POLYNOMIAL VALUES OF (ALTERNATING) POWER SUMS

ANDRÁS BAZSÓ

$$
\begin{aligned}
& \text { Abstract. We prove ineffective finiteness results on the integer } \\
& \text { solutions } x, y \text { of the equations } \\
& \qquad b^{k}+(a+b)^{k}+\cdots+(a(x-1)+b)^{k}=g(y) \\
& \text { and } \\
& b^{k}-(a+b)^{k}+(2 a+b)^{k}-\ldots+(-1)^{x-1}(a(x-1)+b)^{k}=g(y), \\
& \text { where } g(x) \in \mathbb{Q}[x], \operatorname{deg} g(x) \geq 3 \text {, and } a \neq 0, b \text { are given integers } \\
& \text { with } \operatorname{gcd}(a, b)=1 \text {. }
\end{aligned}
$$

1. Introduction and new results

Many diophantine problems have been investigated in the literature concerning power sums of consecutive integers. It is well known that the sum

$$
\begin{equation*}
S_{k}(n)=1^{k}+2^{k}+\ldots+(n-1)^{k} \tag{1}
\end{equation*}
$$

can be expressed by the Bernoulli polynomials $B_{k}(x)$ as

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1}\left(B_{k+1}(n)-B_{k+1}\right) \tag{2}
\end{equation*}
$$

where the polynomials $B_{k}(x)$ are defined by the generating series

$$
\frac{t \exp (t x)}{\exp (t)-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}
$$

and $B_{k+1}=B_{k+1}(0)$. Hence S_{k} can be extended to real values x, i.e., to the polynomial

$$
\begin{equation*}
S_{k}(x)=\frac{1}{k+1}\left(B_{k+1}(x)-B_{k+1}\right) . \tag{3}
\end{equation*}
$$

[^0]A classical problem of Lucas [16], from 1875, was the study of square values of $S_{k}(x)$. Later, in 1956, Schäffer [23] investigated n-th power values, that is, the diophantine equation

$$
\begin{equation*}
S_{k}(x)=y^{n} \quad \text { in integers } x, y . \tag{4}
\end{equation*}
$$

For $k \geq 1, n \geq 2$ he proved an ineffective finiteness result on the solutions x, y of (4) provided that $(k, n) \notin\{(1,2),(3,2),(3,4),(5,2)\}$. In the exceptional cases (k, n) he proved the existence of infinitely many solutions. Moreover, Schäffer proposed a still unproven conjecture which says that if (k, n) is not in the above exceptional set, then the only nontrivial solution of equation (4) is $(k, n, x, y)=(2,2,24,70)$. In 1980, Győry, Tijdeman and Voorhoeve [13] proved effective finiteness for the solutions of (4) in the general case when, in (4), n is also unknown. Several generalizations of (4) have been considered, e.g. in the papers of Voorhoeve, Győry and Tijdeman [28], Brindza [10], Dilcher [11] and Urbanowicz [25, 26, 27]. Schäffer's conjecture has been confirmed only in a few cases: for $n=2$ and $k \leq 58$ by Jacobson, Pintér and Walsh [15]; and for $n \geq 2$ and $k \leq 11$ by Bennett, Győry and Pintér [5]. For further generalizations of (4) and related results see the survey paper of Győry and Pintér [12] and the references given there.

In [8], Bilu et al. considered the diophantine equations

$$
\begin{equation*}
S_{k}(x)=S_{\ell}(y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k}(x)=y(y+1)(y+2) \ldots(y+(\ell-1)) . \tag{6}
\end{equation*}
$$

They proved ineffective finiteness results on the solutions x, y of these equations for $k<l$, moreover, they established effective statements for certain small values of k and l.

For a positive integer $n \geq 2$ and for $a \neq 0, b$ coprime integers, let

$$
\begin{equation*}
S_{a, b}^{k}(n)=b^{k}+(a+b)^{k}+(2 a+b)^{k}+\ldots+(a(n-1)+b)^{k} . \tag{7}
\end{equation*}
$$

It is easy to see that the above power sum is related to the Bernoulli polynomials $B_{k}(x)$ in the following way

$$
\begin{align*}
& S_{a, b}^{k}(n)=\frac{a^{k}}{k+1}\left(\left[B_{k+1}\left(n+\frac{b}{a}\right)-B_{k+1}\right]\right. \\
&\left.-\left[B_{k+1}\left(\frac{b}{a}\right)-B_{k+1}\right]\right) . \tag{8}
\end{align*}
$$

Thus we can extend $S_{a, b}^{k}$ for every real value x as

$$
\begin{equation*}
S_{a, b}^{k}(x)=\frac{a^{k}}{k+1}\left(B_{k+1}\left(x+\frac{b}{a}\right)-B_{k+1}\left(\frac{b}{a}\right)\right) . \tag{9}
\end{equation*}
$$

In [14], using a different approach, Howard also obtained relation (9) via generating functions. In the same paper [14], he showed that the alternating power sum

$$
\begin{equation*}
T_{a, b}^{k}(n)=b^{k}-(a+b)^{k}+(2 a+b)^{k}-\ldots+(-1)^{n-1}(a(n-1)+b)^{k} \tag{10}
\end{equation*}
$$

can be expressed by means of Euler polynomials $E_{k}(x)$ as

$$
\begin{equation*}
T_{a, b}^{k}(n)=\frac{a^{k}}{2}\left(E_{k}\left(\frac{b}{a}\right)+(-1)^{n-1} E_{k}\left(n+\frac{b}{a}\right)\right) \tag{11}
\end{equation*}
$$

where the classical Euler polynomials $E_{k}(x)$ are defined by the generating function

$$
\frac{2 \exp (x t)}{\exp (t)+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \quad(|t|<\pi)
$$

For the properties of Bernoulli and Euler polynomials which will be often used in this paper, sometimes without special reference, we refer to the paper of Brillhart [9]. Thus, depending on the power of -1 in (11), we can extend $T_{a, b}^{k}(n)$ to a polynomial in the following two ways:

$$
\begin{aligned}
& \mathrm{T}_{a, b}^{k+}(x)=\frac{a^{k}}{2}\left(E_{k}\left(\frac{b}{a}\right)+E_{k}\left(x+\frac{b}{a}\right)\right), \\
& \mathrm{T}_{a, b}^{k-}(x)=\frac{a^{k}}{2}\left(E_{k}\left(\frac{b}{a}\right)-E_{k}\left(x+\frac{b}{a}\right)\right) .
\end{aligned}
$$

Recently, Bazsó, Kreso, Luca and Pintér [2] generalized the results of Bilu et al. [8] on equation (5) to the equation

$$
\begin{equation*}
S_{a, b}^{k}(x)=S_{c, d}^{\ell}(y) \tag{12}
\end{equation*}
$$

where x, y are unknown integers, and k, ℓ, a, b, c, d are given integers with $0<k<l, \operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1$.

In the present paper we study the Diophantine equations

$$
\begin{gather*}
S_{a, b}^{k}(x)=g(y), \tag{13}\\
\mathrm{T}_{a, b}^{k+}(x)=g(y) \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{a, b}^{k-}(x)=g(y), \tag{15}
\end{equation*}
$$

where $g(y)$ is a rational polynomial of degree at least 3 . These equations have only been investigated in the literature in the case $(a, b)=(1,0)$. Rakaczki [20] and independently Kulkarni and Sury [19] characterized those pairs $(k, g(y))$ for which equation (13) has infinitely many integer solutions. Recently, Kreso and Rakaczki [22] proved an analogous result for equations (14) and (15). For further related results we refer to the papers of Kulkarny and Sury [17, 18], and of Bennett [4].

