (n− 1) + b)k . (7)

It is easy to see that the above power sum is related to the Bernoulli
polynomials Bk(x) in the following way

Ska,b (n) =
ak

k + 1

([
Bk+1

(
n+

b

a

)
−Bk+1

]
−
[
Bk+1

(
b

a

)
−Bk+1

])
. (8)

Thus we can extend Ska,b for every real value x as

Ska,b (x) =
ak

k + 1

(
Bk+1

(
x+

b

a

)
−Bk+1

(
b

a

))
. (9)
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In [14], using a different approach, Howard also obtained relation (9)
via generating functions. In the same paper [14], he showed that the
alternating power sum

T ka,b (n) = bk−(a+ b)k+(2a+ b)k−. . .+(−1)n−1 (a (n− 1) + b)k (10)

can be expressed by means of Euler polynomials Ek(x) as

T ka,b (n) =
ak

2

(
Ek

(
b

a

)
+ (−1)n−1Ek

(
n+

b

a

))
, (11)

where the classical Euler polynomials Ek(x) are defined by the gene-
rating function

2 exp(xt)

exp(t) + 1
=
∞∑
n=0

En(x)
tn

n!
(|t| < π).

For the properties of Bernoulli and Euler polynomials which will be
often used in this paper, sometimes without special reference, we refer
to the paper of Brillhart [9]. Thus, depending on the power of −1 in
(11), we can extend T ka,b (n) to a polynomial in the following two ways:

Tk+a,b(x) =
ak

2

(
Ek

(
b

a

)
+ Ek

(
x+

b

a

))
,

Tk−a,b(x) =
ak

2

(
Ek

(
b

a

)
− Ek

(
x+

b

a

))
.

Recently, Bazsó, Kreso, Luca and Pintér [2] generalized the results
of Bilu et al. [8] on equation (5) to the equation

Ska,b (x) = S`c,d (y) (12)

where x, y are unknown integers, and k, `, a, b, c, d are given integers
with 0 < k < l, gcd(a, b) = gcd(c, d) = 1.

In the present paper we study the Diophantine equations

Ska,b (x) = g(y), (13)

Tk+a,b (x) = g(y) (14)

and
Tk−a,b (x) = g(y), (15)

where g(y) is a rational polynomial of degree at least 3. These equations
have only been investigated in the literature in the case (a, b) = (1, 0).
Rakaczki [20] and independently Kulkarni and Sury [19] characterized
those pairs (k, g(y)) for which equation (13) has infinitely many integer
solutions. Recently, Kreso and Rakaczki [22] proved an analogous result
for equations (14) and (15). For further related results we refer to the
papers of Kulkarny and Sury [17, 18], and of Bennett [4].
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Our goal in the sequel is to extend the results of [20, 19, 22] to the
general case, i.e, to equations (13)-(15). To do this it will be useful
to survey what is known about the decomposition properties of the
polynomials involved in the equations under consideration.

By a decomposition of a polynomial F (x) over a field K we mean an
equality of the following form

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ K[x]),

which is nontrivial if

degG1(x) > 1 and degG2(x) > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are
said to be equivalent if there exists a linear polynomial `(x) ∈ K[x]
such that G1(x) = H1(`(x)) and H2(x) = `(G2(x)). The polynomial
F (x) is called decomposable over K if it has at least one nontrivial
decomposition over K; otherwise it is said to be indecomposable. A
detailed discussion on the theory of polynomial decomposition can be
found in the monograph of Schinzel [24].

In a recent paper, Bazsó, Pintér and Srivastava [3] proved the follo-
wing result about the decomposition of the polynomial Ska,b (x) defined
above.

Proposition 1. The polynomial Ska,b (x) is indecomposable over C for
even k. If k = 2v − 1 is odd, then any nontrivial decomposition of
Ska,b (x) over C is equivalent to the following decomposition:

Ska,b (x) = Ŝva,b

((
x+

b

a
− 1

2

)2
)
, (16)

where Ŝva,b(x) is a rational polynomial of degree v.

Proof. This is Theorem 2 of [3]. �

On equation (13), we prove the following.

