
IEEE INTERNET OF THINGS JOURNAL 1

Byzantine Resilient Protocol for the IoT
Antônio A. Fröhlich, Roberto M. Scheffel, David Kozhaya and Paulo E. Veríssimo

Abstract—Wireless sensor networks, often adhering to a single
gateway architecture, constitute the communication backbone
for many modern cyber-physical systems. Consequently, fault-
tolerance in CPS becomes a challenging task, especially when
accounting for failures (potentially malicious) that incapacitate
the gateway or disrupt the nodes-gateway communication, not
to mention the energy, timeliness, and security constraints de-
manded by CPS domains. This paper aims at ameliorating the
fault-tolerance of WSN based CPS to increase system and data
availability. To this end, we propose a replicated gateway ar-
chitecture augmented with energy-efficient real-time Byzantine-
resilient data communication protocols. At the sensors level, we
introduce FT-TSTP, a geographic routing protocol capable of
delivering messages in an energy-efficient and timely manner
to multiple gateways, even in the presence of voids caused by
faulty and malicious sensor nodes. At the gateway level, we
propose a multi-gateway synchronization protocol, which we call
ByzCast, that delivers timely correct data to CPS applications,
despite the failure or maliciousness of a number of gateways. We
show, through extensive simulations, that our protocols provide
better system robustness yielding an increased system and data
availability while meeting CPS energy, timeliness, and security
demands.

Index Terms—Fault Tolerance. Algorithm/protocol design and
analysis. Routing Protocols. Wireless Sensor Networks.

I. INTRODUCTION

More and more Cyber-Physical Systems (CPS) are be-
ing interconnected, particularly in the realm of Wireless
Sensor Networks (WSN), Industry 4.0, and the Internet of
Things (IoT). However, due to cost constraints these systems
are often being built around old Internet technology that was
not designed considering requirements such as timeliness,
positioning, security, fault-tolerance and trustfulness, which
are essential for the CPS domain. In this paper, we address
the system and data availability problem relevant to CPS built
on WSN. We aim at providing higher data availability for
CPS applications by specifically enhancing fault and intrusion
tolerance of WSN architectures. We elaborate further on this
in what follows.

WSN architectures can exhibit failures of benign or mali-
cious nature, occurring either at the level of individual devices
(e.g. sensor, actuator, machine) or at the level of gateways that
connect such devices to the traditional IT infrastructure (e.g.
servers, Cloud, Internet). For example, many battery-operated
sensors in a WSN are deployed in areas that are physically

A. A. Fröhlich and R. M. Scheffel where with the Software/Hardware
Integration Lab, Federal University of Santa Catarina, Florianópolis, SC,
Brazil. E-mail: {guto,scheffel}@lisha.ufsc.br

D. Kozhaya and P. E. Veríssimo where with the Interdisciplinary Centre
for Security, Reliability and Trust - University of Luxembourg, Luxembourg.
E-mail: david.kozhaya@gmail.com, paulo.verissimo@uni.lu

Copyright c©2012 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

hard to reach and maintain. As a result, many sensors and
actuators e.g., in a smart building, are often left unattended.
Moreover, many devices in an industrial environment are
subjected to extreme conditions. Consequently, such devices
are subject to failures, and even some are likely to be exploited
by motivated attackers. Similar threats can also jeopardize
gateways. In fact, gateways are typically implemented on
computers running an ordinary operating system such as Linux
and they are usually connected to the Internet. Hence, a
gateway is at an even higher risk of being attacked compared
to individual devices.

Adding to that, typical WSN architectures, on top of which
CPS applications are established, suffer from centralization.
Namely, such architectures often rely on a single gateway (or
sink) that connects all system devices or part of them to the
IT infrastructure. A single gateway is not only a performance
bottleneck but more importantly is a single point of failure
that hinders the system’s availability. A failure or a spurious
behavior of this gateway relative to malicious attacks may
compromise the data from the entire sensor network.

In this paper we address the above threats by presenting
a fully established solution, encompassing architectural and
algorithmic contributions. First, we propose redundancy at the
deployment level of both sensor nodes (devices in general) as
well as gateways/sinks1. Hence, we favor increased distribu-
tion of all network components to eliminate centralization.

Previous attempts, like [1], [2], [3], [4], have also suggested
using multiple gateways, to achieve performance scalability,
minimized energy consumption and to deal with network/gate-
way failures. However, in the proposed solutions, messages are
delivered to just one of the available gateways, for example
considering the route that provides better energy balance or
the fastest delivery. In case of communication interruptions or
gateway unavailability these solutions re-route their traffic to
an alternative gateway.

In brief, these solutions fall short in terms of resiliency:
they do not provide any data guarantees when a gateway
is compromised by an attacker, in which case an attacker
can tamper data before delivering it to the application. Our
objective, unlike these existing solutions, is to enhance the
system’s resiliency to faults and intrusions which yields in
turn better system and data availability.

In order to provide system robustness and resilience, we
devise protocols that makes use of our proposed sensor and
gateway architectural redundancy. First, at the level of the
WSN2 devices (sensor nodes, actuators, etc.), we devise a rout-

1We use the terms sink and gateway interchangeably in this paper, desig-
nating a particular kind of network node that is connected at the same time
to both the device’s network and the IT infrastructure network.

2We use the term WSN to designate any kind of device’s network, including
industrial networks and the portion of the IoT concerning CPS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/186473360?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE INTERNET OF THINGS JOURNAL 2

ing algorithm, which we call Fault-Tolerant Trustful Space-
Time Protocol (FT-TSTP), that uses SmartData to achieve
data transfer resiliency to black hole attacks and to voids
formed by malfunctioning or displaced nodes in the WSN. FT-
TSTP utilizes geographic routing to forward packets towards
multiple sinks, without relying on route building techniques,
announcement packets, or routing tables in the node’s memory.
Our FT-TSTP algorithm builds on top of the Trustful Space-
Time Protocol (TSTP) [5] that achieves energy-efficient and
timely data transfers in single-gateway WSN architectures.

Second at level of gateways, which might receive different
data, we devise an intrusion-tolerant synchronization protocol,
which we call ByzCast, that allows correct and timely actuation
signals to be dispatched to actuators despite having some
gateways crashed or even compromised by malicious attackers.

We illustrate the effectiveness of our solution through
extensive simulations, showcasing that our approach indeed
provides high data availability and reliability. Compared to
TSTP, a single-sink geographic routing protocol that loses
many messages in the presence of certain network voids, our
results show that FT-TSTP can circumvent such limitations
and achieve high delivery rates to a number of sinks.

In short the main contributions of this paper are:

1) Architectural and algorithmic solutions for achieving
better fault and intrusion tolerance in WSN networks.

2) FT-TSTP, a routing algorithm based on SmartData that
transfers data between WSN devices and gateways in
an energy-efficient and timely manner. FT-TSTP can
tolerate black holes attacks as well as voids formed by
malfunctioning or displaced nodes.

3) ByzCast, an intrusion-tolerant protocol of synchronizing
data received by different gateways.

4) Extensive simulations illustrating the increased data
availability achieved by our solution.

The rest of the paper is organized as follows. Section II
presents background information explaining the concept of
SmartData and the TSTP protocol. Section III presents our
FT-TSTP protocol, which implements multi-sink message
delivery and void detouring. We also present ByzCast, our
inter-gateway synchronization algorithm. In Section IV we
discuss how the proposed protocols provide resiliency against
different faults and attacks. Section V presents our simulations
evaluating the transmission delay and energy consumption
overhead of our protocols. Finally, Section VI discusses related
work and Section VII concludes the paper.