Our goal in the sequel is to extend the results of $[20,19,22]$ to the general case, i.e, to equations (13)-(15). To do this it will be useful to survey what is known about the decomposition properties of the polynomials involved in the equations under consideration.

By a decomposition of a polynomial $F(x)$ over a field \mathbb{K} we mean an equality of the following form

$$
F(x)=G_{1}\left(G_{2}(x)\right) \quad\left(G_{1}(x), G_{2}(x) \in \mathbb{K}[x]\right),
$$

which is nontrivial if

$$
\operatorname{deg} G_{1}(x)>1 \quad \text { and } \quad \operatorname{deg} G_{2}(x)>1
$$

Two decompositions $F(x)=G_{1}\left(G_{2}(x)\right)$ and $F(x)=H_{1}\left(H_{2}(x)\right)$ are said to be equivalent if there exists a linear polynomial $\ell(x) \in \mathbb{K}[x]$ such that $G_{1}(x)=H_{1}(\ell(x))$ and $H_{2}(x)=\ell\left(G_{2}(x)\right)$. The polynomial $F(x)$ is called decomposable over \mathbb{K} if it has at least one nontrivial decomposition over \mathbb{K}; otherwise it is said to be indecomposable. A detailed discussion on the theory of polynomial decomposition can be found in the monograph of Schinzel [24].

In a recent paper, Bazsó, Pintér and Srivastava [3] proved the following result about the decomposition of the polynomial $S_{a, b}^{k}(x)$ defined above.

Proposition 1. The polynomial $S_{a, b}^{k}(x)$ is indecomposable over \mathbb{C} for even k. If $k=2 v-1$ is odd, then any nontrivial decomposition of $S_{a, b}^{k}(x)$ over \mathbb{C} is equivalent to the following decomposition:

$$
\begin{equation*}
S_{a, b}^{k}(x)=\widehat{S}_{a, b}^{v}\left(\left(x+\frac{b}{a}-\frac{1}{2}\right)^{2}\right) \tag{16}
\end{equation*}
$$

where $\widehat{S}_{a, b}^{v}(x)$ is a rational polynomial of degree v.
Proof. This is Theorem 2 of [3].
On equation (13), we prove the following.
Theorem 1. Let $a \neq 0, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1$ and let $g(x) \in \mathbb{Q}[x]$, $\operatorname{deg} g(x) \geq 3$. Further, let $\alpha, \beta, c \in \mathbb{Q} \backslash\{0\}$, $\delta(x), q(x) \in \mathbb{Q}[x]$ with $\operatorname{deg} \delta(x)=1, q(x) \neq 0$. Then, for $k>3$ equation (13) has only finitely many integer solutions x, y, unless one of the following holds:
(I) $g(x)=S_{a, b}^{k}(q(x))$
(II) k is odd and $g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\delta(x) q(x)^{2}\right)$
(III) k is odd and $g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(c \delta(x)^{t}\right)$, where $t \geq 3$ is an odd integer
(IV) k is odd and $g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\left(\alpha \delta(x)^{2}+\beta\right) q(x)^{2}\right)$
(V) k is odd and $g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(q(x)^{2}\right)$
with $\widehat{S}_{a, b}^{v}(x)$ specified in Proposition 1.
Our method of proof is based upon Proposition 1 and the general ineffective finiteness criterion of Bilu and Tichy [7] (cf. Proposition 3). Therefore our result is also ineffective.

We note that in the exceptional cases $(I)-(V)$ one can find an equation of the shape (13) having infinitely many integer solutions (see [20] for examples). We further note that for $a=1, b=0, k>3$, our Theorem 1 gives the result of Rakaczki [20, Theorem 1].

The decomposition properties of the polynomials $\mathrm{T}_{a, b}^{k+}(x)$ and $\mathrm{T}_{a, b}^{k-}(x)$ have recently been described in [1] by the present author who proved the following.
Proposition 2. The polynomials $T_{a, b}^{k+}(x)$ and $T_{a, b}^{k-}(x)$ are both indecomposable for any odd k. If $k=2 m$ is even, then any nontrivial decomposition of $\mathcal{T}_{a, b}^{k+}(x)$ or $\mathcal{T}_{a, b}^{k-}(x)$ is equivalent to

$$
\begin{align*}
T_{a, b}^{k+}(x)=\widehat{T}_{a, b}^{m+}\left(\left(x+\frac{b}{a}-\frac{1}{2}\right)^{2}\right) & \text { or } \\
T_{a, b}^{k-}(x) & =\widehat{T}_{a, b}^{m-}\left(\left(x+\frac{b}{a}-\frac{1}{2}\right)^{2}\right), \tag{17}
\end{align*}
$$

respectively, where

$$
\begin{aligned}
& \widehat{T}_{a, b}^{m+}(x)=\frac{a^{2 m}}{2}\left(E_{2 m}\left(\frac{b}{a}\right)+\tilde{E}_{m}(x)\right), \\
& \widehat{T}_{a, b}^{m-}(x)=\frac{a^{2 m}}{2}\left(E_{2 m}\left(\frac{b}{a}\right)-\tilde{E}_{m}(x)\right)
\end{aligned}
$$

with

$$
\tilde{E}_{m}(x)=\sum_{n=0}^{m}\binom{2 m}{2 n} \frac{E_{2 n}}{2^{2 n}} x^{m-n} \quad \text { and } \quad E_{j}=2^{j} E_{j}(1 / 2)
$$

Proof. See [1].
Using Proposition 2 and the finiteness criterion from [7] we prove the following two results on equations (14) and (15), which are again ineffective.

Theorem 2. Let $a \neq 0, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1$ and let $g(x) \in \mathbb{Q}[x]$, $\operatorname{deg} g(x) \geq 3$. Further, let $\alpha, \beta, c \in \mathbb{Q} \backslash\{0\}$, $\delta(x), q(x) \in \mathbb{Q}[x]$ with $\operatorname{deg} \delta(x)=1, q(x) \neq 0$. Then, for $k \geq 7$ equation (14) has only finitely many integer solutions x, y, unless one of the following holds:
(I) $g(x)=T_{a, b}^{k+}(q(x))$
(II) k is even and $g(x)=\widehat{T}_{a, b}^{k / 2+}\left(q(x)^{2}\right)$
(III) k is even and $g(x)=\widehat{T}_{a, b}^{k / 2+}\left(\delta(x) q(x)^{2}\right)$
(IV) k is even and $g(x)=\widehat{T}_{a, b}^{k / 2+}\left(c \delta(x)^{t}\right)$, where $t \geq 3$ is an odd integer
$(\mathrm{V}) k$ is even and $g(x)=\widehat{T}_{a, b}^{k / 2+}\left(\left(\alpha \delta(x)^{2}+\beta\right) q(x)^{2}\right)$
with $\widehat{T}_{a, b}^{m+}(x)$ specified in Proposition 2.
Theorem 3. Let $a \neq 0, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1$ and let $g(x) \in \mathbb{Q}[x]$, $\operatorname{deg} g(x) \geq 3$. Further, let $\alpha, \beta, c \in \mathbb{Q} \backslash\{0\}$, $\delta(x), q(x) \in \mathbb{Q}[x]$ with $\operatorname{deg} \delta(x)=1, q(x) \neq 0$. Then, for $k \geq 7$ equation (15) has only finitely many integer solutions x, y, unless one of the following holds:
(I) $g(x)=T_{a, b}^{k-}(q(x))$
(II) k is even and $g(x)=\widehat{T}_{a, b}^{k / 2-}\left(q(x)^{2}\right)$
(III) k is even and $g(x)=\widehat{T}_{a, b}^{k / 2-}\left(\delta(x) q(x)^{2}\right)$
(IV) k is even and $g(x)=\widehat{T}_{a, b}^{k / 2-}\left(c \delta(x)^{t}\right)$, where $t \geq 3$ is an odd integer
$(\mathrm{V}) k$ is even and $g(x)=\widehat{T}_{a, b}^{k / 2-}\left(\left(\alpha \delta(x)^{2}+\beta\right) q(x)^{2}\right)$
with $\widehat{T}_{a, b}^{m-}(x)$ specified in Proposition 2.
The above two theorems extend Theorem 2 of [22] when $\operatorname{deg} g(x) \geq 3$. We further note that in the exceptional cases $(I)-(V)$ of Theorems 2 and 3 a choice of parameters can be found for which equations (14) resp. (15) have infinitely many integer solutions x, y. Such parametric solutions are given in [22] for $a=1, b=0$.

