
 

 
 

 

 

Imaging Correlates of the Epileptogenic Zone and Functional 

Deficit Zone using 

Diffusion Tensor Imaging (DTI) 

 

 

By  

 

Beate Diehl 

 

 

Thesis submitted for the degree of Doctor of Philosophy 

 

 

 

Department of Clinical and Experimental Epilepsy  

Institute of Neurology 

University College 

London  

 

 



Beate Diehl - PhD Thesis 

- i - 
 

DECLARATION 
 
 
 
 
I, Beate Diehl, confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

 

 

 

 

 

 

Beate Diehl        London, October 2010 



Beate Diehl - PhD Thesis 

- ii - 
 

ABSTRACT 
 
Focal epilepsy is a common serious neurologic disorder. One out of three patients 

is medication refractory and epilepsy surgery may be the best treatment option. 

Neuroimaging and electroencephalography (EEG) techniques are critical tools to 

localise the ictal onset zone and for performing functional mapping to identify the 

eloquent cortex in order to minimise functional deficits following resection.   

  

Diffusion tensor magnetic resonance imaging (DTI) informs about amplitude 

(diffusivity) and directionality (anisotropy) of diffusional motion of water molecules 

in tissue.This allows inferring information of microstructure within the brain and 

reconstructing major white matter tracts (diffusion tensor tractography, DTT), 

providing in vivo insights into connectivity.  

 

The contribution of DTI to the evaluation of candidates for epilepsy surgery was 

examined:  

 

1. Structure function relationships were explored particularly correlates of 

memory and language dysfunction often associated with intractable temporal lobe 

epilepsy (TLE; chapters 3 and 4). Abnormal diffusion measures were found in 

both the left and right uncinate fasciculus (UF), correlating in the expected 

directions in the left UF with auditory memory and in the right UF with delayed 

visual memory performance. Examining the arcuate fasciculus (AF), bilateral 

diffusion changes were found with correlations between left AF DTI measures and 

language scores.  

 

2. The second aim of this thesis was to validate DTT results and test the 

hypothesis that cortical language areas determined by cortical stimulation serve 

as anchor points for the tractography defined AF (chapter 5).  Subdural grid 

contacts overlying anterior language cortex co-localised in 84.2% with the AF, and 

in 55.8% in posterior language areas. This provides some validation that the AF 



Beate Diehl - PhD Thesis 

- iii - 
 

reconstructed using DTT subserves language function, but further study is 

needed. 

 

3. Lastly, seizure propagation was investigated in a case series of patients with 

cortical dysplasia (chapter 6). Reduced connectivity with reduced arborization and 

thinning of the fibre bundles between subcortical WM and the dysplastic cortex 

was demonstrated. Fibre tracts reconstructed from regions underlying the ictal 

onset zone showed abnormal connectivity.  
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  CHAPTER 1 

INTRODUCTION 

 
 

1.1. Epilepsy and Epilepsy Surgery 

 

Epilepsy is a chronic disease characterised by recurrent and unprovoked 

seizures. It is one of the most common serious neurologic disorders, with a  

lifetime risk of developing epilepsy of 3.2% (Mattson, 1992). Approximately 90% 

of the incidence of cases in adults have symptomatic partial or localisation-related 

epilepsy (Camfield and Camfield, 1996; Hauser, 1992). Overall, the mesial 

temporal lobe is the most epileptogenic region of the brain, and therefore 

temporal lobe epilepsy (TLE) has remained a focus of attention for many years. 

With advances in neuroimaging and the introduction of magnetic resonance 

imaging (MRI) into clinical practice however, extratemporal lobe epilepsies have 

increasingly become a target for epilepsy surgery, particularly if a structural lesion 

is detected. Lesions are now identified in about 80% of all refractory focal 

epilepsies and include mesial temporal sclerosis (MTS), tumor, malformations of 

cortical development, vascular anomalies and head trauma (Diehl and Luders, 

2000; Tassi et al., 2009).  

 

The goal of treatment is to render the individual seizure-free without producing 

antiepileptic drug (AED) toxicity. Despite the introduction of „„newer‟‟ AEDs, one 

third of patients with partial epilepsy will not attain a seizure remission with 

pharmacotherapy (Kwan and Brodie, 2003). A recent randomised, controlled trial 

of surgery for refractory TLE showed that at 1 year, 58% of all patients were 

completely seizure free in the surgical group compared to only 8% in  the 

medically treated group (Wiebe et al., 2001).Therefore, a significant number of 

patients should be evaluated for potential epilepsy surgery.  A UK study indicated 

that 30,000 patients develop epilepsy each year and approximately 6,000 of these 

have medically refractory seizures (Lhatoo et al., 2003).  Figures from this study 



Beate Diehl - PhD Thesis  
 

- 2 - 

 

suggest the number of “curative” operations for epilepsy would be 422 per year. 

Although this in line with the number of incident cases being added to the surgical 

pool (approximately 450 every year, which is 1.5% of 30,000), it does not address 

the backlog of patients in the prevalent surgical pool, estimated at 4500 patients. 

In addition it has been noted that only ~1% of the patients undergoing epilepsy 

surgery in the UK are extratemporal. Recent data from a longitudinal study 

following a cohort of childhood-onset epilepsy patients suggest that these 

numbers may be underestimating the need for epilepsy surgery (Berg et al., 

2009). Therefore, large numbers of treatment refractory patients, particularly with 

extratemporal lobe epilepsy, remain untreated.  

 

The objective of epilepsy surgery is the complete resection or at least 

disconnection of the epileptogenic zone in order to render a patient seizure free. 

The epileptogenic zone is the area of cortex that is indispensable for the 

generation of seizures (Diehl and Luders, 2000; Rosenow and Luders, 2001). It 

must be noted that the epileptogenic zone is a theoretical concept: even if 

freedom from seizures is accomplished following resection, it is possible that 

resection of a smaller area of cortex may have resulted in the same outcome. 

Therefore, we can ascertain that the epileptogenic zone was included in the 

resection, but do not know its exact extent. Furthermore it is well known that a 

number of patients will unfortunately relapse even years after initially successful 

epilepsy surgery. For practical purposes, most centres conclude that the 

epileptogenic zone was removed  if a patient has been seizure free for one to two 

years, even if they are still on seizure suppressing medications (Janszky et al., 

2005; Jeha et al., 2006; Spencer, 2002). This is justified because studies have 

shown that if a patient remains seizure free for this period, the highest risk of 

relapsing has passed. It is of note however that a small number of patients can 

relapse many years later.  

 

The epileptogenic zone cannot be measured with precision using one or even a 

number or tests and surrogate markers. It was suggested at the Second Palm 
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Desert Conference on the Surgical Treatment of the Epilepsies (1992), that the 

epileptogenic tissue could be identified and defined using six different types of 

abnormalities and these have recently been reviewed by (Rosenow and Luders, 

(2001):  

 

1. The irritative zone 

2. The ictal onset zone  

3. The structural epileptogenic lesion  

4. The symptomatogenic zone 

5. The functional deficit zone.  

 

The irritative zone is the area generating the interictal spikes seen during interictal 

electroencephalography (EEG) recordings; the ictal onset zone can be recorded 

and defined using EEG during seizures and the structural epileptogenic lesion is 

identified on MRI. The area of cortex responsible for the initial ictal symptoms is 

the symptomatogenic zone, and the functional deficit zone is the area of cortex 

that is functionally abnormal between seizures. This can be estimated by a 

number of tests, ranging from physical examination, neuropsychological testing, 

EEG or Positron Emisson Tomography (PET). The epileptogenic lesion is the 

radiologically defined lesion likely to be causing the epilepsy.       

 

It is generally believed that all the above markers have a variable relationship with 

the epileptogenic zone. Complete removal of the ictal onset zone and the 

epileptogenic lesion is generally considered necessary to achieve a seizure free 

outcome (Wyllie et al., 1987). In contrary, the irritative zone, symptomatogenic 

zone and functional deficit zone may be significantly larger or even remote from 

the ictal onset. Depending on the exact findings, an extensive irritative zone 

and/or functional deficit zone may raise concerns regarding the seizure outcome 

following surgery, but does not per se have to be included in the resection. 
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In order to obtain optimised outcomes following epilepsy surgery, preservation of 

the eloquent cortex is of paramount importance. A variety of diagnostic tools are 

used to localise the epileptogenic zone, such as detailed analysis of seizure 

semiology, video EEG recordings (scalp and in selected cases invasive EEG 

recordings), neuropsychometry and functional and structural neuroimaging 

methods. Information from all these different modalities is integrated and a 

hypothesis is formulated regarding the epileptogenic zone. Neuroimaging 

techniques are an integral part, and have played an increasing role over the 

years, particularly since the introduction of MRI.  

 

In this thesis, I have examined the contribution of diffusion tensor imaging (DTI) 

and diffusion tensor tractography (DTT) in the evaluation of candidates for 

epilepsy surgery.  

 

The overall aims and underlying hypothesis were:  

 

1. To appraise the role of DTI and DTT in the definition of structural 

abnormalities in the epileptic brain and their functional correlates. 

Specifically, I explored structure/function relationships, particularly 

correlates of memory and language dysfunction often associated with 

intractable temporal lobe epilepsy (TLE; Chapters 3 and 4). It was 

hypothesised that insights into the microstructure of the brain in patients 

with TLE could be gained using this technology and there will be a 

relationship between cognitive performance and potential damage in 

specific tracts supporting such function. 

 

2. To provide validation of the DTT results by comparing tracts to cortical 

stimulation results as performed in some patients with focal epilepsy 

undergoing pre-surgical evaluation. Specifically, the relationship 

between the results of cortical stimulation for language mapping was 

compared to results of the DTT of the arcuate fasciculus (AF). It was 
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hypothesised that cortical language areas serve as anchor points for 

the tractography defined AF (Chapter 5).   

 

3. To investigate the correlation of the pathway of seizure propagation 

away from the ictal onset zone as seen during intracranial EEG 

recordings with connectivity of the ictal onset zone visualised by DTT. 

Specifically, connectivity of the ictal onset zone was characterised using 

DTT in a case series of patients with cortical dysplasia (CD). It was 

hypothesised that the pattern of connectivity would correlate with 

seizure propagation. The relationship bewteen the resection area with 

outcome data concerning seizure freedom and functional outcome was 

also explored (Chapter 6).  

 

 

1.2    History of neuroimaging in the pre-surgical evaluation 

 

In order to appraise the role of novel neuroimaging techniques during presurgical 

evaluation, it is useful to understand how such technologies were integrated over 

time whilst striving to localise the epileptogenic zone.   

 

1.2.1 Historical background 

 

The history of modern pre-surgical evaluation for epilepsy surgery has been 

shaped by several main influences and approaches in localising the seizure 

focus: firstly, clinical observation and seizure semiology; secondly the advances in 

EEG diagnostics; and lastly the advances in our ability to image the brain. 

Arguably, there is no other technology that compares to modern structural and 

functional brain imaging in revolutionising our way of thinking regarding epilepsy 

and the pre-surgical evaluation throughout the last decade of the last century, the 

decade of the brain.  
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Therefore, reflecting upon the history of neuroimaging in the context of epilepsy 

surgery will provide a framework and introduction to the appraisal of the 

contribution of DTI to the pre-surgical evaluation, the topic of this thesis.  

 

For most of the history of epilepsy surgery, there was no direct way of imaging the 

brain. In 1896 Sir William Gowers wrote in his famous textbook on Diseases of 

the Nervous System: “The nervous system is almost entirely inaccessible to direct 

examination. The exceptions to this are trifling. The termination of one nerve, the 

optic, can be seen within the eye. Some of the nerve trunks in the limbs can be 

felt, as the ulnar, in the normal state; others only when enlarged by disease” (Bull, 

1982; Gowers, 1886)  

 

Therefore, in the closing decades of the nineteenth century, evidence regarding 

the presence of pathology could only be gained indirectly, and was mainly based 

on the careful examination and clinical correlation of the deficit and the pathology 

later analysed either after surgery or after post-mortem pathological examination. 

Only in 1895, when Roentgen discovered X-rays, were we able to start to look 

inside the human body in vivo, even though with respect to the brain it remained 

an indirect window by careful analysis of bony changes, secondary to 

intracerebral pathology.  

 

1.2.2 The beginnings of imagery of the brain 

 

For many centuries, the role of the brain was unknown. In ancient Egypt for 

example, the heart was considered the essence of life and the brain discarded in 

the embalming process.  The brain as the seat of the mind was clearly recognised 

by Alcmaeon of Croton, an early Greek writer and philosopher-scientist. In the 

years to come this very advanced concept was abandoned and other Greek 

philosopher physicians such as Hippocrates reverted to more primitive hydraulic 

theories, postulating that  the “essence” of life, a mysterious substance was 

supposed to be carried by the blood. In the book “on the sacred disease”, which is 
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ascribed to Hippocrates, he recognised however that the brain serves as the 

controlling center of the body. He also criticised the popular belief that epilepsy 

was a divine malediction. There is no doubt that Hippocrates recognised that 

seizures arise in the head (Temkin, 1933).  However, for many of the following 

centuries, scholars, including the natural philosopher Aristotle, would continue to 

believe in the supremacy of the heart over the brain.   

 

The history of imagery of the brain dates from antiquity, however there is no 

evidence suggesting that these concepts were used to guide treatment (Engel, 

Jr., 1993). Surgical interventions for the treatment of seizures were often guided 

by supernatural concepts concerning the cause of epilepsy.  

 

An important step towards modern medicine was marked by the publication of the 

first complete textbook of human anatomy in 1543, De Humanis Corporis Fabrica 

by Andreas Vesalius (1514-1564). It includes sections on the brain, and he 

disputes the prevailing doctrine that higher functions of the brain are situated in 

the ventricles.   

 

In 1791, Franz Josef Gall of Vienna may have been the first to propose that 

different mental faculties and behavioral functions occupied different anatomical 

locations in the brain (Engel, Jr., 1993). Gall believed that mental function was 

localised in discrete areas of the brain and called these organs. He located the 

“organs” serving intellectual function in the cerebral cortex. Although he published 

these seminal observations, his contributions were overshadowed by his 

introduction of phrenology, the practice of diagnosis based on palpation of the 

skull, which evolved increasingly in a pseudoscience. In contrast, Gall and his 

disciple Spurzheimer, developed a unique system of dissection using alcohol and 

significantly advanced the knowledge of neuroanatomy (Simpson, 2005) . 

 

It was not until the mid-nineteenth century that neuroscientists began to use 

clinical pathological correlation and faradic stimulation to prove that cerebral gray 
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matter indeed comprised functionally discreet regions (Engel, Jr., 1993). In 1861, 

Broca published his landmark case on M. Leborgne, a patient who had suffered 

from epilepsy since childhood and had lost the ability to speak. After the patients‟s 

death from an unrelated cause, an autopsy showed a chronic progressive 

softening of the cortex in the third convolution of the frontal lobe. This is 

considered to be the turning point that persuaded many scientists to believe in 

cortical localisation of function (Finger, 2000).  

 

Sir Hughlings Jackson, called by many the father of contemporary epileptology, 

used the information obtained through analysing the clinical manifestations of 

seizures to localize the ictal onset. In 1861 and 1863 he wrote about the unilateral 

seizures in cerebral syphilis and commented that “as autopsies of  patients who 

have died after syphilitic epilepsy appear to show, the cause is obvious organic 

disease on the side of the brain opposite to the side of the body convulsed, 

frequently on the surface of the hemisphere” (Jackson, 1863). Finally in 1870, 

Fritsch and Hitzig  provided unequivocal experimental confirmation  of a “motor 

cortex” present in the frontal lobes of dogs (Finger, 1994). 

 

Epilepsy surgery in the strict sense of a neurosurgical intervention at an 

anatomical site that is defined by the seizure semiology, developed from the 

analytical approach that is closely related to the observations by Jackson. The 

first epilepsy surgery was performed on May 25, 1886 by  Victor Horsley on a 22 

year old patient with focal motor seizures, due to a scar that had been caused 15 

years earlier by a depressed skull fracture (Horsley, 1886). The surgery was 

planned purely based on clinical semiology, and performed taking into account 

the in situ appearance of the brain tissue. Krause appears to be the first to utilise 

intra-operative cortical stimulation to guide surgery (Krause, 1909), particularly to 

identify the central sulcus in cases of Jacksonian epilepsy. However, until the end 

of the 19th century, it remained impossible to directly or indirectly image the brain 

before surgery however this was to change drastically in 1895. 
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1.2.3 Radiography and the application of X-rays to skull and brain 

pathology 

 

The history of Neuroimaging arguably starts with a great discovery. On November 

8, 1895, Wilhelm Konrad Roentgen, Professor of Physics at the University of 

Würzburg, discovered X-rays. By the end of December, he published a brief 

communication “on a new kind of rays”, the result of seven weeks of systematic 

studies and well designed experiments (Roentgen, 1895).  Roentgen himself gave 

the newly discovered phenomenon the name X-rays on account of their unknown 

character and to distinguish them from other rays. For this discovery he was 

awarded the first Nobel Prize for Physics in 1901.  

  

Soon after Roentgen‟s breakthrough, X-rays were applied to examine the 

neurological system. Arthur Schueller performed systematic studies of the skull 

and is generally considered the father of Neuroradiology and introduced the term 

Neuro-Roentgenologie (Eisenberg, 1992). His classic work on the X-ray 

examination of the skull, carefully correlated autopsy and clinical findings with 

bony deformations (Schueller, 1912).  

 

The use of skull X-rays in the diagnosis of epilepsy was advocated by a German 

Neurosurgeon, Fedor Krause. In his “Surgery of the brain and Spinal Cord” 

(Krause, 1910) he remarks: “Above all other means of diagnosis it furnishes the 

most useful in tumors with calcareous or bony deposits, as for instance in 

exostosis and any injury of the skull may bring on epileptic seizures….whenever 

possible X-ray examination should be made; it is frequently a great aid in clearing 

up the diagnosis. Even in other forms of epilepsy, roentgenography is of urgent 

need.”   

 

Up to the 1960s and even into the seventies, plain X-rays were recognised as 

having a valid place in the evaluation of patients with epilepsy, where bony 

changes and abnormal calcifications were the main findings (Shorvon, 1987).  
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In 1918 ventriculography, using X-rays to explore the contrast between air and 

fluid was introduced by Walter Dandy (Dandy, 1918; Dandy, 1919; Eisenberg, 

1992). Throughout the first half of the last century, roentgenography was the tool 

to help localise lesions causing seizures. In conjunction with 

pneumencephalography, it remained the main imaging technology for more than 

50 years.  

 

The extensive documentation of cases undergoing surgery for intractable epilepsy 

particularly from the Montreal Neurological Institute, illustrates how the new 

technologies were used to guide the pre-surgical diagnosis.  

 

1.2.4 The use of skull X-rays and pneumencephalogram in the diagnosis of 

epilepsy in the earlier part of the 20th century  

 

The history of epilepsy surgery in the first half of the last century and the use of 

imaging techniques to guide epilepsy surgery were dominated by the Montreal 

Neurological Institute, which was founded by Wilder Penfield in 1934. Penfield 

had learned the technique of mapping out the sensory and motor cortical areas by 

cortical stimulation in order to resect “meningocerebral scars” safely (Foerster and 

Penfield, 1930). Many cases resulted in failure, as there were inadequate means 

to localise the epileptogenic zone.  

 

The number of surgical epilepsy cases continued to increase every year. Penfield 

was determined to cure seizures by excision of the “meningocerebral cicatrix”. 

Through careful catalogisation and analysis of seizure type, matched with the type 

of lesion found during surgery, a wealth of well documented case histories are 

available from this era.   

 

The causes of epilepsies were inferred from lesions visible by X-ray and 

pneumencephalography. In Wilder Penfield‟s book “Epilepsy and the functional 
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anatomy of the brain” (Penfield and Jasper, 1954) and in a wealth of other books 

and articles, cases were presented illustrating how indirect roentgenographic 

evidence was used to infer underlying brain lesions and to guide epilepsy surgery. 

From the standpoint of diagnosis and treatment, the epilepsies were divided into 

symptomatic and cryptogenic epilepsies in the first half of the last century. The 

etiologies were readily recognised or reasonably assumed in the symptomatic 

cases and when unknown, were classified as cryptogenic (“of obscure origin”). 

Common causes of epilepsies thought to be amenable to epilepsy surgery were 

grouped into “expanding lesions” and atrophic lesions” (McRae, 1948). The 

spectrum of the known causes was remarkably complete for the time (McRae, 

1948; Penfield and Erickson, 1941). 

 

Penfield and Flanigan presented their epilepsy surgery results in cases with TLE 

(Penfield and Flanigan, 1950). The epileptogenic zone was determined using the 

above described means. Interestingly, the long term seizure outcomes were not 

so different from the post-MRI era: 52.9% were considered “cured” with no 

seizures or only one or more attacks before cessation, 29% were felt to have a 

worthwhile improvement and 14% were surgical failures. The follow up period was 

between 1 and 11 years.  

 

In 1991, Rasmussen presented another series of results on outcomes after 

temporal lobe surgery for epilepsy: 63% of 100 patients had complete or marked 

reduction of seizures after “major hippocampectomy” involved medial removal of 

the amygdale, the pes and half of the hippocampus (Rasmussen and Feindel, 

1991). 

   

1.2.5 Computerised tomography (CT)  

 

In the late 1960s, efforts were directed to perform measurements of X-ray 

transmissions from all possible directions through the body. The attenuation of the 

X-ray is measured from hundreds of different angles, the information decoded and 
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subdivided in a series of “slices” and in 1972, Sir Godfrey Hounsfield introduced 

CT (Hounsfield, 1980). In the 1970s, CT was introduced into clinical practice. 

Direct imaging of intraparenchymal abnormalities became possible for the first 

time. For epilepsy, the scanner was used to detect structural lesions and to 

determine cerebral atrophy and it was quickly shown that CT was superior to 

radionuclide scanning (du Boulay and Marshall, 1975). 

 

In 1975 at the 21st European Congress of Electroencephalography and Epilepsy, 

the results of a total of 1702 patients from seven research groups were published. 

CT abnormalities were found in 46% of patients with the most common 

abnormality being atrophy and tumors were detected in 10% of all cases. It is well 

recognised that CT is quite sensitive to detect cerebral tumors and lesions like 

gliomas or various developmental tumors. Other pathologies including 

cerebrovascular disease, both ischemic and hemorrhagic, vascular 

malformations, post-traumatic changes and infectious disease could be visualised 

directly for the first time. It was also possible to demonstrate the structural lesions 

underlying the epilepsy in epilepsy syndromes such as TLE. 

 

The CT scanner therefore replaced plain skull X-rays and 

pneumencephalography very rapidly during the 1970s. MRI would soon replace 

CT in its role to evaluate chronic epilepsy, especially as the sensitivity of CT in 

patients with epilepsy is not higher than 30% in unselected populations.  

 

 Today CT is  readily available at all times and remains  a valuable tool in many 

emergency situations with potentially the added value for the evaluation of 

intracranial calcifications (Duncan, 1997). If clinical presentation suggests a 

serious structural lesion, such as an acute intracranial hemorrhage or larger 

lesions that require immediate surgical intervention,  emergent neuroimaging 

needs to be performed (Greenberg et al., 1996; Practice Parameter, 1996). For 

the evaluation of a first seizure, CT is still performed if the patient‟s history and/or 

focal neurological signs make an acute symptomatic cause likely.  
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1.2.6 Positron Emission Tomography (PET) and other Nuclear Medicine      

applications in the definition of the epileptogenic zone 

 

In February 1896, three months after Roentgen‟s discovery, Becquerel described 

natural radioactivity. The rays were being used for medical treatment. However, 

another 50 years had to pass before spontaneously emitted rays were used for 

diagnosis. The discovery was made by George Moore, a young surgeon from 

Minneapolis. He knew that fluorescein was taken up selectively by tumors of the 

eye.  Prior to surgery for suspected gliomas, he injected a small dose 

intravenously and was able to detect it in the tissue using ultraviolet light. When 

the brain was exposed during surgery, he would shine the UV light on the brain 

and be able to identify the glioma and the edges well. The next step was to tag a 

radioactive substance to fluorescein; Dr. Moore chose radioactive iodine and used 

a Geiger counter to detect the radioactive emissions. He was immediately 

successful and localized 12 of 15 brain tumors (Moore G, 1948).  

Over the next years this technique was refined and successfully evaluated in the 

diagnosis of a variety of neurological diseases. The conclusion from a larger study 

evaluating the utility of the radionuclide brain scan was that it is particularly useful 

in patients who develop localizing signs, in patents with “focal fits” (eight of 11 

such patients had abnormal scans), in patients with vascular disease and gradual 

onset of localizing signs and in patients with inflammatory conditions of the central 

nervous system (Nisbet et al., 1983). 

To date, functional imaging including PET has remained an important imaging 

modality to localize the epileptic focus. The evolution of PET began in the early 

1960ies. Its initial importance as a diagnostic tool to evaluate the brain for 

structural abnormalities in the 1960ies paralleled the widespread use of 

technetium scanning for the evaluation of brain tumors (Eisenberg R, 1992). This 

method was fast replaced first by CT, then by MRI. Since then the role of PET has 

shifted to an evaluation of brain function. The first medical cyclotron installation at 

Washington University in St. Louis and methods were developed to produce 
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carbon 11 labeled glucose to evaluate glucose metabolism. Subsequently it was 

shown that fluorodioxyglucose (FDG) had biological properties similar to C11 

labeled glucose and the longer lived fluorine 18 labelling procedure could be 

used. 

PET was soon explored in patients with epilepsy undergoing presurgical 

evaluation (Henry et al., 1993). The first reports of interictal hypometabolism in 

patients with epilepsy using PET were in the early 1980s (Engel et al., 1982), ictal 

hypermetabolism was first reported in 1978 (Kuhl et al., 1978; Kuhl et al., 1980).  

In temporal lobe epilepsy, interictal hypometabolism was described in the mesial 

temporal structures and has been implemented in the presurgical evaluation in 

patients with temporal lobe epilepsy (Theodore et al., 1983). 

 

1.2.7 Magnetic resonance Imaging (MRI) 

 

In 1946 the first reports on nuclear magnetic resonance (NMR) were published by 

Bloch, Hansen and Packard (Bloch et al., 1946) at Stanford and by Purcell, Torrey 

and Pound (Purcell et al., 1946) at Harvard. The importance of this discovery was 

recognised and in 1952 the Nobel Prize for Physics was awarded to Bloch and 

Purcell.  

 

In the 1980‟s, MRI was introduced in clinical practice. Since then, it has 

revolutionised the practice of medicine in many areas. The ability to visualise 

anatomical details and pathologies underlying the focal epilepsy dramatically 

surpasses all previous technologies. The first publications detailing its usefulness 

in detecting lesions underlying focal epilepsy date to the mid 1980‟s (McLachlan 

et al., 1985; Purcell et al., 1946; Sperling et al., 1986; Theodore et al., 1986). It 

was soon demonstrated that MRI was more sensitive than CT in detecting 

structural lesions underlying epilepsy (Theodore et al., 1986).  

 

Currently, approximately 70% of all patients with focal epilepsy referred to a 

tertiary epilepsy  center show structural pathology on MRI (Duncan, 1997; Koepp 
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and Woermann, 2005). It has become possible to image the temporal lobe and 

detect hippocampal pathology in a non-invasive way. Several groups have shown 

conventional MRI studies to be ~90% sensitive and 85% specific in the diagnosis 

of hippocampal sclerosis (HS) in a series of epilepsy patients undergoing 

temporal lobectomy (Bronen et al., 1997; Jackson et al., 1993; Watson et al., 

1992; Watson et al., 1997). 

 

Over the past two decades, significant strides were made to improve the quality of 

MRI. The introduction of Fluid-attenuated Inversion Recovery sequences (FLAIR) 

(Jack, Jr. et al., 1996) for the diagnosis of HS has significantly increased the 

accuracy of detection of signal abnormalities in the mesial structures, as the CSF 

is completely suppressed. Assessment of atrophy of the hippocampus can be 

improved by measuring hippocampal volumes. Visual analysis can detect 85-90% 

of atrophic hippocampi versus a 90-97% detection rate with quantitative volumetry 

(Cook, 1994; Jack, Jr. et al., 1990; Kuzniecky et al., 1997).  Post-processing 

methods such as voxel based morphometry and texture analysis have been used 

to improve the detection rate for CDs (Koepp and Woermann, 2005). Novel MRI 

sequences such as magnetisation transfer imaging, fast flair T2 imaging and 

double inversion recovery have enabled identification of abnormalities in about 

one third of these previously cryptogenic patients (Salmenpera et al., 2007). 

 

In 1995, the relative contributions of MRI, single photon emission computed 

tomography (SPECT) and PET were summarised in a meta-anlysis (Spencer, 

1994). PET had the highest diagnostic sensitivity in TLE (84%) and also had a 

rather good sensitivity (95%) in mesial temporal sclerosis. In extra TLE, the 

sensitivity for PET was only considered to be around 33%.   

 

In recent years, receptor imaging using PET, including imaging of 

benzodiazepine, glutamate, opiate, serotonine and acetylcholine receptors has 

become feasible and will likely allow further insights into the mechanisms of 

epileptogenicity (Koepp and Woermann, 2005).  
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1.2.8 The decade of the brain 

 

During the 1990‟s, the decade of the brain, functional MRI (fMRI) and Diffusion-

weighted imaging (DWI) MRI techniques were introduced. 

 

In 1990, the blood oxygen level dependent (BOLD) effect was first described by 

Ogawa et al . In 1992, within one month of each other, Ogawa et al. and Kwong 

et al., described the BOLD signal change during visual stimulation in humans. 

Since, mapping of the cortex using fMRI has led to numerous publications within 

the neurosciences and fMRI of memory and language are important applications 

in intractable epilepsy patients evaluated for epilepsy surgery  (Powell et al., 

2004).  Imaging of the interictal activity using combined EEG and fMRI has 

become possible. Initially the MRI scanner was manually triggered to scan 

following observation of a spike, subsequently EEG fMRI was performed 

continuously and simultaneously  (Allen et al., 1998; Aubert et al., 2009; Diehl et 

al., 2003; Duchowny et al., 2000; Duchowny, 2009; Rosenkranz and Lemieux, 

2010; Salek-Haddadi et al., 2003; Salek-Haddadi et al., 2006; Vulliemoz et al., 

2009; Vulliemoz et al., 2010).  

 

Imaging white matter pathways and connectivity became possible with the 

introduction of DTI and the contribution of DTI to the definition of the epileptogenic 

zone, its connectivity and the relationship to functional cortex is the topic of this 

thesis. These technologies are not only capable of highlighting structural 

abnormalities, but can also provide insights in structural connectivity of areas of 

the brain. In combination with other techniques such as fMRI, we can now gain 

insights in brain function in health and disease.  

