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16 Abstract
17 The use of gadolinium-based contrasting agents (GBCA) is increasing because of the intensive 

18 usage of these agents in magnetic resonance imaging (MRI). Waste-water treatment does not 

19 reduce anthropogenic Gd-concentration significantly. Anomalous Gd-concentration in surface 

20 waters have been reported worldwide. However, removal of GBCA-s by aquatic macrophytes 

21 has still hardly been investigated. 

22 Four aquatic plant species (Lemna gibba, Ceratophyllum demersum, Elodea nuttallii, E. 

23 canadensis) were investigated as potential biological filters for removal of commonly used but 

24 structurally different GBCA-s (Omniscan, Dotarem) from water. These plant species are known 

25 to accumulate heavy metals and are used for removing pollutants in constructed wetlands. The 

26 Gd uptake and release of the plants was examined under laboratory conditions. Concentration-

27 dependent infiltration of Gd into the body of the macrophytes was measured, however 

28 significant bioaccumulation was not observed. The tissue concentration of Gd reached its 

29 maximum value between day one and four in L. gibba and C. demersum, respectively, and its 

30 volume was significantly higher in C. demersum than in L. gibba. In C. demersum, the open-

31 chain ligand Omniscan causes two-times higher tissue Gd concentration than the macrocyclic 

32 ligand Dotarem. Gadolinium was released from Gd-treated duckweeds into the water as they 

33 were grown further in Gd-free nutrient solution. Tissue Gd concentration dropped by 50% in 

34 duckweed treated by Omniscan and by Dotarem within 1.9 and 2.9 days respectively. None of 

35 the macrophytes had a significant impact on the Gd concentration of water in low and medium 

36 concentration levels (1-256 μg L-1). Biofiltration of GBCA-s by common macrophytes could 

37 not be detected in our experiments. Therefore it seems that in constructed wetlands, aquatic 

38 plants are not able to reduce the concentration of GBCA-s in the water. Furthermore there is a 

39 low risk that these plants cause the accumulation of anthropogenic Gd in the food chain. 

40

41 Keywords: gadolinium, contrasting agent, biofiltration, macrophytes, uptake, leaching
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42 1. Introduction

43 The development of new technologies in the last quarter century has led to the steadily 

44 increasing use of rare earth elements (REE) and their consequent release into the environment 

45 (Du and Graedel, 2011; Tepe et al., 2014). The occurrence of abnormally high concentrations 

46 of REE in the hydrosphere was first reported by Bau and Dulski in 1996 (Bau and Dulski, 

47 1996). They detected positive Gd anomalies in surface waters, ground water and in tap water 

48 in the area of Berlin. Further research supported the view that the positive Gd anomaly is by no 

49 means a local phenomenon. It is characteristic of those metropolitan areas where a high number 

50 of magnetic resonance imaging (MRI) studies are performed, due to a developed health care 

51 system (Kulaksiz and Bau, 2011, 2007; Tepe et al., 2014). 

52 MRI studies using gadolinium-based contrasting agents (GBCA) were introduced to 

53 medical diagnostics in 1988 (de Haën, 2001). These contrasting agents have high paramagnetic 

54 properties, they are water-soluble and highly stable to prevent any interaction of toxic Gd3+ 

55 with the body. For the purpose of an MRI study, a contrast agent containing 1000-3000 mg Gd 

56 is injected into the human bloodstream and extracted via the kidneys as urine within 24-48 

57 hours (Swan et al., 1999). During the twenty years since the introduction of MRI contrasting 

58 agents, an estimated 200 million applications of gadolinium-based contrasting agent (GBCA) 

59 have been performed worldwide (Hao et al., 2012). For contrast agent applications, 

60 approximately 22–66 tons of Gd is used each year globally (Kulaksiz and Bau, 2011).