2. Proof of Theorem 1

To prove Theorem 1, we need some auxiliary results. First we recall the general ineffective finiteness criterion of Bilu and Tichy [7]. We first define the five kinds of so-called standard pairs of polynomials.

Let α, β be nonzero rational numbers, $\mu, \nu, q>0$ and $r \geq 0$ be integers, and let $v(x) \in \mathbb{Q}[x]$ be a nonzero polynomial (which may be constant). Denote by $D_{\mu}(x, \delta)$ the μ-th Dickson polynomial, defined by the functional equation $D_{\mu}(z+\delta / z, \delta)=z^{\mu}+(\delta / z)^{\mu}$ or by the explicit formula

$$
D_{\mu}(x, \delta)=\sum_{i=0}^{\lfloor\mu / 2\rfloor} d_{\mu, i} x^{\mu-2 i} \quad \text { with } \quad d_{\mu, i}=\frac{\mu}{\mu-i}\binom{\mu-i}{i}(-\delta)^{i} .
$$

Two polynomials $f_{1}(x)$ and $g_{1}(x)$ are said to form a standard pair over \mathbb{Q} if one of the ordered pairs $\left(f_{1}(x), g_{1}(x)\right)$ or $\left(g_{1}(x), f_{1}(x)\right)$ belongs to the list below. The five kinds of standard pairs are then listed in the following table.

kind	explicit form of $\left\{f_{1}(x), g_{1}(x)\right\}$	parameter restrictions
first	$\left(x^{q}, \alpha x^{r} v(x)^{q}\right)$	$0 \leq r<q,(r, q)=1$, $r+\operatorname{deg} v(x)>0$
second	$\left(x^{2},\left(\alpha x^{2}+\beta\right) v(x)^{2}\right)$	-
third	$\left(D_{\mu}\left(x, \alpha^{\nu}\right), D_{\nu}\left(x, \alpha^{\mu}\right)\right)$	$(\mu, \nu)=1$
fourth	$\left(\alpha^{\frac{-\mu}{2}} D_{\mu}(x, \alpha),-\beta^{\frac{-\nu}{2}} D_{\nu}(x, \beta)\right)$	$(\mu, \nu)=2$
fifth	$\left(\left(\alpha x^{2}-1\right)^{3}, 3 x^{4}-4 x^{3}\right)$	-

Now we state a special case of the main result of [7], which will be crucial in the proofs of ours.
Proposition 3. Let $f(x), g(x) \in \mathbb{Q}[x]$ be nonconstant polynomials such that the equation $f(x)=g(y)$ has infinitely many solutions in rational integers x, y. Then $f=\varphi \circ f_{1} \circ \lambda$ and $g=\varphi \circ g_{1} \circ \mu$, where $\lambda(x), \mu(x) \in \mathbb{Q}[x]$ are linear polynomials, $\varphi(x) \in \mathbb{Q}[x]$, and $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair over \mathbb{Q}.

We recall the following result concerning Bernoulli polynomials $B_{k}(x)$ which is due to Brillhart [9].
Lemma 4. If k is odd, then $B_{k}(x)$ has no multiple roots. For even k, the only polynomial which can be a multiple factor of $B_{k}(x)$ over \mathbb{Q} is $x^{2}-x-B$, where B is an odd, positive integer.

The next two lemmas were proved in [2]. Let $c_{1}, e_{1} \in \mathbb{Q} \backslash\{0\}$ and $c_{0}, e_{0} \in \mathbb{Q}$.
Lemma 5. The polynomial $S_{a, b}^{k}\left(c_{1} x+c_{0}\right)$ is not of the form $e_{1} x^{q}+e_{0}$ with $q \geq 3$.
Lemma 6. The polynomial $S_{a, b}^{k}\left(c_{1} x+c_{0}\right)$ is not of the form

$$
e_{1} D_{\nu}(x, \delta)+e_{0},
$$

where $D_{\nu}(x, \delta)$ is the ν-th Dickson polynomial with $\nu>4, \delta \in \mathbb{Q} \backslash\{0\}$.
For $P(x) \in \mathbb{C}[x]$, a complex number c is said to be an extremum if $P(x)-c$ has multiple roots. The type of c is defined to be the tuple $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ of the multiplicities of the distinct roots of $P(x)-c$ in an increasing order. Obviously, $s<\operatorname{deg} P(x)$ and $\alpha_{1}+\ldots+\alpha_{s}=\operatorname{deg} P(x)$.

Proposition 7. For $a \neq 0$ and $k \geq 3, D_{\mu}(x, \alpha)$ has exactly two extrema $\pm 2 \alpha^{\frac{\mu}{2}}$. If μ is odd, then both are of type $(1,2,2, \ldots, 2)$. If μ is even, then $2 \alpha^{\frac{\mu}{2}}$ is of type $(1,1,2, \ldots, 2)$ and $-2 \alpha^{\frac{\mu}{2}}$ is of type $(2,2, \ldots, 2)$.

Proof. See, for instance [6, Proposition 3.3].
Now we are equipped to prove Theorem 1.
Proof of Theorem 1. Let $g(x)$ be a polynomial with rational coefficients and with $\operatorname{deg} g(x) \geq 3$. Suppose that equation (13) has infinitely many solutions in integers x, y. Then by Proposition 3, it follows that there exist $\lambda(x), \mu(x), \varphi(x) \in \mathbb{Q}[x]$ such that

$$
\begin{equation*}
S_{a, b}^{k}(x)=\varphi\left(f_{1}(\lambda(x))\right) \quad \text { and } \quad g(x)=\varphi\left(g_{1}(\mu(x))\right) \tag{18}
\end{equation*}
$$

where $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair over \mathbb{Q}. Proposition 1 implies that

$$
\operatorname{deg} \varphi(x) \in\left\{1, \frac{k+1}{2}, k+1\right\}
$$

First, suppose that $\operatorname{deg} \varphi(x)=k+1$. Then, by (18), we observe that $\operatorname{deg} \overline{f_{1}(x)=1 \text {. Thus } S_{a, b}^{k}(x)=\varphi(t(x))}$, where $t(x) \in \mathbb{Q}[x]$ is a linear polynomial. Clearly, $t^{-1}(x) \in \mathbb{Q}[x]$ is also linear. By (18), we obtain $S_{a, b}^{k}\left(t^{-1}(x)\right)=\varphi\left(t\left(t^{-1}(x)\right)\right)=\varphi(x)$. Hence

$$
\begin{equation*}
g(x)=\varphi\left(g_{1}(\mu(x))\right)=S_{a, b}^{k}\left(t^{-1}\left(g_{1}(\mu(x))\right)\right)=S_{a, b}^{k}(q(x)), \tag{19}
\end{equation*}
$$

where $q(x)=t^{-1}\left(g_{1}(\mu(x))\right)$. So, if, in our case, equation (13) has infinitely many solutions, then $g(x)$ is of the form as in Theorem 1 (I).