II. SMARTDATA AND TRUSTFUL SPACE-TIME PROTOCOL

In this section, we describe the Trustful Space-Time Pro-
tocol (TSTP) [5] and the SmartData construct [6] that lay
the basis for the ideas proposed in this paper. TSTP is an
application-oriented, cross-layer communication protocol for
CPSs on a WSN or on the IoT. TSTP delivers trusted, timed,
geo-referenced, SI-compliant data to applications through the
SmartData construct, which promotes a data-centric view of
the network. We first start by explaining what SmartData is
and what are the different parts constituting it.

A. SmartData: Semantics, Interface, and Security
SmartData can be viewed as a piece of information, which

is enriched with enough metadata to become self-contained in
terms of semantics, spatial location, timing, and trustfulness.
SmartData is meant to be the only application-visible con-
struct in the sensing/actuating platform. Therefore, it implicitly
mediates all system-level services, including communication,
synchronization, scheduling and the interaction with transduc-
ers and actuators. An application can read a sensor simply
by accessing the information contained within the SmartData,
via an interface. The information within the SmartData is
automatically updated from the network according to the
parameters specified at instantiation time. Actuation happens
through the same interface: changing a SmartData causes
messages to be propagated over the network to command
actuators accordingly.

+operator Value() : Value
+Smart_Data(region, expiry, period, fuser)
+Smart_Data(dev, expiry, period, mode)

+location(): Coordinates
+time(): Time

Smart_Data

local transducer

remote transducer

defines UNIT

Transducer

+wait()

Figure 1. SmartData interface.

Figure 1 depicts the SmartData interface. Instances of
SmartData can abstract local transducers, as well as create lo-
cal proxies of remote transducers. In either case, the binding of
a SmartData object with the corresponding transducer is done
via the Transducer class parameter. The constant named
UNIT is used to personify the corresponding SI quantity (a
32-bit type identifier [7]).

The initial value of parameter expiry is refreshed on every
SmartData update, so it is taken as a relative value, just like
the period parameter. Specifying an expiry smaller than the
period is invalid. The parameter mode designates SmartData’s
visibility: Private to the process that created it, inaccessible
from the network; Advertised on the network for remote
sensing; or Commanded remotely over the network, which is
used by actuators. The region parameter, used for remote
transducers, specifies a Space-Time region of interest for a
given SI Quantity as Space-Time Region(x, y, z, r, t0, tf),
where x, y, z designates the center of the interest region,
r designates its radius, [t0, tf] designates the interest’s time
interval. SmartData objects (created with the first constructor)
matching the criteria will reply to the interest in accordance
with parameters period and fuser.

Figure 2 depicts a SmartData from the perspective of the
communication protocols, encapsulated in a network packet.
Such packet carries includes spatial coordinates where the data
was produced (Origin(x,y,z)), a high-resolution times-
tamp identifying when data was produced (Origin(t)),
the validity of the data expressed as an absolute times-
tamp (Expiry), and a Message Authentication Code (MAC).
SmartData are signed and encrypted using the Poly1305-

IEEE INTERNET OF THINGS JOURNAL 3

Origin (x,y,z,t) Unit Value Expiry MAC

Figure 2. SmartData encapsulated in a network packet.

AES [8] cryptographic MAC. Explicit error-detecting codes
are not needed, as corrupted messages simply fail decryption.
The key used in this algorithm is derived using Elliptic
Curve Diffie–Hellman (ECDH) [9]. The precisely synchro-
nized clocks used to timestamp data can be used along with
both algorithms: for Poly1305-AES, timestamps can serve as
one of the input parameters; for ECDH, they can define a
narrow time window for sensor deployment. Individual node
serial numbers or UUIDs also serve as input to ECDH.

This symmetric cipher scheme is meant to be used only in
the WSN. Therefore, SmartData objects must be reciphered at
the gateways, so the keys used in the WSN do not have to be
shared with the Cloud. Gateways keep logs of every symmetric
key they have used to communicate with nodes.Thus, it is
possible to audit a SmartData from the Cloud, presenting it
and its MAC to the gateway, which recalculates the MAC
using the received Data Point, the key K and the node’s Id
and compares the result with the provided MAC.

B. Trustful Space-Time Protocol (TSTP)

1) TSTP Space and Time Synchronization: SmartData relies
on nodes being synchronized in time and in space. TSTP
implements the mechanisms needed for these synchroniza-
tions relying on its cross-layer design and on some control
information carried within its messages (see Figure 3). TSTP
achieves time synchronization via the Speculative Precision
Time Protocol [10], which achieves sub-microsecond precision
on a IEEE 802.15.4 WSN. Space synchronization within
TSTP is achieved using a speculative version of the Heuristic
Cooperative Calibration Positioning System (HeCoPs) [11].

2) TSTP Medium Access Control and Routing: TSTP
MAC [12] is the component within TSTP responsible for in-
terfacing the protocol with the physical network in an energy-
aware manner. Its design follows the general principles of RB-
MAC [13]: a long preamble composed of microframes (see
figure 4) is sent before each message, such that just one sender
occupies the channel at every full period S; sensor nodes sleep
for most of the time and, when they receive a message, nodes
closer to the destination become relay candidates, using their
distances to the destination to derive the time offset δ(m)
for Clear Channel Assessment (CCA) and retransmission. The
relay candidate closest to the destination accesses the channel
earlier and wins the contention, resulting in a greedy, fully-
reactive, geographic routing.

Messages being routed by node i are kept in a queue Qi.
Each entry eQ ∈ Qi represents a message m that is scheduled
for transmission or retransmission. In addition to the message,
eQ also holds m’s Id (extracted from the microframes), its
Expiry Tε (extracted from its header), its Destination and the
message’s offset δ(m) previously calculated.

TSTP uses implicit acknowledgment (ACK) to confirm the
routing of messages. A node i only removes a message m
from its queue Qi when another message m′ with the same

Id is overheard in the network, transmitted by a node that
is closer to the destination. An explicit ACK is only used
is when the message reaches its final destination: that node
must retransmit the same message (Last Hop = destination),
just to acknowledge the last forwarder and any neighbors
that might still have that message queued. TSTP considers
that an unacknowledged message either suffered a collision
or reached a geographic void. To handle this, the traditional
random exponential backoff scheme is used, retransmitting the
message until an ACK is received or the message expires.

TSTP’s transmission time offset δ(m) is made sensitive to
other routing metrics by distorting space. A node running out
of memory or consuming too much energy can stretch space,
increasing its distance to the destination so that other nodes
become more likely to win the contention to retransmit a mes-
sage. Conversely, a node with a message close to expiring can
shrink space, increasing the chances of winning the contention
and transmit it earlier. This distortion can be introduced by
coefficient α ∈ [0, 1] that multiplies δ(m) and defines how
much any other metric influences the perceived distance, and
the offset used for contention. A value of α = 0.5 produces an
offset equivalent to the real distance, an α ∈ [0, 0.5) shrinks
space, while an α ∈ (0.5, 1] stretches space.

For the discussions in this paper, the Expiry of messages
(see Figure 3) is the metric associated with the distortion
coefficient α, expediting messages which are closer to expire.
Noticeably, the timeliness of the whole WSN requires careful
planing and deployment, specially on dense networks, with
many sensors and high sampling rates. The queue Qi is also
sorted by the slack time of messages in this scheme.

3) TSTP Greedy Forwarding Algorithm: To prevent the
distortion coefficient from causing messages to be forwarded
to an incorrect destination, the TSTP Greedy Forwarding
Algorithm (Algorithm 1) ensures that all messages queued on
a node for transmission satisfy the Progress Property: there
must be a positive spatial progress towards the destination.
This property can be written as ∀j∀i{mji ∈ Qi|Di < Dj},
meaning that each message mji from node j overheard by
node i will be stored in node i’s transmission queue Qi if
and only if the distance Di from node i to the message’s
destination is smaller than the distance Dj from node j
to the same destination. The property is implemented by
Algorithm 1, which handles four possible cases:

• Case 1: If m is already enqueued (line 4) and is coming
from a node closer to the destination (line 6), then this
means that m has already made positive progress to the
destination. Therefore, m is an ACK, and eQ is removed
from Qi (line 7) while m is simply discarded (line 9).