Theorem 1. Let a 6= 0, b ∈ Z, gcd(a, b) = 1 and let g(x) ∈ Q[x],
deg g(x) ≥ 3. Further, let α, β, c ∈ Q \ {0}, δ(x), q(x) ∈ Q[x] with
deg δ(x) = 1, q(x) 6= 0. Then, for k > 3 equation (13) has only finitely
many integer solutions x, y, unless one of the following holds:

(I) g(x) = Ska,b(q(x))

(II) k is odd and g(x) = Ŝ
(k+1)/2
a,b (δ(x)q(x)2)

(III) k is odd and g(x) = Ŝ
(k+1)/2
a,b (cδ(x)t), where t ≥ 3 is an odd

integer

(IV) k is odd and g(x) = Ŝ
(k+1)/2
a,b ((αδ(x)2 + β)q(x)2)



POLYNOMIAL VALUES OF (ALTERNATING) POWER SUMS 5

(V) k is odd and g(x) = Ŝ
(k+1)/2
a,b (q(x)2)

with Ŝva,b(x) specified in Proposition 1.

Our method of proof is based upon Proposition 1 and the general
ineffective finiteness criterion of Bilu and Tichy [7] (cf. Proposition 3).
Therefore our result is also ineffective.

We note that in the exceptional cases (I) − (V ) one can find an
equation of the shape (13) having infinitely many integer solutions (see
[20] for examples). We further note that for a = 1, b = 0, k > 3, our
Theorem 1 gives the result of Rakaczki [20, Theorem 1].

The decomposition properties of the polynomials Tk+a,b(x) and Tk−a,b(x)
have recently been described in [1] by the present author who proved
the following.

Proposition 2. The polynomials Tk+a,b(x) and Tk−a,b(x) are both inde-
composable for any odd k. If k = 2m is even, then any nontrivial
decomposition of Tk+a,b(x) or Tk−a,b(x) is equivalent to

Tk+a,b(x) = T̂m+
a,b

((
x+

b

a
− 1

2

)2
)

or

Tk−a,b(x) = T̂m−a,b

((
x+

b

a
− 1

2

)2
)
, (17)

respectively, where

T̂m+
a,b (x) =

a2m

2

(
E2m

(
b

a

)
+ Ẽm(x)

)
,

T̂m−a,b (x) =
a2m

2

(
E2m

(
b

a

)
− Ẽm(x)

)
with

Ẽm(x) =
m∑
n=0

(
2m

2n

)
E2n

22n
xm−n and Ej = 2jEj(1/2).

Proof. See [1]. �

Using Proposition 2 and the finiteness criterion from [7] we prove
the following two results on equations (14) and (15), which are again
ineffective.

Theorem 2. Let a 6= 0, b ∈ Z, gcd(a, b) = 1 and let g(x) ∈ Q[x],
deg g(x) ≥ 3. Further, let α, β, c ∈ Q \ {0}, δ(x), q(x) ∈ Q[x] with
deg δ(x) = 1, q(x) 6= 0. Then, for k ≥ 7 equation (14) has only finitely
many integer solutions x, y, unless one of the following holds:
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(I) g(x) = Tk+a,b(q(x))

(II) k is even and g(x) = T̂
k/2+
a,b (q(x)2)

(III) k is even and g(x) = T̂
k/2+
a,b (δ(x)q(x)2)

(IV) k is even and g(x) = T̂
k/2+
a,b (cδ(x)t), where t ≥ 3 is an odd

integer

(V) k is even and g(x) = T̂
k/2+
a,b ((αδ(x)2 + β)q(x)2)

with T̂m+
a,b (x) specified in Proposition 2.

Theorem 3. Let a 6= 0, b ∈ Z, gcd(a, b) = 1 and let g(x) ∈ Q[x],
deg g(x) ≥ 3. Further, let α, β, c ∈ Q \ {0}, δ(x), q(x) ∈ Q[x] with
deg δ(x) = 1, q(x) 6= 0. Then, for k ≥ 7 equation (15) has only finitely
many integer solutions x, y, unless one of the following holds:

(I) g(x) = Tk−a,b(q(x))

(II) k is even and g(x) = T̂
k/2−
a,b (q(x)2)

(III) k is even and g(x) = T̂
k/2−
a,b (δ(x)q(x)2)

(IV) k is even and g(x) = T̂
k/2−
a,b (cδ(x)t), where t ≥ 3 is an odd

integer

(V) k is even and g(x) = T̂
k/2−
a,b ((αδ(x)2 + β)q(x)2)

with T̂m−a,b (x) specified in Proposition 2.