 

1.3 Diffusion MRI 

 

Diffusion MRI was introduced into clinical practice in the 1990‟s and rapidly 

applied to investigate a variety of diseases. The following sections (1.3 and 1.4) 



Beate Diehl - PhD Thesis  
 

- 17 - 

 

explain why it is of particular interest in the study of epilepsy, and how acute and 

chronic tissue changes can be shown using diffusion MRI.  

 

 

 

1.3.1 Principles of diffusion imaging  

 

The MRI signal is dominated by the signal from water protons. In a medium 

without any boundaries, the random translational motion or Brownian motion of 

water molecules results from the thermal energy carried by these molecules. In 

the brain however, such diffusion is restricted by intra- and extracellular 

boundaries. Various animal models have been used to assess the most important 

boundaries affecting diffusion in the brain. Such studies showed that myelin is the 

main  barrier to water diffusion  (Beaulieu et al., 1996; Song et al., 2002; Song et 

al., 2003; Song et al., 2005) . 

 

The principles of diffusion MRI were first developed in vivo in the mid 1980‟s (Le 

Bihan et al., 2001; Le Bihan and Van Zijl, 2002). In DWI, images are sensitised to 

diffusion by using pulsed magnetic field gradients incorporated into a standard 

spin echo sequence (Le Bihan et al., 2001;Taylor and Bushell, 1985). By taking 

measurements in at least three directions, it is possible to characterise the mean 

diffusion properties within a voxel in the image.  

 

By applying diffusion gradients in six or more directions, the diffusion tensor, a 

mathematical construct, can be calculated. The tensor can be diagonalised to 

give three eigenvectors, ε1, ε2 and ε3, representing the principal directions of 

diffusion. Each of these eigenvectors has an eigenvalue, λ1, λ2 and λ3, 

representing the magnitude of diffusion (or the corresponding apparent diffusion 

coefficient (ADC) values) along each of these three main directions. Furthermore, 

a number of diffusion parameters can be derived in each voxel, which are 

insensitive to subject positioning and fibre tract alignment within the diffusion 
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gradients of the MRI scanner (Basser and Jones, 2002; Basser and Pierpaoli, 

1996; Pierpaoli et al., 1996). Mean diffusivity (MD) is a summary measure of the 

average diffusion properties of a voxel and is equivalent to the estimated ADC 

over three orthogonal directions. 

 

It has been noted that the ADC measurements depended on a subject‟s 

orientation relative to the magnet (Hajnal et al., 1991). White matter tracts parallel 

to an applied gradient had the greatest ADC, whereas those at an angle to the 

gradient had smaller ADC values. Therefore it is important to not only define the 

mean diffusivity of water molecules within an image voxel, but also their 

directionality.  The fact that diffusion is not the same in the three main spatial 

directions, but is asymmetric in the brain and restricted in certain directions gave 

rise to the concept of “anisotropy” (Basser and Pierpaoli, 1996). Diffusion tensor 

imaging (DTI) has been developed to explore this directional information. When 

more than five directions are measured, not only the water molecule diffusion can 

be characterised, but also the degree and direction of anisotropy (Le Bihan et al., 

2001).  

 

Exploring the diffusion information in various directions allows the gaining of 

greater insights into the structural changes, possibly even at a microscopic level. 

Fractional anisotropy (FA) is a scalar (unitless) index most commonly used to 

assess the overall degree of directionality; ranging from 0 (full isotropy) to 1 

(complete anisotropic diffusion). However this index does not allow for analysis of 

directional information within the tensor. In order to interrogate diffusion changes 

in the three main directions, parametric maps for the parallel (main direction of 

diffusion, λ ||) and radial or perpendicular (λ T= (λ 2+ λ 3)/2) directions to the main 

fibre tract orientation can be studied. Together, these quantitative measures help 

to characterise the integrity of the underlying white matter.  Such information 

may allow understanding of the pathophysiologic mechanisms consistent with 

such diffusion abnormalities. Furthermore, DTI in combination with tractography 
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has become a powerful opportunity to subdivide compartments of white matter, 

representing different tracts and study selectively their diffusion properties.  

 

1.3.2 Experimental insights into tissue structure using DTI 

 

Anisotropy of water diffusion is a sensitive indicator of the structural integrity of 

tissue, particularly white matter. Several animal models of tissue injury and 

degeneration have been used to measure serial diffusion changes and correlate 

them carefully with histology. Using an in vitro model of Wallerian degeneration in 

a frog sciatic nerve, axonal and myelin degeneration causes a decrease in 

diffusion anisotropy due to reduced λ || and increased λ (Beaulieu et al., 1996). 

Myelin has been shown to modulate perpendicular diffusivity (Song et al., 2003; 

Song et al., 2005), although it is not the only factor involved (Beaulieu and Allen, 

1994). In order to understand the contributions of axonal versus myelin damage, 

serial diffusion measurements have been performed on the optic nerve in a 

mouse model of retinal ischemia (Song et al., 2003). According to this model, 

parallel diffusivity shows a significant decrease in the first days of degeneration, 

which corresponds to the disintegration of the axonal microstructure, whereas 

myelin remains intact. Five days after the initial injury, perpendicular diffusion 

increased, which corresponds to the degradation of myelin sheaths, showing that 

λ || and λ can differentiate axonal from myelin damage during the course of 

degeneration.   

 

In a mouse model of spinal cord injury, a region of interest analysis was 

performed and compared to histological markers of axon and myelin integrin. 

Perpendicular diffusion increased parallel demyelination of the  histological  

marker, and parallel diffusivity decreased in both regions of axonal damage and 

normal-appearing white matter (Budde et al., 2007). 

 

In humans, reductions in the principal direction and increases in radial diffusivities 

have been shown in chronically degenerated white matter tracts (Pierpaoli et al., 
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2001). Serial DTI measurements in three patients who underwent corpus 

callosotomy to treat medically refractory seizures and drop attacks revealed 

interesting insights into the diffusion changes in the corpus callosum after the 

surgery (Concha et al., 2006). After one week, a decrease in parallel diffusivities 

was seen, evidencing the breakdown of the axons (Concha et al., 2006; 

Kerschensteiner et al., 2005), creating barriers in the longitudinal displacement of 

the water molecules. In the chronic stage 2–4 months after corpus callosotomy, 

an increase of the radial diffusivities was observed. Most likely at this stage, 

axonal membranes became more degraded and myelin sheaths showed 

degeneration,  allowing water molecules to become more mobile perpendicular to 

the axons, resulting in an increase in  radial diffusivities. 

 

 

1.3.3 Tractography: technique and limitations 

 

Lastly, anisotropy information forms the basis of reconstructing tracts. Anisotropy 

in white matter results from the organisation of tissue as bundles of axons and 

myelin sheaths running in parallel, and the diffusion of water is freer and quicker 

in the long axis of the fibres, than in the perpendicular direction (Beaulieu, 2001).  

By assuming that the largest principal axis of the diffusion tensor aligns with the 

predominant fibre orientation in an MRI voxel, we can obtain vector fields that 

represent the fibre orientation at each voxel. The three dimensional reconstruction 

of tract trajectories, or tractography, is an extension of such vector fields (Mori 

and van Zijl, 2002). However tractography only came into use in the later 1990‟s 

and beginning of the new millenium, due to the complexities in developing reliable 

computer algorithms to reconstruct the tracts. Some of the limitations and 

technical difficulties of tractography include the spatial resolution of DTI, which is 

in the order of several mm, as well as noise. Various acquisitions and post-

processing analysis techniques have been proposed (Mori and van Zijl, 2002), 

and methods continue to evolve. Voxel sizes are much larger than the resolution 

needed to image single axons. Hence, in vivo DTI studies can at present only 
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display an approximation of the main tract direction, and do not have a resolution 

even close to a cellular level. Furthermore, in every voxel, not only one fibre 

direction is present. Therefore, different approaches have been taken to delineate 

major white matter tracts by comparing local main directions of diffusivities 

measured by DTI.  

 

The algorithms can be broadly classified into two types: deterministic and 

probabilistic. Initial work in this field focused on deterministic tractography. The 

implicit underlying assumption is that the principal eigenvector is parallel to the 

underlying dominant fibre orientation in each voxel and forms a tangent to the 

space curve traced out by the white matter tract (Basser et al., 1994). The fibre 

assignment by continuous tracking (FACT) is a commonly used method (Mori and 

van Zijl, 2002). The path is propagated from a region of interest (seed point) 

which is manually placed. It propagates from here, parallel to the principal 

eigenvector until the boundary of the voxel is encountered, at which point the 

algorithm traverses the next voxel in a direction parallel to the eigenvector at the 

center of the new voxel (Jones, 2008). Therefore only one main trajectory will be 

reconstructed per region of interest and branchings of a fasciculus will not be 

represented. Furthermore there is no indication of confidence for a reconstructed 

tract (Jones, 2008). In probabilistic tractography, the direction is drawn from a 

distribution of possible orientations. Instead of reconstructing just a single 

trajectory in deterministic tractography, probabilistic tractography propagates a 

large number of pathways from a given seed point. The result of probabilistic 

tractography is a set of multiple pathways passing through the seed point, and the 

direction is drawn from a distribution of possible orientations (Jones and Pierpaoli, 

2005; Parker et al., 2003; Parker and Alexander, 2003). Conversely, this also 

means that there is uncertainty in fibre orientation at each stage in the 

propagation of the tract.  

 

Atlases have been published of the anatomical correlation of the DTI  based FA 

maps and tractography results  (Jellison et al., 2004; Mori et al., 2005; Wakana et 
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al., 2004), largely based on comparison to anatomical drawings and dissection 

maps (Ludwig and Klingler, 1956). However, uncertainty remains regarding the 

accuracy of the tract representations.   

 

There is no doubt that validation is of central importance for the development of 

tractography. Identifying the gold standard for in vivo validation remains a 

challenge, and may likely represent a combination of cortical stimulation (both 

intra- and extraoperatively), direct stimulation of white matter tracts during 

neurosurgery and cortico-cortical  evoked potentials (CCEPS) which will provide 

proof of structural connectivity between two areas of cortex.  Chapter 5 of this 

thesis will explore tractography of the AF and cortical stimulation in the language 

system. This study combines a technique for cortical localisation of eloquent 

language cortex with DTT to underpin the structural connectivity of the language 

areas. In the next paragraph, different forms of connectivity will be appraised.  

 

1.3.4. Brain connectivity 

 

As described earlier in this chapter on history of Neuroimaging, the advances in 

nuclear and MR imaging allow the scientific community to investigate brain 

functions with great spatial resolutionr. When integrating the knowledge gained 

using fMRI or PET for example and combining this with neurophysiological 

investigations using EEG or MEG, valuable insights into how our brain works can 

be gained. EEG or MEG signals can be analysed using a vast number of 

mathematical toolboxes such as coherence analysis, to allow for insights on brain 

dynamics over time, with high temporal resolution.  

Given the enormous complexity of brain function, the literature is extensive and 

neuroscientists have used numerous approaches to enhance our understanding 

on how the brain works. In 2000, Paul Nunez published a target article “Toward a 

quantitative description of large scale neocortical dynamic function and EEG” 

(Nunez 2000), which presented a theory describing the dynamic of excitatory and 

inhibitory synaptic action fields. EEG and MEG provide large scale estimates of 
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modulation of these synaptic fields around background levels (Nunez 2000). This 

however also implies that there are connections between them (direct or indirect 

via several synapses) and in recent years multidisciplinary research in 

neuroimaging has provided methods capable of exploring in vivo and 

noninvasively both structural and functional connectivity of these networks at the 

macroscopic level (Guye et al., 2008). 

There is a long tradition to emphasize that brain regions are „functionally 

specialized‟ for certain cognitive operations. This understanding was uniquely 

shaped by many lesion studies, which clearly demonstrate that damage to 

specific brain regions is directly associated with impairment of specific abilities.  

Functional specialization can therefore be defined as the degree of processing 

specificity of a given brain region for a particular cognitive ability or facet of 

cognitive operations (Friston, 2002; Stevens, 2005). It is however rather obvious 

that specialised brain regions function as part of an entity and it is paramount to 

understand the connectivity amongst them.  

There are three main types of brain connectivity: structural (anatomical), 

functional and effective connectivity (Fingelkurts et al., 2005). They can be 

measured using different techniques with varied temporal and spatial resolution, 

such as PET, fMRI or EEG and MEG. Combining them may lead to greater 

insights into the spatiotemporal characteristics of brain activity.  

Functional connectivity is a term often used to refer to statistical associations 

between remote neurophysiological events (Friston 1993,Friston, 2002). When 

distributed brain regions display strongly correlated patterns of neural activity 

change, it is taken as evidence that those regions are functionally connected 

(Stevens, 2009). Such connections occur via excitatory neurotransmission 

through white matter pathways (Fingelkurts et al., 2005, Fonteijn et al., 2008). 

DTT aims at quantifying such structural (or anatomical) connectivity by 

tracking putative bundle pathways of macroscopic white matter fibres linking 

cortical areas (Guye, 2008).   

Cortical brain areas interact to allow for higher order cognitive and motor 

functions. Such functional integration of the varied specialised brain areas has 
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been studied with two kinds of analyses: functional connectivity analyses and 

effective connectivity analyses. FMRI indirectly reflects neuronal activity and 

provides whole brain coverage, therefore it is a tool that allows measurement of 

such temporal correlations between spatially remote neurophysiological events 

(functional connectivity).  Neurophysiological/functional interactions through 

structural connections can be derived from the temporal correlations of BOLD 

signals.  

However, such analysis methods do not allow making inferences about the 

directionality of these correlations, and therefore the functional hierarchy of the 

brain structures under investigation cannot be assessed. Effective connectivity 

has been defined as the influence one neural system or region exerts over 

another (Friston,1994). In effective connectivity analyses, models are defined a 

priori, comprising the brain structures of interest and assumptions about the 

afferent and efferent connections between them (Friston, 2003). These models 

are then fitted to the activity of these brain areas to obtain the strength of these 

connections. 

Functional and effective connectivity measures in combination with DTT providing 

qualitative and quantitative information on structural links will shed new insights 

into brain organization. 

 

1.4 DWI and DTI in epilepsy  

 

DWI was initially introduced into clinical practice for the early detection of strokes. 

It has proven to be very sensitive to areas affected by ischemia. Subsequently, 

periictal and postictal changes in diffusivity have been observed in animal models 

of status epilepticus and in patients, both after status epilepticus and after single 

short seizures. It therefore appeared to be an interesting technology in order to 

gain better understanding of periictal changes in animal models and assess if 

such changes may be useful to delineate the area of ictal onset. In addition, 

understanding the impact of acute seizures on diffusion imaging may allow 

insights in development of chronic changes on DWI and DTI. 
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1.4.1 Peri- and postictal changes in animal models of status epilepticus 

 

Animal models have systematically examined rats with bicuculline, kainic acid and 

pilocarpine induced status epilepticus and evaluated diffusion changes. Using for 

example the experimental model of kainic acid-induced status epilepticus in rats, 

it has been shown that postictal  ADC was decreased in the pyriform cortex, 

hippocampus and amygdala for 24 to 72 hours, indicating areas of decreased 

mean diffusivity which normalised within seven to nine days (Nakasu et al., 

1995a; Nakasu et al., 1995b; Righini et al., 1994; Wang et al., 1996). The ADC 

changes were closely correlated with the presumed area of seizure onset and the 

resulting histopathologic changes. Simultaneous measurements of sodium 

content in the rat brain parenchyma led to the hypothesis that diffusivity is initially 

reduced in the cortex due to cellular swelling and a reduction of extracellular 

space, possibly due to a failure of ATPase, that leads to intracellular sodium 

accumulation followed by influx of water (Righini et al., 1994; Wang et al., 1996). 

Several studies investigated a pilocarpine model of status epilepticus (Engelhorn 

et al., 2007; Wall et al., 2000) and reported on very early increases in ADC (for 

example 110%–127% of baseline) between 3 and 5 minutes after the onset of 

seizures in the retrosplenial and pyriform cortex, the amygdala, thalamus, and the 

hippocampus  (Engelhorn et al., 2007). This was followed by a significant 

continuous decrease in ADC that returned to 52%–60% of baseline in all 

examined brain regions except the thalamus. ADC changes were a good predictor 

of cell loss and if a decline in ADC of greater than 60% was seen in the 

retrosplenial parietal and temporal cortex this was associated with the subsequent 

death of the animal. 

Animal models therefore provided convincing evidence for dynamic changes in 

diffusion during and after status epilepticus, and that these areas also 

corresponded with histological changes. Therefore, diffusion imaging may provide 
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an opportunity to directly image the areas involved in seizure generation and 

possibly spread. 

 

1.4.2 Periictal DWI and DTI changes in humans 

 

The first report of diffusion changes in a patient with status epilepticus was 

published in 1997. The status consisted of clonic jerking of the right leg, which 

continued for 22 days and was followed by transient paresis. DWI during status 

showed decreased diffusion in the motor cortex of the right leg, and an area of 

facilitated diffusion in the underlying white matter. This was explained by a shift of 

water into cortical neurons at the site of the seizure focus, and vasogenic edema, 

a shift of water in the extracellular space in the underlying white matter (Lux et al., 

1986). 

 

Following this case report, multiple investigations explored periictal DWI in an 

attempt to assess the usefulness of this novel technology to delineate the ictal 

onset zone. Overall, the presence of  dynamic diffusion changes was documented 

in the majority of cases, but the correlation between the presumed epileptogenic 

zone and the diffusion changes remained quite variable (Diehl et al., 2001; Diehl 

et al., 2005; Hufnagel et al., 2003; Oh et al., 2004; Salmenpera et al., 2006). 

Correlations seemed however closer in patients with longer seizures (or status) 

and short duration between seizure end and scan (Diehl et al., 2001; Hufnagel et 

al., 2003). A single case report confirms that indeed an area of restricted diffusion 

in a patient with repetitive prolonged focal motor seizures originating from a lesion 

in the right frontal lobe corresponds to the ictal onset zone. An area of restricted 

diffusion adjacent to the lesion in the right frontal lobe  corresponded to the region 

of focal electrocorticographic seizures that was mapped intra-operatively (Diehl et 

al., 1999).  

 

Later studies used DTI to study periictal changes. This allowed for comparison of 

the sensitivity of diffusivity changes versus anisotropy changes, and to assess 
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whether DTI provides higher sensitivity to seizure induced changes. The results 

remained rather disappointing, and it became apparent that dynamic changes 

affected the diffusivity to a much higher degree than the directionality (Diehl et al., 

2005). Salmenpera et al.(2006) also noted periictal mean diffusivity reductions in 

about half of the 20 patients scanned, but only about 20% co-localised with the 

presumed ictal onset zone, even though all were scanned within 45 min after the 

seizure.  In addition, whole brain analysis using statistical parametric mapping 

(SPM) revealed distant areas of diffusivity change, possibly highlighting the 

networks involved in ictal spread.  

 

In order to investigate if shorter delays between seizure and scanning would yield 

better results, a study was conducted using flumazenil to induce seizures and 

delineate the epileptogenic focus (Konermann et al., 2003). This selective 

competitive benzodiazepine (BZD)-receptor antagonist was given 10 min prior to 

scanning. Results on 12 patients assessed for epilepsy surgery showed 

decreases in the hippocampus on the seizure-onset side (of the order of 15%), 

decreases in the parahippocampal gyrus (PHG) on both sides and decreases in 

the cortex on the contralateral side, but to a smaller degree (order of 7-8%). The 

authors concluded that these changes co-localised with the side of the postulated 

seizure focus.  

 

Therefore it seems possible that diffusion changes after single seizures appear 

more transient and require immediate access to scanning. In addition, such 

techniques are also likely to indicate the networks that may be secondarily 

affected by a seizure.  If in the future such an environment can be provided, in 

combination with higher resolution scanning and possibly also higher field 

strengths of magnetic resonance (MR) scanners, the yield may increase. 
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1.4.3 Interictal DTI and DWI 

 

1.4.3.1. Temporal lobe epilepsy (TLE) 

 

Studies quickly revealed that diffusion abnormalities were present in the interictal 

state, and diffusion measures were explored as markers of structural integrity in a 

variety of known pathologies, and also in non-lesional cases.  Initially, studies 

focused on TLE cases with HS, to assess if diffusivity offered lateralising 

information.  

 

It was shown that mesial TLE with HS revealed increased diffusivity in the 

ipsilateral hippocampus, indicative of structural disorganisation and expansion of 

extracellular space, reflecting neuronal loss and other microstructural changes 

associated with epileptogenesis in the hippocampus (Assaf et al., 2003; 

Hakyemez et al., 2005; Hugg et al., 1999; Wehner et al., 2007; Wieshmann et al., 

1999; Yoo et al., 2002). These changes paralleled the abnormalities noted on 

conventional MRI scans with atrophy and T2 signal increase.  

 

However, when assessing DWI compared to conventional MR imaging using 

volumetric T1 acquisitions and FLAIR, it was not more sensitive in detecting HS. 

In a group of 14 mesial TLE patients with pathology confirmed HS on imaging, 

ADC was elevated ipsilateral to the ictal onset compared to the contralateral 

hippocampus.  In eight patients with normal imaging, pathology revealed gliosis 

without neuronal loss in the hippocampus after temporal lobectomy. ADC equally 

did not allow to lateralise the epilepsy and hence DWI does not appear more 

sensitive than conventional MRI in detecting possible subtle lesions in the mesial 

structures (Wehner et al., 2007). In addition it became apparent that in patients 

without lateralising differences between the hippocampal formations, often both 

hippocampi showed increased ADC compared to a control population, indicating 

bilaterality of the disease. Such bilateral abnormalities were documented 
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throughout the limbic system, including fornix and cingulum in both adults 

(Concha et al., 2005; Concha et al., 2009) and children (Nilsson et al., 2008).  

 

When evaluating patients with TLE using region of interest (ROI) approaches, 

including areas outside the mesial structures, there was increasing evidence that 

diffusion abnormalities in TLE were not confined to areas of seizure onset, but 

extended into the ipsilateral hemisphere, and even contralateral. (Arfanakis et al., 

2002; Concha et al., 2005; Concha et al., 2009; Govindan et al., 2008; Gross et 

al., 2006). Areas exhibiting lower FA in TLE patients outside the limbic system 

included the corpus callosum and the external capsule. 

 

In another more recent study, a group of 33 TLE patients (21 left TLE) with HS 

was evaluated using DTI and two voxel based approaches (Focke et al., 2008). 

Such approaches compare individual whole brain MRIs to a group of controls 

(n=37) on a voxel by voxel base, without selection bias to a particular ROI.   It 

was demonstrated that the ipsilateral temporal lobe showed widespread FA 

reduction of areas directly connected to one another, involving white matter paths 

in the ipsilateral temporal lobe and the limbic system. Left and right TLE had 

slightly different patterns of diffusivity and FA changes, with more widespread 

involvement of the limbic system and the AF in left TLE. Lower statistical power in 

the right TLE group may have accounted for some of the differences.  In addition 

it was noted that extratemporal areas, particularly the inferior frontal region and 

the AF, a large white matter bundle connecting into the temporal lobe, was also 

affected (Focke et al., 2008).  

 

It was shown that such widespread diffusion changes are not reversible after 

successful temporal lobectomy, suggesting structural abnormalities as opposed to 

functional changes due to seizures (Concha et al., 2007). In this study by Concha 

et al., a cohort of eight patients with seizure free outcome at one year underwent 

DTI before surgery and at 1-year follow-up. Tractography and ROI analyses were 

performed in the fornix, cingulum, genu, and splenium of the corpus callosum and 
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external capsules, revealing pre-operative bilateral abnormal diffusion parameters 

(i.e. decreased diffusion anisotropy and increased mean and perpendicular 

diffusivities). The fornix and cingulum ipsilateral to the resected mesial temporal 

structures showed signs of wallerian degeneration at 1-year follow-up. The 

contralateral tracts of the fornix, cingulum, and external capsules, as well as the 

genu of the corpus callosum, failed to show normalisation of their diffusion 

parameters.  

 

One of the earliest reports testing the hypothesis that DTI would identify abnormal 

areas in temporal and extratemporal cryptogenic focal epilepsy evaluated 30 

patients by comparing each individual patient to a group of controls (Rugg-Gunn 

et al., 2001). Eight patients had areas of increased diffusivity, only two patients 

had areas of decreased FA. Six of the eight MD alterations were in the presumed 

epileptogenic zone. 15 patients had TLE (nine left). Group analysis of the left TLE 

patients revealed increased diffusivity and reduced anisotropy; the right TLE 

group (six patients) displayed a trend in the same direction (Rugg-Gunn et al., 

2001). Although such a group effect is not helpful for an individual patient, it 

suggests that given greater sensitivity and increased signal to noise ratios, an 

effect in individual patients may be demonstrated. Overall, such occult lesions are 

most likely caused by disruption of white matter architecture due to occult 

dysgenesis, or by seizure related damage. Damage caused by repeated seizures 

may lead to atrophy, gliosis and expansion of the extracellular space, resulting in 

increased diffusivity and potentially also decreased anisotropy.    

 

Findings of widespread diffusion abnormalities  were not only shown in adults but 

also in children (Govindan et al., 2008; Meng et al., 2010) . In one study, 13 

children aged 11 months to 19 years with non-lesional left TLE were compared to 

12 age matched controls (Govindan et al., 2008).  The three major tracts from the 

temporal lobe were analysed: the uncinate fasciculus (UF), AF and inferior 

longitudinal fasciculus, as well as the corticospinal tract, outside the temporal lobe 

for reference were examined, and all showed abnormal water diffusion. This 
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implies that widespread alterations of the white matter are present in patients with 

focal epilepsy, and this is seen in both adults and children.  

 

1.4.3.2 Extratemporal lobe epilepsy 

 

Extratemporal epilepsies represent a growing group being evaluated for epilepsy 

surgery, and often are challenging as precise localisation of the epileptogenic 

zone in relation to cortical function is mandatory. Evidence has rapidly 

accumulated that diffusion changes can be seen in a variety of lesions associated 

with focal epilepsy and are often localised outside the temporal lobe, such as CD.  

 

The first report on DTI changes due to various CDs used a voxel based statistical 

approach to compare objectively tissue organization in 22 patients with various 

CDs to 30 control subjects (Eriksson et al., 2001). Reductions in anisotropy were 

noted in 17 patients, and increased diffusivity in ten. Of interest was that changes 

in FA and diffusivity were also seen outside the MR visible dysplasia (in six 

patients for FA and ten for diffusivity). In general, diffusivity changes were larger 

than FA changes. No decreases in diffusivity were seen and increases of FA 

values were very rare (seen in two patients).  

 

Another study (Dumas et al., 2005) used a region of interest approach and 

described reductions in FA in 13 out of 15 patients in normal appearing white 

matter surrounding  lesions seen on conventional MRI  (five patients with tumors, 

four with HS, six CD). Detailed microscopic analysis of the tissue surrounding the 

lesion revealed gliosis, axonal loss, poor myelinisation or increased cell bodies 

(for example ectopic or abnormal neurons, balloon cells), likely the cause of the  

diffusion changes noted. In addition, distant anisotropic changes were also 

observed in 12 of the 15 studied patients, possibly due to Wallerian degeneration 

of white matter tracts or gliosis resulting from chronic seizures. Diffusion changes 

in the white matter surrounding CD and the impact on connectivity and adjacent 

tracts were evaluated in  13 children (Widjaja et al., 2007). Reduced FA was 
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found to be a sensitive but non-specific marker of alteration in microstructure of 

white matter. Diffusivity was mainly influenced by increased perpendicular 

diffusivity, which may reflect a dominant effect of abnormal myelin. Furthermore 

alteration in white matter tracts was observed in most cases of CD, revealing 

decreased tract size and displacement of tracts in larger dysplasias.  

 

1.4.3.3   Probing diffusion changes: what can it tell us in human epilepsy? 

 

To date, the pathopysiological mechanism of the diffusion changes measured in 

focal epilepsy is unknown. As detailed above, these changes may be seen within 

lesions, but also adjacent and remote to the lesion. Diffusion changes are also 

present in patients with normal conventional MRI. DTI has been increasingly used 

to gain insight by probing the diffusion changes in all three main directions. 

Analysing the pattern of diffusion changes with respect to diffusivities parallel and 

perpendicular (radial) to the main axonal direction provides in vivo insights into 

the underlying cause of decreased FA.  

 

Several studies have investigated the mechanisms leading to overall increased 

diffusivity and reduced FA. The most commonly seen pattern of DTI changes 

associated with focal epilepsy was unchanged parallel diffusivity and increased 

perpendicular diffusivity (Concha et al., 2009; Diehl et al., 2008; Govindan et al., 

2008; Gross et al., 2006; Kim et al., 2008) .   As detailed above, such a pattern of 

FA changes seen in most studies evaluating DTI in TLE is most consistent with 

chronic Wallerian degeneration, possibly due to cell loss in the temporal lobe 

secondary to seizure-induced cell death.  

 

In order to evaluate potential mechanisms for such more widespread diffusion 

changes in TLE, it was investigated if different underlying pathologies as 

determined by pre-operative MRI cause differential diffusion changes (Concha et 

al., 2009). 17 patients with TLE and HS, 13 patients with non-lesional TLE and 25 

controls were included in the study. The fornix, cingulum, external capsules and 
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the corpus callosum were evaluated using DTI. Some interesting differences 

emerged: while some white matter bundles are affected equally in both forms of 

TLE, abnormalities of the bundles directly related to the mesial temporal 

structures (i.e. the fornix and cingulum) appear to be unique to TLE with HS. 

 

Most recently, histological correlation between electron microscopy and DTI of 

human fimbriae was performed on 11 patients undergoing temporal lobe 

resections for intractable epilepsy (six with HS, five without).  Electron 

microscopic findings of TLE patients with HS showed increased extra-axonal 

fraction, and reduced cumulative axonal membrane circumference and myelin 

area (Concha et al., 2010). Consistent with the animal literature, water diffusion 

anisotropy over the crus of the fimbria-fornix was strongly correlated with axonal 

membranes of the surgical specimen (cumulative membrane circumference). This 

provides validation in humans of in vivo DTI analysis, accurately predicting 

histological changes from in vivo DTI.  

 

In conclusion, interictal DTI highlights areas of abnormal diffusion measures in 

temporal and extratemporal lobe epilepsies, lesional and non-lesional. 

Specifically,  

 

1. MD appears more sensitive to changes seen in patients with chronic 

refractory epilepsy compared to FA. The only exception may be CDs. 

2. DTI abnormalities are seen in all areas also indicating pathology on 

conventional MRI. 

3. DTI changes may often be found outside the lesions, both continguous and 

less frequently also away and non-contiguous to the lesion.  

4. Abnormalities mostly with increased MD and reduced FA have also been 

found in patients with cryptogenic focal epilepsy. 

5. Analysis of water diffusivity changes reveals a pattern of increase in 

perpendicular diffusivity and not of parallel diffusivity. This may indicate 

Wallerian degeneration as one of the main mechanisms accounting for the 
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structural changes underlying the DTI abnormalities remote from focus and 

lesion.  