• Case 2: If m is already enqueued (line 4) and m is coming
from a node farther from the destination (line 6), then m
is a retransmission attempt and can be ignored. The local
copy of m in eQ remains in Qi for later retransmission.

• Case 3: If m is a new message (line 13) that came from
a node more distant from the destination (line 14), then
this node becomes a relay candidate for m. Therefore, m
is inserted into Qi (creating an eQ - line 15).

• Case 4: If m is a new message (line 13) that came from
a node closer to the destination (line 14), then it means

IEEE INTERNET OF THINGS JOURNAL 4

Bits: 3 1 2 2 8 3*sb 64 3*sb + tb 64 0 or 32

Message Time Spatial Temporal Location Last Hop Last Hop Origin
Expiry

Location
Type Request Scale Scale Confidence (x, y, z) Timestamp (x, y, z, t) Deviation

Figure 3. TSTP message header format.

Bits: 1 11 12 32 16

All Listen Count Id Distance CRC

Figure 4. TSTP microframe format.

Algorithm 1 TSTP Greedy Forwarding
1: procedure GreedyForwardToSink(m)
2: queued← false
3: for each eQ ∈ Qi do
4: if m.id = eQ.id then
5: queued← true
6: if Distance(m.LastHop,m.Destination) ≤

Distance(here(),m.Destination) then
7: Qi.remove(eQ) // m made progress
8: end if
9: delete m // m is a retransmission

10: // from farther away
11: end if
12: end for
13: if queued = false then
14: if Distance(m.LastHop,m.Destination) >

Distance(here(),m.Destination) then
15: Qi.insert(m) // enqueue m for relay
16: else
17: delete m // m already made progress
18: end if
19: end if
20: end procedure

that the current node would not make positive progress
towards the destination. The message is ignored (line 17).

III. BYZANTINE RESILIENT SMARTDATA

In this section, we describe our approach for increasing the
robustness as well as the resiliency of CPS built around the
SmartData concept. As explained in Section I, these systems
can exhibit failures of benign or malicious nature occurring
either at the level of individual devices in the WSN or at the
level of gateways that interface the WSN with the Internet. For
the discussion in this Section, we consider that gateways run
the network-wide CPS applications. We address these threats
by an architectural enhancement that deploys redundancy at
both levels, devices and gateways, and by a protocol that
makes use of this architectural redundancy to provide system
robustness and resilience. In this way, we guarantee that
whenever an application receives a SmartData, the following
properties are preserved:

1) Confidentiality: SmartData are not disclosed to unau-
thorized nodes while they are being transported.

2) Integrity: SmartData are not modified while they are
being transported;

3) Authenticity: The origin of SmartData can be con-
firmed.

4) Non-repudiation: A node cannot repudiate the Smart-
Data it has previously produced.

5) No duplication: SmartData updates are delivered to
applications only once.

6) Availability: An application that declares interest for
some SmartData, eventually receives them.

7) Agreement: If a SmartData update is propagated to an
application running on any correct gateway, then every
correct gateway eventually propagates the same update.
This update (e.g. an actuation command) only reaches
the target region of space-time if at least N gateways
perform the same update.

8) Timeliness: SmartData are delivered to applications
before they expire.

To provide the properties above, we designed, imple-
mented and evaluated a fault-tolerant version of TSTP for
the WSN, which we call Fault-Tolerant Trustful Space-Time
Protocol (FT-TSTP), augmented with a reliable broadcast
protocol for the gateways’ network. Our algorithms adhere
to the interface and the semantics defined by the SmartData
construct. Thus, transporting SmartData using our protocols
does not require any modifications on applications. Indeed,
some of these properties are already ensured by the original
TSTP as part of the support to SmartData. The Poly1305-AES
required by SmartData ensures Confidentiality, Integrity, Au-
thenticity, and Non-repudiation. Therefore, this work focuses
preserving these three properties and on providing in addition
No duplication, Availability and Timeliness.

A crashed (Byzantine) node can behave in an arbitrary
manner. For example, it can refuse to forward messages,
compromising Availability, duplicate a message to promote
a Replay attack, and can even artificially inject messages
on the network, limiting the bandwidth and energy available
for useful communication in a sort of Distributed Denial-of-
Service (DDoS) attack. The subsequent sections describe the
design of our protocols, explaining how we handle these kinds
of attacks.

A. Fault-Tolerant Trustful Space-Time Protocol (FT-TSTP)

FT-TSTP is a communication protocol that transports data
from devices in the WSN (e.g. sensors, actuators, machines)
to gateways connected to an IT infrastructure. FT-TSTP is
Byzantine-resilient, i.e., it can transport data despite device and
gateway failures (benign and malicious). Redundancy of nodes
in a WSN is a major strategy to achieve high data availability
and FT-TSTP certainly also depends on node redundancy in
this sense. Nevertheless, node redundancy is not enough if the
data produced on the WSN is meant to be used for network-
wide CPS applications running on gateways or in the Cloud or
over the Internet. WSN sinks (or IoT gateways) must also be
replicated to avoid being single points of failure. Therefore,
FT-TSTP assumes multiple sinks and defines a novel algorithm
to forward messages containing SmartData.

IEEE INTERNET OF THINGS JOURNAL 5

FT-TSTP’s Multi-Sink Greedy Forwarding Algorithm (2)
requires a bootstrapping slightly different from that of the
original TSTP. Instead of providing newcomer nodes with the
coordinates of a single sink, an array of sinks S is given. The
number of sinks in this array is configurable and depends on
the desired level of fault tolerance. For example at least 3f+1
sinks are needed to be able to tolerate f compromised sinks;
f designates the maximum number of faulty (Byzantine) sinks
that can be tolerated while still being able to reach any form
of agreement on the data delivered by sinks [14]. The sinks
are ordered at deployment-time and that order is not modified
during a cycle of operation, so all nodes agree on the order
of the sinks in the array.

Besides modifying the bootstrap procedures, we also mod-
ified the format of microframes and messages. Microframes
now carry the coordinates of the last hop, and therefore
messages no longer need to carry the distance from the last
hop to the sink. They now also feature a bitmap (Sinks)
designating the sinks to which the following message is to
be delivered to. This bitmap has one bit for each of the NS

sinks defined at deployment-time3. The resulting formats are
depicted in Figures 6 and 5.

With these modifications, Algorithm 2 is able to implement
a greedy, fully-reactive, geographic routing policy similar to
the one in the original TSTP, but with multiple destination
sinks. Each node that hears any of the microframes that
precedes a message m decides whether or not to wake up to
listen to it after calculating its distance to ALL the destination
sinks whose bits in Sinks are set. If it can make the message
progress toward ANY of those sinks, then it wakes up to
receive m and becomes one of its potential relay nodes. The
queues of messages waiting to be forwarded by each node
have now a second dimension, corresponding to each of the
sinks ∈ S and is designated Qs

i . When a new message m
is produced, its Sinks attribute is initialized at the origin
node with all bits set, so Algorithm 2 (line 2) initially tries
to forward the message to all sinks. Subsequently, relay nodes
only include m in the Qs

i corresponding to the sink for which
they are relaying the message (lines 35-42), clearing the bits of
m.Sinks associated with the other sinks. This way, messages
get forwarded directionally, avoiding flooding the network
with unnecessary replicas of m. The behavior of the All
Listen bit is unaltered, so control messages and messages
whose destination is not a sink are routed using Algorithm 1.

In order to avoid bounces, which may occur when a previous
relay node hears a messaged that was already forwarded
to a sink in the past and therefore was removed from the
corresponding Qs

i queue, a second bidimensional queue of
recently forwarded messages, F s

i , is kept at each node i.
Messages are kept in this queue until they expire. These queues
are updated at the beginning of each transmission cycle by
Algorithm 3.