The above two theorems extend Theorem 2 of [22] when deg g(x) ≥ 3.
We further note that in the exceptional cases (I) − (V ) of Theorems
2 and 3 a choice of parameters can be found for which equations (14)
resp. (15) have infinitely many integer solutions x, y. Such parametric
solutions are given in [22] for a = 1, b = 0.

2. Proof of Theorem 1

To prove Theorem 1, we need some auxiliary results. First we recall
the general ineffective finiteness criterion of Bilu and Tichy [7]. We
first define the five kinds of so-called standard pairs of polynomials.

Let α, β be nonzero rational numbers, µ, ν, q > 0 and r ≥ 0 be
integers, and let v(x) ∈ Q[x] be a nonzero polynomial (which may be
constant). Denote by Dµ(x, δ) the µ-th Dickson polynomial, defined by
the functional equation Dµ(z + δ/z, δ) = zµ + (δ/z)µ or by the explicit
formula

Dµ(x, δ) =

bµ/2c∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.
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Two polynomials f1(x) and g1(x) are said to form a standard pair over
Q if one of the ordered pairs (f1(x), g1(x)) or (g1(x), f1(x)) belongs to
the list below. The five kinds of standard pairs are then listed in the
following table.

kind explicit form of {f1(x), g1(x)} parameter restrictions
first (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg v(x) > 0
second (x2, (αx2 + β)v(x)2) -
third (Dµ(x, αν), Dν(x, α

µ)) (µ, ν) = 1

fourth (α
−µ
2 Dµ(x, α),−β −ν

2 Dν(x, β)) (µ, ν) = 2
fifth ((αx2 − 1)3, 3x4 − 4x3) -

Now we state a special case of the main result of [7], which will be
crucial in the proofs of ours.

Proposition 3. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials
such that the equation f(x) = g(y) has infinitely many solutions in
rational integers x, y. Then f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ,
where λ(x), µ(x) ∈ Q[x] are linear polynomials, ϕ(x) ∈ Q[x], and
(f1(x), g1(x)) is a standard pair over Q.

We recall the following result concerning Bernoulli polynomialsBk(x)
which is due to Brillhart [9].

Lemma 4. If k is odd, then Bk(x) has no multiple roots. For even k,
the only polynomial which can be a multiple factor of Bk(x) over Q is
x2 − x−B, where B is an odd, positive integer.

The next two lemmas were proved in [2]. Let c1, e1 ∈ Q \ {0} and
c0, e0 ∈ Q.

Lemma 5. The polynomial Ska,b(c1x+ c0) is not of the form e1x
q + e0

with q ≥ 3.

Lemma 6. The polynomial Ska,b(c1x+ c0) is not of the form

e1Dν(x, δ) + e0,

where Dν(x, δ) is the ν-th Dickson polynomial with ν > 4, δ ∈ Q \ {0}.
For P (x) ∈ C[x], a complex number c is said to be an extremum if

P (x) − c has multiple roots. The type of c is defined to be the tuple
(α1, . . . , αs) of the multiplicities of the distinct roots of P (x)− c in an
increasing order. Obviously, s < degP (x) and α1+. . .+αs = degP (x).

Proposition 7. For a 6= 0 and k ≥ 3, Dµ(x, α) has exactly two extrema

±2α
µ
2 . If µ is odd, then both are of type (1, 2, 2, . . . , 2). If µ is even,

then 2α
µ
2 is of type (1, 1, 2, . . . , 2) and −2α

µ
2 is of type (2, 2, . . . , 2).



8 ANDRÁS BAZSÓ

Proof. See, for instance [6, Proposition 3.3]. �

Now we are equipped to prove Theorem 1.

Proof of Theorem 1. Let g(x) be a polynomial with rational coefficients
and with deg g(x) ≥ 3. Suppose that equation (13) has infinitely many
solutions in integers x, y. Then by Proposition 3, it follows that there
exist λ(x), µ(x), ϕ(x) ∈ Q[x] such that

Ska,b(x) = ϕ(f1(λ(x))) and g(x) = ϕ(g1(µ(x))), (18)

where (f1(x), g1(x)) is a standard pair over Q. Proposition 1 implies
that

degϕ(x) ∈
{

1,
k + 1

2
, k + 1

}
.

