
Introduction to Isogeometric Analysis (IGA)

Stephane Bordas, Haojie Lian, Chensen Ding

1

University of Luxembourg

February 2019

The DRIVEN project has received funding from the 

European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 

811099



1. Alleviate meshing burden

2. Direct communication with geometry

• Exact representation of geometry.

• Shape sensitivity analysis.

• Shape optimization.

3. High order continuous field

4. Flexible refinement scheme.

Motivation

The key idea of isogeometric analysis (IGA) (Hughes et al. 2005 ) is to approximate the

physical fields with the same basis functions as that used to generate the CAD model.

Fig 1. Conventional FEA procedure

( Sandia National Laboratories )
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NURBS (Non-Uniform Rational B-splines)

NURBS is a mapping from parametric space to physical space. 

x

B

3. NURBS basis function ( R )

Fig 3: NURBS surfaceFig 2: NURBS curve

Fig 1: Knot vector



B-spline basis function:

B-spline basis functions

• Linear independence;

• Partition of unity 

• Non-negative;

• Locally supported;

• No Kronecker delta property

Fig 1: B-spline basis (left) vs quadratic polynomials (right)



NURBS basis functions

NURBS basis function:

where N is the B-spline basis function, and w is the weight associated with the control points.

Tensor product property

Fig 1: The influence of weights on the geometry



Fig 2. Exterior Acoustics (submarine)

Fig 1. Shape optimization 
Fig 4. Crack propagation

Fig 1. Linear elasticity (propeller) 

Applications
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