TSTP does not handle geographic voids. A message m is
retransmitted towards its destinations until it expires. Voids
can result from poor sensors placement, from sensor failures,

3For alignment reasons, the field Sinks is padded to have a size that is
multiple of 8.

Algorithm 2 FT-TSTP Multi-Sink Greedy Forwarding

1: procedure MultiSink_Greedy_Forward(m)
2: for each s ∈ S ∩m.Sinks do
3: queued← false
4: isNew ← true
5: toACK ← false
6: for each eF ∈ F s

i do
7: if eF .id = m.id and eF .Origin = m.Origin then
8: if m.LastHop =∞ and eF .LastHop 6=∞ then
9: // m entered recovery mode and must be

10: // removed from F s
i and reinserted

11: // into Qs
i (line 36)

12: delete F s
i .remove(eF)

13: isNew ← false
14: else
15: // m was already relayed
16: queued← true
17: if m.LastHop 6=∞ then
18: As

i .insert(m)
19: toACK ← true
20: end if
21: end if
22: end if
23: end for
24: if not queued then
25: for each eQ ∈ Qs

i do
26: if eQ.id = m.id and eQ.Origin = m.Origin then
27: // m is being relayed
28: queued← true
29: if distance(m.LastHop, s) ≤ distance(here(), s)

then
30: // m already made progress in this direction
31: F s

i .insert(Qs
i .remove(eQ))

32: end if
33: end if
34: end for
35: end if
36: if not queued and distance(m.LastHop, s) >

distance(here(), s) then
37: // enqueue m for relay in this direction
38: if m.LastHop 6=∞ or isNew then
39: // m is not in recovery mode
40: m.LastHop← here()
41: end if
42: m.Retries = β
43: Qs

i .insert(m)
44: else
45: // m will not make progress in this direction
46: // or is already in Qi or Fi

47: if not toACK then
48: delete m
49: end if
50: end if
51: end for
52: end procedure

or from sensor nodes that get compromised and refuse to
forward messages. Therefore, in order to achieve the avail-
ability property, FT-TSTP must handle voids natively. The
acknowledgement mechanism in Algorithm 2 enables voids
to be easily detected by Algorithm 3: If m is not overheard
after a certain number of transmission slots (m.Retries,
Algorithm 3, lines 23-24), then it is safe to assume that node i
has no (sane) neighbors that are closer to the destination than
itself. The β coefficient is also applied in this sense, so m is
expected to be acknowledged (i.e. retransmitted) by a neighbor
in each of the designated directions after β transmissions.

If a message m is not acknowledged after m.Retries
retransmissions (Algorithm 3, lines 25-37), then the recovery

IEEE INTERNET OF THINGS JOURNAL 6

Bits: 3 1 2 8 64 3*sb + tb 64 0 or 32

Message Time Temporal Location Last Hop Origin
Expiry

Location
Type Request Scale Confidence Timestamp (x,y,z,t) Deviation

Figure 5. FT-TSTP message header format (the number of bits in spatial (sb) and temporal (tb) coordinates are defined by the Spatial Scale field in
the microframe and the Temporal Scale field).

Bits: 1 11 12 NS 2 3*sb 16

All Listen Count Id Sinks
Spatial Last Hop

CRCScale (x,y,z)

Figure 6. FT-TSTP microframe format (the number of bits in spatial
coordinates (sb) is defined by the Spatial Scale field.

routing mode is enabled by making m.LastHop ← ∞ and
reseting the retransmission counter (lines 30-32). By putting
the last hop position at∞, the node triggers a reverse flooding
routing strategy, since it will always be more distant to the
destination than any other node. This reverse routing is exited
when a node that has not heard m before (i.e. the conditions
of lines 7 and 25 of Algorithm 2 do not verify) restores a real
last hop (Algorithm 2, line 40).

Algorithm 3 FT-TSTP Multi-Sink Queue Update

1: procedure Update_Queues
2: for each s ∈ S do
3: for each eQ ∈ Qs

i do
4: if (eQ.Expiry − τ(eQ)) < now() then
5: // eQ expired without making progress
6: // in this direction
7: m← Qs

i .remove(eQ)
8: delete m
9: end if

10: end for
11: for each eF ∈ F s

i do
12: if eF .Expiry < now() then
13: // eF was relayed long ago and can be forgotten
14: m← F s

i .remove(eF)
15: delete m
16: end if
17: end for
18: end for
19: done← false
20: while |Qi| 6= 0 and not done do
21: // the element at the head of Qi is the next to be transmitted
22: s← Qi.next_to_expire()
23: m← Qs

i .head()
24: m.Retries← m.Retries− 1
25: if m.Retries < 0 then
26: if m.LastHop =∞ then
27: m← Qs

i .remove(m)
28: F s

i .insert(m)
29: else
30: // m in eQ reached a void, set recovery mode
31: m.LastHop←∞
32: m.Retries = β − 1
33: done← true
34: end if
35: else
36: done← true
37: end if
38: end while
39: end procedure

False voids can be detected if a message takes two different
paths simultaneously, e.g., on the edge of a previous void.
The message will later converge to nodes close to a sink,

and the last arriving copy will be ignored, as the algorithm
doesn’t forward previously seen messages. The lack of an
implicit ACK will initiate the void detour algorithm, making
the message be retransmitted in recovery mode and start
an unnecessary reverse flooding. To handle this, when a
node receives a message already forwarded, the preamble of
microframes will be transmitted in order to send the ACK. For
that, the message is inserted in another queue Ai (Algorithm 2,
line 16-18), that must be processed in the transmission cycle.
This is an exception to the rule of TSTP to not have explicit
ACK, except for the sink nodes.

B. A Byzantine Reliable Broadcast Protocol

Having only a real-time Byzantine-resilient protocol that
transports data from WSN devices to gateways is not sufficient.
First, gateways might not receive the same set of messages,
as messages can be lost. Second, gateways themselves possess
the keys relative to all WSN devices. Thus, a gateway that
is compromised by an attacker can fake messages relative to
any sensor node. Such a compromised gateway can issue as
well inconsistent actuation signals that render system behavior
incorrect and sometimes even hazardous.

We consider gateways to be connected by a separate net-
work, different than the WSN one. If a sink sends a message
pretending to be some sensor node (this is possible since a
gateways has the private key of all sensor nodes), it can do
so in two ways, by disseminating the information over the
WSN or by sending this information over gateway network.
If it does so over the WSN other sensor nodes detect this
false personalization (identity theft) and do not propagate that
information further. While if sent over the gateway network,
then we need a protocol that prevents correct gateways from
delivering such values.

In short, an inter-gateway protocol is needed to ensure two
main things: (i) all correct gateways receive the same informa-
tion (set of messages), upon which they issue actuation signals
and (ii) no compromised gateway can affect the system’s
correct and timely overall behavior.

The inter-gateway protocol we devise is a Byzantine reliable
broadcast algorithm that utilizes the network connecting the
gateways (this protocol does not transmit any information on
the WSN). Roughly speaking, the protocol works as follows.
Any sink that receives a message from a WSN device (via the
WSN) broadcasts this message to all other sinks. A sink that
receives a message from some other sink, echoes this message
only if that same message is received from at least f+1 sinks.
A sink delivers a message (and issues actuation corresponding
to that message) whenever that sink receives the same message
from at least 2f + 1 sinks.

1) ByzCast Algorithm: We now describe in more details
our Byzantine reliable broadcast, detailed in Algorithm 4.

IEEE INTERNET OF THINGS JOURNAL 7

We assume that any message arriving over the WSN is
issued by a unique WSN device ni and has a unique time-
stamp tstamp unforgeable by other WSN devices. As such
the source WSN device combined with the time-stamp of a
message constitute a unique identifier of that message.