First, suppose that degϕ(x) = k + 1. Then, by (18), we observe that

deg f1(x) = 1. Thus Ska,b(x) = ϕ(t(x)), where t(x) ∈ Q[x] is a linear

polynomial. Clearly, t−1(x) ∈ Q[x] is also linear. By (18), we obtain
Ska,b(t

−1(x)) = ϕ(t(t−1(x))) = ϕ(x). Hence

g(x) = ϕ(g1(µ(x))) = Ska,b(t
−1(g1(µ(x)))) = Ska,b(q(x)), (19)

where q(x) = t−1(g1(µ(x))). So, if, in our case, equation (13) has
infinitely many solutions, then g(x) is of the form as in Theorem 1 (I).

Next we assume that degϕ(x) = 1. Then there exist ϕ1,ϕ0 ∈ Q with

ϕ1 6= 0 such that ϕ(x) = ϕ1x + ϕ0. We study now the five kinds of
standard pairs. In view of our assumptions on k and deg g(x), it follows
that the standard pair (f1(x), g1(x)) cannot be of the second kind.

If it is of the third or fourth kind, we then have Ska,b(λ
−1(x)) =

e1Dµ(x, δ) + e0 for some e0 ∈ Q, e1, δ ∈ Q \ {0}, which contradicts
Lemma 6 since k = µ− 1 > 3.

Now consider the case when, in (18), (f1(x), g1(x)) is a standard pair
of the first kind over Q. Then we have either

(i) Ska,b(λ
−1(x)) = ϕ1x

t + ϕ0, or

(ii) Ska,b(λ
−1(x)) = ϕ1αx

rq(x)t + ϕ0, where 0 ≤ r < t, (r, t) = 1 and
r + deg q(x) > 0.

In the first case (i), we get a contradiction by Lemma 5 since t =
k + 1 ≥ 5.

In the second case (ii), we have g(µ−1(x)) = ϕ1x
t+ϕ0. Suppose that

t = deg g(x) > 3. Then the polynomial Ska,b(λ
−1(x)) − ϕ0 has a root

with multiplicity at least 4 (since q(x)t divides it), which is impossible
by Lemma 4 unless q(x) is a constant polynomial. We obtain r ≤ 3
and q(x) ≡ Q ∈ Q \ {0}. It follows that

Ska,b(λ
−1(x)) = ϕxr + ϕ0 with ϕ := ϕ1αQ

t ∈ Q \ {0} . (20)
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Lemma 5 implies that r = k + 1 = 2 which contradicts k > 3.
If, in (ii), t = 3, then we have

Ska,b(x) = ϕ1αλ(x)rq(λ(x))3 + ϕ0, (21)

where r ∈ {1, 2}. If deg q(x) = 0, we get back to (20). We can thus
assume that q(x) is nonconstant. Using (9), from (21), we derive that

akBk

(
x+

b

a

)
=

d

dx
Ska,b(x) =

= ϕ1αλ(x)r−1λ′(x)q(λ(x))2 (rq(λ(x)) + 3λ(x)q′(λ(x))) , (22)

whence we infer that q(λ(x − b/a)) is a multiple factor of Bk(x) over
Q[x]. Then, by Lemma 4, k is even and q(λ(x− b/a)) = x2−x−B for
an odd, positive integer B. We obtain from (21), that k = 6 and r = 1.
But in this case S6

a,b(x)−ϕ0 has a root of multiplicity 3, thus, by (22),
the sixth Bernoulli polynomial B6(x) has a double root. However it is
impossible since the discriminant of B6(x) is nonzero.

Finally, suppose that (f1(x), g1(x)) is a standard pair of the fifth
kind. Now (18) implies either

(a) Ska,b(λ
−1(x)) = ϕ1(αx

2 − 1)3 + ϕ0, or

(b) Ska,b(λ
−1(x)) = ϕ1(3x

4 − 4x3) + ϕ0.

The second case is impossible, since then we get k = 3 contradicting
our assumption k > 3.

In the first case (a) we infer that k = 5 and that S5
a,b(λ

−1(x)) − ϕ0

has a root with multiplicity at least 3. But the number of roots as well
as their multiplicities of a polynomial remain unchanged if we replace
the variable x by a linear polynomial of it. Hence we obtain that
S5
a,b(x)− ϕ0 also has a root with multiplicity at least 3. But then, by

d

dx
(S5

a,b(x)− ϕ0) =
d

dx

a5B6

(
x+ b

a

)
6

= a5B5

(
x+

b

a

)
, (23)

the fifth Bernoulli polynomial B5(x) would have a multiple root, which
is a contradiction by Lemma 4.

