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Abstract

In this report we will present a linear decomposition of a given L-
valued binary relation into a set of sub-relations of kernel-dimension one.
We will apply this theoretical result to the design of a faster algorithm for
computing L-valued kernels on general L-valued simple graphs.

1 Introductory example

Recent research work [3] [4] on defining and computing fuzzy kernels from L-
valued simple graphs 1 have shown that multiple kernel solutions correspond
in fact to multiple possibilities for extracting independant alignements, that is
fuzzy a-cyclic binary relations from given genral fuzzy simple graphs.

To give a first intuitive illustration of this idea consider the following numer-
ical example: 2.
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This fuzzy outranking [9] graph G admits two fuzzy dominating kernel solutions
K1 = [.45, 1, 0], K2 = [.45, .45, .55], [3], [4] to which coprrespond the following
“independant” restrictions of of the original relation:

1R. Bisdorff, M. Roubens 1996a, 1996b
2This example was proposed by Bernard Roy at the 41th meeting of the EURO working

group MCAD on “Multicriteria Aid for Decisions” in Lausanne, March 1995
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with K1 = [.45, 1, 0] and K2 = [.45, .45, .55] as respective fuzzy kernel solu-
tion.

This example suggest that multiple kernel solutions are in fact hints towards
a possible boolean “additive” decomposition of the original L-valued relation.

2 On boolean “addition” of L-valued
binary relations

Let GL(A,R,L) be a simple finite L-valued graph, where L = (V,6,max,min,-
¬,→, 0, 1) is a symmetric rational evaluation domain (cf. [3], where the set V
is a completely ordered possibly infinite set of rational truth values with 0 as
“certainly false” and1 as “certainly true” value, ¬ is a strong negation and →
is a residual min-implication. 3 We shall denote in the sequel B = ({0, 1},6
,max,min,¬,⇒, 0, 1) the standard boolean crisp logical denotation and L3 =
({0, 12 , 1},6,max,min,¬,→, 0, 1) the ‘minimum trivalent symmetric evaluation
domain.

Let RLA be the set of all possible L-valued relations on a given finite set A.
We may define on RLA a special addition-operator ⊕ in the following manner:

Definition 1 Let R,S ∈ RLA : ∀(a, b) ∈ A×A :

(R⊕ S)(a, b) =


max(R(a, b), S(a, b) ⇔ R(a, b) > 1

2 ∧ S(a, b) > 1
2 ,

min(R(a, b), S(a, b) ⇔ R(a, b) 6 1
2 ,∧S(a, b) 6 1

2 ,

1
2 elsewhere.

Proposition 1 If M ∈ RLA is the trivial all median-valued relation, the alge-
braic structure of (RLA,⊕,M) gives a commutative group with relation M as
neutral element.

Indeed, the trivial fuzziest L-valued relation M is a neutral element for the
⊕ operator. Commutativity comes for the standard conjunction and disjunction
operators min and max. Finally we may associate to every given relation R ∈
RLA its “contradictory” relation ¬R = 1−R so that R⊕ ¬R = M . �

3We will follow in this research report the terminology introduced in Bisdorff, Roubens
1996a and 1996b.
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This ⊕ operator is linked to the sharpness ordering on RLA in the following
way:

Definition 2 Let R : A×B → V and S : A×B → V be two L-vbr’s. We say
that R is sharper than S, noted R < S iff ∀(a, b) ∈ A × B : either (R(a, b) 6
S(a, b) 6 1

2 ) or 1
2 6 S(a, b) 6 R(a, b)).

The sharpness relation ‘<’ on the set RLAB of all L-vbr’s defined between any
finite sets A and B of respective dimensions n and p, gives a complete partial
order (RL,<) with the constant median-valued relation M as unique minimum
element and RB, the 2np possible B-valued crisp relations between sets A and
B, as the set of maximal (sharpest) elements.

Proposition 2 Let R,S ∈ RLA be two L-vbr’s defined on the same set A.

R < S ⇔ (R⊕ S < R) ∧ (R⊕ S < S).

Indeed, the boolean addition of two <-comparable relations gives an overall
sharper relation as result. This is an immediate consequence of definition 2 and
definition 1. �

3 Linear decompositions of L-valued relations

LetR be an L-vbr defined on a given finite setA and letK(R) = {K1,K2, . . . ,Kn}
be its n fuzzy L-valued kernel solutions. To each kernel solution Ki, i = 1, . . . n
corresponds a specific subgraph G/Ki = (A,RKi) defined in the following way.