Every gateway gi that receives data, e.g., a message
m, from a WSN device (i.e., via the WSN) issues a
broadcast on the gateway network. It does so by sending
RBcast(gi, (ni, tstamp,m)) to all gateways (lines 4-10).
This happens under the condition that the received data’s
expiry time is larger than the current time (at the which the
broadcast was issued) plus some slack, denoted by ∆. The
calculation of ∆ will be explained later in this section.

A gateway gj receiving RBcast(gi, (ni, tstamp,m))
(for the first time) from at least f + 1 gateways,
sends Echo(gi, (ni, tstamp,m)) to all other gateways, via
the gateway network, if gj has not already sent some
Echo(..., (ni, tstamp,m)) (lines 12-17).

When a gateway gj receives Echo(gi, (ni, tstamp,m))
from at least f + 1 gateways, and gi has not
yet sent Echo(..., (ni, tstamp,m)), gj sends
Echo(gi, (ni, tstamp,m)) to all gateways (lines 19-24). If a
gateway gj receives Echo(gi, (ni, tstamp,m)) from at least
2f + 1 gateways, gj delivers message m (lines 25-27).

Algorithm 4 ByzCast: A Byzantine Reliable Broadcast

1: Uses: Synchronous Reliable Links
2: Send(...) if sending and receiving nodes are correct message is received

successfully by destination within delay d.
3:
4: upon event <receive (ni, tstamp,m) from WSN at time t> do
5: // every message m has a unique unforgeable time-stamp ts and is issued

by a unique WSN device ni

6: if message expires at time > t+ ∆ then
7: for every gateway do
8: Send RBcast(gi, (ni, tstamp,m))
9: end for

10: end if
11:
12: upon event <receive RBcast(gi, (ni, tstamp,m)) from gi> do
13: if RBcast(..., (ni, tstamp,m)) is received from at least f + 1

gateways ∧ no Echo(..., (ni, tstamp,m)) has been sent then
14: for every gateway do
15: Send Echo(gi, (ni, tstamp,m))
16: end for
17: end if
18:
19: upon event <receive Echo(gi, (ni, tstamp,m))> do
20: if Echo(..., (ni, tstamp,m)) is received from at least f + 1

gateways ∧ no Echo(..., (ni, tstamp,m)) has been sent then
21: for every gateway do
22: Send Echo(gi, (ni, tstamp,m))
23: end for
24: end if
25: if Echo(..., (ni, tstamp,m)) is received from at least 2f + 1

gateways ∧ message (ni, tstamp,m) has not been delivered then
26: Deliver (ni, tstamp,m)
27: end if
28:

Having a gateway deliver a message m, means that it is
safe for the gateway to issue actuation based on m. However,
in order to ensure that all gateways issue actuation signals in
the same order, gateways need to see messages in the same
order. Let tarr be the time at which some gateway receives a

message m from the WSN. If m expires before tarr + ∆ then
m is ignored; otherwise, it sent via RBcast(...). Despite
being delivered, gateways will only use a delivered message
for actuation in its last time instant before expiring (assuming
a discrete time scale).

2) Determining ∆: Given the algorithm above for synchro-
nizing the information between gateways, we assess next the
value of ∆, the upper bound on the time needed to disseminate
reliably and securely a valid sensor data to all gateways via
our Byzantine reliable broadcast protocol.

Let us denote by d the upper bound on the delay for
sending a message successfully between any two gateways
(via the gateway network). d includes the overall time needed
from the moment a source gateways sends a value until
the destination gateways receives that value4. Our ByzCast
protocol (Algorithm 4) becomes active when at least f + 1
gateways broadcast a received message relative to some sensor
node (lines 12-17 of Algorithm 4). In other words, in the
worst case, when f gateways are Byzantine and decide not
to broadcast a message received relative to a WSN device, a
message (sent by a WSN device) needs to be heard by 2f + 1
gateways before the broadcast is active. From the moment that
2f+1 gateways receive a message two communication rounds
are needed for message delivery, i.e., 2d. Assuming that the
difference in time between having a message from a WSN
reach one gateway and reach at least 2f + 1 is d2f+1, then
we have:

∆ = d2f+1 + 2d.

Hence ∆ is an upper bound on the delay from the moment
that some gateway receives a message m (from the WSN)
until m is delivered. Notice that ∆ is partially dependent on
FT-TSTP, namely the d2f+1 factor within ∆. As shown in
Algorithm 4 (lines 6-10), the value of ∆ is used to make sure
that no message is delivered after getting expired.

IV. PROTOCOLS’ PROPERTIES & RESILIENCY TO ATTACKS

In this section we explain how our proposed protocols,
namely the FT-TSTP augmented with the ByzCast, provide
the required properties (listed in Section III). We discuss as
well the resiliency of our protocols to attacks, such as the
Replay attack and the Distributed Denial of Service attack.

A. No Duplication

Both protocols described in the previous Sections, FT-TSTP
and ByzCast, cooperate to ensure the aimed No Duplication
property for SmartData. At the WSN level, FT-TSTP identifies
messages with a hash of the space-time coordinates where the
SmartData was created. These ids are used in Algorithm 2
along with the full coordinates to identify previously seen
messages for the sake of acknowledging them and also to
prevent the re-injection of duplicates into the network during
routing. The Algorithm can be enriched with an additional
clause to check for messages being injected at the origin

4We assume that the queuing time at the destination side before a message
is ready to be processed is included within d

IEEE INTERNET OF THINGS JOURNAL 8

Figure 7. Simulated scenarios. Voids are represented by the gray area. Dashed circles represent radio range.

Table I
SIMULATION PARAMETERS.

Scenario Grid
Size (m) Node Placement Radio

Range (m)
Duty Cycle

(%)
TX

Power
Period

(s)
Expiry

(s)

1 - Building 70x70 32 nodes, 6x6, regular squares 20 5 -10 dBm 60 60

2 - Building 150x175 55 nodes, 7x9, regular hexagons 45 5 -5 dBm 60 60

3 - Field 500x500 81 nodes, irregular placement 80 5 0 dBm 120 120

containing SmartData that does not match the region of space-
time of the injecting node:

1: if distance(here(), m.Origin) ≤ R then
2: if round(Region(here(), now())) 6= round(m.Origin) then
3: delete m
4: end if
5: end if

When a message reaches a gateway, ByzCast is initiated
to propagate the message to all other gateways. Messages are
uniquely identified by their source WSN device combined with
their unforgeable time-stamp. As such, ByzCast eliminates
delivering any message duplicates by constantly checking if
that particular message has been already delivered (line 25).

B. Availability
Compared to TSTP, SmartData availability is improved

using our protocols. FT-TSTP forwards messages contain-
ing SmartData to multiple gateways, hence the failure of
a gateway no longer hinders availability. Moreover, due to
the recovery routing mode in FT-TSTP, reverse flooding is
promoted whenever a void (or a Byzantine node) prevents the
ordinary geographic routing. If there is at least one route to
the destination and if the SmartData expiry allows, there is
a very high probability that messages are delivered, as it is
shown in Section V.

Our ByzCast protocol as well helps in improving availabil-
ity. Precisely, in unfortunate situations where a gateway is
unreachable by any WSN device (due to device failures or
attacks), our ByzCast protocol guarantees that such alienated
gateways still receive the desired SmartData (via the gateway
interconnect now).

C. Agreement

Given that some gateways can be compromised by mali-
cious attackers, wrong control and actuation signals might be
issued by individual gateways. In order to be resilient to such
false signals, WSN actuators ignore actuation signals that are
not received from at least f + 1 gateways. In other words, an
actuation signal is considered valid if and only if that same
signal is issued by at least f+1 distinct gateways. This ensures
that at least one correct gateway approves of issuing such a
control signal.