Let us consider the remaining case degϕ(x) = (k + 1)/2. Clearly, k

is then odd, and from (18) we know that deg f1(x) = 2. Hence it
follows that, in (18), (f1(x), g1(x)) cannot be a standart pair of the
fifth kind. Further, we obtain a nontrivial decomposition of Ska,b(x),
which by Proposition 1 implies that there exists a linear polynomial
`(x) = `1x+ `0 over Q such that

ϕ(x) = Ŝ
(k+1)/2
a,b (`(x)) and `(f1(λ(x))) =

(
x+

b

a
− 1

2

)2

. (24)
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Again, we study the unexcluded kinds of standard pairs over Q.
First, we assume (f1(x), g1(x)) to be a standard pair of the first kind.

If (f1(x), g1(x)) = (xt, αxrp(x)t) with r < t, (r, t) = 1 and r+deg p(x) >
0, then by deg f1(x) = 2, the corresponding standard pair is of the form
(f1(x), g1(x)) = (x2, αxp(x)2). If λ(x) = λ1x + λ0, then (24) takes the
form `((λ1x + λ0)

2) = (x+ b/a− 1/2)2, whence one can deduce that
`(x) = x/λ21. Substituting this to (18), we obtain

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) = Ŝ

(k+1)/2
a,b

(
αµ(x)p(µ(x))2

λ21

)
(25)

So g(x) is of the form as in Theorem 1 (II) with δ(x) = αµ(x)/λ21 and
q(x) = p(µ(x)).

In the switched case (f1(x), g1(x)) = (αxrp(x)t, xt), where r < t,
(r, t) = 1 and r + deg p(x) > 0, we obtain from deg f1(x) = 2 that one
of the following cases occurs:

(A) r = 0, t = 1 and deg p(x) = 2, or
(B) r = 2, t > 2 is odd and p(x) is constant.

In case (A) we have g1(x) = x which together with (18) and (24)
implie

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) =

= Ŝ
(k+1)/2
a,b (`(µ(x))) = Ŝ

(k+1)/2
a,b (δ(x)q(x)2), (26)

where δ(x) = `(µ(x)) and q(x) ≡ 1. Thus g(x) is again of the form as
in Theorem 1 (II).

If case (B) holds, then we can write f1(x) = βx2, with β = αp(x)t ∈
Q \ {0}. Substituting this to (24), we deduce that `(x) = x/(βλ21),
whence, by (18), we get

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) =

= Ŝ
(k+1)/2
a,b

(
µ(x)t

βλ21

)
= Ŝ

(k+1)/2
a,b (cδ(x)t), (27)

where c = 1/(βλ21), δ(x) = µ(x) and t > 2 is odd. This is case (III) in
Theorem 1.

Next suppose that, in (18), the standard pair (f1(x), g1(x)) is of the
second kind. If (f1(x), g1(x)) = (x2, (αx2 +β)v(x)2), then a calculation
from (24) leads to `(x) = x/λ21, and from (18) we obtain

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) =

= Ŝ
(k+1)/2
a,b

(
(αx2 + β)v(µ(x))2

λ21

)
= Ŝ

(k+1)/2
a,b ((αδ(x)2 + β)q(x)2), (28)
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where δ(x) = µ(x) and q(x) = v(µ(x))/λ1. So we are in case (IV) of
Theorem 1.

If (f1(x), g1(x)) = ((αx2 + β)v(x)2, x2), then since deg f1(x) = 2,
v(x) is a constant polynomial and we have

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) =

= Ŝ
(k+1)/2
a,b (`1µ(x)2 + `0) = Ŝ

(k+1)/2
a,b ((`1δ(x)2 + `0)q(x)2), (29)

with δ(x) = µ(x) and q(x) ≡ 1. Again, we arrived at case (IV) of
Theorem 1.