Next we assume that $\operatorname{deg} \varphi(x)=1$. Then there exist $\varphi_{1}, \varphi_{0} \in \mathbb{Q}$ with $\varphi_{1} \neq 0$ such that $\varphi(x)=\varphi_{1} x+\varphi_{0}$. We study now the five kinds of standard pairs. In view of our assumptions on k and $\operatorname{deg} g(x)$, it follows that the standard pair $\left(f_{1}(x), g_{1}(x)\right)$ cannot be of the second kind.

If it is of the third or fourth kind, we then have $S_{a, b}^{k}\left(\lambda^{-1}(x)\right)=$ $e_{1} D_{\mu}(x, \delta)+e_{0}$ for some $e_{0} \in \mathbb{Q}, e_{1}, \delta \in \mathbb{Q} \backslash\{0\}$, which contradicts Lemma 6 since $k=\mu-1>3$.

Now consider the case when, in (18), $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair of the first kind over \mathbb{Q}. Then we have either
(i) $S_{a, b}^{k}\left(\lambda^{-1}(x)\right)=\varphi_{1} x^{t}+\varphi_{0}$, or
(ii) $S_{a, b}^{k}\left(\lambda^{-1}(x)\right)=\varphi_{1} \alpha x^{r} q(x)^{t}+\varphi_{0}$, where $0 \leq r<t,(r, t)=1$ and $r+\operatorname{deg} q(x)>0$.
In the first case (i), we get a contradiction by Lemma 5 since $t=$ $k+1 \geq 5$.

In the second case (ii), we have $g\left(\mu^{-1}(x)\right)=\varphi_{1} x^{t}+\varphi_{0}$. Suppose that $t=\operatorname{deg} g(x)>3$. Then the polynomial $S_{a, b}^{k}\left(\lambda^{-1}(x)\right)-\varphi_{0}$ has a root with multiplicity at least 4 (since $q(x)^{t}$ divides it), which is impossible by Lemma 4 unless $q(x)$ is a constant polynomial. We obtain $r \leq 3$ and $q(x) \equiv Q \in \mathbb{Q} \backslash\{0\}$. It follows that

$$
\begin{equation*}
S_{a, b}^{k}\left(\lambda^{-1}(x)\right)=\varphi x^{r}+\varphi_{0} \text { with } \varphi:=\varphi_{1} \alpha Q^{t} \in \mathbb{Q} \backslash\{0\} \tag{20}
\end{equation*}
$$

Lemma 5 implies that $r=k+1=2$ which contradicts $k>3$.
If, in (ii), $t=3$, then we have

$$
\begin{equation*}
S_{a, b}^{k}(x)=\varphi_{1} \alpha \lambda(x)^{r} q(\lambda(x))^{3}+\varphi_{0} \tag{21}
\end{equation*}
$$

where $r \in\{1,2\}$. If $\operatorname{deg} q(x)=0$, we get back to (20). We can thus assume that $q(x)$ is nonconstant. Using (9), from (21), we derive that

$$
\begin{align*}
& a^{k} B_{k}\left(x+\frac{b}{a}\right)=\frac{d}{d x} S_{a, b}^{k}(x)= \\
& \quad=\varphi_{1} \alpha \lambda(x)^{r-1} \lambda^{\prime}(x) q(\lambda(x))^{2}\left(r q(\lambda(x))+3 \lambda(x) q^{\prime}(\lambda(x))\right), \tag{22}
\end{align*}
$$

whence we infer that $q(\lambda(x-b / a))$ is a multiple factor of $B_{k}(x)$ over $\mathbb{Q}[x]$. Then, by Lemma $4, k$ is even and $q(\lambda(x-b / a))=x^{2}-x-B$ for an odd, positive integer B. We obtain from (21), that $k=6$ and $r=1$. But in this case $S_{a, b}^{6}(x)-\varphi_{0}$ has a root of multiplicity 3 , thus, by (22), the sixth Bernoulli polynomial $B_{6}(x)$ has a double root. However it is impossible since the discriminant of $B_{6}(x)$ is nonzero.

Finally, suppose that $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair of the fifth kind. Now (18) implies either
(a) $S_{a, b}^{k}\left(\lambda^{-1}(x)\right)=\varphi_{1}\left(\alpha x^{2}-1\right)^{3}+\varphi_{0}$, or
(b) $S_{a, b}^{k}\left(\lambda^{-1}(x)\right)=\varphi_{1}\left(3 x^{4}-4 x^{3}\right)+\varphi_{0}$.

The second case is impossible, since then we get $k=3$ contradicting our assumption $k>3$.

In the first case (a) we infer that $k=5$ and that $S_{a, b}^{5}\left(\lambda^{-1}(x)\right)-\varphi_{0}$ has a root with multiplicity at least 3 . But the number of roots as well as their multiplicities of a polynomial remain unchanged if we replace the variable x by a linear polynomial of it. Hence we obtain that $S_{a, b}^{5}(x)-\varphi_{0}$ also has a root with multiplicity at least 3 . But then, by

$$
\begin{equation*}
\frac{d}{d x}\left(S_{a, b}^{5}(x)-\varphi_{0}\right)=\frac{d}{d x} \frac{a^{5} B_{6}\left(x+\frac{b}{a}\right)}{6}=a^{5} B_{5}\left(x+\frac{b}{a}\right), \tag{23}
\end{equation*}
$$

the fifth Bernoulli polynomial $B_{5}(x)$ would have a multiple root, which is a contradiction by Lemma 4.

Let us consider the remaining case $\operatorname{deg} \varphi(x)=(k+1) / 2$. Clearly, k is then odd, and from (18) we know that $\operatorname{deg} f_{1}(x)=2$. Hence it follows that, in (18), $\left(f_{1}(x), g_{1}(x)\right)$ cannot be a standart pair of the fifth kind. Further, we obtain a nontrivial decomposition of $S_{a, b}^{k}(x)$, which by Proposition 1 implies that there exists a linear polynomial $\ell(x)=\ell_{1} x+\ell_{0}$ over \mathbb{Q} such that

$$
\begin{equation*}
\varphi(x)=\widehat{S}_{a, b}^{(k+1) / 2}(\ell(x)) \quad \text { and } \quad \ell\left(f_{1}(\lambda(x))\right)=\left(x+\frac{b}{a}-\frac{1}{2}\right)^{2} \tag{24}
\end{equation*}
$$

Again, we study the unexcluded kinds of standard pairs over \mathbb{Q}.
First, we assume $\left(f_{1}(x), g_{1}(x)\right)$ to be a standard pair of the first kind. If $\left(f_{1}(x), g_{1}(x)\right)=\left(x^{t}, \alpha x^{r} p(x)^{t}\right)$ with $r<t,(r, t)=1$ and $r+\operatorname{deg} p(x)>$ 0 , then by $\operatorname{deg} f_{1}(x)=2$, the corresponding standard pair is of the form $\left(f_{1}(x), g_{1}(x)\right)=\left(x^{2}, \alpha x p(x)^{2}\right)$. If $\lambda(x)=\lambda_{1} x+\lambda_{0}$, then (24) takes the form $\ell\left(\left(\lambda_{1} x+\lambda_{0}\right)^{2}\right)=(x+b / a-1 / 2)^{2}$, whence one can deduce that $\ell(x)=x / \lambda_{1}^{2}$. Substituting this to (18), we obtain

$$
\begin{equation*}
g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\frac{\alpha \mu(x) p(\mu(x))^{2}}{\lambda_{1}^{2}}\right) \tag{25}
\end{equation*}
$$

So $g(x)$ is of the form as in Theorem 1 (II) with $\delta(x)=\alpha \mu(x) / \lambda_{1}^{2}$ and $q(x)=p(\mu(x))$.