Definition 3 Let Ki be a specific kernel solution on a given graph GL = (A,R).
We call the relation R/Ki defined as follows: ∀(a, b) ∈ A×A :

R/Ki(a, b) =

 R(a, b) ⇔ (Ki(a) > 1
2 ) ∨ (R(a, b) 6 1

2 ) ∨ (a = b)

1
2 elsewhere.

a kernel- or Ki-restriction of the original relation R. We shall denote R/K(R) =
{R/Ki/Ki ∈ K(R)} the set of kernel restriction on R based on the set of kernel
solutions from R.

Proposition 3 To each specific kernel solution Ki corresponds a unique Ki-
restriction RKi .

Indeed, consider R/Ki and R′/Ki being two different kernel restrictions of R

corresponding to a same given kernel solution Ki. Then there ∃(a, b) ∈ A×A :
R/Ki(a, b) 6= R′/Ki(a, b). This contradicts definition 3. �
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Proposition 4 Let GL = (A,R) be a finite L-valued simple graph and K(R) =
{K1,K2, . . . ,Kn} the corresponding kernel solutions set. Let R/K(R) be the com-
plete set of kernel restrictions corresponding to the set K(R) of kernel solutions
on R. The following relation are then verified:

R̂ =

[
n⊕
i=1

R/Ki

]
4 R (1)

K(R/Ki) = {Ki}, i = 1, . . . n (2)

K(R̂) =

n⋃
i=1

K(R/Ki) = K(R). (3)

Every relation R may be decomposed into n relations R/Ki so that the ⊕-
sum equals again a relation of same shape than the original relation R but
possibly less sharper, and the kernel solution set for each relation Ri is exactly
equal to the corresponding unique kernel solution Ki determined on the orginal
relation R. This follows indeed from the Ki-decomposition construction princi-
ple of definition 3 and from the partial monotonicty of the kernel construction
w.r.t. the sharpness ordering “<” on R. Finally, the set-union of all individual
kernel solutions restitutes back again the complete set K(R) of kernel solutions
observed on R. �

Example 1 Let GL = (A,R) with R being a L-empty (6 1
2 ) relation, that is

every credibility value observed in R is either L-untrue or L-undetermined [3].
Such a relation has a unique fuzzy kernel solution K with every element strictly
L-true selected. As the K-restriction is neutral for such a relation, proposition
4 is trivially verified in this case.

Example 2 On the other hand let us take the following L-clique of dimension
3, that is a relation with every term being L-true.

R =

 1 .75 .75
.70 1 .70
.60 .60 1


Such a relation has 3 fuzzy kernel solutions, K(R) = {K1,K2,K3} with

K1 = [.75, .25, .25],
K2 = [.30, .70, .30],
K3 = [.40, .40, .60],

describing each a different fuzzy singleton. The corresponding Ki-restrictions
give L-valued relations with each time a different row of credibity values different
from 1

2 .

R/K1
=

 1 .75 .75
.50 1 .50
.50 .50 1

 , R/K2
=

 1 .50 .50
.70 1 .70
.50 .50 1

 , RK3
=

 1 .50 .50
.50 1 .50
.60 .60 1

 .
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To each such Ki-restriction corresponds a unique individual kernel solution. In
this example, the linear recomposition R̂ = R/K1

⊕R/K2
⊕RK3

is in fact identical
to R so that properties (1) and (3) of proposition 4 are again trivially true.

4 A faster algorithm for computing
L-valued kernels

The above noted theoretical results suggest the idea for the design of a faster al-
gorithm for L-valed kernel computations as originally proposed by constrained
finite domains enumeration [4]. Indeed, the linear decomposition of a given
relation R into a set of mono-nuclear relations allows to use for each such com-
putation the very fast dual fixpoint algorithm as originally proposed by Von
Neumann (1944)[13], and applied to the fuzzy case by Kitäınik (1993)[7].

Indeed, we may observe that the kernel shapes given by the kernel solution
from median β-cut relation is sufficient to determine the Ki-decomposition for
a given general L-valued relation R.

Proposition 5 Let R be an L-valued relation and let K(R) be its associated
kernel solutions set of dimension n. Let Rβ> 1

2
be the associated β-cut relation.

Let K(Rβ> 1
2
) be the corresponding L3-valued kernel solutions sets.

Then R/K(R) = R/K(R
β> 1

2

.

Indeed, the median β-cut is a natural transformation (in the categorical
sense) from general L-valued relation to L3-valued relations (cf. Bisdorff &
Roubens 1996a, 1996b), so that the median β-cut kernel solutions are<-comparable
limits. Or the definion 3 of theKi decomposition does not rely on a precise value,
but only on the <-comparable shape of the kernel solution and Ki-restrictions
of R from K(R) and from K(Rβ> 1

2
) are in fact identical.�

Furthermore, from proposition 4 we know that any Ki-restriction has a
unique kernel solution as it is an L-alignement [3]. Indeed this follows from
the resultbelow:

Proposition 6 Let GL = (A,R) be an L-valued simple graph with K(R) its
corresponding L-valued kernel solutions set. Every corresponding Ki-restriction
R/Ki gives an L-alignement.