6. Such abnormal areas in patients with intractable epilepsy therefore 

probably represent structural disruption, possibly reflecting either an 

underlying pathology or gliosis due to secondary damage. This requires 

further study with MRI-histology correlation in more patients. 

 

1.4.4 Interictal DTI and the epileptogenic zone  

 

Close correlations between the interictal abnormalities highlighted using DTI, 

pathology and epileptogenicity are rare.  Recently, histopathological correlation of 

an area of abnormally increased diffusivity was obtained in a patient with 

cryptogenic intractable focal epilepsy.  Intracranial recordings  showed seizure 

onset in the right orbitofrontal region, co-localising with the area of abnormal 

diffusivity (Rugg-Gunn et al., 2002) and post-resection pathology revealed gliosis. 

Of note is that this patient is not seizure free (ILAE Grade 4 at 7 years post-

operatively; Wieser et al., 2001).  

 

Few papers have evaluated in detail the concordance between diffusion 

abnormalities and irritative zone and ictal onset zone as evaluated using invasive 

recordings. The two studies decribed below have used voxel based statistical 

approaches to highlight areas of abnormal diffusion. 

 

In one study, the correlation of DTI with findings with stereo EEG (SEEG) was 

evaluated in 16 patients (Thivard et al., 2006). 13 of the 16 patients were found to 

have DTI abnormalities, consisting mainly of increases in MD. FA abnormalities 

were present in nine patients, but added little in localisation. Overall, the 

abnormalities present concurred with the epileptogenic zone in only seven of the 

13 patients.  Congruence between the area of interictal spiking and ictal onset on 

SEEG and the diffusion abnormalities was determined. The specificity of DTI 

abnormalities was better in extratemporal lobe epilepsy than in TLE: only 20% of 
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TLE had congruent findings, whereas four of five extratemporal epilepsies 

concurred.  In addition, when diffusion abnormalities concurred with some part of 

the SEEG data, the irritative zone defined by SEEG, representing the area of 

interictal spikes, was most optimally congruent with the diffusion abnormalities.  

 

Another study investigated 14 patients with frontal lobe epilepsy (9 non-lesional) 

and assessed only diffusivity (Guye et al., 2007). 13 patients showed areas of 

increased diffusivity.  In this study, the sensitivity of diffusion imaging in defining 

regions that were the site of electrical abnormalities was about 57% for the area 

of seizure onset and 65% for the irritative zone. The specificity in that study was 

low. It is of note however that areas of diffusion abnormalities may not have been 

sampled, as coverage is necessarily limited with SEEG. An interesting aspect in 

this study is that lesional epilepsies had very high sensitivity, as the lesion led to 

diffusion abnormalities, but very low specificity. In non-lesional epilepsies, cases 

in which epileptologists may particularly turn to novel imaging for additional 

support of a hypothesis for invasive recordings, three out of the nine patients with 

negative-MRI had diffusion changes in the seizure onset zone, four in the area of 

spiking and eight outside. 

 

Overall, the limited data available leads to the conclusion that diffusion changes 

correlate better with areas of interictal spiking than the ictal onset. Furthermore, 

the presence of DTI abnormalities certainly does not mean that the seizures are 

arising in the vicinity. However, DTI changes may provide some additional 

information to guide placement of invasive electrodes. Correlating electroclinical 

abnormalities using invasive recordings with diffusion changes may allow for 

better insights in the future. 
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1.5 Interictal DTI, tractography and correlations with cognitive function 

 

The white matter architecture in health and disease can be explored using DTI. 

Sections 1.3 and 1.4 have provided an overview of the investigations of focal 

epilepsies using DTI and DWI which revealed diffusion abnormalities in areas of 

seizure onset and spiking, but also in adjacent and remote, and even contralateral 

areas. In order to understand the meaning of such changes, investigations into 

structure and function in controls and patients were undertaken. There is 

mounting evidence that the integrity of white matter tract pathways, as measured 

by DTI, is systematically related to individual differences in performance across a 

wide range of cognitive skills. Furthermore, analysis of white matter structure may 

give insights into the organisation of function in individuals, and possibly into 

reorganisation in disease. In addition, studies have explored those structure 

function correlations in disease and a number of publications have addressed 

cognitive disability in patients with epilepsy, particularly focusing on language and 

memory.  

  

1.5.1 DTI measures and neuropsychological correlates 

 

1.5.1.1 Language lateralisation and DTI measures in controls and epilepsy 

  

A number of studies explored language lateralisation in healthy controls and 

patients with epilepsy with a variety of different methods  (Buchel et al., 2004; Cao 

et al., 2003; Glasser and Rilling, 2008; Nucifora et al., 2005; Powell et al., 2006; 

Rodrigo et al., 2008; Vernooij et al., 2007). 

 

Studies in healthy controls were undertaken to correlate language lateralisation 

with DTI measures, to gain insights into structure/function relationships. Using 

voxel-based statistical analyses of DTI in 15 healthy volunteers, an asymmetry of 

the AF was observed, with higher fractional anisotropy in the left hemisphere 

(Buchel et al., 2004). Leftward structural asymmetries have also been reported in 
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the subinsular region in right handed volunteers (Cao et al., 2003), and  a cohort 

of 27 right handed  healthy volunteers showed  a greater relative fibre density in 

the left AF compared to the right in nearly all participants. This strong degree of 

asymmetry was specific to the AF, and was not found in  the corticospinal tract 

(Nucifora et al., 2005). These data reflect that in a control population regional 

brain function indeed corresponds to higher connectivity in those areas.   

 

Patients with left hemisphere focal epilepsy have a larger percentage of atypical 

language organisation (Adcock et al., 2003; Springer et al., 1999; Thivard et al., 

2005). Such changes may be disease related, with epileptogenicity leading to 

disruption of the language network on the affected side (Janszky et al., 2003; 

Janszky et al., 2004). Alternatively, it may represent an adaptive process following 

a brain insult earlier in life, which may also be related to the development of 

epilepsy.  Lateralisation to the right in a percentage exceeding the incidence in 

controls may hence represent an expression of plasticity. Such changes in 

function are likely paralleled by changes in structure and connectivity. 

 

The first study evaluating language lateralisation and DTI asymmetry in epilepsy 

included nine patients with focal epilepsy, eight had left hemispheric focal 

epilepsy (5 temporal, 3 frontal). In two patients with atypical language 

lateralisation per fMRI, these findings were paralleled by atypical anisotropy value  

lateralisation to the right using a ROI  approach (Briellmann et al., 2003).   

 

fMRI is the most commonly used non-invasive tool to  evaluate language 

lateralisation.  It was used to assess the correlation between language 

lateralisation, side of epilepsy  and DTI measures in 14 patients with TLE (7 left) 

(Powell et al., 2006). fMRI paradigms used included verb generation and reading 

comprehension tasks to define starting regions for a probabilistic tractography 

algorithm. The measures used to assess connectivity were the tract volume and 

FA connecting the anterior and posterior language areas as delineated by the 

fMRI activations. It was shown that controls and patients with right TLE had a 
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more left lateralised pattern of both fMRI activations and connectivity. Patients 

with left TLE had more symmetrical language activations, which was paralleled by 

increased right hemispheric connectivity. This was felt to provide 1. evidence of a 

close structure function relationship with evidence for the language dominant 

hemisphere showing greater connectivity and 2. evidence of language  

reorganisation to the right in left TLE, paralleled by plasticity in connectivity.  

 

However, one subsequent study did not reproduce this finding (Rodrigo et al., 

2008). In 20 patients with TLE (8 left) fMRI-based lateralisation indices were 

computed in the inferior frontal gyrus and correlated with probabilistic 

tractography of the AF and inferior frontooccipital fasciculus (IFOF). fMRI indices 

were left-lateralised in 16 patients and bilateral or right-lateralised in four. In the 

AF, FA was higher on the left than on the right side, reaching significance in right 

but not in left TLE. There was a positive correlation between AF anisotropy and 

fMRI-based lateralisation indices in right TLE, but not in left TLE patients. No 

correlation was observed for the IFOF. In left TLE patients, the loss of the 

significantly greater leftward anisotropy within the AF does indicate damage to 

that side, although the leftward asymmetry in functional activation was still 

preserved.  

 

Low numbers and methodological differences account for some of the variability 

of results, and ultimately many other variables such as age of onset, duration and 

severity of the epilepsy, likely etiology (if known) and histopathology, exact 

location of the epileptogenic zone (even within the temporal lobe), and genetic 

predisposition will all be modifiers of a structure function relationship.  

 

1.5.1.2  DTI correlates of impairment in memory performance in patients 

with epilepsy 

 

Neuropsychological assessments in patients with TLE have revealed material 

specific memory impairment (Mayeux et al., 1980), and patients undergoing 
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temporal lobectomies with removal of the medial temporal structures are at further 

risk of memory deterioration. Hence, DTI was used to assess white matter and 

tracts implicated in memory function, such as the UF and PHG to gain insights 

into material specific memory in patients with TLE. The UF, a frontotemporal 

connection, is thought to be required for the retrieval of past information, with the 

right UF implicated in retrieval of episodic-context dependent memory and the left 

mediating  retrieval of semantic-context free memory (general knowledge of 

concepts and facts) (Aralasmak et al., 2006). Connections implicated in memory 

function to and from the hippocampus involve the PHG (Rolls, 2000). 

 

In one study, probability maps of connectivity in the PHG were analysed in a 

group of 18 patients with TLE (8 left) and an asymmetry index calculated between 

left and right (Yogarajah et al., 2008), revealing smaller tract volume and lower FA 

ipsilateral to the seizure focus. In that study, correlations with material specific 

memory was analysed in the 17 patients with left hemisphere language 

dominance and PHG FA was correlated with pre-surgical verbal learning, and 

right parahippocampal FA with design learning. Of interest is that there was no 

correlation between ipsilateral hippocampal volumes and tract volume or FA, 

whereas there was a correlation between tract volume and FA. This is in keeping 

with other tractography studies showing that FA is a more sensitive and robust 

measure for pathology than the volume of white matter tracts (Heiervang et al., 

2006). 

 

Evaluating the UF, parahippocampal cingulum and IFOF in 17 patients with TLE 

(9 left) and 17 controls, increases in MD of the left UF, parahippocampal 

cingulum, and IFOF were associated with poorer verbal memory in TLE, as were 

bilateral increases in MD of the AF, and decreases in FA of the right AF. 

(McDonald et al., 2008). This study again confirmed the strong association 

between integrity of the UF and memory. The PHG as an important link in the 

Papez circuit comes as no surprise. The association of DTI abnormalities and 

memory within the IFOF was however not expected. As it  subserves the 
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semantic system with a putative role in providing a link between phonology and 

sentence comprehension (Duffau et al., 2008). The authors felt that their verbal 

memory task may have placed high demands on semantic processing, accounting 

for the strong association. 

  

In another study, the UF was evaluated using tractography in 10 patients with 

right TLE and controls. A left-minus-right FA UF asymmetry index was computed 

to test for intergroup differences. Whereas asymmetries were found in the control 

group with right-greater-than-left FA, this asymmetrical pattern was lost in the 

patient group. Right FA values were lower in patients with right HS versus 

controls (Rodrigo et al., 2007).  

 

Taken together, these results provide additional insights into underlying structure-

function relationships in TLE, and demonstrate how DTI can be used to delineate 

the neurocognitive correlates of localised white matter damage. 

 

In chapter 3, I investigate DTI characteristics of the UF in a larger group of left 

and right TLE patients and provide systematic correlation with verbal and visual 

memory performance.  

 

1.5.1.3 DTI correlates of language performance in patients with epilepsy 

 

In an effort to establish relationships between local white matter changes and 

cognitive impairment in TLE, 17 patients with TLE (nine left) and 17 controls were 

investigated using fibre tracking to segment out the different tracts (McDonald et 

al., 2008). In particular, the AF, UF and inferior fronto occipital (IFO) tract were 

analyzed.  It was shown that decreased FA and increased MD in the left and right 

UF, the left and right AF and the left IFO correlated with the poor performance on 

the Boston naming test (BNT). Verbal fluency however did not reveal such 

correlations in this study. The authors therefore confirmed the role of the left AF in 

naming and also found evidence of a contribution of the right AF, as well as the 
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UF and IFO. Even though classically the AF is thought to be involved in language 

processing, other evidence for involvement of UF and IFO has been reported. 

Intra-operative electrical stimulation of the left inferior frontooccipital tract has 

been shown to lead to semantic paraphasias, thus confirming this tracts 

involvement in language processing (Duffau et al., 2005; Duffau et al., 2008). The 

UF, although mainly associated with episodic memory, has been implicated in 

lexical semantic retrieval tasks, important for naming performance (Lu et al., 

2002).   

 

In chapter 4, systematic correlations of language performance of a larger group of 

left and right TLE patients with AF DTI measures are presented. 

 

1.5.1.4 DTI to predict post-operative deficits after epilepsy surgery  

 

Studies evaluating the cognitive correlates of DTI may potentially provide 

information regarding patients being at particular risk for neurocognitive decline 

after epilepsy surgery. This was explored in a small study on seven patients 

undergoing dominant temporal lobectomy (6 were left language dominant, one 

right) (Powell et al., 2008). Tract lateralisation was quantified and correlated to 

post-operative naming decline. Patients with higher structural connectivity to the 

side of resection suffered greater post-operative naming deficits.  

 

This is in keeping with results of fMRI studies, showing that in a semantic decision 

making task fMRI laterality indices were predictive of naming outcome after 

temporal lobectomy. Greater left lateralised language activiation was correlated 

with greater post-operative naming decline (Sabsevitz et al., 2003).  

 

Evaluating tractography and DTI based diffusion measures to predict cognitive 

outcome after epilepsy surgery is of great interest, as it may allow better 

counseling of patients undergoing such surgery. There are no systematic larger 
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studies available to date that explore the predictive value of integrity of individual 

tracts for cognitive outcome following epilepsy surgery.  

 

1.6 Tractography and epilepsy surgery 

 

Aside from structure and function correlations, delineation of white matter tracts 

may be an important first step to using tractography to inform neurosurgeons. 

Epilepsy surgery is an option in a subset of patients with intractable focal 

epilepsy. However, to minimise morbidity of the procedure it is important to 

identify eloquent cortex. In addition, major white matter tracts connected to these 

eloquent cortical brain areas, have also to be preserved during surgery. DTI is the 

first imaging modality that allows direct non-invasive visualisation of white matter 

tracts.   

 

Several investigations have focused on retrospectively correlating DTI based 

tractography with post-operative deficits, to assess if the technology could provide 

predictive information for a deficit and maybe even could aid in preservation of 

function if such information were integrated in neuronavigation systems.  

 

The most common procedure in epilepsy surgery is a temporal lobectomy. 

Anterior temporal lobectomies can cause significant visual field defects in up to 

10% of patients. In about 5% it can be severe enough to render the patient 

ineligible for a driving license in the UK, despite being seizure-free (Manji & Plant, 

2000). The visual field defects occur in the superior homonymous field 

contralateral to the resection and are due to disruption of fibres of Meyer‟s loop. 

The anterior extent of Meyer‟s loop has large interindividual variability and cannot 

be visualised using conventional imaging (Ebeling and Reulen, 1988). 

Tractography has been used to demonstrate the optic radiation in normal subjects 

(Yamamoto et al., 2005). Some experience has been gained in patients with 

arteriovenous malformations (AVM), and has been applied to pre- and post-

operative surgical patients with tumors and AVM of the visual pathways. The 
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magnitude of pre- and post-operative visual field loss after resection of AVM  from 

the geometrical relationship between the optic radiation and the malformation has 

been successfully predicted in 10 patients (Kikuta et al., 2006)  The application to 

temporal lobe surgery for epilepsy was first described in 2005; the optic radiation 

was visualised before and after temporal lobectomy using tractography, and 

disruption of Meyer‟s loop was demonstrated in a patient who developed a 

quadrantanopia (Powell et al., 2005). Conversely in another patient, the full 

course of the left optic radiation was visible on the pre- and post-operative 

images, and he did not suffer any field cut. 

 

The largest study investigated  pre- and intra-operative DTI based fibre tracking  

in 48 patients undergoing temporal lobectomies to visualise the optic radiation 

and to predict the post-operative visual field defects (Chen et al., 2008). The 

course of the optic radiation could be successfully reconstructed by DTI based 

fibre tracking. There was significant correlation between the fibre tracking 

estimation and the outcome of visual field deficits after surgery. Yogarajah et al.  

(2009) correlated the size of temporal lobectomy in 21 post-operative patients 

with tractography of the optic radiation. By applying a linear regression analysis it 

was shown that the distance from the tip of Meyer‟s loop to the temporal pole and 

also the extent of resection predicted the postoperative visual field defects.  

 

These data provide evidence that tractography has the potential to provide 

informformation about risks of epilepsy surgery procedures. Once successfully 

implemented into neuronavigation systems, this information may also be used 

intra-operatively to tailor resections (Nimsky et al., 2007a). However, a great 

number of difficulties and methodological challenges have yet to be overcome in 

order to consider using tractography for neuronavigation. Coregistration errors, 

distortions inherent to echo planar imaging (EPI) sequences represent some 

technical challenges. In addition, it is unknown how reliable DTT can map the 

entire tract in health and disease. Intra-operative brain shift after craniotomy is 

another significant impediment. The availability of intra-operative MRI may 
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represent one method to correct for this movement and may improve the 

accuracy of the data to aid surgical planning.  

 

Particularly extratemporal surgeries will also benefit from visualising of the tracts 

such as the pyramidal tract. Implementation of DTI based tractography has 

already been shown to be of benefit in brain tumor surgeries and resections of 

vascular malformations (Chen et al., 2007; Nimsky et al., 2005; Nimsky et al., 

2007b; Wu et al., 2007), and will certainly be increasingly used in epilepsy 

surgery. To what degree they may improve functional outcome following epilepsy 

surgery is unknown. The potential however appears great and it is therefore 

crucial to understand strengths and limitations of DTT in human epilepsy.   

Tractography results require validation; such validation may be obtained by 

comparing tratography results to other modalities determining connectivity and 

cortical localisation. The following paragraphs will discuss how pre-surgical 

evaluation and patricularly patients undergoing invasive investigations can assist 

in such studies.  

 

1.7  Invasive recordings and cortical stimulation  

 

A number of patients with focal epilepsy will need to undergo invasive EEG 

recordings using subdural electrodes and depth electrodes for localisation of ictal 

onset with precision. Such recordings provide great opportunities to validate novel 

technologies such as DTT. Insights of location of cortical function based on 

cortical stimulation can be correlated with white matter anatomy as reconstructed 

using DTT. Furthermore, ictal onset and propagation patterns as seen during 

such invasive recordings can be correlated with structural connectivity delineated 

using DTT. 

  

It has been estimated that approximately 25% of patients with intractable focal 

epilepsy  require invasive evaluations to localise the epileptogenic zone (Nair et 

al., 2008).  In addition, proximity to eloquent cortex may require functional 
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mapping, which can also be performed extraoperatively after implantation of 

invasive electrodes. The need for such evaluations is generally higher in patients 

with extratemporal lobe epilepsies. Often, invasive recordings are needed due to 

absence of a lesion, or a lesion in close proximity to eloquent cortex. In addition, if 

information obtained from ictal and interictal EEG, neuropsychometry, structural 

and functional imaging such as PET provides discrepant information, invasive 

recordings may be necessary to formulate and confirm a hypothesis of the 

epileptogenic zone.  

 

Subdural grids typically consist of stainless steel or platinum contacts embedded 

in a thin matrix. Each contact is an individually wired electrode. To delineate 

epileptogenicity, subdural grids and depths can be used in isolation or 

combination (Spencer et al., 1990). Invasive recordings are closer to the electrical 

generators of EEG and therefore have better a signal to noise ratio and signals 

are larger in amplitude. Comparing scalp and invasive EEG recordings it has 

been noted that spikes or sharp waves can only be seen on scalp EEG if a larger 

area of cortex discharges synchronously. Initial studies suggested that 6cm2 of 

gyral cortex needs to be activated simultaneously (Cooper et al., 1965). More 

recent investigations have suggested that the area of cortex may indeed be in the 

order of 8cm2 (Tao et al., 2005).  Invasive studies allow mapping of the area of 

cortex generating spikes (irritative zone) and the ictal onset zone with greater 

precision. However, as coverage using subdural grids and depth electrodes is 

necessarily limited, successful localisation depends on the accuracy of the initial 

hypothesis for ictal onset. This initial hypothesis will lead to an implantation 

strategy to localise the epileptogenicity.  

 

Routine extraoperative invasive recordings to delineate the ictal onset zone 

became possible when van Buren et al. (1975) introduced subdural strip 

electrodes in TLE. Subsequently, such techniques were also used in 

extratemporal lobe epilepsy (Ludwig et al., 1976). Larger subdural grid electrode 

arrays allowed extraoperative functional mapping using electrical cortical 
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stimulation. By applying a small current it is assumed that stimulation produces a 

temporary, reversible lesion affecting the area of cortex underlying the respective 

electrodes (Hamberger, 2007; Ranck, Jr., 1975). Outside motor and sensory 

cortex the effect of stimulation is generally inhibitory.  The exact volume of brain 

that is affected by the stimulation is however unknown. Despite these 

uncertainties, the gold standard method for localising eloquent cortex such as 

language, motor and sensory function to guide neurosurgical resections is cortical 

stimulation, either performed pre-operatively or intra-operatively.  

 

1.7.1 DTI and cortical stimulation  

 

The introduction of DTT has led to an explosion in the literature on the study of 

structural connectivity. However, as DTT is a relatively new technique, it is 

important to assess its validity. DTT findings can be compared to anatomical 

knowledge from human anatomical preparations, or to compare tractography data 

in primates to tracer studies done in vivo in the same species (Croxson et al., 

2005). Phantoms can be used in which the fibre architecture is known, however is 

challenging to produce realistic phantoms (Johansen-Berg and Rushworth, 2009; 

Perrin et al., 2005). Close correlation between invasive recordings, cortical 

stimulation findings and tractography results may provide in vivo validation in 

humans. The underlying hypothesis is that the area of cortex that gives rise to a 

function is also the anchor point of the white matter tract that provides the 

structural connectivity to other areas of cortex. Such studies could provide some 

further support that a reconstructed tract indeed represents the known structural 

connection between two cortical areas.  

 

In chapter 5, correlations between language mapping using cortical stimulation 

and DTT of the AF are presented. 
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1.8 DTT and connectivity of the epileptogenic zone 

 

Lastly, DTT can be used to investigate the connectivity of the epileptogenic zone 

and may contribute in our understanding how seizures propagate. In addition, it 

may aid in our understanding of alterations in connectivity due to brain plasticity in 

patients with focal epilepsy.  It is likely that several factors have an influence on 

the connectivity of the ictal onset zone: 1. the underlying pathology (i.e. tumour, 

HS, CD, non-lesional MRI); 2. the epileptogenic process itself; 3. the location 

within the brain and its normal anatomical connections. Whether DTT can be 

useful as a tool to predict seizure propagation has not been systematically 

assessed before.  

 

In chapter 6, DTT from the ictal onset zone was correlated with ictal propagation 

patterns as seen during inasive EEG recordings in a small but well characterised 

case series of patients with CD in the temporo-occipital region. Due to its 

frequency in temporal and particularly extratemporal lobe epilepsies and its 

developmental nature, CD is an important pathological entity to investigate.  

 

1.8.1 Cortical dysplasia and connectivity 

 

Focal epilepsy due to CD has been recognised as a common cause of intractable 

seizures. It represents the second most common identified cause of refractory 

focal epilepsy in adults after HS (Sisodiya, 2000) and is characterised by a high 

degree of intrinsic epileptogenicity (Palmini et al., 1995; Palmini et al., 2004).  

 

In recent surgical cohorts, CD has been found in 14% of all resections combining 

adult and paediatric patients (Mathern, 2009). In children, this percentage is 

higher and in a recent survey of pediatric epilepsy centers conducted by the 

International League Against Epilepsy (ILAE) CD was found in 67% of children 

operated on in the first year of life (Harvey et al., 2008).  
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There is a spectrum of severity of CD with a variable clinical presentation 

(Sisodiya, 2000). During human brain development, the interruption of the orderly 

process of neuroblast proliferation and differentiation, neuroblast migration or 

cortical organisation may result in disordered neocortical development (Barkovich 

et al., 2001). Modern neuroimaging has significantly advanced our understanding 

of these developmental lesions and has allowed for in vivo characterisation and 

post hoc correlation with pathology. One widely accepted pathological 

classification of CD distinguishes the following types of CD using histological 

criteria: type 1A, isolated architectural abnormalities; type 1B, architectural 

abnormalities with immature but not dysmorphic neurons; type 2A, architectural 

abnormalities with dysmorphic neurons; type 2B, architectural abnormalities, 

dysmorphic neurons and balloon cells (Palmini et al., 2004). Most recently, an 

ILAE task force has issued a consensus classification on the clinico pathological 

spectrum of focal cortical dysplasia (Blumcke I et al., 2010). FCD type I will now 

refer to isolated lesions, which present either as radial (FCD type Ia) or tangential 

(FCD type Ib) dyslamination of the neocortex, microscopically identified in one or 

multiple lobes. FCD type II is an isolated lesion characterized by cortical 

dyslamination and dysmorphic neurons without (type IIa) or with balloon cells 

(type IIb). The major change since a prior classification represents the 

introduction of FCD type III. This occurs in combination with other lesions, such as 

hippocampal sclerosis (FCD type IIIa), with epilepsy-associated tumors (FCD type 

IIIb), adjacent to vascular malformations (type IIIc) or epileptogenic lesions 

acquired in early life (FCD type IIId).  

 

Dysplastic lesions may be temporal or extratemporal.  Type 1 CDs are more 

commonly found in the temporal lobe, whereas type 2 CD is more often located 

outside the temporal lobe; in addition, there may be associated HS (Bautista et 

al., 2003; Fauser et al., 2004; Fauser et al., 2006; Tassi et al., 2002).  

 

Extratemporal dysplastic lesions often present a challenge for potential resection 

for several reasons: 1.Proximity to eloquent cortex requires precise delineation of 
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function in relation to the ictal onset zone, 2. The dysplastic lesion visible on MRI 

may not represent the entire extent of the lesion. Large areas of dysplastic tissue 

may not be clearly delineated on MRI, 3. The extent of epileptogenicity cannot be 

easily delineated. Hence, often invasive recordings are required (Marusic et al., 

2002).  

 

 Outcome following epilepsy surgery in focal epilepsy due to CD  is overall inferior 

to surgery in TLE due to HS, with a reported average of 62% seizure freedom in a 

recent meta-analysis (Mathern, 2009).  

 

The surgical treatment of CD may also be challenging as the epileptogenic zone 

may be organised as a more complex network extending beyond the lesion. 

When analysing frequency and propagation patterns on invasive EEG recordings 

in patients with CD it has been noted that distant sites also show early 

involvement of rapid discharges and rapidly involve widespread, often atypical 

networks (Aubert et al., 2009; Duchowny et al., 2000; Duchowny, 2009). 

 

Although there is involvement of the dysplastic process in areas of white matter, 

little attention has focused on characterising the underlying white matter changes 

and assessing the connectivity of areas of dysplasia and its impact on cortical 

eloquent function, localisation of ictal onset zone and the corresponding ictal 

spread patterns.  

 

Abnormalities in diffusivity and anisotropy have been described in patients with 

CD (Eriksson et al., 2001); more recently, DTI and tractography were performed 

in patients with CD (Eriksson et al., 2001; Gross et al., 2005; Lee et al., 2004; Lee 

et al., 2005; Lim et al., 2005; Widjaja et al., 2007). Lee et al. observed in 12 

patients with focal CD that on DTT, all had a reduction of the subcortical fibres, 

indicating reduced connectivity between the dysplastic area as seen on 

conventional MRI and the deep white matter. Using semi-quantitative analysis of 

the fibre bundles adjacent to the dysplastic cortex, a significant mean reduction of 
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subcortical fibre bundles showed mean FA reductions compared to the 

contralateral region.  

 

Improved understanding of how a (dysplastic) lesion is connected and how readily 

seizures can effectively spread and propagate will provide valuable insights into 

semiology and possible risk of frequent secondarily generalised seizures. 

Connectivity information of the ictal onset zone may also add information to 

devise a surgical strategy.    

 

 

1.8.2 Delineating propagation of interictal and ictal epileptic activity by DTT 

 

Few studies have investigated DTT as a tool for delineation of pathways for 

interictal spike propagation. One case report combined EEG fMRI and DTT to 

understand propagation of interictal activity in a patient with left TLE and left HS. 

The BOLD activations seen with left temporal spikes were seen in the left 

temporal, bilateral parietal and left greater than right occipital regions (Hamandi et 

al., 2008). The relation between interictal spikes and BOLD signal change was 

investigated using dynamic causal modelling (DCM). DCM  is a statistical method 

for determining the functional interaction between specified brain areas that may 

be applied to fMRI data, and thus infer whether changes at one region are driving 

changes at another (Penny et al., 2004).  

 

Recently, in six children with TLE, spread of interictal discharges from temporal to 

the rolandic region was delineated using magnetoencephalography (MEG). DTT 

was used to illustrate the connection between the temporal and rolandic region. 

Two volumes of interest that encompassed the MEG dipoles were placed, one in 

the temporal lobe, one in the rolandic region. Similar volumes of interest were 

placed contralaterally and also in control subjects. An aberrant tract was 

visualised only in patients on the side of the epileptiform discharges, travelling 

through the external capsule. The authors hypothesise that the reported aberrant 
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pathway indicates an existing tract which may facilitate the spread of epileptiform 

activity from the temporal lobe to the rolandic region. Alternatively, it was 

considered that such connections may form under the condition of intractable 

epilepsy in children (Bhardwaj et al., 2010).   

 

These reports indicate that DTT may have the potential to assist in understanding 

ictal propagation patterns, and give insights in connectivity of the epileptogenic 

zone. Chapter 6 will explore seizure spread and DTT in patients with CD. 
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CHAPTER 2 

EXPERIMENTAL METHODS 

 

This thesis includes original research work on:  

 

1. Correlations of DTI measures in regions of interests and tracts with cognition in 

the language and memory domain.  

2. Correlations of results from language mapping using cortical stimulation and 

the arcuate fasciculus based on DTT.  

3. Analysis on seizure propagation in a case series of patients with cortical 

dysplasia.  

 

DTI acquisition methods are the same in all studies and therefore are described in 

this common methods section; methods specific to the individual study are 

discussed separately in the respective chapters.   

 

2.1 Patient recruitment and pre-surgical evaluation at the Cleveland Clinic 

Foundation (CCF) 

 

All patients were recruited whilst undergoing pre-surgical evaluation at the 

Epilepsy Center at the Cleveland Clinic and all had pharmacoresistant focal 

epilepsy.  