61 After the elimination from human bodies, these chelates pass smoothly through sewage 

62 treatment plants and are discharged by their effluents into the hydrosphere (Möller and Dulski, 

63 2010a). The elevated concentration of Gd does not decrease significantly during waste water 

64 treatment (Lawrence et al., 2009; Möller and Dulski, 2010b). The reason for this phenomenon 

65 is either their high solubility (they are not absorbed by organic particulate matter), or resistance 
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66 to microbial degradation (Lawrence et al., 2009; Verplanck et al., 2005). Therefore, Gd 

67 complexes are eventually passed into rivers and lakes, bypassing waste water treatment plants 

68 (WWTP). In addition, in those riverside cities, where the water is supplied by bank-filtered 

69 wells (e.g. Berlin, London), anthropogenic Gd can even be detected in tap water (Kulaksiz and 

70 Bau, 2011), since bank filtration does not prevent the migration of Gd-complexes into the 

71 hydrosphere (Möller et al., 2000). The extent of the anthropogenic Gd anomaly depends on the 

72 population density in the river catchment, the level of the health care system and the ratio of 

73 Gd-contaminated discharge from WWTPs to uncontaminated natural river discharge (Bau et 

74 al., 2006; Kulaksiz and Bau, 2007; Merschel et al., 2015). From the rivers, these micropollutants 

75 eventually reach coastal seawater (Kulaksiz and Bau, 2011, 2007; Nozaki et al., 2000). A 

76 positive Gd anomaly can be detected in bays worldwide e.g. North Sea (Kulaksiz and Bau, 

77 2007), Mediterranean Sea (Rabiet et al., 2009), Pacific Ocean at San Francisco, USA (Hatje et 

78 al., 2016), Nagoya, Japan (Zhu et al., 2004), Brisbane, Australia (Lawrence, 2010).

79 It is well known that phytoremediation with aquatic plants is an effective and inexpensive 

80 method for removing pollutants from the medium. In temperate regions, free floating emergent 

81 (L. gibba) (Körner and Vermaat, 1998, Ran et al 2004) and submerged plants (Ceratophyllum 

82 demersum, Elodea canadensis, E. nuttallii) are able to grow rapidly in water containing high 

83 concentration of nitrogen and phosphorus (Pietro et al., 2006). Moreover they highly 

84 accumulate heavy metals (eg. Cr, Cd, Ni, U, Pb). Therefore they are used for removing 

85 pollutants from industrial wastewater effluents in constructed wetlands (Khan et al. 2009). 

86 In spite of several studies that have shed light on the hydrological and geological 

87 behaviour of the anthropogenic Gd complexes, only a few studies deal with the impact of Gd 

88 complexes on aquatic organisms (Kulaksiz and Bau, 2013; Merschel and Bau, 2015). No single 

89 publication addresses the issue of whether GBCA-s can be accumulated by aquatic macrophytes. 
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90 The question remains completely open whether aquatic macrophytes are able to remove 

91 anthropogenic Gd complexes. 

92 Therefore, the aim of this study is to examine the Gd removal potential of aquatic plants 

93 (L. gibba, C. demersum, E. nuttallii and E. canadensis). A further aim is to investigate the 

94 accumulation possibilities and mobilisation kinetics of GBCA-s in freshwater macrophytes. 

95

96 2. Material and methods

97 2.1. Plant collection

98 Shoots of submerged rootless species (C. demersum) and free-floating species (L. gibba) were 

99 collected from ditches near Nyíregyháza, (NE Hungary). Submerged rooted species E. 

100 canadensis and E. nuttallii were collected from the river Bodrog and from the Eastern 

101 Principal Channel in the surroundings of Hajdunánás (NE Hungary), respectively (Fig. 1).

102

103 2.2. Pre-incubation and experimental conditions

104 The pre-incubation under experimental conditions lasted for 20 days. Duckweed fronds 

105 and apical shoots of submerged plants (E. canadensis, E. nuttallii, C. demersum) were placed 

106 in 20 L aquaria separately, containing growth medium, modified from Smart and Barko 

107 (Smart and Barko, 1985). For the submers plants (E. canadensis, E. nuttallii, and C. 

108 demersum), nitrogen and phosphorus concentrations were adjusted to 2 mg N L-1 and 

109 0.4 mg P L-1, and for duckweed (L. gibba) to 10 mg N L-1 and 2 mg P L-1 respectively. 

110 Nitrogen was added as NH4NO3, phosphorus as K2HPO4. Supply of micronutrients was 

111 ensured by adding TROPICA Supplier micronutrient solution with a 10,000 times dilution. 

