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Each point can be written as the model4 a corruption:

yi1=ax+c+wi
Yo=ax+c+wr
y3 = ax + Cc+ w3

w is the difference between real world and model which can be
presented by a probability distribution.

We call w noise!
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What if our observations are less than model parameters?

Underdetermined system
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Introduction to Gaussian Processes, Neil Lawrence

How can we fit the y = ax + b
line, having only one point?
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b~m = a~m
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» This is called Bayesian treatment.

» The model parameters are treated as random variables.
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Bayesian perspective

Original
belief

—> New belief

Observations
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Bayesian formula (inverse probability)

) prior likelihood
posterior
) = Tx)xm(y]x)
T X = ——
(x]y) 7(y)
~——

evidence

y = observation

X 1= parameter

m(x) := original belief

m(y|x) := given by the mathematical model that relates y to x
m(y) := is a constant number
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Bayesian formula (inverse probability)

m(xly) o< m(x) x m(y[x)
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Bl in computational mechanics
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Linear elasticity

o= Ee .
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Linear elasticity

Capital letters denote a random variable
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Linear elasticity

O

Noise PDF is modeled through calibration test.
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Linear elasticity

Bayes’ formula:

m(Ely) = 7T(E7)r7(ry(;/lE) _ ﬂ(E)i(ylE)

m(Ely) o< m(E)m(y|E)
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Linear elasticity

y=FEe+uw
Q~ N(0,s7)
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Linear elasticity
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Linear elasticity

Posterior:

7T(E|y) X exp( - (Ez_slgz_Ey)exp( _ ()’;Sl:;e)2>

w
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Linear elasticity
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» Prediction interval: An estimate of an interval in which an observation will fall,
with a certain probability.

» Credible region: A region of a distribution in which it is believed that a random
variable lie with a certain probability.
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Linear elasticity
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» Increase in number of observations/measurements makes us more sure of
identification result.
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Prior effect
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» Increase in number of observations/measurements decreases the effect of prior.
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Conclusion

» Probability is the natural way of dealing with
uncertainties/unknowns (what Laplace calls it our ignorance).
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Conclusion
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» From Bayesian perspective (inverse probability) the
parameters are treated as random variables.
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Conclusion

» Probability is the natural way of dealing with
uncertainties/unknowns (what Laplace calls it our ignorance).

» From Bayesian perspective (inverse probability) the
parameters are treated as random variables.

» The same logic can be used to model other kinds of
uncertainties/unknowns e.g. model uncertainties and material
variability.

» In Bayesian paradigm our assumptions are clearly stated
(e.g. the prior, model and ...).

» As the number of observation/measurements increases we
become more sure of our identification results.
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