Now, if the standard pair (f1(x), g1(x)) is of the third kind, then
(f1(x), g1(x)) = (D2(x, α

t), Dt(x, α
2)) with t being odd. Let us substi-

tute f1(x) = x2 − 2αt into (24) to deduce that `(x) = (x + 2αt)/λ21,
whence

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) = Ŝ

(k+1)/2
a,b

(
Dt(µ(x), α2) + 2αt

λ21

)
. (30)

It follows from Proposition 7 that −2αt/λ21 is an extremum of the poly-
nomial Dt(µ(x), α2)/λ21, which is of type (1, 2, . . . , 2) as t is odd. This
implies that (Dt(µ(x), α2) + 2αt)/λ21 = δ(x)q(x)2 for some δ(x), q(x) ∈
Q[x] with deg δ(x) = 1. Hence g(x) is of the form as in Theorem 1 (II).

Finally, consider the case when (f1(x), g1(x)) is a standard pair of
the fourth kind. Then

(f1(x), g1(x)) =

(
D2(x, α)

α
,
Dt(x, β)

β(t/2)

)
,

where t is even. Substituting this into (24), it is easy to calculate that
`(x) = (αx+ 2α)/λ21. Hence, by (18), we obtain

g(x) = Ŝ
(k+1)/2
a,b (`(g1(µ(x)))) =

= Ŝ
(k+1)/2
a,b

(
αβ−t/2Dt(µ(x), β) + 2α

λ21

)
. (31)

Now Proposition 7 implies that

−2βt/2αβ−t/2

λ21
= −2α

λ21

is one of the two extrema of the polynomial αβ−t/2Dt(µ(x), β)/(λ21)
and it is of type (2, 2, . . . , 2) as t is even. It follows that

αβ−t/2Dt(µ(x), β) + 2α

λ21
= q(x)2
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for some q(x) ∈ Q[x]. Thus g(x) is of type (V) in Theorem 1. This
completes the proof. �

3. Proofs of Theorems 2 and 3

We discuss the proofs of Theorems 2 and 3 jointly by introducing
the following notation. Let Tk±a,b(x) ∈

{
Tk+a,b(x), Tk−a,b(x)

}
and similarly,

let T̂m±a,b (x) ∈
{
T̂m+
a,b (x), T̂m−a,b (x)

}
. Now equations (14) and (15) can be

written in the common form

Tk±a,b (x) = g(y), (32)

where g(y) is a rational polynomial of degree at least 3.
Before starting the proof we need the following auxiliary results bes-

ides the ones from the previous sections.
The first one is a deep result of Rakaczki [21] concerning the root

structure of shifted Euler polynomials.

Proposition 8. Let m ≥ 7 be an integer. Then the shifted Euler poly-
nomial Em(x) + b has at least three simple zeros for arbitrary complex
number b.

The following result is Lemma 11 in [22]. Let c1, e1 ∈ Q \ {0} and
c0, e0 ∈ Q.

Lemma 9. The polynomial Ek(c1x+c0) is neither of the form e1x
q+e0

with q ≥ 3, nor of the form e1Dν(x, δ) + e0, where Dν(x, δ) is the ν-th
Dickson polynomial with ν > 4, δ ∈ Q \ {0}.

The next lemma is a simple consequence of the previous one. Further,
it is an analogue of Lemmas 5 and 6 from the preceding section.

Lemma 10. None of the polynomials Tk+a,b(c1x+ c0) and Tk−a,b(c1x+ c0)
are either of the form e1x

q+e0 with q ≥ 3, or of the form e1Dν(x, δ)+e0,
where Dν(x, δ) is the ν-th Dickson polynomial with ν > 4, δ ∈ Q \ {0}.

Proof. We detail the proof only for the ’positive’ case. For the ’negative’
case the argument is essentially the same.

Since Tk+a,b(c1x+ c0) = ak/2 (Ek(b/a) + Ek(c1x+ c0 + b/a)), we have

Ek

(
c1x+ c0 +

b

a

)
=

2

ak
Tk+a,b(c1x+ c0)− Ek

(
b

a

)
. (33)

Put c′0 = c0 + b/a, e′1 = (2e1)/(a
k) and e′0 = (2e0)/(a

k)− Ek (b/a).
Now if Tk+a,b(c1x+ c0) = e1x

q + e0 for some q ≥ 3, then we obtain

Ek(c1x+ c′0) = e′1x
q + e′0.
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This contradicts Lemma 9.
Similarly, if Tk+a,b(c1x + c0) = e1Dν(x, δ) + e0 for some ν > 4 and