112 The concentrations after dilution were: Fe 0.07, Mn 0.04, Zn 0.002, Cu 0.006 and Mo 

113 0.002 mg L-1 respectively (Szabó et al., 2003). During pre-incubation, the solution was 

114 renewed twice a week. After the pre-incubation period, the length of the shoots was reduced 
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115 to 150 mm. The incubation experiments are described in the section 2.2. During incubation, 

116 culture pots were set under controlled temperature water bath at 22-25°C. Illumination was 

117 provided by Philips 400 W metal halide lamps with 16 h light and 8h dark regime. 

118 Photosynthetically active radiation (PAR) was 220 molm-2s-1 measured on the water surface.

119

120 2.3. Analytical methods 

121 Simple open-vessel acid digestion was used to dissolve the plant materials. For the 

122 measurements, 100-200 mg of dried plant samples were weighed into glass beakers. The 

123 digestion was carried out with 5 mL of 67% (m/m) nitric acid (Promochem, suprapure) and 

124 5 mL 30% (m/m) hydrogen peroxide (Molar Chemicals). The samples were spiked with 25 L 

125 100 mgL-1 terbium solution (C.P.A. Ltd.) as an internal standard (ISTD) and heated slowly to 

126 90°C. This temperature was maintained up to 60 min until the solid remains of the samples 

127 completely disappeared. When the dissolution was completed, the samples were evaporated to 

128 dryness and washed to 50 mL volumetric flasks with 1% (m/v) nitric acid. The concentration 

129 of ISTD was 50 gL-1 in the sample solutions.

130 Water samples were filtered through membrane syringe filters with pore size of 0.45 m 

131 (Hydrophilic, Ministart NY 25 mm, Sartorius). From the filtered sample, 50 mL was measured 

132 and spiked with 25 L 100 mgL-1 Tb solution for setting the concentration of ISTD to 50 gL-1.

133 Analysis of gadolinium was performed using an Agilent 8800 inductively coupled plasma mass 

134 spectrometer (ICP-MS). Integration time was 1 s for the 157Gd isotope and 0.5 s for the 159Tb. 

135 Tune mode was MS/MS and collision cell was used with 5 mLmin-1 helium flow. The limit of 

136 quantification (LOQ) of Gd was ≤0.05 gL-1 (RSD <5%). Recovery of the ISTD was between 

137 95 and 105%. The parameters used in this analysis are shown in Table 2. The concentration of 

138 Gd was expressed as gkg-1 fresh weight in the case of plant materials and as gL-1 in the case 

139 of solutions.
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140

141 Table 1
142 Instrumental parameters for the analysis of Gd by ICP-MS/MS

Instrumental parameter
RF power (W): 1550
Plasma gas flow (Lmin-1): 15
Auxiliary gas flow (Lmin-1): 0.7
Nebuliser: Micromist
Nebuliser gas flow (Lmin-1): 0.65
Dilution gas flow (Lmin-1): 0.40
Sample flow rate (mLmin-1): 0.1
Replicates: 10
Tune mode: MS/MS
He flow rate (mLmin-1): 5
Octopole bias (V): -18

143

144 2.4. Gadolinium mobilisation experiments

145 The mobilisation of Gd contrasting agents into aquatic macrophytes was investigated in 

146 four subsequent experiments. Two world widely used commercial available GBCAs were 

147 used in the experiments (Fig.2). Omniscan (gadodiamide) is a linear, non-ionic type of GBCA, 

148 while Dotarem (gadoterate meglumine) is a macrocyclic, ionic one (Rogosnitzky and Branch, 

149 2016). Three culture pots were used per treatment in each experiment. The survey of 

150 experiments is detailed in Table 2.