 

CCF is large quaternary centre for epilepsy surgery, with a US national and 

international referral basis.  All patients are initially seen during an outpatient clinic 

visit with an epileptologist. All faculty staff are trained Neurologists and Clinical 

Neurophysiologists with considerable experience in pre-surgial evaluation. 

Following initial consultation, if a patient is felt to be a potential candidate for 

epilepsy surgery, all evaluations comprising Phase 1 are scheduled. These 

include video EEG monitoring to capture seizures and to define the irritative zone, 

ictal onset zone and symptomatogenic zone with the greatest precision possible. 
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High resolution MRI and Fluoro-deoxyglucosePET imaging are also performed 

routinely at this stage, together with neuropsychometric assessment and a 

psychiatric  evaluation. Following this, data will be presented by the staff 

epileptologist in a multidisciplinary patient management meeting. If a hypothesis 

of the epileptogenic zone can be formulated, the patient will be invited for epilepsy 

surgery or for further testing, if required. In further testing is needed, such as ictal 

SPECT or further imaging, the patient will return. Invasive evaluations are 

performed in a selected group of focal epilepsies, when a hypothesis regarding 

the epileptogenic zone can be formulated, but needs confirmation. Often, cortical 

functional mapping using direct electrical cortical stimulation is also required. 

There are several clinical scenarios that require delineation of the exact area of 

ictal onset; for indications for invasive recordings and these are described in table 

2.1. It is of note that the presence or absence of a presumed epileptogenic lesion 

visualised using MRI is a critical factor. However, the information provided by 

analysis of semiology, interictal and ictal EEG and neuropsychological data is 

very important too, and should converge and support the hypothesis that the 

lesion is indeed epileptogenic. In addition, the lesion itself may be very subtle, or 

very large, or of doubtful relation to the epilepsy.  

 

Ethics approval was obtained for all studies from the Institutional Review Board 

(Cleveland Clinic IRB 6960; IRB 8062 and IRB06-035). Patients agreed in writing 

to participate to the respective study. 

 

All DTI took place prior to resection and prior to invasive recordings.  
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Table 2.1 Indications for invasive recordings in the pre-surgical evaluation of 
patients with medication refractory focal epilepsy 
 
 

# Clinical Scenario Strategy 

1  Clear lesion 

 Congruent EEG and semiology 

 Away from eloquent cortex 

(Almost) no invasive 
recordings needed 

2  Clear lesion 

 Congruent EEG and semiology 

 Close to eloquent cortex 

May require invasive 
recordings (SD+/- depths) 
Extra- or intraoperatively 

3  Clear lesion 

 Discordant EEG and/or semiology 

May require invasive (SD+/- 
depths) 

4a  No lesion seen on MRI  

 EEG and semiology concordant 
Note: additional imaging and electrical source 
analysis data may be very helpful and can 
change strategy 

Almost always invasive 
needed (SD+/- depth, or 
depth alone)  

4b  Two lesions, subtle or large lesions  

 Concordant EEG and semiology  

(Almost) always invasive 
needed (SD+/- depth, or 
depth alone) 

5  Two or more lesions, subtle or 
large lesions  

 Discordant/confusing EEG and 
semiology 

Likely not surgical candidate 

 
 

2.2 MRI protocol 

 

MR-images were acquired on a 1.5T whole body MR scanner (Siemens Vision). 

For the patients, the protocol typically included volumetric T1-weighted gradient 

echo, coronal FLAIR and axial T2-weighted fast spin echo scans and DTI 

sequences. The control subjects had volumetric T1 and DTI acquisitions. The DTI 

acquisition comprised axial 2D echo planar imaging (2D EPI) diffusion weighted 

sequence with TR/TE = 6000/112msec, FOV = 24 cm, matrix = 128x128, 3mm 

contiguous slices without gap, resulting in a voxel size of 1.875mm x 1.875mm x 

3mm. Furthermore, two b values = 0 and 1000 s/mm2; 12 directions and 6 

averages were utilised. In order to ascertain consistent quality, routine 

preventative maintenance is performed on the MRI scanner. The measures 
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always remained well within specifications for main field stability, gradient stability, 

rf stability, and eddy current compensation performance.   

 

2.3 DTI  Quantitation 

 

Data were transferred to a “Leonardo" workstation (Siemens Medizintechnik AG, 

Erlangen, Germany) from each set of diffusion/orientation weighted images and 

processed using DTI task card software (Massachusetts General Hospital, 

https://www.nmr.mgh.harvard.edu). Specifically, multiple linear regression was 

used to generate the diffusion tensor D ,,,   (Sb=S0 * exp(-bD); ln(Sb/S0)=-b(D) ) from 

each set of diffusion/orientation-weighted images. Sb, is the MR signal measured 

for a given b value, S0 is the MR signal for b=0, b = is the b matrix characterizing 

the diffusion gradient pluses (timing, amplitude; shape) along each 

direction(s/mm2); D = the diffusion tensor which describes the molecular mobility 

along each direction and correlation between these directions.  The diffusion 

tensor D is then diagonalized to obtain the eigenvectors and eigenvalues (i, i = 

1,2,3). The eigenvectors represent the major diffusion directions and the 

eigenvalues are the associated diffusivities. The ADC (units = mm2/s) is 

calculated from the trace of the diagonalised diffusion  tensor  ((1+ 2 + 3)/3).  

For isotopic diffusion, 1 = 2 = 3; for anisotropic diffusion, 1 > 2 ≥ 3.  

Parametric maps of the ADC and fractional anisotropy (FA) were generated. FA, a 

scalar (unitless) quantity, indicates the degree of directionality of the diffusion 

within a given voxel; it ranges from 0 to 1, with an FA of 0 indicating full isotropy 

and FA=1 indicating complete anisotropic diffusion. Similarly, parametric maps for 

the axial or parallel (main direction of diffusion, E1=1) and radial (perpendicular 

to the main axis, T = (2+3)/2) diffusivities were also created. Together, these 

quantitative measures help to characterise the integrity of the underlying white 

matter.   

 

 

 

https://www.nmr.mgh.harvard.edu/
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2.4 Diffusion tensor tractography (DTT) 

 

Fibre tracking was performed using the FACT algorithm (Mori et al., 1999; 

Stieltjes et al., 2001) implemented within the DTI task card software. The 

algorithm developed fibre tracts by following the direction of the principle 

eigenvector at each step starting from a region of interest (ROI). Tracking 

propagates on the basis of the orientation of the eigenvector that is associated 

with the largest eigenvalue. In all studies, tracking is terminated when it reaches a 

voxel with an FA lower than a threshold of 0.2. The second criterion is the angle 

between the two principal eigenvectors; to reconstruct the unicinate fasciculus 

(UF) (chapter 3) and the fibres arising from the ictal onset zone (chapter 6) it was 

set at greater than 50o. The AF was reconstructed using an angle of 70o or 

greater. Both of these thresholds are user defined.  The software also allows for 

obtaining mean measures of FA and ADC for ROIs and also for the entire 

reconstructed tract.  

 

As detailed under “DTI quantitation”, measurements in the axial and perpendicular 

direction allow elucidation of the mechanism producing the observed changes in 

anisotropy, thus providing insights into the underlying pathology. Due to the non-

linear trajectory of the white matter tracts, such estimates of axial and 

perpendicular diffusivities are only meaningful in one single plane. Consequently, 

due to the complex geometric shape of the entire fasciculus, we chose to report 

on these changes only in one ROI, contained within the respective tract.  
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CHAPTER 3 

CORRELATES OF MEMORY FUNCTION, DTI MEASURES AND 

TRACTOGRAPHY 

 
Diffusion abnormalities have been found in patients with focal epilepsy using DTI 

and DWI not only in areas of seizure onset and spiking, but also in adjacent, 

remote and even contralateral areas, as discussed in sections 1.4.2 - 1.4.4. 

Cognitive dysfunction in memory and language domains is common in patients 

with temporal lobe epilepsy and DTI could provide insights into mechanisms of 

such dysfunction.  

 

Chapters 3 and 4 include investigations into correlations of neuropsychological 

measures of language and memory with DTI measures of regions of interest and 

tracts in patients with medication refractory TLE. This chapter focuses on memory 

functions in TLE and the UF (Diehl et al., 2008).  

 

3.1 INTRODUCTION: The uncinate fasciculus in TLE 

 

The UF is a major white matter tract connecting the anterior temporal and frontal 

lobes (Schmahmann et al., 2007). It has the form of a curved dumbbell and links 

the anterior three temporal convolutions and the amygdala with the gyrus rectus, 

medial retro orbital cortex and subcallosal area (Ebeling and von Cramon, 1992). 

The UF has an important role in the formation and retrieval of episodic memories 

(Nestor et al., 2004; Squire and Zola-Morgan, 1991) and is a pathway of seizure 

spread to the frontal lobe in TLE (Mayanagi et al., 1996).   

 

The purpose of this study was to test the hypothesis that DTI would reveal 

structural abnormalities of the UF ipsilateral to the seizure focus in TLE and that 

the degree of abnormality would correlate with functional abnormality, as shown 

by reduced memory scores. 
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3.2  METHODS  

 

3.2.1 Participants  

 

This study included 28 patients with medically intractable TLE and 10 age- and 

sex-matched controls. Eighteen patients had left TLE (13 mesial temporal, five 

lateral temporal) and 10 right TLE (five mesial temporal, five lateral temporal). All 

patients underwent temporal lobe resection for treatment of epilepsy and all but 

one patient had good seizure outcome (ILAE class 1, n=25; ILAE class 2, n=2; 

ILAE class 3, n=1 (Wieser et al., 2001)) at 6 months to 2 years (median 1 year) 

follow-up. Nine patients had pathologically proven hippocampal sclerosis, 14 non-

specific gliosis, and two type 1A cortical dysplasia, characterised by  architectural 

disorganisation (Palmini et al., 2004).   

 

The study was approved by the Institutional Review Board of the Cleveland Clinic 

Foundation, and all patients gave informed consent prior to enrollment in the 

study.  

 

3.2.2 Region of interest analysis and tractography 

 

The UF was reconstructed using a two ROI approach to restrict fibre assignment 

to the UF (Figure 3.1). On the axial colourised FA map, a ROI was placed 

encompassing the perpendicular fibres passing through the temporal stem in the 

anterior temporal lobe towards the orbitofrontal cortex (Mori et al., 2005). A 

second ROI was placed in each patient on an inferior axial slice closer to the 

inferior and anterior portion of the temporal lobe, encompassing the fibres of the 

UF, in order to restrict fibre assignment to the UF. Fibres were reconstructed that 

passed through both ROIs. Fibre tracking was performed using the FACT 

algorithm (Mori et al., 1999; Stieltjes et al., 2001) implemented within the DTI task 

card software, as described in chapter 2.  In this study, tracking was terminated 

when it reached a voxel with a FA lower than a threshold of 0.2 and when the 
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angle between the two principal eigenvectors was greater than 50o. Both of these 

thresholds were user defined.  Measures of FA and ADC were obtained for the 

entire reconstructed UF.  

 

 

Figure 3.1 Reconstruction of the UF 
 
A: The figure illustrates placement of the two ROIs to reconstruct the UF.  
The white arrow shows the location of the fibres of the right UF in the axial slice of 
the colourised fibre orientation map. The ROI in orange on the left shows the 
superior of the two ROIs used to reconstruct the UF.  
B: The reconstructed left UF is displayed from a left lateral angle. The two ROIs 
used for reconstruction are visible in orange and pink colour.  
 

 
 
 

In order to gain insight into the underlying microstructural sources of the observed 

differences in the FA and ADC values measured for the tracts, the diffusion along 

each of the main three directions, i.e. eigenvalues (λ1, λ2, λ3) (mean ± SD), was 

examined along with the FA and ADC, for an ROI contained within the rostro-

caudal course of the UF within the temporal stem. This ROI was selected after 

reconstruction of the UF to include only fibres that followed the course of the UF. 

 

The axial and radial diffusivities were computed for each individual ROI within the 

UF in order to independently evaluate the degree of diffusion parallel and 
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perpendicular to the UF tract at that location. Such measurements in the axial and 

perpendicular direction allow elucidation of the mechanism producing the 

observed changes in anisotropy, thus providing insights into the underlying 

pathology. Due to the non-linear trajectory of the white matter tracts, such 

estimates of axial and perpendicular diffusivities are only meaningful in one single 

plane and these changes were only reported for one ROI, contained within the 

UF. This region was located within the temporal stem, where the UF has a rostro 

caudal orientation and can be easily identified.  

 

Figure 3.2 DTT of the UF   

A:  Sagittal and axial cuts of colourised fibre orientation map of a 34 years old 
woman with intractable left temporal neocortical epilepsy. The UF is displayed in 
yellow (left UF) and red (right UF).  
B. The UFs were coregistered and overlaid onto the patient’s T1 volumetric study.   
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3.2.3 Neuropsychological protocol 

 

All TLE patients underwent a comprehensive neuropsychological evaluation as 

part of their pre-surgical investigations. The Wechsler Memory Scale – Third 

Edition (WMS-III) was administered as part of the neuropsychological battery. 

Four memory indices from the WMS-III were used in the current study to evaluate 

memory performance. The Auditory Immediate Memory Index and the Auditory 

Delayed Memory Index were used to assess verbal memory. The Visual 

Immediate Memory Index and the Visual Delayed Memory Index were used to 

assess visual memory. 

 

3.2.4 Analyses 

 

In order to compare age at seizure onset and duration of epilepsy in the TLE 

groups (left, right), U tests were computed.  

 

To evaluate DTI measures, two-tailed t-tests were conducted to examine 

differences in FA and ADC between left and right UF among the study groups and 

differences in FA and ADC values between the groups. Then, Spearman 

correlations between DTI and memory measures in the TLE groups were 

examined. Given the exploratory nature of this study, no correction for Type I 

error was made. 

 

To obtain measures of reliability, the UF was reconstructed in ten controls on both 

sides, on two separate occasions four months apart, by the same rater (BD) and 

reliability was assessed using Cronbach’s alpha values.  

 

In all tests, statistical significance was set to P<0.05. All analyses were performed 

using the SPSS software package (SPSS, Chicago, IL). 
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3.3 RESULTS 

 

Demographics were comparable between the study groups and are shown in 

Table 3.1 (controls: age range 26-52, median 37; right TLE: range 28-55, median 

39, mean 36.3+6.6 years; left TLE: range 24-47, median 36, mean 41.8+8.2 

years). Specifically, no difference was found in age at onset of epilepsy in the left 

versus right TLE group (right TLE: median age at seizure onset 16.5 years, range 

10-42; median duration of epilepsy 23 years, range 2-28; left TLE: median age at 

onset 23 years, range 5-42; median duration 22.5 years, range 1-41). 

 

All controls and the majority of epilepsy patients were right-handed using the 

Edinburgh handedness questionnaire. A total of 10 patients were left-handed or 

ambidextrous. These patients were confirmed to be left hemisphere dominant for 

speech on Wada testing or functional MRI; therefore all subjects are likely to be 

left hemisphere dominant for language. 

 

Table 3.1 Demographic and seizure data for study patients 

Variable Left Temporal Right Temporal 

 Median (range) Median (range) 

Age 36.00     (24-47) 39.00   (28-55) 

Education 14.00     (12-19) 12.00   (8-17) 

Age of seizure onset 23.00     (5-42) 16.50   (10-42) 

Duration of Epilepsy 22.50     (1-41) 23.00   (2-28) 

Sex Male = 5 (28%) Male = 6 (60%) 

 Female = 13 (72%) Female = 4 (40%) 

Race Caucasian = 18 (100%) Caucasian = 10 (100%) 
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3.3.1 DTI values of the UF in controls and patients with left and right TLE 

 

3.3.1.1 Controls 

 

Mean FA in the left UF tract was higher than in the right UF (left UF FA 0.3654+ 

0.033; right UF FA 0.33+  0.02; p<0.01).  No other differences in DTI values were 

identified. Tract volume was symmetric bilaterally. The reliability measure 

(Cronbach’s alpha)  for reconstruction of the bilateral UF in the 10 controls on two 

occasions four months apart was excellent (ADC left UF, 0.9920; FA left UF, 

0.9950; ADC right UF, 0.9983; FA right UF, 0.9950). 

 

3.3.1.2 Comparison between TLE patients and controls  

 

In the left TLE group (n=18), FA was reduced in the left UF, but not in the right as 

compared to the controls. ADCs and radial diffusivities were increased bilaterally. 

(Table 3.2) 

 

In the right TLE group (n=10), the FA was lower in the left UF than the controls. 

FA in the right UF, although lower than in left TLE and in controls, was not 

statistically significant. ADCs were increased in both the left and right UF. 

Subanalysis of the eigenvalues of the diffusivities within the left ROI revealed 

significant increases in the radial diffusivities. In the right ROI, although nominally 

higher, this difference failed to reach statistical significance. Volume of the left and 

right UF was symmetrical in both left and right TLE (Table 3.2). 

 
3.3.1.3 Comparison between TLE patients  

 

There were no differences in DTI measurements between patients with mesial 

versus lateral temporal lobe epilepsy. Patients with hippocampal sclerosis and 

patients without any specific pathology within the resected tissue had comparable 

DTI measurements to those without either pathology. 
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Table 3.2 DTI values in controls and patients with left and right TLE 

 

 

Controls 

(n=10) 

Mean (SD) 

Left TLE 

(n=18) 

Mean (SD) 

Right TLE 

(n=10) 

Mean (SD) 

lt UF tract, FA 0.365 

(0.033) 

0.335* 

(0.030) 

0.326** 

(0.031) 

lt UF tract, ADC 8.204 

.2995 

8.714** 

(0.465) 

8.815** 

(0.597) 

ROI within lt UF, FA 0.506  

(0.085) 

0.416** 

(0.070) 

0.389** 

(0.068) 

ROI within lt UF, ADC  7.595 

(0.410) 

8.060** 

(0.393) 

7.899 

(0.459) 

ROI within lt UF, E1 12.401 

(1.189) 

12.083 

(0.793) 

11.603 

(0.729) 

ROI within lt UF, radial diffusivities 5.192 

(0.633) 

6.051** 

(0.612) 

6.047** 

(0.625) 

rt UF tract, FA 0.330 

(0.019) 

0.324 

(0.029) 

0.3174 

(0.0331) 

rt UF tract, ADC 8.338 

(0.281) 

8.664* 

(0.440) 

8.884* 

(0.628) 

ROI within rt UF, FA  0.469 

(0.042) 

0.423 

(0.066) 

0.400 

(0.099) 

ROI within rt UF, ADC  7.51780 

(0.271) 

7.879* 

(0.477) 

8.202 

(1.043) 

ROI within rt UF, E1 11.783 

(0.630) 

11.854 

(0.798) 

11.999 

(0.735) 

ROI within rt UF, radial diffusivities 5.385 

(0.620) 

5.896* 

(0.599) 

6.302 

(1.303) 

 
SD= Standard deviation, Lt= left, Rt= right, ROI=Region of Interest 

* =  P<0.05; ** = P<0.001 (unpaired t-test). 
E1= eigenvalue 1. ADC, E1 and radial diffusivities all in 10-4 mm2/s 
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3.3.1.4 Correlations between duration of epilepsy and DTI measures 

 

Correlations between age at seizure onset, duration of epilepsy, and DTI 

measures were examined. These correlations were calculated on all TLE patients 

as a group as well as separately for those with left TLE and those with right TLE. 

There were no significant correlations between age at seizure onset or disease 

duration and DTI measures.  

 

3.3.2 Correlations between DTI measures and memory scores  

 

These results are summarised in table 3.3 and shown graphically in figure 3.2 

 

3.3.2.1 Left temporal lobe epilepsy patients 

The following correlations with DTI measures in the left UF were found: The 

Auditory Immediate Memory Index score was negatively correlated with ADC. 

Performance on the Auditory Delayed Memory Index score was negatively 

correlated with ADC and radial diffusivities, and positively correlated with FA in 

the ROI in the left UF. In summary, evidence of damage to the left UF based on 

DTI measurements is associated with reduced performance on measures of 

Auditory Immediate and Delayed Memory in left TLE patients. 

 

The following correlations with DTI measures in the right UF (ROI only) were 

found:  The Visual Delayed Memory Index score was positively correlated with the 

FA in the ROI and negatively correlated with radial diffusivities. In summary, 

evidence of damage to the right UF based on DTI measurements is associated 

with reduced performance on measures of Visual Delayed Memory. 

 

3.3.2. 2 Right temporal lobe epilepsy 

 

No significant correlations between DTI values and memory scores were found in 

the right TLE group.  
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Table 3.3 Correlations between DTI measurements and auditory and visual 

memory scores in all TLE, left TLE, and right TLE 

Left TLE  

  

Auditory 

Immediate 

Index 

Score  

Auditory 

Delayed 

Index 

Score  

Visual 

Immediate 

Index 

Score  

Visual 

Delayed 

Index 

Score  

 lt UF tract, FA 0.272 0.382 0.109 0.210 

 lt UF tract, ADC -0.512* -0.535** -0.083 0.126 

ROI within lt UF, ADC -0.304 -0.435 -0.112 0.032 

ROI within lt UF, FA  0.412 0.534* 0.258 0.314 

ROI within lt UF, E1  0.191 0.197 0.189 0.377 

ROI within lt UF, radial 

diffusivity 

-0.437 -0.571* -0.279 -0.262 

rt UF tract, FA 0.057 0.145 0.032 0.090 

rt UF tract, ADC -0.107 -0.286 -0.085 0.139 

ROI within rt UF, FA  0.006 0.079 .397 0.547* 

ROI within rt UF, ADC  -0.318 -0.369 -0.366 -0.322 

ROI within rt UF, E1  -0.160 -0.198 0.055 0.108 

ROI within rt UF, radial  

diffusivity 

-0.287 -0.333 -0.376 -0.539* 

Spearman’s correlation    **  Correlation is significant at the 0.01 level (2-tailed) 
*   Correlation is significant at the 0.05 level (2-tailed) 
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Right TLE 

  Auditory 

Immediate 

Index 

Score  

Auditory 

Delayed 

Index 

Score  

Visual 

Immediate 

Index 

Score  

Visual 

Delayed 

Index Score  

lt UF tract, FA 0.483 0.091 0.431 0.254 

ADC in lt UF tract -0.250 -0.006 0.000 0.100 

ROI within lt UF, ADC  -0.268 -0.310 -0.311 -0.044 

ROI within lt UF, FA 0.128 0.158 0.116 -0.069 

ROI within lt UF,  E1  0.189 -0.097 -0.140 -0.263 

ROI within lt UF,  

Perpendicular diffusivity 

-0.183 -0.219 -0.287 0.088 

FA in rt UF tract 0.367 0.390 0.550 0.386 

ADC in rt UF -0.140 0.359 -0.195 0.382 

ROI within rt UF, FA  0.238 0.152 -0.024 -0.138 

ROI within rt UF, ADC 0.140 0.079 0.146 0.200 

ROI within rt UF, E1 0.575 0.335 0.315 0.320 

ROI within rt UF 

Radial diffusivity 

-0.152 -0.152 0.018 0.156 

Spearman’s correlation    **  Correlation is significant at the 0.01 level (2-tailed) 
*   Correlation is significant at the 0.05 level (2-tailed) 
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Figure 3.2 Graphs illustrating correlations between memory performance 
and UF DTI measures in right and left TLE 
 
A: Correlation between Performance on auditory immediate memory measures 
and ADC in the left UF tract 
 

 
 

r=-0.512, P<0.05   r=-0.250, not significant (ns) 
 
B: Correlation between performance on auditory delayed memory measures and 
ADC in the left UF tract 
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C: Correlation between performance on auditory delayed memory measures and 
FA in the ROI in the left UF tract 
 

 
 

r=0.543, p<0.05    r=0.158, ns 
 
D: Correlation between Performance on auditory delayed memory measures and 
radial diffusivities in the ROI in the left UF tract 
 

 
 

r=-0.571, p<0.05    r=-0.219, ns 
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E:  Correlation between performance on visual delayed memory measures and 
FA in the ROI in the right UF tract 
 

 
 

r=0.547, p<0.05   r=-0.138, ns 
 
 
F: Correlation between performance on visual delayed memory measures and 
radial diffusivity in the ROI in the right UF tract 
 

 
 

r=-0.539, p<0.05   r=0.156, ns 
 
 

 

 



Beate Diehl - PhD Thesis 
 

- 71 - 

 

3.4 DISCUSSION  

 

3.4.1 DTI of the UF in controls  

 

In this study the FA in the controls was found to be greater in the left than the right 

UF with symmetric tract volume. The literature on UF asymmetries in controls 

remains controversial. Some groups have demonstrated a greater left than right 

asymmetry in UF FA (Kubicki et al., 2002); others however, found that the right 

UF had a higher FA (Rodrigo et al., 2007). These differences may in part be due 

to methodological differences both in image acquisition and analysis. It is likely 

that there is a variability of diffusion values that can be measured at different 

locations within the UF; some authors describe a greater right than left asymmetry 

in the stem and the inferior (temporal) aspect of the UF (Park et al., 2004; Rodrigo 

et al., 2007), and a greater left than right asymmetry in the frontal aspect of the 

UF. Detailed analysis in one study showed that greater right than left asymmetry 

was present in the middle and inferior portion, and greater left than right in the 

superior portion of the UF (Park et al., 2004). The methodology used in this study 

did not allow for separation of those two parts of the UF.  

 

3.4.2 DTI of the UF in patients with Epilepsy 

 

This study showed that patients with TLE have abnormal measures of diffusivity 

and anisotropy in the UF bilaterally. Reduced FA was noted in the left UF as well 

as the ROI in the left UF in patients with left and right TLE.  

 

The only study reporting DTI of the UF in patients with epilepsy available at the 

time of conducting the study reported ten patients with right TLE due to right 

hippocampal sclerosis compared to ten controls (Rodrigo et al., 2007). It showed 

that the right, but not the left FA was lower in the epilepsy patients as compared 

to the controls. There was no report on diffusivity measures.  
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This study showed more bilateral involvement in the UF with significantly 

increased ADCs in the right UF and decreased FA and increased ADCs in the left 

UF in both right and left TLE patients. This is in concordance with reports of 

bilateral diffusion abnormalities in limbic structures in patients with TLE. Also, 

several groups have demonstrated that diffusion abnormalities in TLE exist in 

areas remote and even contralateral to the presumed seizure focus (Arfanakis et 

al., 2002; Concha et al., 2005; Gross et al., 2006).  

 

Preferential pathways for seizure spread in TLE may be the fornix and stria 

terminalis, amygdalofugal fibres, and UF (Mayanagi et al., 1996). Therefore, it is 

conceivable that the abnormal DTI values may be related to damage of the axonal 

pathways that are involved in ictal spread. Alternatively, neuronal damage from 

seizures may lead to secondary white matter loss in connected areas. 

Interestingly, the current study failed to demonstrate any difference between 

mesial versus lateral TLE or between the patients with and without hippocampal 

sclerosis. It is possible however, that changes may not be apparent because of 

the small sample size. Studies with larger sample sizes are required to definitively 

answer this question.  

 

Both epilepsy groups were comparable in age at seizure onset and duration of the 

epilepsy; hence assuming similar seizure burden, we would expect comparable 

damage in both the left and right TLE. Indeed, both TLE groups showed evidence 

of comparable patterns of DTI abnormalities in both UFs. However, as the number 

of seizures or seizure types was not prospectively investigated, it cannot be 

determined whether there is a correlation between degree of DTI abnormalities 

and severity of epilepsy. Other variables such as history of status epilepticus and 

febrile seizures should also be evaluated in a larger group of patients with 

epilepsy to understand their impact on DTI abnormalities in patients with epilepsy.      

 

To date, the exact mechanism of such seizure-induced damage is unknown. In 

this study, the characteristics of the diffusion changes in a ROI within the UF were 
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examined to gain further insight into the type of changes. Analysing the pattern of 

diffusion changes with respect to diffusivities parallel and radial to the main axonal 

direction provides in vivo insights into the underlying cause of decreased FA. This 

study found unchanged parallel diffusivity and increased perpendicular diffusivity. 

In order to understand the contributions of axonal versus myelin damage, serial 

diffusion measurements have been performed on the optic nerve in a mouse 

model of retinal ischemia (Song et al., 2003). According to this model, parallel 

diffusivity shows a significant decrease in the first days of degeneration, which 

corresponds to the disintegration of the axonal microstructure, whereas myelin 

remains intact. Five days after the initial injury perpendicular diffusion increased, 

which corresponds to the degradation of myelin sheaths. As demonstrated using 

an in vitro model of Wallerian degeneration in frog sciatic nerve, axonal and 

myelin degeneration causes a decrease in diffusion anisotropy due to reduced 

parallel and increased radial diffusion (Beaulieu et al., 1996). In humans, 

reductions in the principal direction and increases in radial diffusivities have been 

shown in chronically degenerated white matter tracts (Pierpaoli et al., 2001). 

Serial DTI measurements in three patients who underwent corpus callosotomy to 

treat medically refractory seizures and drop attacks, revealed interesting insights 

into the diffusion changes in the corpus callosum after the surgery (Concha et al., 

2006). After one week, a decrease in  parallel diffusivities was seen, evidencing 

the breakdown of the axons (Concha et al., 2006; Kerschensteiner et al., 2005), 

creating barriers in the longitudinal displacement of the water molecules. In the 

chronic stage, 2-4 months after corpus callosotomy, an increase of the radial 

diffusivities was observed. Most likely at this stage, axonal membranes became 

more degraded and myelin sheaths showed degeneration, leading to preferential 

increase in radial diffusivities. It would appear that the overall pattern of FA 

changes seen in this study is most consistent with chronic Wallerian 

degeneration, possibly due to cell loss in the temporal lobe secondary to seizure-

induced cell death.  
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3.4.3 Correlations with neuropsychological dysfunction 

 

3.4.3.1 The role of the uncinate fasciculus in memory 

 

The UF is the major fibre tract connecting the inferior frontal and anterior and 

mesial temporal lobes (Ebeling and von Cramon, 1992). A multitude of functional 

neuroimaging data has implicated the temporal lobes, particularly mesial temporal 

and frontal structures in encoding and retrieval of memories. The anterior 

temporal area receives information from sensory association areas as well as the 

limbic nuclei and integrates sensory input (Damasio et al., 1985; Markowitsch et 

al., 1985). In healthy subjects, fMRI has confirmed that episodic memory is 

associated with both mesial temporal and frontal lobe activation (Brewer et al., 

1998; Kirchhoff et al., 2000; Markowitsch et al., 1985; Wagner et al., 1998). There 

is material specific lateralisation of memory in both healthy volunteers and 

patients with unilateral mesial temporal lobe lesions. Encoding of verbal 

information activates the left medial temporal structures, whilst encoding of less 

verbalisable stimuli, such as patterns, activates the right mesial temporal 

structures, with encoding of intermediate verbalisable stimuli, such as faces and 

scenes, resulting in approximately symmetric activation (Brewer et al., 1998; 

Golby et al., 2001; Golby et al., 2002; Hwang and Golby, 2006). In general, the 

lateralisation of memory performance regarding verbal material appears stronger; 

conversely, there is a less firm association of right TLE with disturbed figural 

learning (Helmstaedter et al., 1995; Powell et al., 2007b). 