In the switched case $\left(f_{1}(x), g_{1}(x)\right)=\left(\alpha x^{r} p(x)^{t}, x^{t}\right)$, where $r<t$, $(r, t)=1$ and $r+\operatorname{deg} p(x)>0$, we obtain from $\operatorname{deg} f_{1}(x)=2$ that one of the following cases occurs:
(A) $r=0, t=1$ and $\operatorname{deg} p(x)=2$, or
(B) $r=2, t>2$ is odd and $p(x)$ is constant.

In case (A) we have $g_{1}(x)=x$ which together with (18) and (24) implie

$$
\begin{align*}
& g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)= \\
& \quad=\widehat{S}_{a, b}^{(k+1) / 2}(\ell(\mu(x)))=\widehat{S}_{a, b}^{(k+1) / 2}\left(\delta(x) q(x)^{2}\right) \tag{26}
\end{align*}
$$

where $\delta(x)=\ell(\mu(x))$ and $q(x) \equiv 1$. Thus $g(x)$ is again of the form as in Theorem 1 (II).

If case (B) holds, then we can write $f_{1}(x)=\beta x^{2}$, with $\beta=\alpha p(x)^{t} \in$ $\mathbb{Q} \backslash\{0\}$. Substituting this to (24), we deduce that $\ell(x)=x /\left(\beta \lambda_{1}^{2}\right)$, whence, by (18), we get

$$
\begin{align*}
& g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)= \\
& \quad=\widehat{S}_{a, b}^{(k+1) / 2}\left(\frac{\mu(x)^{t}}{\beta \lambda_{1}^{2}}\right)=\widehat{S}_{a, b}^{(k+1) / 2}\left(c \delta(x)^{t}\right), \tag{27}
\end{align*}
$$

where $c=1 /\left(\beta \lambda_{1}^{2}\right), \delta(x)=\mu(x)$ and $t>2$ is odd. This is case (III) in Theorem 1.

Next suppose that, in (18), the standard pair $\left(f_{1}(x), g_{1}(x)\right)$ is of the second kind. If $\left(f_{1}(x), g_{1}(x)\right)=\left(x^{2},\left(\alpha x^{2}+\beta\right) v(x)^{2}\right)$, then a calculation from (24) leads to $\ell(x)=x / \lambda_{1}^{2}$, and from (18) we obtain

$$
\begin{align*}
& g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)= \\
& =\widehat{S}_{a, b}^{(k+1) / 2}\left(\frac{\left(\alpha x^{2}+\beta\right) v(\mu(x))^{2}}{\lambda_{1}^{2}}\right)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\left(\alpha \delta(x)^{2}+\beta\right) q(x)^{2}\right), \tag{28}
\end{align*}
$$

where $\delta(x)=\mu(x)$ and $q(x)=v(\mu(x)) / \lambda_{1}$. So we are in case (IV) of Theorem 1.

If $\left(f_{1}(x), g_{1}(x)\right)=\left(\left(\alpha x^{2}+\beta\right) v(x)^{2}, x^{2}\right)$, then since $\operatorname{deg} f_{1}(x)=2$, $v(x)$ is a constant polynomial and we have

$$
\begin{align*}
g(x)= & \widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)= \\
& =\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell_{1} \mu(x)^{2}+\ell_{0}\right)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\left(\ell_{1} \delta(x)^{2}+\ell_{0}\right) q(x)^{2}\right) \tag{29}
\end{align*}
$$

with $\delta(x)=\mu(x)$ and $q(x) \equiv 1$. Again, we arrived at case (IV) of Theorem 1.

Now, if the standard pair $\left(f_{1}(x), g_{1}(x)\right)$ is of the third kind, then $\left(f_{1}(x), g_{1}(x)\right)=\left(D_{2}\left(x, \alpha^{t}\right), D_{t}\left(x, \alpha^{2}\right)\right)$ with t being odd. Let us substitute $f_{1}(x)=x^{2}-2 \alpha^{t}$ into (24) to deduce that $\ell(x)=\left(x+2 \alpha^{t}\right) / \lambda_{1}^{2}$, whence

$$
\begin{equation*}
g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\frac{D_{t}\left(\mu(x), \alpha^{2}\right)+2 \alpha^{t}}{\lambda_{1}^{2}}\right) . \tag{30}
\end{equation*}
$$

It follows from Proposition 7 that $-2 \alpha^{t} / \lambda_{1}^{2}$ is an extremum of the polynomial $D_{t}\left(\mu(x), \alpha^{2}\right) / \lambda_{1}^{2}$, which is of type $(1,2, \ldots, 2)$ as t is odd. This implies that $\left(D_{t}\left(\mu(x), \alpha^{2}\right)+2 \alpha^{t}\right) / \lambda_{1}^{2}=\delta(x) q(x)^{2}$ for some $\delta(x), q(x) \in$ $\mathbb{Q}[x]$ with $\operatorname{deg} \delta(x)=1$. Hence $g(x)$ is of the form as in Theorem 1 (II).

Finally, consider the case when $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair of the fourth kind. Then

$$
\left(f_{1}(x), g_{1}(x)\right)=\left(\frac{D_{2}(x, \alpha)}{\alpha}, \frac{D_{t}(x, \beta)}{\beta^{(t / 2)}}\right),
$$

where t is even. Substituting this into (24), it is easy to calculate that $\ell(x)=(\alpha x+2 \alpha) / \lambda_{1}^{2}$. Hence, by (18), we obtain

$$
\begin{align*}
& g(x)=\widehat{S}_{a, b}^{(k+1) / 2}\left(\ell\left(g_{1}(\mu(x))\right)\right)= \\
& \quad=\widehat{S}_{a, b}^{(k+1) / 2}\left(\frac{\alpha \beta^{-t / 2} D_{t}(\mu(x), \beta)+2 \alpha}{\lambda_{1}^{2}}\right) . \tag{31}
\end{align*}
$$

Now Proposition 7 implies that

$$
-\frac{2 \beta^{t / 2} \alpha \beta^{-t / 2}}{\lambda_{1}^{2}}=-\frac{2 \alpha}{\lambda_{1}^{2}}
$$

is one of the two extrema of the polynomial $\alpha \beta^{-t / 2} D_{t}(\mu(x), \beta) /\left(\lambda_{1}^{2}\right)$ and it is of type $(2,2, \ldots, 2)$ as t is even. It follows that

$$
\frac{\alpha \beta^{-t / 2} D_{t}(\mu(x), \beta)+2 \alpha}{\lambda_{1}^{2}}=q(x)^{2}
$$

for some $q(x) \in \mathbb{Q}[x]$. Thus $g(x)$ is of type (V) in Theorem 1. This completes the proof.