δ ∈ Q \ {0}, then by (33) we have

Ek(c1x+ c′0) = e′1Dν(x, δ) + e′0,

contradicting again Lemma 9. �

Proof of Theorems 2 and 3. Suppose that equation (32) has infinitely
many solutions in integers x, y. Then by Proposition 3, there exist
ϕ(x) ∈ Q[x] and linear polynomials λ(x), µ(x) ∈ Q[x] such that

Tk±a,b(x) = ϕ(f1(λ(x))) and g(x) = ϕ(g1(µ(x))), (34)

where (f1(x), g1(x)) is a standard pair over Q. From deg Tk±a,b(x) = k
and from Proposition 2 we infer that

degϕ(x) ∈
{

1,
k

2
, k

}
.

Suppose first that degϕ(x) = k. Then (34) implies that deg f1(x) =

1. Therefore Tk±a,b(x) = ϕ(t(x)), for a linear polynomial t(x) ∈ Q[x].

Clearly, t−1(x) ∈ Q[x] is also linear. Thus, by (34), we get that
Tk±a,b(t

−1(x)) = ϕ(t(t−1(x))) = ϕ(x), whence

g(x) = ϕ(g1(µ(x))) = Tk±a,b(t
−1(g1(µ(x)))) = Tk±a,b(q(x)), (35)

where q(x) = t−1(g1(µ(x))). So, if equation (32) has infinitely many
solutions, then g(x) is of the form (I) in Theorem 2 or 3, respectively.

Next we assume that degϕ(x) = 1. Then there exist ϕ1,ϕ0 ∈ Q with

ϕ1 6= 0 such that ϕ(x) = ϕ1x + ϕ0. We study now the five kinds of
standard pairs over Q. In view of k ≥ 7 and deg g(x) ≥ 3, we see that,
in (34), the standard pair (f1(x), g1(x)) cannot be of the second or the
fifth kind.

Now in (34), let (f1(x), g1(x)) assumed to be a standard pair of the
first kind. Then we have either

(i) Tk±a,b(λ
−1(x)) = ϕ1x

t + ϕ0, or

(ii) Tk±a,b(λ
−1(x)) = ϕ1αx

rq(x)t + ϕ0, where 0 ≤ r < t, (r, t) = 1 and
r + deg q(x) > 0.

In the first case (i), we obtain a contradiction by Lemma 10 since
t = k ≥ 7.

In the case (ii), since

Tk±a,b(λ
−1(x))− ϕ0 =

ak

2

(
Ek

(
λ−1(x) +

b

a

)
± Ek

(
b

a

)
− 2ϕ0

ak

)
,
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and since the root structure of a polynomial remains the same if the
variable of the polynomial is replaced by a linear polynomial of it, we
infer by Proposition 8 that Tk±a,b(λ

−1(x))− ϕ0 has at least three simple
zeros. By the assumptions on r and t, this implies that r = 0 and
t = deg g(x) = 1, which contradicts deg g(x) ≥ 3.

Finally, suppose that (f1(x), g1(x)) is a standard pair of the third or
the fourth kind over Q. Then we obtain

Tk±a,b(λ
−1(x)) = ϕ′1Dk(x, δ) + ϕ0,

where ϕ′1 ∈
{
ϕ1, a

k/2ϕ1

}
and δ ∈ Q \ {0}. This is a contradiction by

Lemma 10 since k ≥ 7.
The case degϕ(x) = k/2. Clearly, k is then even, and from (34) we

observe that deg f1(x) = 2. Hence it follows that, in (34), (f1(x), g1(x))
cannot be a standart pair of the fifth kind. Further, we obtain a nontri-
vial decomposition of Tk±a,b(x), which by Proposition 2 implies that there
exists a linear polynomial `(x) = `1x+ `0 over Q such that

ϕ(x) = T̂
k/2±
a,b (`(x)) and `(f1(λ(x))) =

(
x+

b

a
− 1

2

)2

. (36)

Again, we study the remaining kinds of standard pairs.
First, we consider the case when, in (34), (f1(x), g1(x))is a standard

pair of the first kind. If f1(x) = xt, then by deg f1(x) = 2, we have
(f1(x), g1(x)) = (x2, αxp(x)2). Putting λ(x) = λ1x + λ0, (36) takes
the form `((λ1x+λ0)