 

The medial temporal lobes have been consistently implicated not only in 

encoding, but also in retrieval (Schacter and Wagner, 1999; Wagner et al., 1998). 

Pre-frontal regions in the left hemisphere are differentially activated during 

episodic encoding and semantic retrieval, whereas right pre-frontal areas are 

differentially involved during episodic memory retrieval. It therefore seems 

reasonable to assume that the integrity of the UF linking the frontal and anterior 

and mesial temporal lobes is important for optimal performance on memory tasks.  
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3.4.3.2 Correlations of DTI abnormalities in the UF in disease 

 

In line with the above hypothesis, correlations were found between DTI measures 

suggesting damage to the UF and dysfunction in lateralised memory tasks. 

Specifically, the current study suggests that in patients with left TLE, left UF 

diffusivity is related to reduced verbal memory performance, whereas right UF DTI 

measures are related to reduced visual memory performance.  In patients with 

right TLE, such correlations could not be demonstrated. This may in large part be 

due to the small sample size in the right TLE group. Although none of the 

correlations in the right TLE group reached statistical significance, it should be 

noted that the variance of correlation coefficients observed in this group was large 

and some of the correlations were in the medium to large range (Table 3.3).  This 

suggests that if the sample sizes had been bigger in the right TLE group, these 

correlations would likely have reached statistical significance.  

 

In the dominant hemisphere, strong structure and function relationships have 

been found for both language and memory in a variety of DTI and fMRI studies in 

temporal lobe epilepsy patients (Focke et al., 2008; Powell et al., 2007a; Powell et 

al., 2008; Powell et al., 2007b). Subjects with more lateralised functional 

activation had also more highly lateralised DTI values. In left TLE, more 

symmetrical language activations were seen on fMRI, along with reduced left 

hemisphere and increased right hemisphere structural connections. fMRI in the 

patients undergoing non-dominant anterior temporal lobe resection showed no 

significant correlation between right hippocampal encoding activation for faces or 

pictures and post-operative change in design learning, suggesting a less strong 

structure-function relationship in non-dominant TLE. Therefore, lack of correlation 

between visual memory performance and DTI values in the UF in the smaller right 

TLE group may not be surprising.  

 

Correlations between lateralised memory performance evaluating both verbal and 

visual memory paradigms and DTI abnormalities have been shown in other 
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diseases.  Patients with schizophrenia have reduced levels of functioning across 

all neuropsychological measures and selective relationships between memory 

performance and DTI measures have been demonstrated. Reduced left UF FA 

correlated with reduced scores in measures of declarative-episodic memory, and 

reduced right UF FA correlated with lower scores on measures of working 

memory, general intelligence, verbal intelligence and verbal comprehension. The 

authors felt that the latter finding underscored the widely distributed nature of 

higher cognition in the brain, thus cautioning against simple isomorphic 

relationships between function and anatomy (Nestor et al., 2004). Another study 

reported that lower FA in the right UF correlated with reduced performance on 

measures of visual attention (Kubicki et al., 2002). In five subjects with schizotypal 

personality disorder, bilateral reductions of FA in the UF were reported. 

Correlations were found between right UF abnormalities and clinical symptoms 

such as restricted affect and social anxiety. Left UF measurements indicative of 

microstructural damage were correlated with lower performance on measures of 

verbal and visual memory (Nakamura et al., 2005).  

 

In a group of  TLE patients suffering from  psychosis (Flugel et al., 2006), a 

positive correlation was found between  verbal fluency and DTI measurements in 

the left frontal, right frontal, and left temporal regions. Prediction of poor fluency 

could be made using FA of left frontal and bilateral temporal regions. It was felt 

that the significant association between impairment on particular executive tests 

and reductions of frontotemporal FA may reflect the contribution of frontotemporal 

white-matter abnormalities to the cognitive deficits in these patients. This 

argument is further strengthened by data from diseases mostly affecting white 

matter, such as multiple sclerosis, where lesion burden and abnormal diffusivity 

measures correlate with cognitive performance (Rovaris et al., 2002). 

 

Microstructural abnormalities within the UF therefore could contribute to memory 

dysfunction in patients with TLE. Furthermore, the UF carries cholinergic fibres 

from the basal nucleus of Meynert, as part of a cholinergic pathway that supplies 
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frontal, parietal and temporal neocortices and the perisylvian division of the 

frontotemporal operculum, insula and superior temporal gyrus. Altered cholinergic 

innervation through the UF may contribute to disturbed memory functions (Selden 

et al., 1998).  

 

3.4.3.3  Correlations of DTI abnormalities in the UF in epilepsy 

 

Since publication of these results (Diehl et al., 2008), one further study has 

investigated relationships between memory and DTT and has in part replicated 

these findings. McDonald et al. (2008) found increased diffusivity of numerous 

fibre tracts associated with poorer verbal, but not nonverbal memory 

performances in TLE. These associations were strongly left-lateralised for the UF. 

McDonald et al. also investigated the parahippocampal cingulum and the inferior 

occipitofrontal gyrus, which also showed strong correlations with memory 

performance. The parahippocampal cingulum, the white matter running along the 

ventral aspect of the parahippocampal gyrus and connecting medial temporal lobe 

regions to the posterior cingulate cortex is an important part of the limbic circuit 

and therefore unsurprisingly related to memory function. The authors felt that the 

damage in the inferior fronto-occipital fasciculus may have affected memory 

performance through impaired attention.  

 

In the same study, correlations between visual memory and right UF DTT was 

examined, but did not yield any systematic relation, contrary to the findings of this 

study. Aside from methodological reasons the authors also discuss that overall 

the relation between nonverbal memory and right temporal lobe function is known 

to be more tenuous than the association between verbal memory and left 

temporal lobe function (Vaz, 2004). 
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3.4.3.3 Limitations of the study 

 

One of the shortcomings of the current study is that neuropsychological measures 

were available only for the patient groups and not for the controls. Therefore, it 

cannot be determined whether similar correlations exist between memory 

performance and UF diffusion measures in a healthy control population. The 

current study is also limited by the rather small sample size, and larger 

prospective studies will need to be undertaken to confirm the results. 

Furthermore, due to the exploratory nature of the study, no correction for Type I 

errors were made. However, the strong correlations in the expected direction 

despite small sample size are a good indicator that the correlation between 

memory performance and integrity of the UF is a robust finding, particularly in the 

dominant hemisphere. Regarding tractography, all limitations mentioned in 

section1.6 apply. 

 

This chapter has shown that in left TLE, strong structure function relationships 

exist when investigating visual and verbal memory. In the following chapter, 

results of similar correlation studies between white matter connections and 

performance in the language domain are presented.   
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CHAPTER 4  

CORRELATES OF LANGUAGE FUNCTION, DTI MEASURES AND 

TRACTOGRAPHY 

 
 
4.1  INTRODUCTION: The arcuate fasciculus in TLE 

 

The dominant temporal lobe is particularly important to language functioning, and 

confrontation naming tasks have been shown to be sensitive to left temporal lobe 

dysfunction (Busch et al., 2005; Mayeux et al., 1980). Successful naming 

performance requires integration of information from a variety of cortical sensory 

association areas including visual and auditory association cortex and also the 

basal temporal and occipital areas (Mayeux et al., 1980). Dysfunction in patients 

with dominant TLE is likely to be related not only to dysfunction in the posterior 

language area, but may also be related to abnormalities throughout the entire 

network. As such, the language system in patients with TLE may differ from 

normal controls as the result of subtle structural damage to the language network, 

secondary to seizures or as a primary insult that resulted in seizures. We 

hypothesised that DTI measures are abnormal in patients with temporal lobe 

epilepsy and that they will correlate with language dysfunction. 

 

4.2  METHODS 

 

4.2.1 Participants 

 

Thirty-six patients with medically intractable TLE (22 left, 14 right) and left 

hemispheric language dominance, as determined by Wada testing and/or 

functional MRI, were included in the study. DTI was performed during the patients’ 

clinical imaging studies as part of their pre-surgical investigations. All patients 

eventually underwent anterior temporal lobectomy and were seizure-free at the 
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time of their most recent follow-up (range 6 months to 3 years; median 18 

months).  

 

Patients ranged in age from 25 to 58 years (M=mean; SD= standard deviation; M 

= 38.72, SD = 7.96) and in education from 8 to 20 years (M = 13.83, SD = 2.62). 

Fifty-six percent of the sample was female and 94% were Caucasian. The mean 

age at seizure onset was 21.03 years (SD = 12.39), and mean duration of 

epilepsy was 17.69 years (SD = 12.21).  

 

Pathology showed HS in 13 patients (8 left TLE). The other 23 patients (14 left 

TLE) had non-specific pathology such as gliosis or microscopic cortical dysplasia. 

 

In addition, 10 healthy controls without any history of neurological disease were 

included. They underwent DTI imaging as well as a volumetric T1 MRI scan. 

Control participants ranged in age from 26 to 52 years (M = 37.70, SD = 8.46).  

 

4.2.2 Region of interest analysis and tractography of the AF 

Fibre tracking was performed to reconstruct the AF using the FACT algorithm 

(Mori et al., 1999) implemented within the DTI task card software (Wang, 2006), 

as described in the common methods section and an example in shown in figure 

4.1.  Tracking was terminated when a voxel with a FA lower than 0.2, or a 

trajectory angle (i.e. the angle between the principal eigenvectors associated with 

the current voxels) greater than 70o were encountered. Measures of FA and ADC 

were obtained for the entire reconstructed tract. 

 

In order to gain insights into the underlying microstructural sources of the 

observed DTI measures, the diffusion along each of the main three directions, i.e. 

eigenvalues (λ1, λ2, λ3) (mean ± SD) was examined in a ROI contained within the 

AF. This ROI was selected after reconstruction of the AF as a 20 voxel subset of 

the ROI used for reconstructing the AF, to only include fibres that were felt to 

follow the course of the AF.  
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Figure 4.1 Illustration of the reconstruction of the AF 

Guided by the axial colour fibre orientation maps, a ROI is defined to encompass 
the horizontal fibres lateral to the corona radiata and medial to the cortex (A and 
B). C and D show the AF tracked from the ROI.  

 

 
 
 
 
 
 
 
 



Beate Diehl - PhD Thesis 

- 82 - 

 

4.2.3 Neuropsychological protocol 
 
All patients with TLE (22 left; 14 right) underwent a comprehensive 

neuropsychological evaluation as part of their pre-surgical investigations. The 

Boston Naming Test (BNT; Kaplan, Goodglass & Weintraum, 1983) and a 

semantic fluency (i.e. animal naming) measure were administered as part of this 

standard battery of tests. One patient with outlying data on these measures was 

excluded from the statistical analyses. A subset of patients who consented to 

participate in this study (10 left; 5 right) also completed selected subtests of the 

Multilingual Aphasia Examination – Second Edition (MAE; Benton, de Hamsher, & 

Siven, 1994) including Sentence Repetition and the Token Test, a measure of 

verbal comprehension.  

 

4.2.4 Analyses 

 

First, the study groups were compared on demographic and seizure variables to 

ensure there were no pre-existing group differences that may have confounded 

the results. Second, paired-sample t-tests were conducted to examine differences 

in FA and ADC between left and right AF among each of the three study groups. 

Third, an Analysis of Variance (ANOVA) was used to compare DTI values 

between patients with and without MTS to rule out potential pathology-related 

differences. Finally, Spearman correlations (two-tailed) between DTI measures 

(FA and ADC in the left AF tract) and language measures were examined 

separately for patients with left and right TLE. Only correlations with moderate to 

large effect sizes (i.e., r > .30) were interpreted (Cohen, 1988). All analyses were 

performed using the SPSS software package (SPSS, Chicago, IL).  
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4.3 RESULTS 

 

4.3.1 Demographic analyses 

 

There were no differences observed between the three study groups in age or 

sex, and there were no differences between the two TLE groups on any other 

demographic or seizure variables.  

 

4.3.2 Comparisons of left and right AF among the three study groups 

 

There were no significant differences observed in FA or ADC values between the 

left and right AF in any of the three study groups, although the FA was nominally 

higher in the left AF compared to the right in controls, left and right TLE groups 

(paired T test). 

 

4.3.3 Comparison of FA and ADC values between the three study groups 

 

Using unpaired t- tests for comparison with the control group, the following 

differences emerged:  

 

In the left TLE group, FA values in the entire left and right AF tract were 

comparable; however ADC values were elevated bilaterally. Radial diffusivities 

were higher in the ROI in the left AF, but only nominally higher in the ROI of the 

right AF.  

 

In the right TLE group, significantly higher ADC values and lower FA values in 

both the left and right AF compared to controls were observed. Radial diffusivities 

were elevated.  
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Table 4.1.  FA and ADC of the AF in left and right TLE 
 

 

 

Controls  

(n=10) 

Mean (SD) 

Left TLE  

(n=22) 

Mean (SD) 

Right TLE  

(n=14) 

Mean (SD) 

Left AF Tract    

     FA 0.441 (0.010) 0.433 (0.017) 0.421 (0.02)** 

     ADC 7.408 (0.245) 7.616 (0.199)** 7.667 (0.23)** 

     FA ROI 0.647 (0.051) 0.594 (0.058)** 0.569 (0.074)** 

     ADC ROI  6.802 (0.272) 7.026 (0.325) 7.068 (0.398) 

     AF ROI E1 12.568 (0.923) 12.301 (1.089) 12.032(1.094) 

Radial Diffusivities ROI  3.918 (0.406) 4.385 (0.367)** 4.582 (0.610)** 

Right AF Tract    

     FA .436 (0.010) 0.422 (0.022) 0.418 (0.083)** 

     ADC 7.397(0.270) 7.642 (0.178)* 7.748 (0.312)* 

     FA ROI 0.627  (0.047) 0.602 (0.069) 0.564 (0.061)*  

     ADC ROI  6.798 (0.269) 7.076  (0.317)* 7.077 (0.404) 

     AF ROI E1 12.297(0.956) 12.498 (1.025) 11.995 (0.796) 

Radial Diffusivities ROI  4.047 (0.419) 4.436 (0.522) 4.630 (0.609)* 

 
AF = arcuate fasciculus; FA = fractional anisotropy; ADC = apparent diffusion 

coefficient; ROI = region of interest; SD = standard deviation; E1= eigenvalue; 1. 
ADC, E1 and radial diffusivities all in 10-4 mm2/s 

* = P <0.05; ** = P <0.001 (unpaired t-test) 
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4.3.4 Comparison of DTI variables between TLE patients with and without 

MTS  

 

Patients with MTS had comparable DTI measurements to those without any 

specific pathology or microscopic cortical dysplasia within the resected tissue.  

 

 

4.3.5 Correlations between DTI measures and language scores in patients 

with epilepsy 

 

In patients with left TLE, FA in the left AF tract was positively correlated with a 

semantic verbal fluency measure (r = 0.613), and ADC in the left AF tract was 

negatively correlated with measures of sentence repetition (r = -0.532) and verbal 

comprehension (r = -0.332, Table 4.2).  

 

In patients with right TLE, FA in the left AF tract was positively correlated with 

sentence repetition (r = 0.447). ADC in the left AF tract was negatively correlated 

with measures of sentence repetition (r = -0.671) and verbal comprehension (r = -

0.527) and positively correlated with semantic verbal fluency (r = 0.469, Table 

4.2) 

 
Figure 4.2 Correlation of left 
AF FA with semantic fluency 
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Table 4.2 Spearman correlations (two-tailed) between left AF values and  
language scores in patients with TLE 
 

 N FA left AF 

tract 

ADC left 

tract 

Left TLE    

   Boston Naming Test 22 0.103 -0.188 

   Semantic Fluency 19 0.613 -0.283 

   Sentence Repetition 10 0.188 -0.532 

   Token Test 10 -0.271 -0.332 

    

Right TLE    

   Boston Naming Test 14 0.062 -0.153 

   Semantic Fluency 11 -0.032 0.469 

   Sentence Repetition 5 0.447 -0.671 

   Token Test 5 -0.053 -0.527 

 
AF = arcuate fasciculus; FA = fractional anisotropy; ADC = apparent diffusion 
coefficient; Note: Correlations with effect sizes ≥ 0.30 are noted in bold text. 

 
 
  
4.4 DISCUSSION 

 

This study shows abnormal DTI measurements not only ipsilateral but also 

contralateral to the ictal onset in TLE patients, confirming previous observations of 

more widespread DTI abnormalities in  temporal and extratemporal areas 

(Concha et al., 2005; Concha et al., 2007; Gross et al., 2006; Yogarajah and 

Duncan, 2008). It has been shown recently that extratemporal changes are similar 

in TLE patients with and without HS white matter and only abnormalities in the 

fornix seem to be specific to TLE with HS (Concha et al., 2009). The finding here 

of similar diffusion changes in the AF in patients with and without HS therefore is 

not surprising.   
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There is increasing evidence that DTI measures correlate with performance in 

both healthy controls and a variety of patient populations.  For example, patients 

with Alzheimers disease show reduced FA and increased diffusivity measures 

(Minati et al., 2007) and there was a correlation between FA values in a left 

temporo-parietal white matter region and reading ability and disability in children 

(Niogi and McCandliss, 2006). Recently we reported a correlation between 

abnormal DTI measures in the uncinate fasciculus of patients with TLE and 

memory performance (Diehl et al., 2008).  The current study shows that patients 

with left TLE have a positive correlation between FA of the AF and semantic 

fluency, confirming such relationships also for the language domain. The absence 

of such a correlation in right TLE may be due to lower patient numbers in that 

group. 

 

The score from the Boston Naming Test (BNT) did not show a positive correlation 

in this study, whereas in another study (McDonald et al., 2008) a significant 

correlation between BNT scores and the FA value of left AF tract in patients with 

TLE was demonstrated. This discrepancy may in part be due to methodological 

differences. The authors used the BNT and a verbal fluency test from a smaller 

number of left TLE  patients (n=9) to correlate with FA and diffusivity based on a 

probablilistic diffusion tensor atlas. In our study, semantic fluency, which was not 

assessed by McDonald et al. correlated better with DTI values.   

 

The mechanism of interictal language dysfunction in TLE is unknown, but may 

include seizure related neuronal loss and deafferentation in eloquent language 

areas. Using fMRI and PET studies, reorganisation of language function has been 

shown to occur at a distance from the ictal onset zone in patients with mesial TLE. 

This suggests that the epileptic process itself may affect functions beyond the 

epileptogenic zone (Thivard et al., 2005). The described changes in DTI 

measures may be a structural marker of such dysfunction in the language 

network. 
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Such changes in diffusivity measures can be examined parallel and radial to the 

main axonal direction, providing in vivo insights into the underlying cause of 

decreased FA. This study found unchanged parallel diffusivity and increased 

perpendicular diffusivity, in keeping with findings seen in experimental models of  

Wallerian degeneration (Beaulieu et al., 1996; Song et al., 2003) and in humans 

that had undergone corpus callosotomy  (Concha et al., 2006).  

 

This preliminary finding may indicate that diffusion measures are related to 

performance on language measures, and that semantic fluency may be a 

sensitive marker for damage to the language network, although analyses with 

larger sample sizes will be required to replicate this finding.  

 

Future studies should include a language test battery more sensitive to numerous 

aspects of language functioning and in order to examine the relationship between 

these measures and DTI values. To date it is unknown if such measures may 

prognosticate in naming decline after temporal lobe resections.  
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CHAPTER 5 

CORTICAL STIMULATION FOR LANGUAGE MAPPING IN FOCAL 

EPILEPSY: CORRELATIONS WITH TRACTOGRAPHY OF THE 

ARCUATE FASCICULUS 

 
Close correlation between invasive recordings, cortical stimulation findings and 

tractography results may provide in vivo validation of DTT in humans. In this 

chapter, I will explore the correlation between language mapping using cortical 

stimulation and DTT of the AF (Diehl et al., 2010a). 

 

 

5.1 INTRODUCTION 

 

Although successful mapping of the AF has been accomplished, the accuracy of 

the tract representation using DTI based tractography remains unknown. Very 

little information is available comparing such “gold standard” techniques in 

identifying areas of eloquent cortex with underlying tractography connectivity 

studies. (Duffau et al., 2003; Duffau, 2008; Duffau et al., 2008;Henry et al., 2004; 

Powell et al., 2006). The goal of this study was to examine the correlation 

between language areas identified by pre-operative stimulation and results of 

tractography of the AF in candidates for epilepsy surgery. The hypothesis was 

that areas of language cortex identified by cortical stimulation would show strong 

co-localisation with areas of high subcortical connectivity via the AF, as delineated 

by tractography. 
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5.2 METHODS 

 

5.2.1 Patients 

 

Fourteen patients (eight female) with left hemisphere focal epilepsy and left 

hemisphere language dominance were studied. They all underwent invasive 

evaluations to localise epileptogenicity to establish surgical candidacy and to 

perform cortical mapping. Conventional MRI for clinical diagnostic purposes and 

DTI was performed prior to the invasive evaluation. Clinical information for each 

patient is detailed in table 5.1. 

 

MRI acquisition and DTI post-processing were performed as described in the 

common methods section. In addition, the following specific methods applied to 

this study:  

 

5.2.2 Tractography to reconstruct the AF 

 

Fibre tracking was performed to reconstruct the AF using the FACT algorithm 

(Mori and van Zijl, 2002) implemented within the DTI task card software (Wang R, 

2006).  

 

Identification of the AF was performed using previously established methods 

(Catani et al., 2005;Mori et al., 2005). Guided by the colour fibre orientation maps, 

a single ROI was defined on the fractional anisotropy map to encompass the 

horizontal fibres lateral to the corona radiata. All fibres passing through this ROI 

were reconstructed in three dimensions and visualised (Figure 4.1). The AF was 

then saved in the “analyse” format to allow overlay onto the structural imaging and 

comparison with language cortex as identified by extraoperative cortical 

stimulation.  
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Table 5.1 Clinical data for all study patients  

Pt # Age/ 
Gend
er 

Epilepsy Syndrome Sz semiology Interictal  Ictal  Surgery Pathology MRI 

1 24, 
M 

Left neocortical 
TLE 

Aura -> CPS S: SW, regional left 
posterior temporal  
I: Spikes, focal  left 
amygdala 
Spikes, posterior 
hippocampus and basal 
temporal 
Spikes, left inferior 
parietal 

S: Regional left 
posterior temporal 
I: Focal left lateral 
posterior and basal 
temporal 
 

Small left inferior 
temporal gyrus/ 
fusiform gyrus resection 

Inflammatory changes MRI negative, except 
for  evidence of 
previous MST  

2 38, 
M 

Left mesial TLE Aura -> CPS S: Normal 
I: Spikes, focal left 
amygdala and anterior 
hippocampus 

S: Regional left 
temporal 
I: Focal left amygdala 
and anterior 
hippocampus 

Left temporal lobectomy Gliosis Normal 

3 31, F Left neocortical 
TLE (temporal 
pole) 

Aura -> CPS -
>motor sz 

S: SW, regional left 
temporal 
I: Spikes, focal left 
amygdale 

S: Regional left 
temporal 
I: Focal anterior lateral 
temporal 

Tailored left temporal 
resection (preservation 
of hippocampus) 

Type 1A CD 
(architectural 
disorganisation 
temporal pole) 

MRI negative, except 
for  prior pituitary 
surgery 

4 27, F Left mesial TLE Abdominal 
aura-> CPS 

S: Slow, regional left 
temporal 
I: Spikes, focal left 
mesial temporal 
Paroxysmal fast, focal 
left basal temporal 

S: Regional left 
temporal 
I: Focal left mesial 
temporal 

Left temporal lobectomy Inflammation/ 
infarct/gliosis likely 
secondary to depth 
placement 

Normal  

5 37, F Left 
temporoparietal 
epilepsy 

Aphasic 
seizure –> CPS 

S: SW, regional left 
frontotemporal 
I: Spikes, focal left 
basal temporal, left 
angular gyrus and  
anterior superior 
temporal gyrus 

S:  Regional left 
frontotemporal 
I: Regional left 
temporoparietal 

No resection, onset not 
covered 

None Normal 

6 41, F Left mesial TLE  Aura -> CPS S: Spikes, regional left 
mesial temporal 
I: Spikes, focal left 
hippocampus 
Spikes, focal anterior 
basal  

S: Regional left 
temporal 
I:  Focal left posterior 
hippocampus 

Selective left amygdala- 
hippocampectomy 

No pathology sent Normal 

7 21, F Left neocortical 
TLE  (posterior 
middle temporal 
gyrus) 

Right visual 
aura -> right 
face clonic sz -
> GTC 

S: No abnormalities 
I: Spikes, left lateral 
temporal 

S: Regional left 
temporo-occipital 
I: Focal, left middle 
temporal gyrus 

Corticectomy left lateral 
temporal 

Type 1A CD Left posterior middle 
temporal gyrus FLAIR 
hyperintensity  
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8 44, 
M 

Left neocortical 
TLE 

CPS -> right 
face clonic sz -
> GTC 

S: SW, regional left 
temporal 
I: Spikes, focal  basal 
and  lateral temporal, 
90% 
Spikes, focal mesial 
temporal, 10% 

S: Regional left 
temporal 
I: Focal left lateral 
temporal 

Tailored left temporal 
resection (preservation 
of hippocampus) 

Inflammatory changes 
from invasive 
recordings, otherwise 
normal 

Normal 

9 48, F Left neocortical 
TLE 

CPS -> GTS S: SW, regional left 
temporal 
I: Spikes, focal left 
superior temporal gyrus 
Spikes, focal, left 
lingual gyrus 
Spikes, focal, left 
hippocampus 

S: Regional left 
temporal 
I: Focal left superior 
temporal gyrus 
 
 

Lateral temporal 
resection 

Non-specific 
inflammatory changes 

Cystic 
encephalomalacia left 
supramarginal gyrus 

10 29, F Left neocortical 
TLE (middle 
temporal gyrus) 

Abdominal 
aura -> CPS 

S:  SW, regional right 
and left temporal 
I: Spikes, focal anterior 
and post hippocampus 

S: Regional left 
temporal 
I: Regional left 
hippocampal and lateral 
neocortical 

Small neocortical 
resection 

Type 1 CD Normal 

11 37, 
M 

Left FLE (middle 
frontal gyrus) 

Aura -> CPS S: Normal 
I: Spikes, focal left 
middle frontal gyrus 

S: Regional left fronto-
central 
I: Focal left middle 
frontal gyrus 

Frontal lobectomy Type IIB CD CD with 
balloon cells 

Superior frontal gyrus 
mild FLAIR signal 
abnormality 

12 18, 
M 

Left centro-parietal 
epilepsy 

Aura -> 
bilateral 
asymmetric 
tonic sz  

S: SW, Regional left 
parietal 
I : Spike, focal left 
lateral parietal, left 
mesial fronto-parietal 
Left lateral and mesial 
frontal 

S: Regional, left 
centroparietal 
I: Regional left 
centroparietal 

No surgey, as precise 
localisation of the ictal 
onset zone was not 
possible 

None Normal 

13 22, F Left FLE (middle 
frontal gyrus) 

Aura -> axial 
tonic sz 

S: Spikes,  vertex 
I:  Spikes, focal left 
middle frontal gyrus 
Spikes, regional left 
paracentral lobule and 
precuneus 

S: vertex 
I:  Left middle frontal 
gyrus clinical, 
subclinical left 
paracentral lobule  

Resection left middle 
frontal gyrus 

Type 1A CD 
Architectural 
disorganization 

Middle frontal gyrus 
hyperintesnity on FLAIR 

14 18, 
M 

Left FLE (inferior 
frontal gyrus) 

Aura->CPS S:  Spike, regional  left 
frontal 
I:  Spikes focal left 
middle frontal gyrus 

S:  regional left 
frontotemporal 
I: focal,  inferior frontal 
gyrus 

Resection left superior 
and middle frontal gyrus 

Type IIA CD 
(dysmorphic neurons, 
no balloon cells) 

Left insular and inferior 
frontal hyperintensity 

 
S: surface EEG recording result, I: invasive EEG; TLE: temporal lobe epilepsy; FLE: frontal lobe epilepsy, CD: cortical dysplasia; MST: multiple subpial transsections; sz: seizure, CPS: 
complex partial seizure. 
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5.2.3 Electrode identification on T1 volume MRI 

 

After implantation of the invasive electrodes, the patients had a high resolution CT 

scan (1 mm isotropic voxels) to visualise the electrode contacts. Using the artifact 

caused by the electrode on CT images, each electrode of the individual grid was 

manually identified, marked, and a file generated containing the coordinates of 

each electrode position. 

      

The CT scan used to identify the grid position was then coregistered to the pre-

operative MRI using maximisation of normalised mutual information methods 

(Maes F et al., 1997; Studholme et al., 1999).   CT voxels were transformed using 

a linearly interpolated, six degree of freedom rigid-body matrix. The 

transformation matrix of this coregistration for each patient was retained and used 

to transform the electrode positions into the MRI space. 

 

5.2.4 Display of the AF on individual volumetric and surface rendered MRIs  

 

To obtain better anatomical information on the AF connectivity, FA maps were 

coregistered to the structural MRI used for 3D reconstruction and electrode 

display using the same maximisation of normalised mutual information methods. 

The transformation matrix of this coregistration for each patient was retained.  The 

AF generated from the respective FA maps in the DTI task card was exported and 

saved as an “analyse” file, then a linear transformation was implemented to bring 

the AF into structural space (3D surface rendered MRI volume with electrode 

display, Figure 5.2). This allowed for assessment of the anatomic relationship of 

the reconstructed AF and the grid electrode position.  
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5.2.5 Display of electrode positions in the FA map and reconstruction from 

ROIs underlying language cortex 

 

The information from the transformation matrix was used to localise electrode 

positions directly in the colourised fibre orientation map and to compare them to 

the location of the AF reconstructed by the anatomical ROI method. Furthermore, 

a ROI comprised of 3x3 voxels was drawn on the area underlying the electrode 

producing language disturbance on the axial FA map. Fibres arising from the 

defined regions were reconstructed. The resulting reconstructed fibre tract was 

compared to the AF tract reconstructed using the anatomical method, and its 

localisation relative to the electrode positions was evaluated (Figure 5.1).  

 
5.2.6 Rating of electrode positions with respect to AF terminations 
 
Co-localisation between the electrode location producing speech arrest and AF 

was then assessed using the following criteria:  

 

Good co-localisation (electrode positions marked in green in figure 5.3, see also 

figures 5.2 and 5.4) was rated if the following conditions were met: 

 

1. Less than 1 cm distance between the AF and the electrode contact that 

produced language disturbance during cortical stimulation (spatial 

resolution of the subdural grid coverage: 1cm electrode spacing). 

  

2. Fibres reconstructed from a single ROI underlying the electrode were 

travelling within the confines of the AF in the perisylvian region (Fig 5.1).  