151

152 Table 2
153 Characteristics of Gd-CA mobilisation experiments

Number of
Experiment Species Contrast 

agent
Gd in the 

water (μg L-1)
Analysed 

sample type
Pot volume 

(L)
1 L. gibba

C. demersum
E. canadensis,

E. nuttallii

Dotarem 1 water 2.0

2 L. gibba Dotarem 1-256 water, plant 0.3
3 L. gibba

C. demersum
Dotarem

Omniscan
256 plant 2.0

4 L. gibba Dotarem
Omniscan

256 till 8 days
Gd-free solution

water, plant 2.0
0.2

154
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155 2.4.1. Impact of macrophytes on the Gd concentration of the water

156 Experiment 1 was designed to measure the change in Gd concentration of the nutrient 

157 solutions in the presence of four different macrophytes. 10 g biomass of macrophytes (L. gibba, 

158 C. demersum, E. nuttallii, E. canadensis) were cultivated in 2 L aquaria containing 2 L culture 

159 medium described above. Gadolinium concentration in the medium was adjusted to 1 μg L-1 by 

160 adding Dotarem. Three aquaria were used per treatment. Gd-treated macrophytes were 

161 cultivated under experimental conditions for 6 days. Samples were taken from the solutions at 

162 the start of the experiment (control), and at the 1st, 2nd, 4th and 6th days. Samples were filtered 

163 immediately using a 0.45 μm membrane and analysed for Gd concentration by ICP MS. 

164

165 2.4.2. Change in tissue Gd concentration

166 Experiment-2 was designed to determine the change in tissue Gd concentration in duckweed 

167 (L. gibba) under a wide range of Gd concentrations.

168 Duckweed fronds (1000±2mg) were cultivated for 8 days in pots containing 0.3 L nutrient 

169 solution. Initial Gd concentrations in the medium were adjusted to 1, 2, 4, 8, 16, 64, 128 and 

170 256 μg L-1 by adding Dotarem. Each treatment was replicated three times, meaning that 24 pots 

171 were used. Samples were taken from the solutions at the start of the experiment and on the 8th 

172 day. Samples were filtered on 0.45 μm membrane and analysed for Gd concentration by ICP 

173 MS. After the plants were harvested, the fresh and dry weight of the duckweed fronds of each 

174 treatment was measured using an analytical balance. Samples were dried at 105ºC until constant 

175 weight was achieved (within 24 hours). The chemical composition of the duckweed fronds for 

176 Gd was analysed by ICP MS, after acid digestion. 

177

178 2.4.3. Gd mobilisation into macrophytes 



ACCEPTED MANUSCRIPT

9

179 Experiment-3 was designed to determine the infiltration dynamics of two different forms of Gd 

180 complexes into two freshwater macrophytes (L. gibba; C. demersum). Fronds of L. gibba (10 g 

181 fresh weight) and C. demersum shoots (40 g fresh weight) were cultivated for 8 days under 

182 experimental conditions in aquaria, each containing 2 L nutrient solution. The initial Gd 

183 concentration in the medium was adjusted to 256 μg L-1 by adding either macrocyclic Dotarem 

184 or open-chained Omniscan Gd complexes. Each treatment was replicated three times, meaning 

185 that 12 aquaria were used. Plant samples (2000±2mg fresh weight) from each aquarium were 

186 taken at the beginning of the experiment, after 12 hours, and after 1, 2, 4 and 8 days. The plant 

187 material was dissolved by acid digestion and the concentration of Gd in the duckweed fronds 

188 was determined by ICP MS.

189

190 2.4.4. Leaching of Gd complexes

191 Experiment-4 was designed to determine the dynamics of two Gd complexes during leaching 

192 from Gd-treated duckweed (L. gibba). Duckweed fronds were cultivated for 8 days under 

193 experimental conditions in separate aquaria, each containing 2 L nutrient solution. A PVC-tube 

194 (9 cm length) with a diameter of 5 cm was placed vertically in each aquarium. It served as a 

195 duckweed enclosure (Szabó et al., 2003). Portions of pre-incubated duckweed fronds (3.00 g 

196 fresh weight) were placed inside the enclosures. This method allowed us to culture duckweed 

197 on a static medium under optimal conditions avoiding overcrowding as well as algal inhibition 

198 (Szabó et al., 2003, 2010). The initial Gd concentration in the medium was adjusted to 256 μgL-

199 1 by adding either Dotarem or Omniscan Gd complex forms. For both treatments, six aquaria 

200 were used. For the optimal growth of duckweed, 10 mg N L-1 and 2 mg P L-1 (NH4NO3, 

201 K2HPO4) were supplemented in the medium on days three and six. On the last day, all duckweed 

202 fronds were gathered from each aquaria (10-11 g fresh weight) then rinsed with tap water. 