3. Proofs of Theorems 2 and 3

We discuss the proofs of Theorems 2 and 3 jointly by introducing the following notation. Let $\mathrm{T}_{a, b}^{k \pm}(x) \in\left\{\mathrm{T}_{a, b}^{k+}(x), \mathrm{T}_{a, b}^{k-}(x)\right\}$ and similarly, let $\widehat{T}_{a, b}^{m \pm}(x) \in\left\{\widehat{T}_{a, b}^{m+}(x), \widehat{T}_{a, b}^{m-}(x)\right\}$. Now equations (14) and (15) can be written in the common form

$$
\begin{equation*}
\mathrm{T}_{a, b}^{k \pm}(x)=g(y) \tag{32}
\end{equation*}
$$

where $g(y)$ is a rational polynomial of degree at least 3 .
Before starting the proof we need the following auxiliary results besides the ones from the previous sections.

The first one is a deep result of Rakaczki [21] concerning the root structure of shifted Euler polynomials.

Proposition 8. Let $m \geq 7$ be an integer. Then the shifted Euler polynomial $E_{m}(x)+b$ has at least three simple zeros for arbitrary complex number b.

The following result is Lemma 11 in [22]. Let $c_{1}, e_{1} \in \mathbb{Q} \backslash\{0\}$ and $c_{0}, e_{0} \in \mathbb{Q}$.
Lemma 9. The polynomial $E_{k}\left(c_{1} x+c_{0}\right)$ is neither of the form $e_{1} x^{q}+e_{0}$ with $q \geq 3$, nor of the form $e_{1} D_{\nu}(x, \delta)+e_{0}$, where $D_{\nu}(x, \delta)$ is the ν-th Dickson polynomial with $\nu>4, \delta \in \mathbb{Q} \backslash\{0\}$.

The next lemma is a simple consequence of the previous one. Further, it is an analogue of Lemmas 5 and 6 from the preceding section.
Lemma 10. None of the polynomials $T_{a, b}^{k+}\left(c_{1} x+c_{0}\right)$ and $T_{a, b}^{k-}\left(c_{1} x+c_{0}\right)$ are either of the form $e_{1} x^{q}+e_{0}$ with $q \geq 3$, or of the form $e_{1} D_{\nu}(x, \delta)+e_{0}$, where $D_{\nu}(x, \delta)$ is the ν-th Dickson polynomial with $\nu>4, \delta \in \mathbb{Q} \backslash\{0\}$.
Proof. We detail the proof only for the 'positive' case. For the 'negative' case the argument is essentially the same.

Since $\mathrm{T}_{a, b}^{k+}\left(c_{1} x+c_{0}\right)=a^{k} / 2\left(E_{k}(b / a)+E_{k}\left(c_{1} x+c_{0}+b / a\right)\right)$, we have

$$
\begin{equation*}
E_{k}\left(c_{1} x+c_{0}+\frac{b}{a}\right)=\frac{2}{a^{k}} \mathrm{~T}_{a, b}^{k+}\left(c_{1} x+c_{0}\right)-E_{k}\left(\frac{b}{a}\right) . \tag{33}
\end{equation*}
$$

Put $c_{0}^{\prime}=c_{0}+b / a, e_{1}^{\prime}=\left(2 e_{1}\right) /\left(a^{k}\right)$ and $e_{0}^{\prime}=\left(2 e_{0}\right) /\left(a^{k}\right)-E_{k}(b / a)$.
Now if $\mathrm{T}_{a, b}^{k+}\left(c_{1} x+c_{0}\right)=e_{1} x^{q}+e_{0}$ for some $q \geq 3$, then we obtain

$$
E_{k}\left(c_{1} x+c_{0}^{\prime}\right)=e_{1}^{\prime} x^{q}+e_{0}^{\prime} .
$$

This contradicts Lemma 9.
Similarly, if $\mathrm{T}_{a, b}^{k+}\left(c_{1} x+c_{0}\right)=e_{1} D_{\nu}(x, \delta)+e_{0}$ for some $\nu>4$ and $\delta \in \mathbb{Q} \backslash\{0\}$, then by (33) we have

$$
E_{k}\left(c_{1} x+c_{0}^{\prime}\right)=e_{1}^{\prime} D_{\nu}(x, \delta)+e_{0}^{\prime}
$$

contradicting again Lemma 9.
Proof of Theorems 2 and 3. Suppose that equation (32) has infinitely many solutions in integers x, y. Then by Proposition 3, there exist $\varphi(x) \in \mathbb{Q}[x]$ and linear polynomials $\lambda(x), \mu(x) \in \mathbb{Q}[x]$ such that

$$
\begin{equation*}
\mathrm{T}_{a, b}^{k \pm}(x)=\varphi\left(f_{1}(\lambda(x))\right) \quad \text { and } \quad g(x)=\varphi\left(g_{1}(\mu(x))\right), \tag{34}
\end{equation*}
$$

where $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair over \mathbb{Q}. From $\operatorname{deg} \mathrm{T}_{a, b}^{k \pm}(x)=k$ and from Proposition 2 we infer that

$$
\operatorname{deg} \varphi(x) \in\left\{1, \frac{k}{2}, k\right\}
$$

Suppose first that $\operatorname{deg} \varphi(x)=k$. Then (34) implies that $\operatorname{deg} f_{1}(x)=$ 1. Therefore $\mathrm{T}_{a, b}^{k \pm}(x)=\varphi(t(x))$, for a linear polynomial $t(x) \in \mathbb{Q}[x]$. Clearly, $t^{-1}(x) \in \mathbb{Q}[x]$ is also linear. Thus, by (34), we get that $\mathrm{T}_{a, b}^{k \pm}\left(t^{-1}(x)\right)=\varphi\left(t\left(t^{-1}(x)\right)\right)=\varphi(x)$, whence

$$
\begin{equation*}
g(x)=\varphi\left(g_{1}(\mu(x))\right)=\mathrm{T}_{a, b}^{k \pm}\left(t^{-1}\left(g_{1}(\mu(x))\right)\right)=\mathrm{T}_{a, b}^{k \pm}(q(x)), \tag{35}
\end{equation*}
$$

where $q(x)=t^{-1}\left(g_{1}(\mu(x))\right)$. So, if equation (32) has infinitely many solutions, then $g(x)$ is of the form (I) in Theorem 2 or 3, respectively.

Next we assume that $\operatorname{deg} \varphi(x)=1$. Then there exist $\varphi_{1}, \varphi_{0} \in \mathbb{Q}$ with $\varphi_{1} \neq 0$ such that $\varphi(x)=\varphi_{1} x+\varphi_{0}$. We study now the five kinds of standard pairs over \mathbb{Q}. In view of $k \geq 7$ and $\operatorname{deg} g(x) \geq 3$, we see that, in (34), the standard pair $\left(f_{1}(x), g_{1}(x)\right)$ cannot be of the second or the fifth kind.

Now in (34), let $\left(f_{1}(x), g_{1}(x)\right)$ assumed to be a standard pair of the first kind. Then we have either
(i) $\mathrm{T}_{a, b}^{k \pm}\left(\lambda^{-1}(x)\right)=\varphi_{1} x^{t}+\varphi_{0}$, or
(ii) $\mathrm{T}_{a, b}^{k \pm}\left(\lambda^{-1}(x)\right)=\varphi_{1} \alpha x^{r} q(x)^{t}+\varphi_{0}$, where $0 \leq r<t,(r, t)=1$ and $r+\operatorname{deg} q(x)>0$.
In the first case (i), we obtain a contradiction by Lemma 10 since $t=k \geq 7$.