 

Conversely, poor co-localisation was present if the distance between the 

electrode and AF was greater than 1 cm and tracking from an underlying ROI did 

not produce fibres travelling within the AF. 
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Figure 5.1 Reconstruction of fibre tracts from electrode positions indicating 
Broca’s territory and the correlation with the AF  
 
24 year old right handed patient with non-lesional neocortical left TLE (Patient 1, 
Table1). Axial and sagittal fractional anisotropy map, displaying markers at 
electrode positions  B29, B30, B24 and B25 and the AF.  
B24 and B29 were overlying language cortex, B25 and 30 were overlying primary 
motor area (face/tongue motor cortex). 
Yellow: tracts reconstructed from ROI underlying electrode position B24 and 29. 
Red: AF reconstructed using a single ROI as described in Catani (2005).  
Fibres reconstructed from the electrode position overlying language cortex were a 
subset of and within the confines of the AF. 
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Figure 5.2: Illustration of reconstruction of the AF overlaid on the T1 
volumetric scan and assessment of co-localisation between AF and 
electrode overlying Broca’s area.  
 
See case history for figure 5.1 (Patient 1, Table 1). A: Coronal, sagittal and axial 
T1 weighted image displaying electrode B29 in green in relation to the AF. B29, 
one of two electrodes that elicited speech arrest when stimulated (see stimulation 
map below), is located on  pars opercularis of the inferior frontal gyrus. There is 
good co-localisation between subcortical connectivity (AF) with the electrode 
position. This patient had multiple subpial transsections surrounding the posterior 
language area in the past; analysis of that region was therefore excluded. 
B: On the left, 3D reconstruction based on the T1 volumetric scan. The cross-
hairs intersect on electrode location B29.  On the right: Schematic representation 
of a stimulation map. To facilitate illustration, some depth electrodes inserted in 
the mesial temporal structures have been omitted.  
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Figure 5.3 Illustration of reconstruction of the AF overlaid on the T1 
volumetric scan and assessment of co-localisation between AF and 
electrode overlying Broca’s area.  
 
Patient 2, Table 5.1. 39 year old right handed man with non-lesional intractable 
left TLE. Left temporal lobe resection after subdural electrode and depth electrode 
evaluation confirming ictal onset in the left mesial temporal structures resulted in 
seizure freedom to date (>1 year). The left AF was reconstructed and 
coregistered with the T1 volumetric scan. The green dots highlighted by the cross- 
hairs intersection on the T1 image, show electrode A23 (located on pars 
opercularis of the left inferior frontal gyrus) overlying language cortex. Strong 
subcortical connectivity is seen in the pars opercularis in close proximity to 
electrode A23, hence this electrode was rated as co-localising well with the AF. 
There is also strong connectivity to the inferior aspect of the precentral gyrus 
underlying electrodes marking tongue motor function (not illustrated). Electrode 
A24, 1 cm anterior to A23, also produced speech arrest (at higher stimulation 
voltage than A24). No increased subcortical connectivity was seen here when 
mapping the AF, hence this electrode was co-localising poorly with the AF (“blue” 
electrode).  
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Figure 5.4 Illustration of reconstruction of the AF overlaid on the T1 
volumetric scan and assessment of co-localisation between AF and 
electrode overlying Wernicke’s area.  
 
Axial and coronal T1, 3D reconstruction of volumetric T1 scan (Patient 10, Table 
5.1): Cross-hairs highlight electrode position A41. There was good co-localisation 
between this electrode overlying the posterior language cortex. 
 

 
 

Normalization, transformation into MNI space and display on a single brain image 

 

As all subdural grid contact locations that were overlying language cortex on a 

single brain were requird to be displayed, each patient‟s T1 MRI volumetric scan 

was converted with grid electrode positions into a single space, using the MNI 

standard brain volume and maximisation of normalised mutual information 

methods.  The transformation matrix of each coregistration was also retained.   

The electrode positions that produced language dysfunction during cortical 

stimulation are shown in figure 5.5.  They were colour-coded green if there was 

good co-localisation by the criteria described above.  Electrodes were colour-

coded blue if they had poor co-localisation with the AF. 

 

5.2.7 Cortical electrical stimulation 

 

Cortical stimulation was performed in all 14 patients according to the clinical 

question, to delineate anterior or posterior language areas, or both. Stimulation 
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was typically performed after all antiepileptic medications had been reintroduced. 

The electrical stimulus consisted of 5 to 10 second trains of 50-Hz unipolar 

biphasic square wave pulses of 0.3 ms duration. Stimulation was delivered using 

GRASS S-88 stimulation unit and two GRASS SIU-7 constant-current isolation 

units, Astromed, (West Warwick, RI), starting at each electrode at 1mA and 

titrating in increments of 1mA to a maximum stimulus intensity of 15mA, or until 

desired clinical response or after discharges were noted. Monitored for negative 

or positive motor symptoms which could interfere with speech production was 

also performed. The stimulus was applied to an „„active‟‟ electrode, while a distant 

„„reference electrode‟‟ in a non-eloquent region served as a non-active current 

sink. The active electrode was switched, electrode by electrode throughout the 

entire grid, thereby testing the function of the cortical region underlying each 

electrode in turn (Nair et al., 2008). Recording during electrical stimulation was 

performed using a 192 channel EEG machine, Nihon Kohden (Tokyo, Japan). 

Spontaneous speech and reading aloud were used as screening tests, and was 

followed by more detailed language testing if language difficulties were noted 

during stimulation. In addition, such testing was also systematically performed at 

the highest stimulus intensity in electrode contacts overlying cortical areas usually 

implicated as anatomical language areas.  More detailed language testing 

included auditory and visual naming, auditory and written comprehension, 

repetition and sometimes writing. In all electrodes, rapidly alternating hand and 

tongue motor movement were tested to exclude confusion with negative motor 

areas.  

 

As detailed in table 5.2, electrode coverage was determined by the clinical 

question and hypothesis of the potential epileptogenic zone and presumed 

proximity to the eloquent cortex. Mapping was performed according to the clinical 

indication. Therefore, some patients had the anterior language area covered, but 

if the seizures were proven to arise in the temporal lobe and not frontally, no 

stimulation of these electrodes was undertaken. 
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If proximity of the language cortex to the epileptogenic zone was suspected, the 

respective anatomical area was implanted and covered throughout with grids. 

Language areas mapped could then be readily compared to the results of the 

tractography of the AF. 

 

Ratings on colocalisation were only performed in areas that had adequate 

coverage for mapping and had been mapped.  

 
 
 
 
 

5.3 RESULTS  
 
AF mapping was successfully performed in all patients. Rating was performed in 

10 of the 14 patients six months apart with excellent intra-rater reliability 

(Cronbach‟s alpha =0.98).  

 

Whenever there was a less than 1 cm distance between the AF and the electrode 

contact that produced language disturbance during cortical stimulation, a subset 

of fibres following the course of the AF could be reconstructed from a ROI 

underlying the respective electrode location. By visual analysis, length and 

volume of these fibres however revealed large variability.   

 

Grid coverage and areas stimulated varied based upon the clinical indication. Five 

patients had both anterior and posterior language areas identified. In one patient 

(Patient # 1 in Table 1), the posterior language area was excluded from analysis 

as the patient had previously undergone multiple subpial transsections, which is 

likely to interfere with the results of the tractography in that area. Only anterior 

language areas were identified in three patients and only posterior areas in six 

patients. 

 

A total of 71 grid contacts were overlying language cortex. Nineteen contacts in 

eight patients were localised over Broca‟s area, 16 of which (84.2%) co-localised 

with the AF. Fifty-two contacts in ten patients were on Wernicke‟s area, 29 of 
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which (55.8%) co-localised. Co-localisation was significantly greater in anterior 

regions than in posterior regions [χ2(1)=4.850, p<.05]. Figure 5.3 shows a 

composite map of all electrode positions that elicited language dysfunction in the 

patient group and includes colour-coded rating of whether or not they co-localised 

with the AF.  

 

The anatomical locations for all electrode contacts eliciting language dysfunction 

during cortical stimulation were as follows: electrodes in the anterior language 

area with good co-localisation were on the precentral gyrus (n=9), pars 

opercularis of the inferior frontal gyrus (n=5) or pars triangularis (n=2). Of the 

three electrodes without good co-localisation, one was on the precentral gyrus 

and two on pars triangularis. Those latter two electrodes appeared the furthest 

anterior in location and closest to pars orbitalis of the inferior frontal gyrus.  

 

Areas in the posterior language region showed a much more complex picture with 

electrodes that did and did not show co-localisation intermingled. Anatomical 

areas identified as posterior language areas included the supramarginal and 

angular gyri as well as the superior and middle temporal gyri. The vast majority of 

contacts were located in a cluster on the superior temporal gyrus and the 

supramarginal gyrus. It is of note that the most anterior electrodes on the superior 

temporal gyrus and the most inferior electrodes did not co-localise well with 

connectivity through the AF as visualised using tractography. 
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Figure 5.5 Composite map of all electrode positions in 14 patients overlying 

the language cortex.  

Displayed on an MRI scan of a normal control, in MNI space. The electrode 
positions overlying language cortex were rated as co-localising well (green colour 
code) with the AF, or not localising well (blue ). 
 
 

 
 

 



Beate Diehl - PhD Thesis 

- 103 - 
 

Table 5.2 Results of language mapping and tractography of the AF 

Pt # 
 

Age/ 
Gender 

Epilepsy Syndrome Grid placement  Full coverage of 
anatomical 
language areas 
stimulated (yes/no) 

Electrode contact 
overlying language 

Anatomical location Co-
localisation 
with AF 

1* 24, M Left neocortical TLE A 8x8 posterior temporo-parietal 
B  8x5 inferior fronto-temporal 
C 4x4 orbitofrontal 
D 2x6 posterior basal temporal 
E 1x6  temporal pole  

Broca            yes 
Wernicke      yes 

B24          Broca  
B29          Broca  

IFG, Pars opercularis 
PCG 

Good 
Good 
 

2 38, M Left mesial TLE A 8x8 lateral fronto-temporal 
B 4x4 orbitofrontal 
C 2x6 mid subtemporal 
D 2x6 lateral temporo-parietal 
E 1x6 anterior basal temporal 
LAM, LAH,LPH  

Broca            yes 
Wernicke      yes 

A23          Broca 
A24          Broca 
A33          Wernicke 
A34          Wernicke 
A41          Wernicke 
A42          Wernicke 
A50          Wernicke 

IFG, Pars opercularis 
IFG, Pars triangularis 
SMG 
SMG 
STG 
STG 
MTG 

Good 
Poor 
Good 
Good 
Poor 
Poor 
Poor 

3 31, F Left neocortical TLE 
(temporal pole) 

A 4x11 lateral temporal 
B 4x4   lateral dorsal frontal 
C 2x4  orbitofrontal 
D,E,F 1x6  basal temporal 
LAM, LAH 

Broca             yes 
(not stimulated) 
Wernicke      good 
posterior temporal 
coverage, no 
parietal coverage 

A6            Wernicke STG Good 

4 27, F Left mesial TLE A 8x8 lateral fronto-temporal 
B 4x4 orbitofrontal 
C 2x6 posterior inferior frontal 
D 1x6 temporo-polar 
E 1x6 mid temporobasal 
F 1x6 basal temporo-occipital 
LAM, LAH, LPH 

Broca             yes  
(not stimulated) 
Wernicke       yes 

A35          Wernicke 
A36          Wernicke 
A43          Wernicke 
A44          Wernicke 

SMG 
STG 
STG 
STG 

Good 
Good 
Poor 
Poor 
 

5 37, F Left temporoparietal 
epilepsy 

A 4x9, lateral temporal 
B 5x8  lateral fronto-parietal 
C 4x4  orbitofrontal 
D 2x6  posterior basal temporal 
E 1x6  ant basal temporal 
LAM, LAH, LPH  

Broca              yes 
(not stimulated) 
Wernicke        yes 

A7            Wernicke 
A8            Wernicke 
A14          Wernicke 
A15          Wernicke 
A25          Wernicke 
A4            Wernicke 
A5            Wernicke 

STG 
STG 
STG 
STG 
MTG 
STG 
STG 

Poor 
Poor 
Good 
Good 
Poor 
Good 
Good 
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6 41, F Left mesial TLE  A 8x8 lateral fronto-temporal 
B 4x4 orbitofrontal 
C and D 1x6, basal temporal 
LAM,LAH,LPH,RAM,RAH,RPH 
 

Broca            yes 
Wernicke      yes 

A31          Broca 
A32          Broca 
A35          Wernicke 
A36          Wernicke 
A40          Broca 
A41          Wernicke 
A42          Wernicke 
A43          Wernicke 
A44          Wenicke 
A45          Wernicke 
A49          Wernicke 
A50          Wernicke 

IFG, Pars triangularis,  
IFG, Pars triangularis 
STG 
STG 
PCG 
MTG 
MTG 
MTG 
MTG 
STG 
ITG 
MTG 

Good 
Good 
Good 
Good 
Poor 
Poor 
Good 
Poor 
Poor 
Poor 
Poor 
Good 

7 21, F Left neocortical TLE  
(posterior middle 
temporal gyrus) 

A 4x11 lateral temporo-occipital 
B 4x6   lateral frontal 
C 4x6   lateral parietal 
D 2x6,  basal temporal 
E 2x6   basal occipital 
F 1x6   anterior temporal 

Broca             yes 
Wernicke       yes 

B3             Broca 
A9            Wernicke 

PCG 
STG 

Good 
Good 
 

8 44, M Left neocortical TLE A 4x11 lateral temporal 
B 4x4   orbitofrontal 
C 2x6   lateral frontal 
D 2x6  mid basal temporal 
E 1x6  anterior  basal temporal 
F 1x6  posterior basal temporal 
LAM,  LAH, LPH  

Broca             yes  
(not stimulated) 
Wernicke       yes 

A6            Wernicke 
A16          Wernicke 
A17          Wernicke 
A18          Wernicke 

STG 
STG 
STG 
STG 

Good 
Good 
Good 
Poor 
 

9 48, F Left neocortical TLE A 8x8  lateral temporo-parietal 
B 4x6  lateral frontal 
C 4x4  orbitofrontal 
D 1x6  temporal pole 
E 1x6   basal temporal 
LAM,LAH,LPH 

Broca            yes 
(not stimulated) 
Wernicke       yes 

A36          Wernicke 
A37          Wernicke 
A38          Wernicke      
A43          Wernicke      
A44          Wernicke      
A45          Wernicke      
A46          Wernicke 
A50          Wernicke      
A51          Wernicke      
A52          Wernicke 
A53          Wernicke 

SMG 
STG 
STG 
STG 
STG 
STG 
STG 
MTG 
MTG 
MTG 
MTG 

Good 
Good 
Poor 
Poor 
Poor 
Poor 
Good 
Poor 
Poor 
Good 
Good 
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10 29, F Left neocortical TLE 
(middle temporal 
gyrus) 

A 8x8 lateral  fronto-parieto-
temporal 
B 4x4  orbitofrontal 
C 2x6  lateral inferior frontal 
D,E 2x6  basal temporal 

Broca           yes 
(not stimulated) 
Wernicke      yes 

A41          Wernicke 
A35          Wernicke 
A42          Wernicke 
A50          Wernicke 

STG 
SMG 
STG 
STG 

Good 
Poor 
Good 
Poor 
 

11 37, M Left FLE (middle 
frontal gyrus) 

A 8x8 lateral fronto-parietal 
B 4x4  lateral frontal 
C 4x4  orbitofrontal 

Broca           yes 
Wernicke     no 

A47          Broca 
A55          Broca 

IFG, Pars opercularis 
PCG 

Good 
Good 
 

12 
 

18, M Left centro-parietal 
epilepsy 

A 8x8 lateral parietal 
B 5x8 lateral fronto-parietal 
C 4x6 lateral temporo-occipital 
D 4x6 mesial fronto-parietal 
E 2x6 mesial parieto-occipital                                                  

Broca          yes 
Wernicke    yes 

B7             Broca 
B18           Broca 
A59          Wernicke 
A60          Wernicke 
A61          Wernicke 
A62          Wernicke 
A64          Wernicke  
A63          Wernicke 

PCG 
PCG 
AG 
AG 
STG 
STG 
STG 
STG 

Good 
Good 
Good 
Good 
Good 
Good 
Good 
Poor 

13 22, F Left FLE (middle 
frontal gyrus) 

A 8x8 lateral fronto-parietal 
B 5x8 lateral frontal 
C 4x4 orbitofrontal 

Broca            yes 
Wernicke      no 
(not stimulated) 

B26           Broca 
B31           Broca 
B32           Broca 
B33           Broca 
B36           Broca 
B38           Broca 

PCG 
PCG 
IFG, Pars opercularis 
IFG, Pars triangularis 
PCG 
IFG, Pars opercularis 

Good 
Good 
Good 
Poor 
Good 
Good 

14 18, M Left FLE (inferior 
frontal gyrus) 

SA 8x8- lateral fronto-parietal 
SB 4x6- lateral frontal 
SC 4X4-frontopolar 
SD 4x4- orbitofrontal 
SE 2x6- lateral temporal 
SF 2x6- basal temporal 

Broca           yes 
Wernicke     no 
(not stimulated) 

A55          Broca PCG Good 

 
Grids are named by capital letters; within each grid, the electrodes are numbered (for example from 1-64 in an 8x8 contact grid, from 1-40 in a 5x8 contact grid).  
AG: angular gyrus; IFG: inferior frontal gyrus, LAM: left amygdala depth, LAH: left anterior hippocampal depth,  LPH: left posterior hippocampal depth, PCG: 
precentral gyrus;  
SMG: supramarginal gyrus; STG: superior temporal gyrus; MTG: middle temporal gyrus. TLE: temporal lobe epilepsy, FLE: frontal lobe epilepsy. 

 The posterior language area was mapped but not rated as the patient had multiple subpial transsections in the area.  
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5.4 DISCUSSION  

 

5.4.1 The AF- from anatomical preparation to in vivo imaging 

 

The AF is a large fibre pathway that connects the temporal lobe and the inferior 

frontal lobe, curving around the sylvian fissure. The role of the AF in connecting 

Broca‟s and Wernicke‟s language areas in the dominant hemisphere has been 

well recognised. Evidence for the importance of the AF in language processing 

comes from multiple sources: 1) lesion models, although these are often 

problematic as lesions may involve more than just the one pathway of interest 

(Catani and Mesulam, 2008b). 2) Evidence from surgery: It is known from past 

neurosurgical practice that removal of the insula and its cortico-cortical 

connections with language areas does not result in speech difficulties. Hence, 

cortico-subcortical connections need to be involved  to cause a language deficit 

(Rasmussen T and Milner B, 1975), again highlighting the role of the AF in 

connecting the language areas.  3) Evidence from intra-operative mapping of the 

subcortical pathways using direct electrical stimulation have produced anomia 

when the AF has been stimulated (Duffau et al., 2002). For the purpose of this 

study it was felt that evaluating extraoperative cortical localisation of speech areas 

via cortical stimulation and its correlation with areas highlighted when 

reconstructing the AF using DTI would provide important validation of 

tractography results of the AF. 

 

Only recently has it become possible to image white matter tracts in vivo. There 

has been particular interest in visualising the connections serving language 

function using tractography, leading to a number of important observations in 

control subjects and patients with epilepsy including evidence for structural 

asymmetry that underpins functional language hemispheric specialisation. The 

perisylvian language network is lateralised with greater connectivity in the left 

hemisphere in individuals with left hemisphere language dominance (Buchel et 
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al., 2004;Nucifora et al., 2005;Powell et al., 2006). Furthermore, higher fractional 

anisotropy values have been correlated with better performance on 

neuropsychological tests (Briellmann et al., 2003;Niogi and McCandliss, 2006). 

These findings suggest that in vivo visualisation of the structural pathways can 

provide important functional insights. Increasingly, such information on 

connectivity is explored to improve functional outcomes after surgery, not only by 

identifying cortical localisation of function but also subcortical connections.  

 

DTI has multiple limitations including poor spatial resolution and difficulties in 

accurately mapping tracts in areas of the brain where multiple fibrepathways 

cross. Although tractography results are compared to knowledge from anatomical 

dissections, the accuracy of tract representation using DTI based tractography 

remains unknown. Therefore, particularly if tractography information is utilised to 

guide resective surgery, close correlations between mapping of cortical function 

as well as subcortical tract delineation are needed. To date very little information 

is available comparing such “gold standard” techniques to identify areas of 

eloquent cortex with underlying tractography connectivity studies. (Duffau et al., 

2003;Duffau, 2008;Duffau et al., 2008;Henry et al., 2004;Powell et al., 2006). 

This study utilised extraoperative cortical mapping of language areas to define the 

presumed cortical end points of a DT-imaged track, the AF. We found that in the 

anterior cortical language area as defined by cortical stimulation, there was good 

concordance between the cortical areas identified and the underlying connectivity 

via the AF. Only three of the 19 contacts were at a 1 cm or greater distance from 

the AF as reconstructed based on DTI.  

 

Of those, two were located on pars triangularis of the inferior frontal gyrus. This 

represents 50% of all language sites stimulated on pars triangularis. Using DTI in 

healthy controls, it has recently been shown that the pars opercularis  (Brodmann 

area 44) has distinct connections with the rostral inferior parietal lobule via the AF, 

whereas the pars triangularis (area 45) connects with the superior temporal gyrus 

(Frey et al., 2008). We could therefore speculate that it may be more challenging 
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to map all fibres connecting the temporal lobe to the pars triangularis with the 

methods used in this study.   

 

Such co-localisation was less frequently found in the posterior language areas. In 

order to assess possible reasons for inconsistent co-localisation between DTI 

tractography results and cortical stimulation in posterior regions, an appraisal of 

strengths and limitations of cortical stimulation for essential language areas is 

important. Furthermore, methodological limitations of tractography and the image 

analysis presented need to be examined. 

 

5.4.2 Cortical stimulation of language areas 

 

Although a variety of techniques are available to highlight areas of cortex that are 

involved in language processing, cortical stimulation remains the gold standard to 

localise essential cortical functions (Hamberger, 2007). Most non-invasive 

technologies, such as fMRI and PET, will activate a large network of cortical areas 

involved in a given language task (Vigneau et al., 2006). However, it is known that 

not all of these areas are essential, and not all will lead to a discernable language 

problem after removal of the cortical area. Cortical stimulation produces a 

temporary functional deficit (Hamberger, 2007) and highlights essential 

functionally active cortex. With the exception of the motor and sensory cortices, it 

generates an inactivation of the underlying tissue. The precise mechanisms of 

such inactivation are not known; however, the neurophysiological effects of 

cortical stimulation have been explored and recently reviewed in detail (Nair et al., 

2008). For years prior to the introduction of cortical stimulation, operations in the 

dominant hemisphere were only carried out if  the involved regions were far 

anterior in the frontal lobe or far posterior in the occipital lobe for fear of causing 

aphasia (Hamberger, 2007;Penfield W, 1959). With the introduction of cortical 

stimulation into epilepsy surgery, this practice has changed.  
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Anterior and posterior language areas as found in this study are well within the 

range of previously published data. The language areas as defined by cortical 

stimulation have been summarised in detail by Rasmussen and Milner 

(Rasmussen T and Milner B, 1975). Dysphasic speech arrest in the frontal lobe of 

the dominant hemisphere is elicited from one or both of the frontal opercular 

convolutions. The temporal speech areas are located from the second temporal 

gyrus behind the level of the postcentral sulcus and extend posteriorly 2-3 cm, 

behind the transverse gyri of Heschl. Speech arrest is seen in “comparable 

numbers” with stimulation of the first temporal gyrus extending in the parieto 

temporo opercular region (Rasmussen T and Milner B, 1975). The “parietal 

speech zone” resides in the parietal opercular region. The anterior limit is the 

postcentral sulcus, the superior limit 1-4 cm above the sylvian fissure, the 

posterior limit from 2-4 cm behind the postcentral sulcus, and the inferior limit is 

continuous with the posterior portion of the temporal speech area.  

 

Since 1975, multiple studies in various patient populations have described the 

localisation of language function as elicited by intra-operative cortical stimulation. 

In a recent large study on patients undergoing glioma resection, all language sites 

based on intra-operative stimulation were compiled, showing tremendous 

variability between patients (Sanai et al., 2008). Equally, in patients with TLE, a 

high degree of variability in language representation as defined by cortical 

stimulation particularly in the temporal lobe in Wernicke‟s area was described 

(Ojemann et al., 2008;Ojemann and Whitaker, 1978;Van Buren et al., 1978). 

Hence, it is very important to ascertain that no essential language cortex is 

removed, particularly if larger temporal neocortical resections are planned to 

optimise chances of seizure freedom.  

 

Stimulation procedures are not well standardised across centres. The stimulation 

in this study was performed using a single electrode contact as the active 

electrode, while a distant reference electrode in a non-eloquent region served as 

a current sink (Nair et al., 2008). Hence, the stimulation was confined to a small 
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area of cortex, and the adjacent areas were carefully assessed for 

afterdischarges. These methods have been practiced at our institution for many 

years and are described elsewhere (Luders et al., 1986;Nair et al., 2008). In brief, 

a screening task involving higher linguistic functions (reading) was used; if 

language difficulties were noted at an electrode position, further detailed testing 

including naming was performed. Negative motor phenomena and interference 

with consciousness were routinely assessed to ascertain that only language-

specific performance was affected by the stimulation. Thus, there is a high 

certainty that the cortex identified was involved in language processing.  

 

The reading test effectively screens for language sites, also in the posterior 

language area. Stimulation of the posterior language area is known to not only 

affect comprehension but to also elicit speech arrest (Lesser et al., 1986). This is 

in contrast to the fluent aphasia with comprehension problems seen in lesions 

affecting this cortical area. After prolonged trains of cortical stimulation however, 

some fluency recurs and comprehension remains problematic. This may in part 

be due to habituation as the brain begins to utilize alternative language areas and 

pathways (Lesser et al., 1986). It does highlight that cortical stimulation in an area 

may not elicit the same symptoms during deactivation procedures than when 

affected by a lesion. Hence task selection should not have adversely affected the 

cortical localisation in Wernicke‟s area in this study. 

 

However, language testing is necessarily basic as it needs to unveil disturbances 

during a 5s stimulation period, which may make identification of higher cognitive 

language functions difficult. This represents an obvious limitation of cortical 

stimulation methods to identify eloquent language cortex. 

 

5.4.3 The AF as delineated using tractography 

 

Detailed studies in healthy controls have shown that it is possible to reconstruct 

the AF in all individuals (Catani et al., 2005;Catani and Thiebaut, 2008).  
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However, there is significant variability in the shape and volume of the fasciculus, 

which has been demonstrated using both a ROI driven deterministic approach, 

and probabilistic methods (Catani et al., 2005;Powell et al., 2006).  

 

Efforts were made to understand the structure function relationship between DTI 

and other imaging modalities informative about language function. fMRI has been 

successfully implemented to lateralise language functions in patients with epilepsy 

(Adcock et al., 2003;Thivard et al., 2005;Woermann et al., 2003). When fMRI and 

tractography are combined, it has been shown that a left lateralised pattern with 

language fMRI was associated with left lateralisation of white matter organisation 

(Powell et al., 2007). In patients with left temporal lobe epilepsy and language 

reorganisation with greater right sided activation, loss of structural asymmetry of 

the white matter was observed. 

 

Tractography studies have shown that the anatomy is more complex than initially 

assumed. A single ROI approach has been used to delineate the entire extent of 

the AF. Further dissection of this pathway has highlighted a direct long pathway 

connecting Broca and Wernicke‟s areas. In addition, shorter connections are 

located more laterally: One anterior segment connects Broca‟s area with the 

inferior parietal lobule, and a more posterior segment connects the parietal lobule 

with Wernicke‟s area (Catani et al., 2005;Catani and Mesulam, 2008a). 

Furthermore, the extent of connectivity of the AF was documented to involve 

areas outside the traditional Broca and Wernicke areas. Connections of the AF 

into the middle frontal gyrus and precentral gyrus, as well as the middle temporal 

gyrus, have also been documented using DTI. Such areas are in keeping with 

areas of phonemic and semantic processing demonstrated using fMRI (Demonet 

et al., 2005;Glasser and Rilling, 2008;Price, 2000;Vigneau et al., 2006). 

 

In this study language sites in the precentral gyrus, premotor areas and the 

middle temporal gyrus were noted. Most of those co-localised with subcortical 
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connectivity via the AF. This provides some validation that such areas are also 

connected via the AF.  

 

 

5.4.4 The perisylvian language network: white matter connectivity and 

language processing 

 

Although traditionally the AF has been implicated in connecting the cortical 

language areas, there is evidence that other areas of cortex must also be 

connected for successful performance of linguistic tasks.  

 

Much interest has been developed in integrating not only the cortical language 

sites into a model, but also taking into account its mutual connectivity and 

possible parallel processing of different streams (Hickok and Poeppel, 2007). An 

integrated view of the cortical localisation and the subcortical connectivity has 

been suggested. Such a view based on the interrelationship between parallel 

distributed networks has been proposed (Catani, 2007;Catani and ffytche, 

2005;Duffau, 2008) where hodology refers to the pattern of white matter 

connections between cortical areas. Language is a complex cognitive task, and 

some aspects of it include phonemes (the basic sounds that make up words), 

lexical-semantics (the concepts and meanings of words and the vocabulary of 

words associated with these meanings), and prosody (the modification of the 

pronunciation of speech to convey additional meaning). Successful performance 

for all these tasks requires interplay of several cortical areas. There is evidence 

that certain cortical areas are more involved in specific aspects of language 

processing. For example, lexical semantic processing fMRI tasks have highlighted 

areas in the middle temporal gyrus (Brodmann Area (BA) 21 and 37) in 

conjunction with Broca‟s area and frontal areas more anterior and superior to it 

(BA 44, parts of 6, 9 and 45) (Binder, 1997;Glasser and Rilling, 2008;Hickok and 

Poeppel, 2004;Price, 2000). Phonologic processing has two aspects: receptive 

processing of phonemes in Wernicke‟s area (posterior BA 22) and BA 40 and 
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expressive production of phonemes during speech in posterior Broca‟s area (BAs 

44 and 6). It is therefore possible that some of these processing streams may be 

subserved by different white matter bundles.  

  

5.4.5 Technical considerations and methodological limitations 

 

Spatial resolution of DTI and noise are significant problems, and various 

acquisitions and postprocessing analysis techniques have been proposed (Mori 

and van Zijl, 2002). 

 

Voxel sizes are much larger than the resolution needed to image single axons. 