203 Water was removed from the surface of the plants by using a salad centrifuge. 
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204 Subsequently, portions of duckweed fronds (2.000 ± 0.002 g fresh weight) were 

205 cultivated on Gd-free nutrient media for 21days. The initial concentration of Gd was determined 

206 by three parallel sample. Then 3 parallel samples of each GBCA treatments were collected after 

207 12 hour, and after 1, 1.5, 4, 8, 11, 16 and 21 days. The dry weight of the duckweed fronds from 

208 both treatments was measured and after acid digestion the Gd concentration of the fronds was 

209 analysed by ICP MS. Samples were also taken directly from the solutions and then were filtered 

210 and analysed for their Gd concentration.

211

212 2.5. Statistical analysis

213 One-way analysis of variance (ANOVA) was used to test the effects of the investigated factors 

214 (e.g. concentration of Gd in the water, incubation time). Levene’s test was applied to check the 

215 homogeneity of variances. In the case of heteroscedasticity, a Kruskal-Wallis test was used 

216 instead of ANOVA. These analyses were performed using SPSS 16.0 software. Linear 

217 regression analysis was used to investigate the uptake of Gd at different concentration levels. 

218 Nonlinear models were fitted in the case of time dependent uptake studies. Regression models 

219 were calculated by LAB Fit curve-fitting software. 

220

221 3. Results

222 3.1. The impact of macrophytes on the Gd concentration of the nutrient solution

223 The Dotarem-spiked nutrient solution was stable under experimental conditions, the Gd-

224 concentration was not changed by any physical or chemical processes (e.g. precipitation, 

225 sorption, evaporation). Recovery of Gd in the nutrient solution was 1.07±0.03 gL-1 at the 

226 beginning of the experiment measured by ICP-MS (Fig.3). The concentration of control 

227 samples had not changed significantly (ANOVA, F(2,6)=1.478, p=0.301) within 6 days, the 
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228 average concentration of Gd remained 1.1±0.4 gL-1. Variances were homogeneous as checked 

229 by the Levene-test (W(2,6)=0.350, p=0,718). 

230 Variances were significantly different in the case of L. gibba (W(2,3)=8.353, p=0.018) 

231 and C. demersum (W(2,6)=6.082, p=0.036). Therefore, comparisons were done using a 

232 nonparametric Kruskal-Wallis test. The concentration of Gd was not changed significantly by 

233 L. gibba (Chi2
(2)=1.689, p=0.430), but C. demersum might have an effect on the conentration 

234 of Gd (Chi2
(2)=5.956, p=0.051). 

235 Since the variances were homogeneous (E. nuttallii: W(2,6)=0.801, p=0.492; E. 

236 canadensis: W(2,6)=0.954, p=0.437), ANOVA was applied to the comparisons in the case of 

237 Elodea species. Significant differences could not observed for E. nuttallii (F(2,6)=0.066, 

238 p=0.963). A significant difference was found for E. canadensis (F(2,6)=33.878, p=0.001), the 

239 correlation coefficient between time and Gd-concentration was -0.987, suggesting that this 

240 macrophyte may lower the concentration of Gd in water.

241

242 3.2. Change in tissue Gd concentration

243 Since intensive uptake of Gd from 1 gL-1 Dotarem solution was not detected by experiment-1, 

244 the maximum concentration of Gd was increased to 256 gL-1 in experiment-2. The 

245 concentration of Gd in L. gibba tissue and in the water phase was measured after 8 days 

246 incubation. The average fresh weight of L. gibba was 3.2±0.2 g (RSD 6.5%) at the end of the 

247 experiment. 

248 The Gd concentration of L. gibba tissues increased linearly with increasing Gd concentration 

249 of the water (Fig.4A). Comparing the initial and final Gd concentration of the solutions, the 

250 slope was found to be close to one (0.985±0.006) (Fig.4B). Recovery of Gd was also calculated 

251 at the different levels. Their variances (Levene test, W(8,18)=1.135, p=0.387), and their averages 

252 (ANOVA, F(8,18)=0.761, p=0.640) were similar and L. gibba lowered the initial concentration 
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253 of Gd by 1.45%. The total Gd (100%) was initially present in the water. After 8 days of 

254 incubation, 0.80±0.08% of the total Gd was detected in the biomass.