D. Timeliness

SmartData defines two modes of operation: time-triggered
and event-driven (see Section II-A). However, the event-driven
mode, in which sensor nodes produce messages whenever
they observe a measurable variation in a physical quantity,
does not bear any notion of temporal guarantees. The network
is operated on a best-effort scheme driven by the expire of
messages. Modeling network congestions and the expiration
of messages in this scenario depends of a deep knowledge
of the CPS into which it is integrated. Therefore, in order to
achieve the timeliness property, FT-TSTP only supports the
time-triggered mode. In this mode, sensor nodes periodically
produce messages containing SmartData in response to, and
only in response to, Interest messages propagated by the
gateways. Tools are available to optimally schedule a network
of this nature off-line [15], [16], which could be used to
plan the deployment of a FT-TSTP network. Alternatively,
schedulability analysis and/or statistical prediction can be used
to implement an admission control mechanism at the gateways,

IEEE INTERNET OF THINGS JOURNAL 9

thus coordinating the insertion of Interest messages coming
from the IT infrastructure.

However, even if the network is proved to be schedulable
at deployment-time, that is, the placement of nodes, the
periods of messages and their expires are all in tune with the
requirements of applications using the WSN, there are still
run-time phenomena that can cause such a network to fail.
FT-TSTP addresses two categories of such phenomena to im-
prove timeliness: Refusal-to-Forward and Distributed Denial-
of-Service attacks. The counter-measures to these attacks will
be described, however, if after all steps a message expires,
then it is simply dropped (Algorithm 3, line 4).

E. Handling of Refusal-to-Forward Attacks

Compromised nodes in a WNS can refuse to forward
messages toward their destinations, causing an impact that
is comparable to a lack of connectivity resulting from node
failures. FT-TSTP’s Multi-Sink Greedy Forwarding Algorithm
(2) handles this of connectivity trough its void-detour features
(i.e. recovery mode). So, if there is a minimum set of sane
nodes that can be connected to deliver a message to its
destination, and the WSN is not congested, then Algorithm
(2) will eventually find it using reverse flooding. Nevertheless,
Byzantine nodes refusing to forward a message can still cause
a big impact on application by deliberately refusing to forward
messages and thus increasing the latency of the network,
eventually to beyond the expiry of many messages. Since FT-
TSTP defines a fully reactive routing scheme for the sake
of fault-tolerance, the preference for geographic routing is
restored for each individual message. However, entering and
leaving the rescue routing mode is an expensive process.

F. Handling Distributed Denial-of-Service (DDoS) Attacks

Compromised nodes in a WSN can promote DDoS attacks
by flooding the network with unsolicited messages (i.e. with
messages that are not Responses to any Interest message sent
by the sinks). Eventually, the attack can escalate to levels
comparable to jamming the radio channel in a given region.
If stopping a sensor node from transmitting is out-of-reach to
communication protocols above the physical-level, confining
the attack to the region close the the attacker is done by FT-
TSTP following the same principal adopted on gateways in
the original TSTP protocol: messages carrying SmartData that
is not a response to any valid Interest messages are simply
dropped. For this, in addition to sinks, all nodes that hear
an Interest message keep a copy of it. Before accepting to
become a relay for any message, a node first examines its list
of Interest messages. In this way, DoS attacks are confined to
one hop from the source.

V. PROTOCOL EVALUATION

In order to evaluate the Fault-Tolerant Trustful Space-Time
Protocol (FT-TSTP) and the Byzantine Reliable Broadcast
Protocol (ByzCast) described in this paper and therefore
corroborate the claims made about their ability to extend the
SmartData concept with Byzantine-resiliency, we have devised

a set of experiments focused on the protocols impact on the
WSN message delivery rate, latency and energy consumption.

We evaluate the communication performance of the pro-
tocols proposed here through a set of simulations on the
OMNet++ [17] (version 4.6) simulator using the Castalia
(version 3.3) framework [18]. We assessed the quality of our
simulation models by comparing the simulation results with
those obtained in field on our Solar Smart Building, which
is automated using the Embedded Parallel Operating Sys-
tem (EPOS) [19] and the original TSTP [12] on EPOSMote III
devices [19]. Indeed, the source code used for the simulations
is basically the same used in the real deployment, but the
comparison between the real scenario and the simulated model
allowed us to adjust the model’s parameters in order to obtain
realistic results.

A. Simulation Parameters

We simulated a set of WSNs, each with different nodes
placements and void configurations, in order to evaluate the
impact of delivering messages simultaneously to multiple
sinks and void detouring over the delivery rate, the end-to-
end transmission time and energy consumption. Three WSNs
were modeled on top of the CC2420 IEEE 802.15.4 physical
layer available in Castalia. Table I summarizes the parameters
used in these simulations. Each WSN was simulated using
TSTP and FT-TSTP for a simulation period of 3600s, with
the presence of the voids represented in Figure 7. For FT-
TSTP, the β parameter (retries) was set to 1. FT-TSTP was
also simulated with different numbers of sinks, from 1 to 4.
Each simulation was executed 10 times with different random
number seeds, and the results presented are the average values.

B. Scenarios

The scenarios where modeled in order to evaluate the FT-
TSTP behavior under different aspects of WSN deployments,
such as nodes distance and placement, radio TX power and
void configurations. The objective was to verify that the void
detour algorithm is able to handle different voids types, while
measuring the latency and energy overheads, since there is
a trade-off between reliability obtained through multi-sink
transmissions and latency/power consumption. Scenarios 1 and
2 can be applied in monitoring air quality in large indoor areas,
as the temperature in shopping malls or dust in big industrial
sheds. Scenario 3 is typical of environmental monitoring or
smart agriculture, like soil moisture in irrigation systems, or
temperature/humidity in field monitoring. In all scenarios, the
data periods are not too tight, but fault tolerance is justified
by economic loss on the lack of correct measurements and
actuation. The voids are modeled as concave regions (Scenar-
ios 2 and 3), and a section on the border, causing a semi-
partition in the field (Scenario 1). These layouts are similar to
the presented in other works [2] [20]. In the simulations, one
SmartData update was produced by every operational node
at each data period, and the message had the same time to
reach the sinks before expiry. The data generation instant was
randomly chosen in the first period, and from that on a new
SmartData was generated in exact periodic cycles.

IEEE INTERNET OF THINGS JOURNAL 10

Table II
DELIVERY RATE

TSTP FT-TSTP
Scenario 1 Sink 1 Sink 2 Sinks 3 Sinks 4 Sinks
Scenario 1 46.8434% 0.0000% 0.0000% 0.3921% 99.6079%
Scenario 2 66.4279% 0.0036% 0.5624% 9.3647% 90.0692%
Scenario 3 82.7258% 0.0119% 0.0655% 0.7917% 99.1310%

Figure 8. FT-TSTP vs TSTP delivery ratio to at least three and to all sinks,
with 4 sinks and void present.

Figure 9. FT-TSTP vs TSTP average end-to-end message delivery latency,
TSTP with 1 sink and FT-TSTP with 1 to 4 sinks.

Figure 10. FT-TSTP vs TSTP maximum end-to-end message delivery latency,
TSTP with 1 sink and FT-TSTP with 1 to 4 sinks.

A comparison between TSTP and FT-TSTP delivery ratio in
the three modeled scenarios is shown in Table II and Figure 8.
In the presence of faulty nodes, creating a void region, TSTP’s
delivery rate suffers a considerable impact, delivering under
50% of the messages in Scenario 1. FT-TSTP was able to
deliver more than 99% messages to at least three sinks in all
scenarios, which is enough for the ByzCast algorithm come
to an agreement about the received values.

Figure 9 shows the average latency time to a message
to reach all the sinks. Scenario 2 shows a greater latency
because more messages are being transmitted over the WSN
with the same data period, but there are more nodes than in
Scenario 1. Figure 10 shows the maximum latency observed
in the simulations, and shows that Scenario 2 is close to it’s
saturation point, as some messages are reaching the sinks very
close to the expiry time (60s), and about 10% don’t reached
all sinks (figure 8). On Scenario 3, figure 10 shows that TSTP
imposes long delays to some messages due to retransmissions
on void borders.