Hence, DTI studies will only be able to display an approximation of the main tract 

direction, and do not have a resolution even close to a cellular level. In this study, 

a voxel size of approximately 1.9x1.9x3 mm was used. Such a resolution, 

although not ideal, allows for total brain coverage in a short scanning period, 

which is important for patients often unable to lie still for a prolonged period. Our 

patients had the DTI protocol added to their routine clinical MRI scans; the 

additional 8 minutes, although acceptable, increased the total scan duration, 

including positioning, to about 35-40 min. Furthermore, in every voxel the main 

direction of water diffusion is used for tract reconstruction. Hence, crossing fibres 

will not be represented, and only the main tracts and its main direction will be 

displayed.  

 

Deterministic tractography algorithms, such as that used for this study, are 

particularly prone to this problem, whereas probabilistic approaches are 

considered more robust in that respect. However, in another study, results of 

probabilistic and deterministic tractography were compared, and locations of tract 

terminations were very similar in both (Glasser and Rilling, 2008). We certainly 

cannot exclude that some of the lack of convergence of tractography and cortical 

stimulation results is due to methodological shortcomings.  
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Another source of error lies in the need for coregistration of various imaging 

modalities and using linear transformations for various registrations. Also, EPI 

images suffer from some inherent distortions, introducing another source of 

uncertainty.  DTI images are coregistered with the T1-weighted MRI scan, and the 

AF reconstructed in the DTI space is overlaid on the T1 volume using the same 

transformation parameters as in the coregistration. Co-localisation of tract and 

language cortex/electrode positions was assessed both on the T1 volumetric scan 

and also in the original DTI space with identical results, thus illustrating its 

robustness, with excellent intra-rater reliability. Ratings were performed in 

individual patients, thus eliminating the need for normalisation at this stage. 

Finally, when displaying electrode locations marking language cortex, great care 

was taken to visually ascertain that anatomical locations of language cortex 

identified in each individual patient was transposed correctly into the common 

space.  

 

5.4.6 Outlook 

 

As DTI based tractography is increasingly integrated in pre-operative planning, 

there is a need for clinicians and neurosurgeons to develop improved 

understanding of limitations of the technology. It appears that in various areas of 

the brain, tractography may be more or less reliable in visualising connectivity. 

Hence, maps of probability for accurate delineation may be helpful, to highlight 

areas that may be difficult to accurately represent using such technology. Such an 

approach may be limited by the variability in acquisition and tract reconstruction 

and analysis between centers, but it can still provide valuable information.  

 

 

This study has provided some additional validation that the AF, as reconstructed 

using DTI, connects cortical language areas in individual patients. This study 

found that there is tighter co-localisation between language sites in the frontal 

lobe compared to temporoparietal language sites. This may be a combination of 
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technical limitations and greater anatomical variability in the posterior language 

area. Future research needs to integrate the DTI based tractography and cortical 

localisation procedures that define eloquent cortex and dictate extent of resection.  

 

Since this study was conceptualised and published, one other investigation has 

been published, evaluating AF and intraoperative cortical stimulation for language 

in a mixed group of 10 patients, the majority suffering from tumours (Ellmore et 

al., 2009). Nine of the ten patients underwent left hemispheric cortical stimulation 

intraoperatively. The sites identified were compared to the AF reconstructed using 

a streamline tractography algorithm and a 2 voxel of interest approach. One voxel 

was placed in the Broca area and the second in a small area of white matter 

superior to the insula.  Proximity between the tracts and the language site defined 

by cortical stimulation was assessed visually but also using a statistical bootstrap 

method. 79% of 102 essential language sites were closely related to the AF. Of all 

such essential language sites, 59% were located within 7.5 mm of AF fibre 

pathway terminations, and another 20% contained pathways terminating closer to 

the AF than would be expected by chance (P < 0.05). The authors therefore came 

to the same conclusion as in this study that the majority of the cortical sites 

essential for both expressive and receptive aspects of language are closely 

related to the AF. The authors also highlighted that this finding also implies that 

DTT could be used to predict language sites based entirely on their close spatial 

relationship to AF terminations. The authors did not evaluate anterior and 

posterior language sites separately.  

 

In conclusion, DTT of the AF has great potential to inform neurosurgeons and 

contribute to preservation of essential language sites and their connections during 

surgery.  
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CHAPTER 6 

ICTAL ONSET AND PROPAGATION: INSIGHT GAINED USING DTI 

AND TRACTOGRAPHY ON CASE STUDIES OF CORTICAL 

DYSPLASIA  

 
 
6.1 DTI IN PATIENTS WITH FOCAL EPILEPSY DUE TO CORTICAL 
DYSPLASIA IN THE TEMPORO-OCCIPITAL REGION: Electro-clinico-
pathological correlations 
 
6.1.1 INTRODUCTION 
 
Cortical dysplasia is often located in the neocortex and in extratemporal locations 

or the temporo-occipital junction. The resection of epileptogenic foci in the 

temporo-occipital junction is complicated by the proximity of the geniculo-

calcarine radiations, carrying a risk of visual field deficits. Little data on surgery 

outcomes involving this brain region are available. The goal of this study was to 

assess the utility of DTI in describing white matter changes associated with 

pathology proven CD in the temporo-occipital region and to correlate the findings 

with ictal onset, seizure propagation and outcome after surgery.  

 

Three patients suffering from focal CD are described together in section 6.1. 

Section 6.2 is a case report of a patient with polymicrogyria and heterotopic gray 

matter in the right posterior quadrant.  

 

6.1.2 METHODS 

 

The study was approved by the Institutional Review Board and written informed 

consent was obtained from all subjects prior to scanning. Three patients (two 

female) with pathologically proven focal CD in the temporo-occipital region were 

included in the study and underwent conventional MRI and DTI prior to 

implantation of subdural grids and epilepsy surgery.  
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6.1.2.1 Image analysis 

 

 Data was transferred to a PC workstation and DTI task card software 

(Massachusetts General Hospital, https://www.nmr.mgh.harvard.edu) was used to 

generate parametric maps for FA and apparent diffusion coefficient (ADC, in 10-4 

mm2/s). A neuroradiologist (PR) blinded to the clinical data and conventional 

MRIs reviewed the FA maps and visually assessed symmetry between the 

hemispheres and location, and relative size and morphology of the individual 

tracts.  

 

Fibre tracking was performed on patients 2 and 3 using the FACT algorithm (Mori 

et al., 1999; Stieltjes et al., 2001) implemented within the DTI task card software. 

The algorithm generates fibre tracts by iteratively following the direction of the 

principle eigenvector at each adjacent voxel starting from a user defined ROI. 

Tracking propagates on the basis of the orientation of the eigenvector that is 

associated with the largest eigenvalue for that voxel. Tracking is terminated when 

a voxel with a FA lower than or a trajectory angle (i.e. the angle between the 

principal eigenvectors associated with the current voxels) greater than a user 

defined threshold is encountered.  In this study, a FA and trajectory angle 

threshold of 0.2 and 50o respectively, were used.  

 

Tractography was performed to improve visualisation of tracts in the vicinity of the 

lesion. In particular, the superior longitudinal fasciculus, inferior longitudinal 

fasciculus, inferior and superior frontooccipital fasciculus were reconstructed by 

placing a ROI on the axial colourised FA map in a location encompassing the 

respective fibres. Identification of the tracks was guided by published data (Mori et 

al., 2005). Tracts were visually analysed on the FA maps and the tractography 

images with particular attention to the subcortical connectivity ipsilateral and 

contralateral to the ictal onset zone. Additional evaluation criteria included tract 

volume (number of voxels and fibres per tract) and qualitative visual assessment 

of tract displacement, relative size and morphology.  

https://www.nmr.mgh.harvard.edu/
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6.1.2.2 ROI analysis and tractography from regions of ictal onset  

 

A high resolution CT scan was obtained after the patients were implanted with 

subdural grid electrodes. DTI images  and CT were co-registered with the 3D MP-

RAGE MRI images using the Maximization of Mutual Information algorithm (Maes 

et al., 1999) and were trilinearly resampled to match the MRIs resolution. The 

coregistration process did not require the use of external fiduciary markers or pre-

processing of the image data.  

 

Electrode artifact on CT allowed for the electrode positions to be visually 

identified. ROIs were placed, and included grey and white matter, in anatomical 

areas underlying the electrode of ictal onset and in the contralateral homologous 

anatomical region.  The size of the ipsi- and contralateral ROIs selected within 

each patient was the same. The mean diffusivity and fractional anisotropy was 

computed for each ROI. The mean of three trials of ROI placement was 

calculated  and compared ipsi and contralateral in each individual using U test 

statistics. The same ROIs were also used as seed points for the tractography.  

 

Tractography results were analysed visually. Additionally, the numbers of fibres 

tracked from the ROIs underlying the electrodes of ictal onset including total 

number of voxels per track were computed and the average of three trials was 

reported for each measure. A paired U test was used to compare the ROI 

diffusivity and anisotropy values and the tract metrics reconstructed from the ROI 

overlying ictal onset and from the contralateral homologous ROI.   

 

6.1.2.3 Pathological characteristics and classification of resected tissue 

 

Tissue resected from all patients was saved in formalin and paraffin fixed before 

sectioning and pathological examination by a board certified clinical 

neuropathologist. All patients had pathological changes consistent with focal CD. 
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For the purpose of this study, I will refer to the classification as proposed by 

Palmini et al.: type 1A : cortical architectural abnormalities; type 1B: architectural 

abnormalities with giant cells (meganeurons) but no dysmorphic neurons; type 

2A: dysmorphic neurons in the setting of architectural disorganization with 

dysmorphic neurons but without balloon cells and type 2B: architectural 

abnormalities with dysmorphic neurons, with balloon cells (Najm et al., 2007; 

Palmini et al., 2004). 

 

6.1.3 RESULTS  

 

6.1.3.1 Case descriptions  

 

Detailed clinical descriptions are shown in table 6.1. All patients had pathology 

proven CD and typical findings on conventional MRI (Table 6.1 and Figure 6.1 

A,B, and Figure 6.2C). Two patients revealed type 2B CD (patients 1 and 2) in the 

right lateral occipital cortex and one patient had type 1A CD (patient 3) in the left 

temporooccipital region, however the imaging findings of patient 3 revealed FLAIR 

hyperintensity in a small area at the bottom of the left MTS indicative of possible 

focal CD with balloon cells (type 2B). 

 

6.1.3.2 Visual analysis of the FA maps and tractography 

 

In patients 1 and 2, both with type 2B cortical dysplasia, there was a displacement 

of the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and the 

optic radiation mesially and thinning compared to the contralateral side. There 

was also a noticeable reduction of the subcortical fibres in the areas of the cortical 

thickening (Figure 6.1D and Figure 6.2A and C). These findings are highlighted 

using tractography in patient 2 (Figure 6.2B).  
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Table 6.1 Clinical characteristics of study patients 

 Patient 1 Patient 2 Patient 3 

Age at 
surgery 
 

42 M 45 F 21 F 

Age at onset 
 

13 years 3 years 16 years 

Epilepsy risk 
factors 
 

Closed head trauma 
age 13 years, loss of 
awareness for minutes 

None Uncomplicated febrile seizures 
age 9 months to 4 years 

Seizure 
semiology 
 

Visual aura (illusion)  - 
psychic aura (anxiety)-
complex partial seizure 
Frequency : two per day 

Left visual aura (flashing lights)- 
complex partial seizure. 
Frequency: several a week 

Visual aura (right inferior visual 
field)- complex  partial seizure 
Psychic aura-aphasic seizure 
Frequency: 2-3 per week 

Scalp EEG 
 

Interictal: spikes, 
regional  right temporo-
occipital  
Ictal: regional right 
temporooccipital 

Interictal: SW, regional right 
occipital (max O2)  
Ictal: non-localisable 

Interictal: normal 
Ictal : regional left temporo-
parietooccipital 

Invasive 
EEG 
 

Interictal: spikes focal, 
right lateral occipital. 
Ictal: focal, lateral and 
inferior aspects of the 
right occipital lobe 
(inferior to lesion) 

Interictal: spikes, focal, right 
lateral  occipital and 
paroxysmal fast  
Ictal: focal, right lateral occipital 
(superior to lesion) 

Interictal: spikes, focal left 
posterior middle temporal gyrus 
Ictal: focal, left posterior 
temporal 

Pathology 
 

Type 2B CD Type 2B CD Type 1A CD* 

Seizure 
outcome 
 

Seizure free x 5 years Seizure free x 4 years Total of 2 seizures shortly after 
surgery, thereafter none for 
over two years 

Functional 
outcome 

Pre-operative visual 
field intact 
Post-operative visual 
field intact 

Objective visual fields 
attempted but unable to 
accomplish. Pre-operative left 
field defect, post-operative 
probably left hemianopia 

Pre-operative full visual fields.  
Post-operative no visual field or 
language deficit. 

PET Right occipital 
hypometabolism 

Right occipital hypometabolism Left posterior temporal 
hypometabolism 

Ictal SPECT  Not done Right temporooccipital 
hyperperfusion, anterior to 
lesion. 

Not done 

Language 
lateralisation 
 

Not done WADA: Bilateral dependent 
speech, bilateral memory 

FMRI: left hemisphere 
language dominance 

MRI  
 

Thickening right lateral 
occipital cortex; FLAIR 
hyperintensity 

Thickening right lateral occipital 
cortex; FLAIR hyperintensity 
involving the lateral and 
infracalcarine cortex 

FLAIR hyperintensity on the 
bottom  of the  left middle 
temoporal sulcus* 

 

F=female; M=male; WADA: intracarotid amobarbital procedure; CD=cortical dysplasia; 
FLAIR = fluid attenuated inversion recovery, SW = sharp wave. 

* Pathology compatible with type 1 CD, however imaging findings indicative of the bottom of the 
sulcus focal cortical dysplasia with balloon cells (type 2 B). 
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On the normal contralateral side, the fibres reached the gyri with a branching 

pattern. Patient 3 showed minimally reduced subcortical connectivity in the area 

underlying the abnormal cortex. Mild thinning of the AF and the IFOF was noted 

on the colourised fibre orientation map (Figure 6.4C).  

 

6.1.3.3 Pathological, electrocorticographic and tractography correlations 

 

Patient 1: Invasive EEG revealed ictal onset on the lateral and inferior aspects of 

the right occipital lobe, at the borders of the area of cortical thickening and FLAIR 

hyperintensity was detected by MRI (sparing the primary visual cortex, figure 6.1).  

The ictal EEG remained localised for the first 5s to the electrodes that were 

immediately adjacent and contiguous along the inferior margins of the plate. 

Spread to the mesial occipital regions was observed within the next 5-10 seconds. 

 

Patient 2: The region of ictal onset was located in the superior margin of the MRI-

identified lesion.  The ictal spread patterns within the first 5 seconds after onset 

remained confined to the contiguous electrodes along the superior margins of the 

dysplasia (Figure 6.3A). Within the next 5-20s, ictal propagation was seen to the 

basal occipital, mesial parietal and anterior temporal regions. In this patient, 

reduced subcortical connections were visible at the site of the dysplastic lesion 

compared to the contralateral side (Figure 6.2); in addition, fewer and shorter 

fibres were reconstructed from the ictal onset zone compared to the contralateral 

homologous area (Figure 6.3B and Table 6.2). Measures of diffusivity and 

anisotropy in the ROIs underlying the electrodes of ictal onset did not show any 

differences between the area of ictal onset and the contralateral homologous 

area. 

 

Patient 3: Focal ictal onset was seen in the posterior segment of the middle 

temporal gyrus, adjacent to the area of signal hyperintensity on FLAIR, which was 

noted in the depth of the sulcus (Figure 6.4A); spread occurred at about 5s after 
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ictal onset to the adjacent electrodes superior and inferior to the lesion, as well as 

to basal temporal electrodes. The in situ electrical sampling did not include direct 

recordings of the depth of the sulcus (where the MRI identified abnormality was 

mainly localised). However, the fact that the ictal onset region remained localised 

in a small cortical region could be more consistent with an adjacent more 

superficial neocortical ictal onset (rather than a spread pattern). 

 

Reconstruction of the tract generated from the ROI underlying the two electrodes 

of ictal onset revealed fewer fibres (Figure 6.4B). The FA was lower in the ROI 

underlying the electrode of ictal onset compared to the contralateral homologous 

area (Table 6.2). 

 

In conclusion, in the three patients with CD,  ictal onsets were focal, involving only 

two grid electrodes at onset that were located over the cortical region bordering 

the MRI-identified lesion in the lateral occipital or temporooccipital cortex. This 

focal ictal activity was sustained over an extended period of time (in the order of 

5s), without significant spread and involving electrodes adjacent to the ictal onset. 

This spread pattern was referred to as slow contiguous spread.   Reconstructing 

fibres from a ROI underlying the ictal onset revealed poor subcortical connectivity 

via large white matter tracts.  
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Figure 6.1 Patient with a right occipital CD (type 2B). T1 and FLAIR before 
surgery, T1 post-resection. Colourised fibre anisotropy map  
 
Patient 1, table 6.1 
A: Axial T1 weighted and B: FLAIR images illustrating right occipital Type IIB CD 
with cortical thickening and FLAIR signal increase. C: Post-resection axial T1 
image. 
D: Axial colourised fibre orientation map showing displacement of the right inferior 
longitudinal fasciculus, inferior frontooccipital fasciculus and optic radiation 
(sagittal stratum). There is also reduction of the subcortical connectivity in the 
right posterior inferior quadrant. 
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Figure 6.2 Patient with a right occipital CD (type 2B). Reconstruction of 
tracts surrounding the lesion and contralateral tracts. Overlay with T1 
images.  
 

Patient 2,table 6.1 
A:  Axial colourised fibre orientation map showing displacement of the right 
inferior longitudinal fasciculus, inferior frontooccipital fasciculus and sagittal 
stratum. There is also reduction of the subcortical connectivity in the right inferior 
posterior quadrant. 
B: Three dimensional display of tractography ipsilateral to the lesion (red) and 
contralateral to the lesion (yellow) highlights the reduced subcortical connectivity 
in the right posterior quadrant.  
C:  Two dimensional illustrations of the tractography results coregistered with the 
T1 image. The area demonstrating cortical thickening did not show fibre 
connections between deep white matter and dysplastic cortex. On the 
contralateral side, longitudinal fibres reached each gyrus with a branching pattern. 
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Figure 6.3  Patient with right occipital CD (type 2B) . Ictal onset zone and 
spread as delineated with invasive recordings and tractography from area 
of ictal onset.  
 
Patient 2, table 6.1 
A:  3 D reconstruction with display of grid electrodes. Area of FLAIR signal 
change is highlighted in blue. Ictal onset (black solid circle) and spread are 
highlighted on the respective electrode positions. 
B: Axial FA map with display of fibres (in red) reconstructed from a small ROI 
underlying the electrode A44 (ictal onset; small circle on right image). The yellow 
fibres were reconstructed from a same size ROI in the contralateral homologous 
region. Please note that the fibres reconstructed from the ictal onset ROI are 
shorter compared to the contralateral homologous counterparts. 
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Figure 6.4 Patient with left temporooccipital  CD. Ictal onset zone and 
spread as delineated with invasive recordings and tractography from area 
of ictal onset   
 

Patient 3, table 6.1 
A:  3 D reconstruction with display of grid electrodes. Area of FLAIR signal 
change is highlighted in blue.  Ictal onset (black solid circle) and spread are 
highlighted on the respective electrode positions. Invasive EEG recording showed 
the ictal onset with largest amplitude on contacts A26 and 27 (4x11 subdural grid 
covering the lateral temporooccipital region, solid black circles). B:   Axial FA map 
with display of fibres (in red) reconstructed from small ROI underlying the 
electrode A27 (ictal onset; small circle on right image). The yellow fibres were 
reconstructed from a same size ROI in the contralateral homologous region. 
Please note that the fibres reconstructed from the ictal onset ROI are much 
shorter compared to the contralateral homologous counterparts. C: Axial colorized 
FA map illustrating the displacement of the arcuate (shown in blue) and inferior 
frontooccipital  fasciculi (in green color on this cut; see arrow).   
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Table 6.2 DTI measures from ROI underlying the ictal onset zone compared 
to contralateral homologous region 
 

 Patient 2 Patient 3 

 
ROI ADC ipsilateral 
(10-4 mm2/s)  

 
8.592 (0.963) 

 
9.31  (0.5) 

ROI ADC contralateral 
(10-4 mm2/s) 

 
8.113 (0.538) 

 
8.87  (0.51) 

 
ROI FA ipsilateral 

 
0.206 (0.045) 

 
0.186 (0.053) 

 
ROI FA contra 
 

 
0.235 (0.033) 

 
0.211 (0.038) 

Number of fibres reconstructed 
ipsilateral 

 
32.8 (10.4) 

 
24.3 (11.85) 

Number of fibres reconstructed 
contralateral 

 
83.8 (46.8) 

 
214.5 (87.01) 

Number of voxels per tract 
reconstructed ipsilateral 

 
 
40.4 (15.7) 

 
 
15.28 (3.64) 

Number of voxels per tract 
reconstructed contralateral 

 
 
40.83 (14.38) 

 
 
113.83 (17.76) 

In bold: These measures were significantly different ipsilateral and contralateral to 
the ictal onset (P<0.05, paired U test). Reported as mean of three ROI placement 
trials; standard deviation in parenthesis (see page 118 for details). 
 
 

6.1.3.4 Imaging and functional outcome correlations following occipital lobe 

surgery 

 

Two patients remained seizure free after surgery (follow up 4 and 5 years 

respectively). One patient had a couple of post-operative seizures but then none 

for the duration of the follow up interval (2 years). In patient 1, who did not have a 

pre-existing visual field deficit, visual fields were intact after a tailored resection 

that was guided by ictal recordings and MRI coregistration. Retrospective 

comparison between the FA map and the post-surgical MRI revealed that the 

lateral occipital resection had spared the longitudinal white matter fibres lateral to 



Beate Diehl - PhD Thesis 

- 128 - 

 

the ventricle including optic radiations (Figure 6.1). This correlates with 

preservation of visual fields.  

 

Patient 2 had a pre-existing left upper quadrantanopia prior to surgery and could 

not cooperate with formal post-operative field testing, but was felt to have a 

homonymous hemianopia after occipital lobe resection. FLAIR changes in this 

patient involved the optic radiation and tracked down to the inferior horn of the 

lateral ventricle, thus accounting for the pre-existing visual field deficit. A larger 

occipital resection was performed including the entire FLAIR abnormality.   

 

Patient 3 had a small CD in the posterior middle temporal gyrus without visual 

field deficit. A small resection was performed with preservation of the visual fields. 

 

6.1.4 DISCUSSION  

 

This study highlights that CD is not a disease that exclusively affects cortex and 

examines the impact of CD in patients with intractable focal epilepsy on the white 

matter. White matter connectivity and its changes will affect cortical function and 

ictal propagation. 

 

6.1.4.1 Impact of the CD on local connectivity and underlying white matter 

tracts 

 

Our study illustrates decreased subcortical connection of the dysplastic cortex in 

our patients, evidenced by visual analysis of both the FA maps and tractography 

results. This finding is consistent with recent reports of reductions of fibre 

connections with the cortex in areas underlying the thickened gray matter of focal 

CD (Lee et al., 2004). Furthermore, several studies have found altered diffusion 

values underlying CDs. Specifically, reductions in FA have been described. 

Further sub-analysis of changes in diffusion values oriented radially and parallel 

to the axons revealed results suggestive of possible reductions of myelinated fibre 
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density. One study on five patients with CD could only confirm such changes in 

three patients who also demonstrated increased  white matter T2 signal (Gross et 

al., 2005), whereas others found such alterations independent of signal changes 

(Widjaja et al., 2007).  

 

6.1.4.2 CD, ictal onset and seizure propagation 

 

The two patients with pathologically confirmed type 2B CD and the third with 

pathology proven type 1A but suspected type 2B CD based on imaging 

characteristics in the depth of the sulcus exhibited very focal and restricted ictal 

onset, adjacent to (but not overlying), the area of maximum FLAIR signal 

abnormality.  These results are consistent with, and extend our previously 

published data on patients with mainly frontal and temporal dysplasia (Boonyapisit 

et al., 2003; Marusic et al., 2002; Najm et al., 2007). Ictal onset was either 

superior or inferior to the FLAIR abnormality, highlighting that there is a lack of in 

situ epileptogenicity in balloon cells- containing dysplastic lesions (Boonyapisit et 

al., 2003; Marusic et al., 2002; Najm et al., 2007). The cellular and network 

mechanisms that underlie the pathology-based differential expression of in situ 

epileptogenicity in CD remain largely unknown. One hypothesis is that balloon 

cells, though not excitable by themselves, may lead to a modification in the 

structure of the surrounding cortex thus leading to increased excitability in 

adjacent tissue (Cepeda et al., 2003).  

 

Although there is significant investigation underway to better understand the 

mechanisms of ictal onset, little is known about the mechanisms of seizure 

propagation. In general, direct cortical recordings permit the distinction between 

fast (early) and slow (late) propagation of the ictal patterns. In addition, the fact 

that grid electrodes are placed in a contiguous manner (fixed interelectrode 

distance) allows the study of the propagation pattern: contiguous versus non- 

contiguous (subcortical or “saltatory”). Propagation speed in human seizures may 

be quite variable. In one study on frontal lobe epilepsy, the time to initial 
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propagation was 1-45s, thus suggesting speeds in this first phase of spread of 

less than 200 micro m/s to greater than 10 mm/s, taking cortical foldings into 

account (Blume et al., 2001;Trevelyan et al., 2007). In our study, all three patients 

with pathologically confirmed  CD had slow contiguous spread. We assume that 

this spread mainly occurred via direct horizontal cortical propagation. Such 

propagation may occur horizontally through cortical layer V (Adrian, 1936; 

Telfeian and Connors, 1998). If inhibition is impaired, propagation may also occur 

through other cortical layers (Telfeian and Connors, 1998). Antidromic 

propagation  from the cortex to the thalamic relay neurons has also been 

described (Gutnick and Prince, 1974). In humans, direct ictal  spread to ipsilateral 

or contralateral homotopic or heterotopic areas has been observed (Baumgartner 

et al., 1996; Blume et al., 2001; Lieb et al., 1987), suggesting spread via white 

matter tracts such as connections through corpus callosum and the anterior 

commissure, or other major white matter tracts. This may also be an explanation 

for the observed non-contiguous spread patterns in human epilepsy.  

 

In this study, we investigated the connectivity of the cortical region of ictal onset. 

In two patients this was accomplished by performing tractography from the area 

underlying the grid electrode contacts exhibiting the ictal change. These areas 

were adjacent to the observed FLAIR signal increase demarcating the CD.   Both 

patients (2 and 3) had focal onset and slow contiguous spread.  Tractography 

revealed that both the number and length of imaged fibres underlying the area of 

ictal onset was rather low. This may indicate limited connectivity to larger 

subcortical white matter tracts from the epileptogenic region, resulting in slower 

propagation speeds as mainly cortico-cortical propagation takes place, slowly 

involving adjacent electrodes. However, these results are preliminary results, 

obtained from a small sample and allow the formulation of a hypothesis rather 

than providing final proof.  

 

In conclusion, information on the connectivity patterns of the ictal onset zone may 

provide interesting information to understand and possibly predict ictal spread 
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patterns. This needs to be reproduced in a larger cohort of patients. In addition, it 

remains to be shown whether patients with rapid non-contiguous spread have 

strong subcortical connectivity and how such information relates to outcome. 

Such knowledge may contribute to further our understanding of brain areas at risk 

for secondary damage induced by ictal spread. Furthermore, it may provide 

opportunities to improve surgical outcomes by disconnecting pathways of ictal 

spread in selected cases.  

 

6.1.4.3 Functional outcome after epilepsy surgery 

 

There is evidence for persistence of eloquent cortex function in areas of CD that 

are devoid of balloon cells (Leblanc et al., 1995; Preul et al., 1997)  whereas 

dysplastic cortex containing balloon cells is often non-functional cortex (Marusic et 

al., 2002). Careful correlation of cortical stimulation results, ictal onset zone and 

imaging findings are important to assess the risk of functional deficit of the 

surgical procedure.  

 

Larger balloon cell-containing CD as those described in cases 1 and 2 are likely 

to lead to reduction of subcortical connectivity in the area of thickened cortex. 

They also result in displacement of underlying white matter tracts, as illustrated in 

all three cases.  In the future, better delineation of these underlying large tracts 

may allow for  more adequate pre-surgical mapping, improved counseling prior to 

surgery and potentially the preservation of function following epilepsy surgery.  

The potential utility of tractography to spare visual fields  has been demonstrated  

in ten patients with AVM surrounding the visual pathway (Kikuta et al., 2006), by 

performing careful correlation between visual field findings and tractography of the 

optic radiation. Four of the 10 patients underwent surgical resection of the AVM. 

The authors were able to predict the amount of pre-and post-operative visual field 

loss from the geometrical relationship between lesion and optic radiation. 
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Therefore it can be suggested that DTI in patients with extra-calcarine or temporo-

occipital lesions and preserved visual function in the affected hemisphere, may 

positively impact upon the surgical outcome.  Given that a major deterrent for the 

surgical management of pharmaco-resistant temporo-occipital epilepsy is the high 

likelihood of visual deficit, localising cortical and subcortical substrates crucial to 

visual function will help quantify, and perhaps reduce the risk from resections in 

this region. 

 

6.1.4.4 Technical challenges, limitations and outlook 

 

Limitations of the DTI and tractography performed in this study include those 

imposed by the relatively large voxel sizes that were necessary to obtain sufficient 

signal to noise and spatial coverage within a reasonable scan time. Diffusion 

information carries microscopic anatomical information which is averaged over the 

large voxel volume. In addition, ROI analysis may introduce some inaccuracies, 

as both gray and white matter may be included particularly in areas of cortical 

thickening, potentially lowering FA values even further. For tractography, multiple 

fibre populations with different fibre orientations are often present  within a given 

voxel and such  information will therefore be lost (Mori and Zhang, 2006). 

Directionality of diffusion is also unknown, hence we cannot comment on 

anterograde versus retrograde flow. This study was performed on a 1.5T magnet; 

future investigations will be performed with higher field strengths allowing the use 

of smaller voxel sizes. In addition, the higher signal to noise in itself will likely 

allow the impact of CD on the underlying white matter to be elucidated in greater 

detail. Understanding the connectivity of the lesion and the area of ictal onset may 

enable us to predict ictal propagation patterns.  
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6.2 CASE REPORT- Ictal onset and seizure propagation in a case with 

posterior quadrant polymicrogyria and heterotopias 

 

6.2.1 CASE HISTORY  

 

This patient is a 26 year old right handed man with seizures since age 12 years. 

Semiology is characterised by a psychic aura with anxiety followed by a focal 

seizure with mouth and hand automatisms and loss of awareness. Auras occurred 

up to 10 times a day and complex partial seizures once or twice a day. Physical 

examination showed a left inferior quadrantanopia. 

 

Scalp interictal EEG showed spikes and polyspikes in the posterior temporal 

region. Ictal EEG was lateralised to the right hemisphere. In order to delineate 

ictal onset with the greatest precision, invasive recordings were performed with 

grid coverage as shown in figure 6.6. Ictal onset was found in the right 

temporooccipital region, with very rapid spread to the inferior frontal region as 

seen in figure 6.6A. A large posterior quadrant resection was performed.  