255

256 3.3. Time dependent uptake of Gd by macrophytes 

257 The uptake kinetics of L. gibba was similar in the case of Dotarem and Omniscan (Fig.5), as 

258 indicated by the similar equation parameters. The best fit equation was a modified exponential. 

259 The concentration increased rapidly (within a day) to the saturation value. 

260 Table 3
261 Parameters of fitted equations for the time dependent uptake of gadolinium based contrast 
262 agents (GBCA) by macrophytes

ParametersSpecies GBCA Model a b R

L. gibba Dotarem 39.57±2.93 -0.037±0.001 0.9678
Omniscan

y = a*EXP(b/x)
(modified exponential) 39.05±1.96 -0.037±0.001 0.9596

C. demersum Dotarem 25.42±3.37 0.460±0.088 0.9058
Omniscan

y = a*xb

(power) 47.21±2.16 0.556±0.033 0.9811
263

264 In the case of C. demersum, saturation was not achieved within 8 days. However, the uptake of 

265 Omniscan was faster than the uptake of Dotarem (Fig.6). The best fit equation was a power law 

266 (Table 3), where the exponents (parameter b) were similar. By the end of the experiment, 

267 Omniscan resulted three times higher tissue Gd concentration in C. demersum compared to L. 

268 gibba. 

269

270 3.4. Leaching of Gd complexes

271 When Gd-treated L. gibba was placed into clean nutrient solution, the Gd appeared shortly in 

272 the water and its concentration increased with time. The release of Gd into the Gd-free nutrient 

273 solution was significantly higher from Omniscan-treated duckweed than the duckweed that 

274 were cultivated on Dotarem (Fig.7). 
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275 Parameters of the best fit models are given in Table 4. Leaching of Gd from L. gibba 

276 could be fitted by an exponential equation for both GBCA. Leaching of Omniscan from the 

277 duckweed frond was slightly faster than the leaching of Dotarem. This effect is unambiguous 

278 as observed by the change in the Gd concentration of water. The fitted model was a power law, 

279 where the exponents (parameter b) were similar. The concentration of Gd on the last day was 

280 1.0±0.1 gL-1 in the case of Dotarem and 1.6±0.2 gL-1 in the case of Omniscan (Fig.7). 

281 The decrease in tissue Gd concentration of duckweed was significantly faster (P<0.001, 

282 ANOVA) in plants treated by Omniscan than by Dotarem, when placed in the Gd-free nutrient 

283 solution. The half-life of Dotarem was calculated to be 2.9 days, and 1.9 days for the Omniscan.

284 Mass balances of GBCA-s in the duckweed fronds and in the water were determined. 

285 The total Gd (100%) was initially present in the GBCA treated plants. After eight days there 

286 was a net flux of Gd from the duckweed into the water (Dotarem 83%, Omniscan 89%). At the 

287 end of the experiment 99% of Dotarem and 100% of Omniscan released from the duckweed 

288 plants into the water (Fig.8).

289 Table 4
290 Parameters of fitted equations for the time dependent release of gadolinium based contrast 
291 agents (GBCA) from L. gibba and increase in water

ParametersSpecies GBCA Model a B r

Plant tissue Dotarem 58.55±2.61 -0.241±0.005 0.8953
Omniscan

y = a*EXP(bx)
(exponential) 78.71±3.27 -0.358±0.023 0.9725

Water Dotarem 0.22±0.01 0.487±0.030 0.9759
Omniscan

y = a*xb

(power) 0.34±0.02 0.485±0.028 0.9656
292
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293 4. Discussion 

294 4.1. Gadolinium uptake by macrophytes 

295 Among the macrophytes investigated, several studies have shown that L. gibba (Scheffer et al., 

296 2003; Szabó et al., 2003), E. nuttallii and C. demersum (Lombardo and Cooke, 2003) have high 

297 nutrient removal activity. These plants can reduce the macronutrient (N, P) or micronutrient 

298 (Fe, Mn) concentration in water by 90% within a few days (Szabó et al., 2010). They can 

299 remove lead (Mishra et al., 2006), chromium (Uysal, 2013) nickel (Demirezen et al., 2007), 

300 arsenic, boron and uranium (Sasmaz and Obek, 2009) usually with high efficiency. Therefore, 

301 our result that neither of the four investigated macrophytes had any significant impact on the 

302 Gd-concentration of water was unexpected. 

303 However, Gd complexes quickly infiltrated into the body of the macrophytes in 

304 proportion to their concentration. It is clear, however, that tissue Gd concentration in the 

305 biomass was not higher than the Gd concentration in the medium (bioaccumulation factor <1). 