Figure 11 shows the energy consumed by active nodes and
sinks during the simulation period (1 hour). The additional
energy consumption arises from different aspects. First, the
increase in the microframe’s size, from 9 to 28 bytes demands
more energy to transmit the message’s preamble. In conjunc-
tion with the retransmissions in recovery mode to circumvent
the voids, it explains the energy increasing from TSTP to FT-
TSTP with a single sink. The increasing from 1 to 2 sinks is
due to the duplication of the messages, as they have to travel
in opposite directions most of the time. The energy increasing
for 3 and 4 sinks is smaller, as messages make progress to
more than one sink on most transmissions. If a fifth sink were
added, the energy increasing would be even smaller than the
increase from 3 to 4. The outliers values, represented by the
circles, show that when TSTP reaches a local minimum - on a
void border - it consumes much more power than the nodes in
FT-TSTP with one sink. This happens because these nodes will
continuously retransmit messages until its expiration. So, the
deployment of a resilient WSN requires a careful dimension
of data periods and duty cycle values in order to meet the
resilience requirements, as mentioned in section II-A.

Figure 11. FT-TSTP vs TSTP energy consumption at one node in 1 hour.
Circles represent outliers. Energy for FT-TSTP with 1 to 4 sinks.

VI. RELATED WORK

The void detour problem is addressed by several researches.
In geographic routing protocols, these algorithms can be
classified in two groups: right-hand rule and back-pressure
rule. The first makes the packet be routed through the border

IEEE INTERNET OF THINGS JOURNAL 11

of the void, as in GPSR [21]. They have the side effect
of high power consumption on the border nodes. The back-
pressure rule, as in SPEED [22] and FT-SPEED [23], sends
messages back to the upstream nodes, notifying the presence
of a void and demanding the use of alternative paths. In
[24] three schemes are presented in order to merge these two
approaches, and the authors claim that they can be used with
any geographic routing. Each node has to know the neighbors’
position, and must be able to send messages to a specific node.
Special packets for Void Detection and Void Maintenance
are employed in order to map the voids. The schemes are
not applicable to reactive geographic protocols like FT-TSTP,
as nodes do not keep information about neighbors’ position.
These protocols also have the advantage of re-routing packets
without void discovery and maintenance packets exchange.
They are also able to instantly restore routing when transient
failures occur, as well as fast response when additional node
failures occur, changing voids’ configuration. The recovery
mode in FT-TSTP makes nodes send the packets backwards
(or aside), until a route that detours the void is found, acting
like a composition of back-pressure and border routing.

The REACT algorithm presented in [25] assumes that the
sink’s signal can reach every sensor node, doing the sink-to-
nodes communication in an one-hop way. The nodes don’t
know its exact location, but they calculate the distance to the
sink by using RSSI strength, assuming that a stronger signal
means that the node is closer to the sink. The sensors readings
are transmitted to the sink in a multi-hop manner, where
each node closer to the sink than the transmitter becomes
a potential relay, in a self-voting mechanism similar to the
used in TSTP/FT-TSTP. Data aggregation is used to reduce
the number of messages. If a hole is detected the packed
is marked as hole-packet and broadcasted until it reaches a
node nearer than the hole node that initiates the process. The
protocol doesn’t considers multiple sinks and there are no
authentication or privacy mechanisms.

Several works have employed multi-sink approaches. The
authors of [1] propose the use o multiple mobile sinks, which
move to WSN regions where nodes have the most remaining
energy. Nodes always try to send data to the nearest sink. In
[2], each node tries to send packets to the closest sink. If
a void is detected, a flexible set flag is set in the packets
to enlarge the forwarder set, to circumvent the void or to
transmit packets to another sink. In [3] an algorithm builds
clusters and backbones, connection nodes to trees with a sink
as root. There are N trees, one for each sink, and each node
belongs to a unique tree. Trees are rebuilt on nodes or sinks
failures. Pheromone levels (ant colony algorithm) are used in
[20] to determine multiple routes from nodes to sinks and
from sinks to nodes, based on QoS parameters. Again, each
node delivers its messages to the sink whose path offers the
best QoS parameters. The BAMBi protocol proposed by [26]
sends a copy to every known sink separately. Routing trees
with sinks as roots are built with each node belonging at least
to N trees (where N is the number of sinks). Trees are rebuilt
on node or sink failure.

All the mentioned solutions use multiple sinks try to min-
imize the impact of node and sink failures, or to get a better

energy balance or lower delivery times. All consider a message
delivered if it reaches one sink. None of them proposes
integrity checking for messages, so they are susceptible to
attacks that can modify the message content on the network or
the sinks. The FT-TSTP has the objective to deliver messages
to all sinks with the purpose to allow ByzCast to verify the
message integrity.

The work in [27] addresses the relay node placement
problem from a fault-tolerance perspective. The proposed
solution aims at minimizing the number of relays needed to
connect a set of points of interest to a sink by placing them
on the vertexes of a triangular lattice inscribed in minimal
rectangle that encompasses all the points. Their placement
outperforms those based on straight lines or steiner-points and
could be used along with the protocol proposed here whenever
placement can be planed beforehand.

LiveOS [28] approaches fault-tolerance in WSN from the
perspective of individual nodes. It offers applications a mech-
anism to store and roll-back memory regions similar to a
transaction manager. Such memory blocks can be processed
in parallel by threads running in multiple cores in a voting-
like scheme. If computations are considered correct, then the
modifications to the memory block are committed, otherwise
they get rolled back. The system does not provide the voting
mechanism and the assumption that a multicore sensor node
can have one of its core to malfunction while other compo-
nents continue to operate normally limits the applicability of
the proposed scheme.

VII. CONCLUSION

The use of the SmartData concept, a high level abstrac-
tion of sensing data, on an infrastructure that is resilient to
byzantine faults in the sensors network and in the gateways
level, provides a more reliable infrastructure for the IoT. At
the sensors net level, the FT-TSTP protocol was presented,
that adds availability to the TSTP protocol, as it can han-
dle voids generated by compromised nodes. Availability is
also increased by delivering the message to multiple sinks
(gateways), reducing the probability that byzantine nodes can
isolate the sink from the rest of the WSN. At the gate-
ways level, besides providing availability through redundancy,
the agreement property achieved by the ByzCast algorithm
avoids that a compromised gateway prevents the entire WSN
from delivering reliable sensed data. Other properties of the
SmartData, as timeliness, no duplication, non-repudiation,
confidentiality, integrity and authenticity are preserved by the
proposed solution.

The availability obtained by the sinks redundancy has a
trade-off with higher energy consumption and end-to-end com-
munication time. In networks where the resilience to byzantine
faults is mandatory, these cost increments are inevitable. The
simulation results have shown a linear growth of energy and
time consumption, influenced by the network traffic load and
the size and configuration of void regions. So, it is possible
to make reasonable predictions and previous dimensioning of
the WSN in order to obtain bounded delivery time, even in a
given level of nodes failures.

IEEE INTERNET OF THINGS JOURNAL 12

REFERENCES

[1] S. Yasotha, V. Gopalakrishnan, and M. Mohankumar, “Multi-sink opti-
mal repositioning for energy and power optimization in wireless sensor
networks,” Wireless Personal Comms., vol. 87, no. 2, pp. 335–348, 2016.

[2] S. Ozen and S. Oktug, “Adaptive sink selection for wsns using forwarder
set based dynamic duty cycling,” in Sensing, Communication, and
Networking Workshops (SECON Workshops), 2014 Eleventh Annual
IEEE International Conference on. IEEE, 2014, pp. 7–12.