In the case (ii), since

$$
\mathrm{T}_{a, b}^{k \pm}\left(\lambda^{-1}(x)\right)-\varphi_{0}=\frac{a^{k}}{2}\left(E_{k}\left(\lambda^{-1}(x)+\frac{b}{a}\right) \pm E_{k}\left(\frac{b}{a}\right)-\frac{2 \varphi_{0}}{a^{k}}\right),
$$

and since the root structure of a polynomial remains the same if the variable of the polynomial is replaced by a linear polynomial of it, we infer by Proposition 8 that $\mathrm{T}_{a, b}^{k \pm}\left(\lambda^{-1}(x)\right)-\varphi_{0}$ has at least three simple zeros. By the assumptions on r and t, this implies that $r=0$ and $t=\operatorname{deg} g(x)=1$, which contradicts $\operatorname{deg} g(x) \geq 3$.

Finally, suppose that $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair of the third or the fourth kind over \mathbb{Q}. Then we obtain

$$
\mathrm{T}_{a, b}^{k \pm}\left(\lambda^{-1}(x)\right)=\varphi_{1}^{\prime} D_{k}(x, \delta)+\varphi_{0}
$$

where $\varphi_{1}^{\prime} \in\left\{\varphi_{1}, a^{k / 2} \varphi_{1}\right\}$ and $\delta \in \mathbb{Q} \backslash\{0\}$. This is a contradiction by Lemma 10 since $k \geq 7$.

The case $\operatorname{deg} \varphi(x)=k / 2$. Clearly, k is then even, and from (34) we observe that $\operatorname{deg} f_{1}(x)=2$. Hence it follows that, in (34), $\left(f_{1}(x), g_{1}(x)\right)$ cannot be a standart pair of the fifth kind. Further, we obtain a nontrivial decomposition of $\mathrm{T}_{a, b}^{k \pm}(x)$, which by Proposition 2 implies that there exists a linear polynomial $\ell(x)=\ell_{1} x+\ell_{0}$ over \mathbb{Q} such that

$$
\begin{equation*}
\varphi(x)=\widehat{T}_{a, b}^{k / 2 \pm}(\ell(x)) \quad \text { and } \quad \ell\left(f_{1}(\lambda(x))\right)=\left(x+\frac{b}{a}-\frac{1}{2}\right)^{2} . \tag{36}
\end{equation*}
$$

Again, we study the remaining kinds of standard pairs.
First, we consider the case when, in (34), $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair of the first kind. If $f_{1}(x)=x^{t}$, then by $\operatorname{deg} f_{1}(x)=2$, we have $\left(f_{1}(x), g_{1}(x)\right)=\left(x^{2}, \alpha x p(x)^{2}\right)$. Putting $\lambda(x)=\lambda_{1} x+\lambda_{0}$, (36) takes the form $\ell\left(\left(\lambda_{1} x+\lambda_{0}\right)^{2}\right)=(x+b / a-1 / 2)^{2}$, whence an easy calculation gives $\ell(x)=x / \lambda_{1}^{2}$. Substituting this to (34), we obtain

$$
\begin{equation*}
g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\frac{\alpha \mu(x) p(\mu(x))^{2}}{\lambda_{1}^{2}}\right) \tag{37}
\end{equation*}
$$

So $g(x)$ is of the form (III) with $\delta(x)=\alpha \mu(x) / \lambda_{1}^{2}$ and $q(x)=p(\mu(x))$.
In the switched case $\left(f_{1}(x), g_{1}(x)\right)=\left(\alpha x^{r} p(x)^{t}, x^{t}\right)$, where $r<t$, $(r, t)=1$ and $r+\operatorname{deg} p(x)>0, \operatorname{deg} f_{1}(x)=2$ implies that one of the following cases occurs:
(A) $r=0, t=1$ and $\operatorname{deg} p(x)=2$, or
(B) $r=2, t>2$ is odd and $p(x)$ is a constant polynomial.

In case (A) we have $g_{1}(x)=x$, whence from (34) and (36) we obtain

$$
\begin{align*}
g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right) & = \\
& =\widehat{T}_{a, b}^{k / 2 \pm}(\ell(\mu(x)))=\widehat{T}_{a, b}^{k / 2 \pm}\left(\delta(x) q(x)^{2}\right), \tag{38}
\end{align*}
$$

where $\delta(x)=\ell(\mu(x))$ and $q(x) \equiv 1$. Thus $g(x)$ is again of type (III).

In the second case (B), we can write $f_{1}(x)=\beta x^{2}$, with $\beta=\alpha p(x)^{t} \in$ $\mathbb{Q} \backslash\{0\}$. Substituting this to (36), we deduce that $\ell(x)=x /\left(\beta \lambda_{1}^{2}\right)$, whence, by (34), we get

$$
\begin{align*}
g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right)= & \\
& =\widehat{T}_{a, b}^{k / 2 \pm}\left(\frac{\mu(x)^{t}}{\beta \lambda_{1}^{2}}\right)=\widehat{T}_{a, b}^{k / 2 \pm}\left(c \delta(x)^{t}\right), \tag{39}
\end{align*}
$$

where $c=1 /\left(\beta \lambda_{1}^{2}\right), \delta(x)=\mu(x)$ and $t>2$ is odd. This is case (IV) in Theorems 2 or 3 , respectively.

Next let, in (34), be a the standard pair $\left(f_{1}(x), g_{1}(x)\right)$ of the second kind. If $\left(f_{1}(x), g_{1}(x)\right)=\left(x^{2},\left(\alpha x^{2}+\beta\right) v(x)^{2}\right)$, then a calculation from (36) yields $\ell(x)=x / \lambda_{1}^{2}$, and by (34) we have

$$
\begin{align*}
& g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right)= \\
& \quad=\widehat{T}_{a, b}^{k / 2 \pm}\left(\frac{\left(\alpha x^{2}+\beta\right) v(\mu(x))^{2}}{\lambda_{1}^{2}}\right)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\left(\alpha \delta(x)^{2}+\beta\right) q(x)^{2}\right) \tag{40}
\end{align*}
$$

where $\delta(x)=\mu(x)$ and $q(x)=v(\mu(x)) / \lambda_{1}$. So we are in case (V) of our Theorems.

In the switched case $\left(f_{1}(x), g_{1}(x)\right)=\left(\left(\alpha x^{2}+\beta\right) v(x)^{2}, x^{2}\right)$, since $\operatorname{deg} f_{1}(x)=2, v(x)$ is a constant polynomial and

$$
g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right)=\quad=\widehat{T}_{a, b}^{k / 2 \pm}\left(\left(\ell_{1} \mu(x)^{2}+\ell_{0}\right) q(x)^{2}\right),
$$

where $q(x) \equiv 1$. Thus, we arrived again at case (V) with $\delta(x)=\mu(x)$ and $\alpha=\ell_{1}, \beta=\ell_{0}$.

Now, if the standard pair $\left(f_{1}(x), g_{1}(x)\right)$ is of the third kind over \mathbb{Q}, then $\left(f_{1}(x), g_{1}(x)\right)=\left(D_{2}\left(x, \alpha^{t}\right), D_{t}\left(x, \alpha^{2}\right)\right)$ with t being odd. Let us substitute $f_{1}(x)=x^{2}-2 \alpha^{t}$ into (36) to deduce that $\ell(x)=\left(x+2 \alpha^{t}\right) / \lambda_{1}^{2}$, whence

$$
\begin{equation*}
g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\frac{D_{t}\left(\mu(x), \alpha^{2}\right)+2 \alpha^{t}}{\lambda_{1}^{2}}\right) \tag{42}
\end{equation*}
$$

It follows from Proposition 7 that $-2 \alpha^{t} / \lambda_{1}^{2}$ is an extremum of the polynomial $D_{t}\left(\mu(x), \alpha^{2}\right) / \lambda_{1}^{2}$, which is of type $(1,2, \ldots, 2)$ as t is odd. Hence $\left(D_{t}\left(\mu(x), \alpha^{2}\right)+2 \alpha^{t}\right) / \lambda_{1}^{2}=\delta(x) q(x)^{2}$ for some $\delta(x), q(x) \in \mathbb{Q}[x]$ with $\operatorname{deg} \delta(x)=1$. We deduce, that $g(x)$ is of type (III).