Indeed, from definition 3 it follows that the only L-true elements of R/Ki
are those coming from kernel members. All other elements are either L-untrue
or L-undetermined. �

Finally, application of the dual fixpoint algorithm to this L-alignements Ri
gives following result:

Proposition 7 Let R be a given L-alignement defined on a finite set A of
dimension m and K(R) its L-valued kernel solution. Let Y be a possible L-
valued kernel-membership function and R−1 ◦ Y = Y and R−1 ◦ Y ′ = Y ′ be the

5



dual anti-eigenvalue fixpoint equations corresponding to the stability conditions
of the kernel construction. 4 Let the inital solution for Y be the all 0-valued
vector and for Y ′ be the all 1-valued vector. The dual iteration will exchange at
each step the corresponding values of Y and Y ′ in the two equations in order to
reach rapidly in a finite number of steps (bound by m) two fixpoints Ŷ and Ŷ ′

such that K(R) = Ŷ ⊕ Ŷ ′

Demonstration of this rather technical property of the dual fixpoint algo-
rithm is given by Kitäınik [7].

The general algorithm we propose is the following:

Algorithm 1 input: a given L-valued relation R:
1) determination of the median β-cut kernel solutions K(Rβ> 1

2
),

2) computing the Ki-decompositions RK from K(Rβ> 1
2
),

3) for every Ri ∈ RK
determine Ki by the dual fixpoint algorithm

output: K(R) = {K1, . . . ,Kn}.

Theoretical computing complexity of the first step is in O(3m) if m is the
dimension of the underlying finite set A. This exponential complexity must be
reconsidered in the light of the efficiency of the dynamic propagation of the
min and max operators by the finite domain solver we intend to use. For a
rather large class of practical examples this step is rather quick, but a detailed
exploration of the necessary limit in dimension for the set A has still to be
done. Step 2 has a polynomial computing complexity O(nm3), where n is the
kernel dimension of R. For L-connected graphs, this dimension is bound by the
dimension of the set A, so that it may be approximated in the worst case by
O(m4). Finally, step 3 is again, for the worst case, in polynomial complexity
O(nm4).

Example 3 We may reconsider the introductory example and illustrate the out-
put of the different steps of our algorithm.

step 1
The median β-cut [3] will gives following B-valued graph Gβ> 1

2
:
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The kernel solutions set for this crisp relation is the following:
K(Rβ> 1

2
) = {[0, 1, 0], [0, 0, 1]}.

4The dominated or absorbent kernel is obtained by replacing the reversed relation R−1 by
the original relation R [?], [4].
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step 2
From this kernel solutions we may construct the same R/Ki-restrictions as all-
ready mentioned in the introduction above:
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step 3
Finally the dual fixpoint algorithm, computing in an integer percents domain,
will give as required, for the K1-restriction, following results:

Computing the dominating L-valued kernel :

R-Supporting set: [a, b, c]

Evaluation domain L: [0, 1, ..., 100]

Relation matrix R_K1 : [[ 0, 55, 50],

[ 0, 0, 50],

[50, 100, 0]]

Iteration : 1

Y : [0, 0, 0]

Y’ : [100, 100, 100]

Iteration : 2

Y : [45, 50, 0]

Y’ : [100, 100, 100]

Iteration : 3

Y : [45, 50, 0]

Y’ : [50, 100, 50]

with Y ⊕ Y ′ = [.45, 1, 0], and for this kernel restriction and

Relation matrix R_K2 : [[ 0, 50, 55],

[ 0, 0, 55],

[50, 50, 0]]

Iteration : 1

Y : [0, 0, 0]

Y’ : [100, 100, 100]

Iteration : 2

Y : [45, 45, 50]

Y’ : [100, 100, 100]

Iteration : 3

Y : [45, 45, 50]

Y’ : [50, 50, 55]

with Y ⊕ Y ′ = [.45, .45, .55] for the second kernel restriction, so that we recover
the original set K(R) of L-valued kernel solutions as announced.
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5 Conclusion

We have defined in this report a linear decomposition of a givenL-valued simple
graph into a set of independant L-alignements. The original relationmay be
naturally recomposed in a global relation of same shape and of same kernel
solutions as the original graph. This interesting linear de- and recomposition
may be used to implement on the basis of the median β-cut kernels, a fast
algorithm for computing the corresponding L-valued kernel solutions. Practical
experiments have shown a very significant amelioration (1 to 50) in time for
solving even small-sized examples as the well known car selection data of the
Electre IS method [9].
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