2) = (x+ b/a− 1/2)2, whence an easy calculation
gives `(x) = x/λ21. Substituting this to (34), we obtain

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) = T̂

k/2±
a,b

(
αµ(x)p(µ(x))2

λ21

)
(37)

So g(x) is of the form (III) with δ(x) = αµ(x)/λ21 and q(x) = p(µ(x)).
In the switched case (f1(x), g1(x)) = (αxrp(x)t, xt), where r < t,

(r, t) = 1 and r + deg p(x) > 0, deg f1(x) = 2 implies that one of the
following cases occurs:

(A) r = 0, t = 1 and deg p(x) = 2, or
(B) r = 2, t > 2 is odd and p(x) is a constant polynomial.

In case (A) we have g1(x) = x, whence from (34) and (36) we obtain

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) =

= T̂
k/2±
a,b (`(µ(x))) = T̂

k/2±
a,b (δ(x)q(x)2), (38)

where δ(x) = `(µ(x)) and q(x) ≡ 1. Thus g(x) is again of type (III).
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In the second case (B), we can write f1(x) = βx2, with β = αp(x)t ∈
Q \ {0}. Substituting this to (36), we deduce that `(x) = x/(βλ21),
whence, by (34), we get

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) =

= T̂
k/2±
a,b

(
µ(x)t

βλ21

)
= T̂

k/2±
a,b (cδ(x)t), (39)

where c = 1/(βλ21), δ(x) = µ(x) and t > 2 is odd. This is case (IV) in
Theorems 2 or 3, respectively.

Next let, in (34), be a the standard pair (f1(x), g1(x)) of the second
kind. If (f1(x), g1(x)) = (x2, (αx2 + β)v(x)2), then a calculation from
(36) yields `(x) = x/λ21, and by (34) we have

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) =

= T̂
k/2±
a,b

(
(αx2 + β)v(µ(x))2

λ21

)
= T̂

k/2±
a,b ((αδ(x)2 + β)q(x)2), (40)

where δ(x) = µ(x) and q(x) = v(µ(x))/λ1. So we are in case (V) of
our Theorems.

In the switched case (f1(x), g1(x)) = ((αx2 + β)v(x)2, x2), since
deg f1(x) = 2, v(x) is a constant polynomial and

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) =

= T̂
k/2±
a,b ((`1µ(x)2 + `0)q(x)2), (41)

where q(x) ≡ 1. Thus, we arrived again at case (V) with δ(x) = µ(x)
and α = `1, β = `0.

Now, if the standard pair (f1(x), g1(x)) is of the third kind over
Q, then (f1(x), g1(x)) = (D2(x, α

t), Dt(x, α
2)) with t being odd. Let us

substitute f1(x) = x2−2αt into (36) to deduce that `(x) = (x+2αt)/λ21,
whence

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) = T̂

k/2±
a,b

(
Dt(µ(x), α2) + 2αt

λ21

)
. (42)

It follows from Proposition 7 that −2αt/λ21 is an extremum of the
polynomial Dt(µ(x), α2)/λ21, which is of type (1, 2, . . . , 2) as t is odd.
Hence (Dt(µ(x), α2) + 2αt)/λ21 = δ(x)q(x)2 for some δ(x), q(x) ∈ Q[x]
with deg δ(x) = 1. We deduce, that g(x) is of type (III).

Finally, consider the case when (f1(x), g1(x)) is a standard pair of
the fourth kind over Q. Then

(f1(x), g1(x)) =

(
D2(x, α)

α
,
Dt(x, β)

β(t/2)

)
,
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with an even t. Substituting this into (36), an easy calculation yields
`(x) = (αx+ 2α)/λ21, whence, by (34), we obtain

g(x) = T̂
k/2±
a,b (`(g1(µ(x)))) =

= T̂
k/2±
a,b

(
αβ−t/2Dt(µ(x), β) + 2α

λ21

)
. (43)

Now from Proposition 7 we infer that

−2βt/2αβ−t/2

λ21
= −2α

λ21

is one of the two extrema of the polynomial αβ−t/2Dt(µ(x), β)/(λ21)
and it is of type (2, 2, . . . , 2) as t is even. Therefore we have

αβ−t/2Dt(µ(x), β) + 2α

λ21
= q(x)2

for some q(x) ∈ Q[x]. Thus g(x) is of type (II), and the proof is
complete. �
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