[3] M. Carlos-Mancilla, E. Lopez-Mellado, and M. Siller-Gonzalez, “A lo-
calized multi-sink multi-hop algorithm for wireless sensor networking,”
in Global Information Infrastructure and Networking Symposium (GIIS),
2015. IEEE, 2015, pp. 1–6.

[4] J.-q. Zhang and R.-c. Wang, “Qos-aware routing for multi-sink wmsns,”
DEStech Trans. on Computer Science and Engineering, no. icte, 2016.

[5] D. Resner and A. A. Fröhlich, “Design Rationale of a Cross-layer,
Trustful Space-Time Protocol for Wireless Sensor Networks,” in 20th
IEEE Intl. Conference on Emerging Technologies and Factory Automa-
tion (ETFA)., Luxembourg, Luxembourg, 2015, pp. 1–8.

[6] A. A. Frohlich, A. M. Okazaki, R. V. Steiner, P. Oliveira, and J. E.
Martina, “A Cross-layer Approach to Trustfulness in the Internet of
Things,” in 9th Workshop on Software Technologies for Embedded and
Ubiquitous Systems (SEUS), Paderborn, Germany, Jun. 2013, pp. 1–8.

[7] IEEE 1451.0, IEEE Standard for a Smart Transducer Interface for
Sensors and Actuators - Common Functions, Comm. Protocols, and
Transducer Electronic Data Sheet (TEDS) Formats, September 2007.

[8] D. J. Bernstein, “The poly1305-aes message authentication code,” in
Proc. of Fast Software Encryption, Paris, France, Feb 2005, pp. 32–49.

[9] O. Raso, P. Mlynek, R. Fujdiak, L. Pospichal, and P. Kubicek,
“Implementation of elliptic curve diffie hellman in ultra-low
power microcontroller,” in 2015 38th International Conference
on Telecommunications and Signal Processing (TSP). IEEE, jul 2015.
[Online]. Available: https://doi.org/10.1109%2Ftsp.2015.7296346

[10] D. Resner, A. A. Fröhlich, and L. F. Wanner, “Speculative Precision
Time Protocol: submicrosecond clock synchronization for the IoT,” in
21th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Berlin, Germany, Sep. 2016.

[11] R. Reghelin and A. A. Fröhlich, “A Decentralized Location System
for Sensor Networks Using Cooperative Calibration and Heuristics,” in
9th ACM/IEEE International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, Torremolinos, Malaga,
Spain., Oct. 2006, pp. 139–146.

[12] D. Resner and A. A. Frohlich, “TSTP MAC: A Foundation for the
Trustful Space-Time Protocol,” in 14th IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing (EUC). To appear,
Paris, France, Aug. 2016.

[13] M. R. Akhavan, T. Watteyne, and A. H. Aghvami, “Enhancing the
performance of RPL using a Receiver-Based MAC protocol in lossy
WSNs,” in IEEE ICT, Ayia Napa, Cyprus, May 2011, pp. 191–194.

[14] D. Dolev, “The byzantine generals strike again,” Stanford, CA, USA,
Tech. Rep., 1981.

[15] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven communication
synthesis for time triggered embedded systems,” Real-Time Systems,
vol. 26, no. 3, pp. 297–325, apr 2004.

[16] S. S. Craciunas and R. S. Oliver, “SMT-based task- and network-level
static schedule generation for time-triggered networked systems,” in
Proceedings of the 22nd Intl. Conference on Real-Time Networks and
Systems - RTNS’14. ACM Press, 2014.

[17] OpenSim, “OMNeT++ - Objective Modular Network Testbed in C++,”
2017. [Online]. Available: https://omnetpp.org/

[18] A. Boulis, “Castalia A simulator for Wireless Sensor Networks and
Body Area Networks,” 2017. [Online]. Available: https://github.com/
boulis/Castalia

[19] S. I. Lab, “EPOS - Embedded Parallel Operating System,” 2017.
[Online]. Available: https://epos.lisha.ufsc.br/

[20] D. Zhang and E. Dong, “A virtual coordinate-based bypassing void
routing for wireless sensor networks,” IEEE sensors journal, vol. 15,
no. 7, pp. 3853–3862, 2015.

[21] B. Karp and H. T. Kung, “Gpsr: Greedy perimeter stateless routing
for wireless networks,” in Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’00.
New York, NY, USA: ACM, 2000, pp. 243–254. [Online]. Available:
http://doi.acm.org/10.1145/345910.345953

[22] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “Speed: A stateless
protocol for real-time communication in sensor networks,” in Distributed
Computing Systems, 2003. Proceedings. 23rd International Conference
on. IEEE, 2003, pp. 46–55.

[23] L. Zhao, B. Kan, Y. Xu, and X. Li, “Ft-speed: A fault-tolerant, real-time
routing protocol for wireless sensor networks,” in Wireless Communi-
cations, Networking and Mobile Computing, 2007. WiCom 2007. Intl.
Conf. on. IEEE, 2007, pp. 2531–2534.

[24] M. Aissani, A. Mellouk, N. Badache, and M. Boumaza, “A novel
approach for void avoidance in wireless sensor networks,” International
Journal of Communication Systems, vol. 23, no. 8, pp. 945–962, 2010.

[25] M. M. Lima, H. A. Oliveira, D. L. Guidoni, and A. A. Loureiro,
“Geographic routing and hole bypass using long range sinks for wireless
sensor networks,” Ad Hoc Networks, 2017.

[26] S. Misra, K. Bhattarai, and G. Xue, “Bambi: Blackhole attacks mit-
igation with multiple base stations in wireless sensor networks,” in
Communications (ICC), Intl. Conf. on. IEEE, 2011, pp. 1–5.

[27] I. Khoufi, P. Minet, and A. Laouiti, “Fault-tolerant and constrained relay
node placement in wireless sensor networks,” in 2016 IEEE 13th Intl.
Conf. on Mobile Ad Hoc and Sensor Systems (MASS). IEEE, oct 2016,
pp. 127–135.

[28] X. Liu, H. Zhou, S. Xiong, K. M. Hou, C. de Vaulx, and H. Shi, “Devel-
opment of a resource-efficient and fault-tolerant wireless sensor network
system,” in 2015 2nd Intl. Symposium on Dependable Computing and
Internet of Things (DCIT). IEEE, nov 2015, pp. 122–127.

Antônio Augusto Fröhlich received his PhD in
Computer Science from the Technical University
of Berlin in 2001. He has been a professor in the
Computer Science Department, Federal University
of Santa Catarina, Brazil since 1995 and head of the
Software/Hardware Integration Lab since 2001. His
current research interests include embedded systems
and operating systems.

Roberto Milton Scheffel received his MSc in Com-
puter Science from the Federal University of Santa
Catarina, Brazil in 1997. He has been a professor
at the Federal University of Technology - Paraná
(UTFPR) since 2015. He is currently working to-
wards the PhD degree at the Federal University
of Santa Catarina under the supervision of A. A.
Fröhlich. His research interests include distributed
embedded systems and fault tolerance.

David Kozhaya is a Research Scientist at ABB
Corporate Research, Switzerland. He received his
PhD degree in Computer Science in December 2016,
from EPFL, Switzerland. His research interests in-
clude reliable distributed computing, real-time dis-
tributed systems, and fault- and intrusion-tolerant
distributed algorithms. His past work experiences
span across interdisciplinary domains ranging from
research, teaching, financial and market analysis, and
the management of various non-profit organizations.

Paulo Esteves Veríssimo is a Professor and FNR
PEARL Chair at the Faculty of Science, Technology
and Communication (FSTC), University of Luxem-
bourg (UL); and head of the CritiX research group
at UL’s Interdisciplinary Centre for Security, Relia-
bility and Trust. He is interested in secure and de-
pendable distributed architectures, middleware and
algorithms for: resilience of large-scale systems
and critical infrastructures, privacy and integrity of
highly sensitive data, and adaptability and safety of
real-time networked embedded systems.