Post-operatively, the patient has rare complex partial seizures and continues to 

take two antiepileptic medications. Visual fields revealed an inferior left 

quadrantanopia (incomplete) prior to surgery. Post-operatively, a left hemianopia 

was noted on examination.  

 

6.2.2 RESULTS: DTI characteristics and tractography 

 

6.2.2.1 Visual analysis of the FA maps 

 

This patient demonstrated significant abnormalities with displacement and 

thinning of all major tracts in the right posterior quadrant (Figure 6.5A and B). 
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Figure 6.5 Axial colourised fibre orientation maps and DTT of the inferior 
frontooccipital fasciculus in a patient with right temporooccipital 
polymicrogyria. 
 

A: Axial colourised fibre orientation maps showing displacement of the right 
superior fronto-occipital fasciculus and  superior longitudinal fasciculus. 
B: Two dimensional illustration of the tractography results overlaid on to the T1 
image demonstrates the spatial relationship between the heteotopic gray matter 
and the white matter tracts (in blue). 
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Figure 6.6 Ictal onset and rapid propagation from the right temporooccpiptal 
region and DTT    
 
A:  3D reconstruction with display of grid electrodes. Ictal onset (black solid circled 
electrodes) is regional and widespread, suggesting a possible spread pattern. 
Rapid ictal propagation from this temporo-parieto-occipital area is seen within ms 
to the inferior lateral frontal lobe. Arrow indicates electrode D16, one of the 
electrodes involved in the fast propagation, also marked in C. 
B: Sagittal colourised fibre orientation map displaying the fibres reconstructed 
from the region of ictal onset. Connections are seen into the anterior temporal 
lobe and the frontal lobe.  
C: Possible pathway of ictal propagation as reconstructed and displayed in B 
overlaid on the axial T1 image. The location of electrode D16 is marked with a red 
circle, one of the electrodes involved in the fast propagation. The direct 
connectivity between the region of ictal onset as recorded on subdural grids and 
the area in the ipsilateral frontal lobe may explain the fast and non-contiguous 
propagation into the lateral frontal lobe. 
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6.2.2.2 Pathological, electrocorticographic and imaging correlations 

 

In contrast to the case series of three patients with more focal CD presented 

above, this patient (type 1A CD) showed regional ictal onset in the right posterior 

temporo-occipital region that showed a very rapid spread (within 200 ms, Figure 

6.6A) to the dorsolateral parieto-occipital cortex. In addition, rapid anterior non-

contiguous spread to the temporal and lateral frontal lobe was observed within 

500 msec of ictal onset, and with late involvement of the orbitofrontal region. 

Visual evaluation of the tractography results revealed proximity of the ictal onset 

zone to the inferior fronto-occipital fasciculus, and to the inferior longitudinal 

fasciculus, thus providing a potential pathway of subcortical seizure spread to 

both anterior temporal and frontal lobes (illustrated in Figure 6.6B and C). DTI 

measures were comparable between the ipsilateral and contralateral side (ADC  

right 8.06+/- 0.3; left 8.5+/-0.63; right FA 0.278+/-0.043; left 0.276+/-0.038). Fibres 

reconstructed from the large area of polymicrogyria and heterotopias were 

nominally fewer and shorter, but this difference did not reach statistical 

significance.  

 

6.2.2.3 Imaging and functional outcome correlations following occipital lobe 

surgery 

 

This patient had a pre-existing inferior quadrantanopia on visual field testing. 

Given the widespread nature of the imaging abnormality and the presumed large 

epileptogenic zone, resection of the temporo-parieto-occipital cortex was 

recommended and performed. The patient clinically had a homonymous 

hemianopia post-operatively.  

 

6.2.3 DISCUSSION 

 

In polymicrogyria, DTI findings are variable.  In one study, no change in diffusion 

values of the underlying white matter was found (Trivedi et al., 2006), consistent 
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with the report here.  Another case showed  reduced FA and increased diffusivity 

(Isik et al., 2007). In the patient reported here, no significant differences between 

the FA and ADC values in the left and right temporooccipital regions were found. 

 

The direct cortical recordings permit the distinction between fast (early) and slow 

(late) propagation of the ictal patterns. In this patient non-contiguous (subcortical 

or “saltatory”) propagation pattern was seen. In the above three patients slow 

continuous spread was seen, in this patient with type 1 CD very abnormal 

connectivity in the region of ictal onset as recorded by grids was noted. Due to the 

large lesion and the lack of additional depth electrode recordings from the deeper 

parts of the MRI identified dysplastic abnormality, admittedly, it must be assumed 

that the exact area of ictal onset is not covered; either buried deep in the 

heterotopic gray matter or on the cortex, adjacent to the grid. Therefore a larger 

region including the underlying heterotopic gray matter was chosen as a starting 

point for mapping connectivity, likely encompassing the ictal onset region, but also 

surrounding regions. Of note was the clear connectivity with the inferior frontal 

region. Ictal spread showed non-contiguous rapid propagation to this area, thus 

providing evidence for possible subcortical white matter pathway propagation via 

the fronto-occipital and inferior longitudinal fasciculi. 

 

A reduced fibre number compared to the contralateral side was reconstructed 

from the rather large seizure onset area. In this patient we have to assume that 

the ictal onset zone was not precisely covered and sampled and may represent a 

spread pattern from an ictal onset in a cortical surface region outside the grid 

coverage area, or from the deep underling heterotopic gray matter (that was  not 

sampled by depth electrodes).  

 

In conclusion, information on the connectivity patterns of the ictal onset zone may 

provide interesting information to understand and possibly predict ictal spread 

patterns. Such knowledge may not only contribute to further our understanding of 

brain areas at risk for secondary damage induced by ictal spread, but may also 
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provide opportunities to improve surgical outcomes by disconnecting pathways of 

ictal spread in selected cases.  
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CHAPTER 7 

SUMMARY, CONCLUSION AND FUTURE PLANS 

 

 

7.1 Summary and appraisal of the research presented 

 

The introduction of MRI into clinical practice for the diagnosis of the underlying 

causes of many epilepsies has been an important milestone and arguably 

represents the greatest advance in diagnostics in epilepsy since the EEG was 

discovered. The studies underlying this thesis investigated the possible 

contribution of a novel imaging technology, DTI to the pre-surgical evaluation in 

medication-refractory focal epilepsy. In particular, DTI provides information on the 

microstructure of tracts that are crucial to performance in specific cognitive 

domains. Such information can add to our understanding of normal function, and 

may add to explain dysfunction. In addition, DTI allows reconstructing major white 

matter tracts and gives in vivo insights into connectivity of the human brain. Once 

appropriate validation of such tracts is available and the technique is optimised, 

this will certainly become a valuable tool to inform resection and improve 

functional outcomes. In addition, understanding the connectivity of the 

epileptogenic zone may be relevant to seizure propagation patterns.  

 

Today‟s advances in neuroimaging have only been possible following a long 

history of improved knowledge of neurological function and dysfunction in the 

context of brain topography, as detailed in section 1.2. Linking clinical 

manifestations during seizures to brain localisation allowed for targeted 

interventions at the site presumed close to the ictal onset zone. At the same time 

it spurred the need to obtain tools to interrogate the brain non-invasively. 

Neuroimaging and in particular MRI has held a special role over the past 20 years 

in optimising pre-surgical evaluation and has hugely improved our ability to gain 

insights into the structure and function of the epileptic brain. It is hoped that 

improved imaging techniques will inform on potential structural correlates and in 
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an increasingly greater percentage of patients an “epileptogenic lesion” can be 

detected. Due to the increased sensitivity of the technologies, more differences 

between the brain structure of patients with epilepsy and control groups have 

emerged. Some of these may be consequences of seizures rather than their 

cause and may parallel some of the well known comorbidities of focal epilepsy.  

 

The broad aim of this thesis was to examine the contribution of DTI to the 

evaluation of candidates for epilepsy surgery. Specifically, three areas were 

addressed:  

 

1. To investigate the correlation of DTI abnormalities and neuropsychological 

deficits in patients with refractory TLE, specifically in memory and language 

domains.  

 

2. To provide validation of DTT, specifically of a method of reconstructing the AF 

using a deterministic tractography algorithm, by comparing it to results of cortical 

stimulation.  

 

3. To explore DTT as a tool to assess the connectivity of the ictal onset zone and 

compare it in vivo with ictal propagation measured using intracranial EEG.  

 

1. In sections 1.3 and 1.4, I have provided an overview of the imaging 

investigations of focal epilepsies using DTI and DWI which revealed diffusion 

abnormalities in areas of seizure onset and spiking, but also in adjacent and 

remote and even in contralateral areas.  

 

In order to understand the meaning of such changes, investigations into structure 

and function in controls and patients were undertaken, as summarised in section 

1.5. There is mounting evidence that the integrity of white matter tract pathways, 

as measured by DTI, is systematically related to individual differences in 

performance across a wide range of cognitive skills. 
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In chapters 3 and 4 I presented results of correlations between 

neuropsychological performance measures and DTI.  

 

Patients with TLE often suffer from modality specific memory deficits; therefore 

the UF was explored to assess whether possible diffusion abnormalities in this 

important memory network would correlate with performance.  In a group of TLE 

patients, abnormal diffusion measures were found in both the left and right UF. In 

left TLE, diffusion measures correlated in the expected directions in the left UF 

with immediate and delayed auditory memory. There was also a relationship 

between poor delayed visual memory performance and abnormal diffusion 

measures in the right. No significant correlations were found in right TLE, likely 

due to small sample size (Diehl et al., 2008).  

 

At the time of the study, the only work reporting on DTI of the UF in patients with 

epilepsy reported only ten patients with right TLE due to right hippocampal 

sclerosis compared to ten controls (Rodrigo et al., 2007). It showed that FA was 

lower in the epilepsy patients as compared to the controls in the right, but not left 

UF. Furthermore, patients with TLE had abnormal measures of diffusivity and 

anisotropy in the UF bilaterally. No systematic structure function relationship had 

been published.  

 

This study showed more bilateral involvement in the UF with significantly 

increased ADCs in the right UF and decreased FA and increased ADCs in the left 

UF in both right and left TLE patients (Chapter 3). This is in concordance with 

reports of bilateral diffusion abnormalities in limbic structures in patients with TLE, 

as well as remote changes from ictal onset (Arfanakis et al., 2002; Concha et al., 

2005; Gross et al., 2006). 

 

Few studies have investigated the link between DTI measures and memory 

performance. In this group of left TLE patients it was demonstrated that increased 

diffusivity in the left UF was related to poorer auditory memory, whereas 
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increased diffusivity and reduced FA in the right UF were related to poorer visual 

memory. This finding has since in part been replicated in one further study 

(McDonald et al., 2008). 

 

Language dysfunction is also often present in patients with TLE, particularly in 

patients with dominant TLE. Therefore, the AF was assessed and correlations 

with DTI measures and language performance computed (Chapter 4). Results 

provided evidence bilateral diffusion changes in the AF. Specifically, in the left 

TLE group, FA values in the entire left and right AF tract were comparable to 

controls; however ADC values were elevated bilaterally, with higher radial 

diffusivities in the left AF. The right TLE group had higher ADC values and lower 

FA values in both the left and right AF compared to controls. Radial diffusivities 

were elevated.  

 

The correlation data with language performance suggested a relationship 

between DTI measures in the left AF and language scores in patients with TLE. In 

particular, semantic fluency may be a sensitive marker for damage to the 

language network with demonstrated positive correlations of FA in the left AF 

tract. ADC in the left AF tract was negatively correlated with sentence repetition 

and verbal comprehension. However analyses with larger sample sizes will be 

required to replicate this finding.  

 

The relation between language lateralisation and integrity of the AF has been 

shown in other studies (Ellmore et al., 2010; Powell et al., 2006) and the 

contribution of the AF to language performance was also recently shown 

(McDonald et al., 2008), in concordance with the findings presented in this thesis.    

 

It is noted that abnormal DTI measures were found bilaterally in the UF and AF in 

both studies presented in this thesis.  It is conceivable that the abnormal DTI 

values may be related to damage of the axonal pathways that are involved in ictal 
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spread, as is the UF in TLE. Alternatively, neuronal damage from seizures may 

lead to secondary white matter loss in connected areas (Mayanagi et al., 1996).  

 

To date, the exact mechanism of such seizure-induced damage is unknown. In 

both studies, the characteristics of the diffusion changes in a ROI within the UF 

and AF were examined and shown to be compatible with chronic Wallerian 

degeneration, possibly due to cell loss in the temporal lobe secondary to seizure-

induced cell death. Microstructural abnormalities within the UF and AF therefore 

could contribute to memory and language dysfunction in patients with TLE. 

 

2. The second aim of this thesis is to contribute to validation of DTT results. DTT 

has increasingly been used to delineate major white matter tracts as reviewed in 

sections 1.6 and 1.7. Several investigations have focused on retrospectively 

correlating DTI based tractography with postoperative deficits, to assess if the 

technology could provide predictive information for a deficit and maybe even 

could aid in preservation of function.  The approach taken in this study correlates 

language sites identified by extraoperative cortical stimulation with the AF, 

thereby testing the hypothesis that those cortical language areas underpin the 

tractography defined AF (Chapter 5; Diehl et al., 2010a).  

 

The study showed that 84.2% of all 19 electrode positions in 8 patients overlying 

the anterior language area co-localised with the AF. Fifty-two contacts in 10 

patients were over Wernicke‟s area, with co-localisation in 29 (55.8%) patients. 

Co-localisation was significantly greater in anterior regions than in posterior 

regions.  

 

Therefore, although some validation could be provided, the co-localisation was 

not perfect which may in part be due to a number of technical issues. Spatial 

resolution of DTI and noise are significant problems, voxel sizes are much larger 

than the resolution needed to image single axons. The choice of tractography 

algorithms does likely have some influence on the reconstructed tract. It is 
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thought that deterministic tractography algorithms, such as that used for this 

study, have shortfalls particularly in dealing with crossing fibres (see also 7.1.2). 

Other approaches such as probabilistic line propagation (Koch et al., 2003; Parker 

et al., 2003) improve the ability to cope with fibre crossing, however at the 

expense of increased “fuzziness” of the solution (Hagmann et al., 2010). 

Coregistration errors across different sequences and uncertainties of brain shift 

following implantation of the subdural grids add to this.   

 

It was of interest that a tighter co-localisation between language sites in the frontal 

lobe compared to temporo-parietal language sites was found. This may be a 

combination of technical limitations and greater anatomical variability in the 

posterior language area.  

 

One other study has correlated cortical stimulation with DTT. The study explored 

intra-operative cortical stimulation to identify language functions and compared 

the language sites to DTT (Ellmore et al., 2009). A deterministic streamline 

algorithm was used for reconstruction of the AF; in addition, mediolateral frontal 

pathways the UF and IFOF were reconstructed. The rating of concordance was 

done using two different methods: 1. visual analysis to assess a direct 

relationship, as a positive cortical stimulation site with AF pathway terminations 

located within the immediate region (radius 7.5 mm). 2. By using a bootstrap 

method indirect sites were determined. These sites were defined as fibre 

pathways with one end within an immediate region (radius = 7.5 mm) whose other 

termination points were closer to the terminations of the AF pathways than would 

be expected by chance. 

It was shown that the majority of essential language sites (58.8%) had a direct 

relationship to the AF. An additional 20.6% of all stimulation sites had an indirect 

relationship. The authors assume that the neurons at the AF termination sites 

would be affected via an indirect corticocortical route (U fibres for example). It was 

noted that although the majority of the language sites per cortical stimulation had 
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a close relationship (either direct or indirect, as explained above) to the above 

tracts, 21% of the sites were unrelated. 

 

Other methods of validation in the human have focused on intra-operative 

stimulation of underlying white matter tracts (Leclercq et al., 2010). In patients 

with low grade gliomas, intra-operative subcortical stimulation elicited language 

deficits in 8 of 10. DTT of the AF, occipito-frontal fasciculus and premotor 

fascicule were reconstructed and correlated with the positions of electrical 

stimulation. In 17 of 21 positions stimulated, a fibre tract was found within 6 mm of 

the stimulation induced language deficit; in 4, no fibre tract could be found. This 

highlights that DTT is not yet reliable enough to base resections on the 

information presented. In particular, when pathological tissue such as tumors is 

present, great caution needs to be exerted.  

 

Taken together, all these studies indicate that the correlations with the current 

“gold standard” of cortical stimulation are still imperfect. It needs to be noted 

however that cortical stimulation is our best standard, but certainly also has 

shortcomings (Hamberger M., 2007). Integration into neuronavigation systems to 

guide resections can only be considered once the technology is robust and has 

undergone more widespread validation. It is anticipated that in the near future 

DTT will be more systematically integrated into pre-surgical planning procedures 

and further validated using intra-operative and extraoperative cortical stimulation 

and correlated with outcome.  

 

3. Lastly, DTT may be used as a tool to reveal likely paths of seizure propagation. 

I investigated characteristics of DTT from the ictal onset zone and correlation with  

spread as shown on invasive recordings  in a case series of patients with cortical 

dysplasia  (Chapter 6; Diehl et al., 2010b). Cortical dysplasias are a frequent 

underlying substrate of medication refractory focal epilepsy and often require 

invasive EEG investigations (sections 1.7 and 1.8) to delineate the ictal onset 

zone. Ictal onset is most commonly found in dysplastic areas without balloon 
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cells, which are often not clearly demarcated on MRI (Boonyapisit et al., 2003).  In 

addition it is well known amongst neurophysiologists that seizure propagation 

patterns may differ vastly from patient to patient. Some patients have very focal 

ictal onset and slow propagation across the subdural grids, and other patients 

show quick propagation to remote areas of cortex, skipping subdural electrodes 

on the surface of the cortex, hence propagating using subcortical pathways.  

In the group of patients in this study, DTI measures and DTT confirmed the 

presence of reduced connectivity with reduced arborisation and thinning of the 

fibre bundles between the subcortical white matter and the dysplastic cortex in 

three patients with presumed type 2B cortical dysplasia. Fibre tracts reconstructed 

from regions underlying the ictal onset helped explain ictal propagation patterns in 

this small case series of patients. In the three patients with slow contiguous 

spread, poor subcortical connectivity of the focal ictal onset zone was seen. In the 

one patient with polymicrogyria however, rapid non-contiguous spread showed 

rapid subcortical spread via the fronto-occipital and inferior longitudinal fasciculi. 

This case however is not ideal, as the ictal onset zone may have been located 

deep and has not been precisely covered. Future studies need to investigate the 

relationship between pathology, ictal onset and propagation and connectivity of 

the ictal onset zone in greater detail.  

 

In the two patients without pre-existing visual field deficit, resections spared the 

optic radiation visible on the FA map. 

 

Diffusivity measures and visualisation of tracts provides complementary 

information on white matter changes accompanying CD and may assist to explain 

ictal spread patterns. Careful correlation with measures of function will allow the 

assessment of the functional significance of various dysplastic lesions and may 

help to design resective strategies.   
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1. 2 Conclusion and Future Plans 

 

It is hoped that improved imaging techniques will allow identification of 

abnormalities of brain structure and function with ever greater sensitivity. It is 

crucial, particularly for the third of patients with medication refractory focal 

epilepsy to detect subtle lesions, as it informs epileptologists and neurosurgeons 

on potential targets for resective surgery. However, understanding the relevance 

of a lesion in the context of a patient‟s epilepsy is of paramount importance. Close 

correlation between neurophysiology and imaging is required to gain better 

understanding of the meaning of a lesion.  

 

DTI has shown more widespread changes in areas close to ictal onset but also 

remote areas. The underlying diffusion changes appear to show the 

characteristics of Wallerian degeneration, however it is unclear if all those 

changes occur as a result of seizures or some may be there from onset of the 

epilepsy and be part of the epileptogenic lesion. To date, one small study in 

children investigated 11 patients with idiopathic generalised epilepsy, eight with 

localisation related epilepsy and non-lesional MRI (Hutchinson et al., 2010). DTI 

showed reduced FA and increased radial diffusivity of the posterior corpus 

callosum and cingulum. These results provide evidence of microstructural 

abnormalities in cerebral white matter among children with recent onset idiopathic 

epilepsies. In the future, it will be crucial to understand the impact of new imaging 

technologies also on the developing brain, particularly as epilepsy surgery is no 

longer considered a measure of last resort in the management of children with 

medication resistant focal epilepsy (Cross JH, 2010).  Early referral to a 

comprehensive epilepsy centre and the integration of the advances in 

neuroimaging has greatly increased the numbers of possible candidates for 

epilepsy surgery in children.  

 

Larger prospective studies of newly diagnosed epilepsy may be able to shed 

some light on the presence of microstructural abnormalities at onset and during 
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the course of the disease. Important differences regarding seizure control, seizure 

semiology and comorbidities may emerge. Longitudinal prospective studies to 

evaluate the time relationship between the overall cognitive decline, and decline 

in specific neuropsychological areas and DTI alterations are needed to clarify the 

causes and impact of DTI changes. Such studies may be difficult as they will likely 

require following a large group of patients for many years in order to detect 

changes over time and their impact on cognitive function.  

 

Large prospective studies are crucial to understand potential contributions of the 

technology 1. to develop biomarkers for cognitive difficulties associated with 

epilepsy and 2. to assess whether DTI can aid in predicting risks of deficit 

following surgery. Ideally, they should be performed as multicenter studies, using 

well characterised cohorts of patients investigated using the same methodology. 

Such studies, although much needed, may however prove challenging for a 

variety of reasons (Richardson M, 2010). For example, most recently the inter- 

and intra-site reproducibility of two nominally identical 3 T scanners at different 

sites was investigated in nine healthy controls using a DTI protocol representative 

of typical current “best practice”. Reproducibility maps of the whole scan volume 

showed a low variation of less than 5% in the major white matter tracts but higher 

variations of 10–15% in gray matter regions (Vollmar et al., 2010).  Taking into 

account the variability of different scanners between centres, such multicentre 

trials will be difficult. However, a recent meta-analysis of predictive accuracy for 

focus localization and cost effectiveness in epilepsy highlighted a large evidence 

gap. It was concluded that due to limitations of the studies included, the results do 

not inform clinical practice usefully (Whiting et al., 2006), again highlighting the 

great need to work towards multicentre trial designs.  

 

Overall, the extent of DTI changes in the epileptic brain is certainly surprising, and 

we are in the process of gaining insights in structure function relationships. There 

clearly seems to be some relationship between language and memory 

performance and integrity of main tracts, which are structurally supporting such 



Beate Diehl - PhD Thesis 

- 149 - 
 

functions. However it is also clear that damage to a specific tract may also 

influence other functions via more non-specific mechanisms, such as attention 

and concentration for example.  

 

In addition, given the complexity of higher cognitive functions and the functioning 

of the brain in networks, it is very unlikely that correlations between performances 

in particular tests will be confined to only one major tract. Recent reviews of fMRI 

studies of the language system provide impressive insights into the large number 

of cortical areas activated during language tasks (Price, 2000; Price, 2010; 

Vigneau et al., 2006). Therefore, focusing only on the AF as the work underlying 

this thesis has done can only be a start. In fact, one study had shown that there is 

a relationship between  naming performance and DTI measures of the  AF, UF, 

and the left IFOF (McDonald et al., 2008). Evidence from cortical stimulation 

followed by glioma resection in 13 patients however suggests that the UF  is not 

essential for language (Duffau et al., 2009). Intra-operative stimulation studies 

have however highlighted the importance of the AF, superior frontooccipital 

fasciculus, the IFOF and the subcallosal fasciculus  (Duffau, 2008a).  In particular, 

stimulation of the IFOF elicits semantic paraphasias, suggesting that this tract is 

essential to the semantic language system (Duffau et al., 2005; Duffau, 2008a). 

Stimulation of the subcallosal fasciculus, a white matter bundle that surrounds the 

lateral angle of the frontal horn and connects the cingulum and the supplementary 

motor area, has induced a transcortical motor aphasia  (Duffau et al., 2002). 

 

In addition, it now has been shown that there may be a significant contribution of 

the right hemisphere to a successful naming performance, particularly in older 

people (Obler et al., 2010). The older adults with relatively better naming skills 

relied on right-hemisphere peri-Sylvian and mid-frontal regions and pathways, in 

conjunction with left-hemisphere peri-Sylvian and mid-frontal regions. Therefore, 

future studies need to also investigate all tracts potentially involved in a particular 

network. 
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Whether the degree of microstructural abnormalities in specific tracts of patients 

with focal epilepsy will prognosticate the risk of a decline in performance following 

resection is uncertain at this point. However, some relationship would appear 

logical.  In the case of pre-existing damage of white matter tracts that are 

connecting cortical areas essential for a certain tasks, risk of further potential 

damage through surgery should decrease.  

 

Some fMRI studies and combined DTT/fMRI studies linked strong language   

lateralisation to increased risk for naming decline after left TL resection. In one 

study, the relationships between the fMRI laterality index, Wada language 

dominance, and naming outcome were examined in 24 left TLE patients, 

revealing that fMRI showed 100% sensitivity and 73% specificity in predicting 

significant naming decline (Sabsevitz et al., 2003).  It has also been shown that 

the degree of lateralisation on fMRI correlates with more highly lateralised 

connectivity pathways (Powell et al., 2007a). Furthermore, in a small group 

(seven patients with dominant temporal lobe resections) the degree of tract 

lateralisation correlated with language decline (Powell et al., 2008). These 

findings need to be replicated in a larger group of patients. The size, and shape of 

tracts however has not yet been systematically investigated and not been linked 

to outcomes following dominant temporal lobe resection.  

 

It would be ideal to characterise an individual patient‟s language performance via 

neuropsychological profile, tractography and fMRI and stratify risk of epilepsy 

surgery procedures accordingly. Aside from integrity of a tract, its particular shape 

and connectivity to cortical areas in an individual may vary and be important 

predictors of impact of resection. Stratifying individual patient‟s risk according to 

the surgical plan however is still a vision for the future. 

  

As DTI based tractography is increasingly integrated in pre-operative planning, 

there is a need for clinicians and neurosurgeons to develop improved 

understanding of limitations of the technology. It is likely that in specific areas of 
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the brain, tractography may be more or less reliable in visualising connectivity due 

to varied percentages of crossing fibres and fibre density. Hence, maps of 

probability for accurate delineation may be helpful, to highlight areas that may be 

difficult to accurately represent using such technology. Such an approach may be 

limited by the variability in acquisition and tract reconstruction and analysis 

between centers, but it can still provide valuable information. Overall, as in many 

other areas of clinical and translational research, numbers are still limited and the 

generalisability of data suffers from varied methods in centers.   

 

In order to integrate DTT in a systematic way into pre-surgical workup and 

neuronavigation systems, the technique needs to be proven to be robust and 

reproducible. In addition, there are particular challenges in delineating tracts in 

disease; tumour tissue for example poses particular challenges to visualise tracts 

that may have decreased FA but be still functional. Clinicians and neurosurgeons 

will have to be very cautious to not rely on DTT alone and be aware of both false 

negative and false positive results.  However, if the technique is optimised and a 

better understanding of strengths and limitations is achieved, DTT will likely be an 

essential tool to plan and perform epilepsy surgery, to minimise functional deficits 

after resection.  

 

As mentioned previously, advances in both acquisition and postprocessing will 

likely improve DTT results. DTI cannot measure multiple fibre orientations within 

one voxel. To address this limitation, Diffusion Spectrum Imaging (DSI) and 

related methods were developed, allowing the imaging of complex distributions of 

fibre orientations within a voxel (Wedeen et al., 2005; Wedeen et al., 2008). 

However, such techniques are far from clinical application as high performance 

scanners (typically 3T) with very powerful magnetic gradients and multichannel 

headcoils being required. In addition, long acquisition times are needed 

(Hagmann et al., 2010). Undoubtedly the near future will bring improved ways of 

reconstructing tracts, and repeated studies correlating function as localised using 

cortical stimulation will possibly yield improved correlation. 
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Lastly, DTT may have a role in the evaluation of the connectivity of the ictal onset 

zone. Close correlation with ictal propagation patterns as seen on intra-cranial 

recordings will provide valuable insights into the larger areas of cortex that are 

recruited. In case very efficient remote connectivity exists, ictal spread may occur 

very rapidly and some remote cortical areas may get activated. Some may even 

be able to sustain an independent seizure pattern of distinct morphology, 

rhythmicity, and evolution and which outlasts the activity from the primary zone of 

onset. This has been termed an „„intraictally‟‟ activated regions. It was shown in 

the past that these areas may be capable of self-sustaining epileptogenesis. They 

may arise at a considerable distance from the primary focus, and contribute to 

surgical failure if not fully excised (Duchowny, 2009; Jayakar et al., 1994). These 

connections and propagation patterns are important to identify, as the resective 

strategy will be affected. In case such intraictal areas are close by the initial ictal 

onset zone, they should also be resected. However, in case they are more 

remote, this becomes more difficult to decide and will certainly be a balance of 

best possible seizure free outcome and avoidance of functional deficits. More 

research is certainly needed in the area of extent of resection.  

 

In the future, connectivity of a presumed epileptogenic zone/lesion may allow 

planning implantation better beforehand, to cover adjacent and possibly also 

some more remote areas of strong connectivity. Information streams such as 

seizure semiology, scalp interictal and ictal EEG as well as other modalities for 

example MEG, PET and EEG fMRI can be used to determine which areas of 

cortex are likely involved in ictal onset and rapid propagation. This information can 

then used to guide resection or, in complicated cases, the implantation strategy 

for subdural grids and/or depths.   Close correlation with DTT will help explain 

propagation patterns and additional strategies such as resections in combination 

with disconnection for example could be guided by utilising a combination of the 

information.   
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The contribution of DTI and DTT in the pre-surgical evaluation therefore has great 

potential to inform resective strategies in epilepsy surgery. Future research needs 

to integrate the DTI based tractography and cortical localisation procedures that 

define eloquent cortex, highlight dysfunctional brain areas, and the ictal onset and 

irritative zones. As efforts are under way to characterize the added contribution of 

various neuroimaging techniques to clarify their value in the presurgical evaluation 

(Knowlton et al. 2008 a,b), DTI will need to pass rigorous assessments in the 

future.  

 

Understanding connectivity of the human brain in health and disease will also 

shed light on the relationship between structure and normal and abnormal 

function. The many changes in the epileptic brain relating to cortical thickness, 

gray and white matter volumes, electrophysiology and metabolism are likely 

reflected in changes in underlying connectivity. If appropriate tools become 

available to integrate all the information from multimodal structural and functional 

brain imaging and neurophysiology, crucial insights in focal epilepsy and possibly 

also epileptogenesis will be gained. To gain such information and then translate 

these insights into improved outcome for our patients with focal epilepsy, a cure 

or even intervention during epileptogenesis will be a main focus of many clinician 

scientists in the future.   
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