Finally, consider the case when $\left(f_{1}(x), g_{1}(x)\right)$ is a standard pair of the fourth kind over \mathbb{Q}. Then

$$
\left(f_{1}(x), g_{1}(x)\right)=\left(\frac{D_{2}(x, \alpha)}{\alpha}, \frac{D_{t}(x, \beta)}{\beta^{(t / 2)}}\right),
$$

with an even t. Substituting this into (36), an easy calculation yields $\ell(x)=(\alpha x+2 \alpha) / \lambda_{1}^{2}$, whence, by (34), we obtain

$$
\begin{align*}
g(x)=\widehat{T}_{a, b}^{k / 2 \pm}\left(\ell\left(g_{1}(\mu(x))\right)\right) & = \\
& =\widehat{T}_{a, b}^{k / 2 \pm}\left(\frac{\alpha \beta^{-t / 2} D_{t}(\mu(x), \beta)+2 \alpha}{\lambda_{1}^{2}}\right) . \tag{43}
\end{align*}
$$

Now from Proposition 7 we infer that

$$
-\frac{2 \beta^{t / 2} \alpha \beta^{-t / 2}}{\lambda_{1}^{2}}=-\frac{2 \alpha}{\lambda_{1}^{2}}
$$

is one of the two extrema of the polynomial $\alpha \beta^{-t / 2} D_{t}(\mu(x), \beta) /\left(\lambda_{1}^{2}\right)$ and it is of type $(2,2, \ldots, 2)$ as t is even. Therefore we have

$$
\frac{\alpha \beta^{-t / 2} D_{t}(\mu(x), \beta)+2 \alpha}{\lambda_{1}^{2}}=q(x)^{2}
$$

for some $q(x) \in \mathbb{Q}[x]$. Thus $g(x)$ is of type (II), and the proof is complete.

Acknowledgements

Research was supported by the Hungarian Academy of Sciences and by the OTKA grant NK104208.

References

1. A. Bazsó, On alternating power sums of arithmetic progressions, Integral Transforms Spec. Funct., 24 (2013), 945-949.
2. A. Bazsó, D. Kreso, F. Luca and Á. Pintér, On equal values of power sums of arithmetic progressions, Glas. Mat. Ser. III, 47 (2012), 253-263.
3. A. Bazsó, Á. Pintér and H. M. Srivastava, On a refinement of Faulhaber's Theorem concerning sums of powers of natural numbers, Appl. Math. Letters, 25 (2012), 486-489.
4. M. A. Bennett, A superelliptic equation involving alternating sums of powers, Publ. Math. Debrecen, 79 (2011), 317-324.
5. M. A. Bennett, K. Győry and Á. Pintér, On the Diophantine equation $1^{k}+2^{k}+\cdots+x^{k}=y^{n}$, Compos. Math., 140 (2004), 1417-1431.
6. Y. F. Bilu, Quadratic factors of $f(x)-g(y)$, Acta Arith., 90 (1999), 341-355.
7. Y. F. Bilu and R. F. Tichy, The Diophantine equation $f(x)=g(y)$, Acta Arith., 95 (2000), 261-288.
8. Y. F. Bilu, B. Brindza, P. Kirschenhofer, Á. Pintér and R. F. Tichy, Diophantine equations and Bernoulli polynomials (with an Appendix by A. Schinzel), Compositio Math., 131 (2002), 173-188.
9. J. Brillhart, On the Euler and Bernoulli polynomials, J. Reine Angew. Math., 234 (1969), 45-64.
10. B. Brindza, On some generalizations of the diophantine equation $1^{k}+2^{k}+$ $\ldots+x^{k}=y^{z}$, Acta Arith., 44 (1984), 99-107.
11. K. Dilcher, On a Diophantine equation involving quadratic characters, Compositio Math. 57 (1986), 383-403.
12. K. GyőRy and Á. Pintér, On the equation $1^{k}+2^{k}+\ldots+x^{k}=y^{n}$, Publ. Math. Debrecen, 62 (2003), 403-414.
13. K. Győry, R. Tijdeman and M. Voorhoeve, On the equation $1^{k}+2^{k}+$ $\ldots+x^{k}=y^{z}$, Acta Arith., 37 (1980), 234-240.
14. F. T. Howard, Sums of powers of integers via generating functions, Fibonacci Quart., 34 (1996), 244-256.
15. M. Jacobson, Á. Pintér and P. G. Walsh, A computational approach for solving $y^{2}=1^{k}+2^{k}+\cdots+x^{k}$, Math. Comp., 72 (2003), 2099-2110.
16. É. Lucas, Problem 1180, Nouvelles Ann. Math., 14 (1875), 336.
17. M. Kulkarni and B. Sury, Diophantine equations with Bernoulli polynomials, Acta Arith., 116 (2005), 25-34.
18. M. Kulkarni and B. Sury, A class of Diophantine equations involving Bernoulli polynomials, Indag. Math. (N.S.), 16 (2005), 51-65.
19. M. Kulkarni and B. Sury, On the Diophantine equation $1+x+\frac{x^{2}}{2!}+\ldots+$ $\frac{x^{n}}{n!}=g(y)$., In: Diophantine equations, 121-134, Tata Inst. Fund. Res. Stud. $\stackrel{n}{M a t h} .$, Mumbai, 2008.
20. Cs. Rakaczki, On the Diophantine equation $S_{m}(x)=g(y)$, Publ. Math. Debrecen, 65 (2004), 439-460.
21. Cs. Rakaczki, On the simple zeros of shifted Euler polynomials, Publ. Math. Debrecen, 79 (2011), 623-636.
22. Cs. Rakaczki and D. Kreso, Diophantine equations with Euler polynomials, Acta Arith., 161 (2013), 267-281.
23. J. J. SchÄffer The equation $1^{p}+2^{p}+3^{p}+\cdots+n^{p}=m^{q}$ Acta Math., 95 (1956), 155-189.
24. A. Schinzel, Polynomials with special regard to reducibility, Cambridge University Press, 2000.
25. J. Urbanowicz, On the equation $f(1) 1^{k}+f(2) 2^{k}+\ldots+f(x) x^{k}+R(x)=b y^{z}$, Acta Arith., 51 (1988), 349-368.
26. J. Urbanowicz, On diophantine equations involving sums of powers with quadratic characters as coefficients, I., Compositio Math., 92 (1994), 249-271.
27. J. Urbanowicz, On diophantine equations involving sums of powers with quadratic characters as coefficients, II., Compositio Math., 102 (1996), 125140.
28. M. Voorhoeve, K. Győry and R. Tijdeman, On the diophantine equation $1^{k}+2^{k}+\ldots+x^{k}+R(x)=y^{z}$, Acta Math., 143 (1979), 1-8; Corr. 159 (1987), 151-152.

András Bazsó
Institute of Mathematics
MTA-DE Research Group "Equations Functions and Curves"
Hungarian Academy of Sciences and University of Debrecen
P.O. Box 12, H-4010 Debrecen, Hungary
E-mail address: bazsoa@science.unideb.hu

[^0]: Date: August 11, 2014.
 2010 Mathematics Subject Classification. 11D41, 11B68.
 Key words and phrases. Diophantine equations, Bernoulli polynomials, Euler polynomials.