306 Therefore, we can say that neither of the Gd complexes are accumulated into the body of the 

307 investigated species and the concentrations in the plant tissue just reflects the concentration of 

308 the medium. In contrast, bioaccumulation factors of these macrophythes for heavy metals (e.g. 

309 Mn, Cr, Pb, Ni, Cd) are in the range of 100-100000 (Landolt and Kandeler, 1987).

310 The concentration of Gd reached its maximum within one day in L. gibba and within four days 

311 in C. demersum, respectively. The open-chained Omniscan, resulted in two times higher tissue 

312 Gd concentration in C. demersum than the macrocyclic GBCA Dotarem. Up to now, there is 

313 only a single study that deals with the kinetics of GBCA uptake in an emergent aquatic 

314 macrophyte (Lemna minor) (Lingott et al., 2016). In that experiment, tissue Gd was analysed 

315 by laser ablation techniques, even so the results are parallel to our study, since they also found 

316 the plants saturated with Gd contrasting agent within 24 hours. 

317
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318 4.2. Leaching of Gadolinium from macrophytes 

319 Since the GBCA are released from the human body within a few days (Swan et al., 1999), it 

320 can be assumed that they show similar mobility in other organisms as well. In the present study, 

321 Gd complexes were released from Gd-treated duckweeds into the medium as they were grown 

322 further on Gd-free nutrient solution. Tissue Gd concentration dropped by one-half in treated 

323 duckweed by about 1.9 days for Omniscan and 2.9 days for Dotarem. Therefore, it can be seen 

324 that the mobility of open-chain Gd complexes into and out of the plants is faster than that of 

325 macrocyclic ones. In the present study, the release of Gd from L. gibba into the Gd free solution 

326 took place much faster (half-life time <3 days) than that of macroelements (K, Ca, Mg, S, N; 

327 half-life time 40-80 day) measured during decomposition in an earlier study (Szabó et al., 

328 2000). These results suggest that Gd mobilisation into and out of the macrophytes is merely 

329 influenced by physical processes (diffusion, differences in concentration) and not any chemical 

330 process. 

331 It should be noted that in our study the total Gd concentration was measured both in 

332 water and in plant samples. The concentration of GBCAs were not analysed in the samples. If 

333 Gd would be released from the complex forms, ligand free Gd could show high (103-104) 

334 bioaccumulation factor for freshwater plants (Lemna minor, Potamogeton pectinatus) (Weltje 

335 et al. 2002). Since, there was no detectable bioaccumulation in our experiments, and the 

336 leaching of Gd from the plant tissue was high, it could be concluded, that Gd still remained in 

337 stable complex form during the experiment. 

338

339 5. Conclusion

340 This is the first study dealing with the mobilisation of gadolinium based contrast agent in 

341 aquatic macrophytes. Based on our experimental results, the mobilisation of Gd complexes into 

342 and out of the freshwater macrophytes is relatively fast. Biofiltration of GBCA-s by common 



ACCEPTED MANUSCRIPT

16

343 macrophythes could not be detected in our experiments. Since there is no significant 

344 accumulation of Gd observed by these aquatic plants, we conclude that in constructed wetlands, 

345 aquatic plants are not able to reduce the concentration of GBCA-s in the water. Furthermore 

346 there is a low risk that these plants cause any accumulation of anthropogenic Gd in the food 

347 chain.

348
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Highlights

Aquatic plants showed concentration dependent gadolinium infiltration

Fast and complete leaching of gadolinium from macrophythes was detected

Macrophytes could not biofiltrate/accumulate gadolinium based contrasting agents

No risk that macrophytes cause the gadolinium enrichment into the food chain
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