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Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3
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We explore the electronic and the optical properties of monolayer TiS3, which shows in-plane anisotropy and
is composed of a chain-like structure along one of the lattice directions. Together with its robust direct band gap,
which changes very slightly with stacking order and with the thickness of the sample, the anisotropic physical prop-
erties of TiS3 make the material very attractive for various device applications. In this study, we present a detailed
investigation on the effect of the crystal anisotropy on the excitons and the trions of the TiS3 monolayer. We use
many-body perturbation theory to calculate the absorption spectrum of anisotropic TiS3 monolayer by solving the
Bethe-Salpeter equation. In parallel, we implement and use a Wannier-Mott model for the excitons that takes into
account the anisotropic effective masses and Coulomb screening, which are obtained from ab initio calculations.
This model is then extended for the investigation of trion states of monolayer TiS3. Our calculations indicate that
the absorption spectrum of monolayer TiS3 drastically depends on the polarization of the incoming light, which
excites different excitons with distinct binding energies. In addition, the binding energies of positively and the
negatively charged trions are observed to be distinct and they exhibit an anisotropic probability density distribution.
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I. INTRODUCTION

After the synthesis of graphene [1,2], layered materials have
received a lot of interest in the field of condensed matter physics
and materials science. Among the recently synthesized groups
of layered materials are the transition metal trichalcogenides
(TMTCs) which have a chemical formula MX3, where M

stands for a transition metal from group IV, V, or VI in the peri-
odic table (e.g., Ti, Zr, or Nb) andX is a chalcogen atom (e.g., S,
Se, or Te). TMTCs are a much less explored class of materials
when compared with the extensively studied transition metal
dichalcogenides (TMDCs), which are considered promising
candidates for a next generation of flexible nanoelectronic
devices due to their wide range of different properties [3–9].

One of the major differences between these two classes
of materials is the crystal symmetry. Although both are lay-
ered materials in their bulk form in which the interaction
between each monolayer is governed by the weak van der
Waals (vdW) forces, their in-plane symmetries are remarkably
distinct. TMDCs show hexagonal in-plane geometry which
is symmetric along different lattice directions, while TMTCs
have a reduced in-plane structural symmetry due to bundles of
molecular chains in a trigonal prism form where the centers of
the prisms are occupied by transition metal atoms along one
of the lattice directions [10,11]. This quasi-one-dimensional
property leads to strong anisotropy in the electronic and
optical properties and opens up new possibilities for devices
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with anisotropic functionalities such as polarization sensitive
photodetectors, polarized light emission, integrated digital
inverters, and tunable Schottky barriers [12–23].

Among these recently synthesized TMTCs, TiS3 in partic-
ular has been gaining interest due to its robust direct band gap,
band gap range, electron mobility, and its anisotropic physical
properties. For instance, in contrast to the layered TMDCs,
TiS3 exhibits a direct band gap in both monolayer and bulk
form of about 1 eV. It is important to note that the band gap and
its direct character depend very slightly on the thickness and
the stacking order of the constituent layers [23–26]; it changes
slightly on the other hand with the application of tensile stress
to the material [27]. It has also been shown that TiS3 transistors
show very high electron mobility and the current-voltage
characteristics exhibit strong nonlinearity [28,29].

Although there has been an increasing interest in TiS3

monolayers, theoretical investigations of its electronic and
optical properties are sparse. Therefore, in this work we
investigate the effect of the anisotropic crystal structure of
monolayer TiS3 on its exciton and trion properties by using
first-principles calculations and a Wannier-Mott model. The
low-energy response of two-dimensional (2D) materials is
governed by excitonic and trionic states, so a proper description
of them is crucial regarding the possible device applications.

II. RESULTS

A. Excitons in a TiS3 monolayer

The first step to calculate the absorption spectrum and
the excitons of monolayer TiS3 is to obtain the Kohn-Sham
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wave functions and eigenvalues with density functional theory
(DFT). For this purpose we use the QUANTUM ESPRESSO

code[30] with an 8 × 12 × 1 k-point sampling, 180 Ryd-
bergs for the plane-wave energy cutoff, and approximately
40 a.u. vacuum distance between the periodically repeated
layers. We used the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [31] and norm-conserving pseudopo-
tentials of Goedecker-Hartwigsen-Hutter-Teter type[32,33],
where for Ti atoms semicore electrons (3p and 4s) are explic-
itly treated as valence electrons. According to our calculations,
the optimized lattice constants of pristine single-layer TiS3

are a1 = 4.97 Å and a2 = 3.40 Å which are close to the
experimental in-plane lattice parameters of bulk TiS3 (a1 =
4.95 Å and a2 = 3.40 Å) [10,11].

In order to cure the intrinsic band gap underestimation
problem of the Kohn-Sham DFT, we perform G0W0 [34,35]
calculations with the plasmon-pole approximation as imple-
mented in the YAMBO code [36]. Once we have obtained the
corrected electronic band gap, we use a “scissor operator” to
correct the DFT band gap. With that, we calculate the optical
spectra of monolayer TiS3 solving the Bethe-Salpeter equation
[37–39] (BSE) in the following form, in which the electron-
hole pairs are used to express the electronic excitations:

(Eck − Evk )AS
vck +

∑
k′

v
′
c
′
〈vck|Keh|v′

c
′
k

′ 〉AS

v
′
c
′ k′ = �SAS

vck,

(1)
where Eck and Evk are the quasiparticle energies of the
valence- and the conduction-band states for the vertical elec-
tronic transitions, respectively. The AS

vck are the expansion
coefficients of the excitons, �S are the eigenenergies of
the possible excitation energies, and Keh is the interaction
kernel between electron and hole. If the interaction between
electron and hole was absent in the above equation, the Keh

term would drop out and the excitations would correspond
to independent electron-hole pairs. The imaginary part of
the dielectric function [ε(h̄ω) = ε1(h̄ω) + iε2(h̄ω)]. which
is the optical absorption spectrum of the compound, can be
calculated as

ε2(h̄ω) ∝
∑

S

∣∣∣∣
∑
cvk

AS
vck

〈ck|pi |vk〉
(εck − εvk )

∣∣∣∣
2

δ(�S − h̄ω − �), (2)

where 〈ck|pi |vk〉 is the dipole matrix element which corre-
sponds to the transition from the valence to the conduction
bands. In order to mimic the experimental resolution, an energy
broadening of � = 0.05 eV is used in the calculations. Similar
to G0W0 calculations, the BSE calculations are performed
using the YAMBO code [36]. We have tested that the low-
energy optical spectrum of monolayer TiS3 is converged with
a 24 × 36 × 1 k-point mesh and with inclusion of the upper
four valence and first four conduction bands. In order to avoid
the long-range interaction between the periodic adjacent layers
along the vertical direction, a Coulomb cutoff (Cc) of the
screened potential is used in both G0W0 and BSE steps.

The rectangular primitive unit cell of monolayer TiS3

contains two titanium (Ti) and six sulphur (S) atoms; two of
these S atoms are inner and the rest of them are the outer
S atoms, as shown in Fig. 1(a). The monolayer structure is
formed as a chain-like structure which contains trigonal prisms

FIG. 1. The optimized geometric structure of monolayer TiS3 [(a)
and (b)]; the dark and the light blue balls represent the S atoms and the
red ones represent the Ti atoms. The S atoms on different surfaces are
colored differently for clarity, and the numbers in the figure are the
bond lengths. The quasiparticle band structure of TiS3 monolayer (c);
the Brillouin zone (BZ) is shown in the inset of the figure. The in-plane
(a1 and a2) and out-of-plane (a3) lattice vectors are also shown in the
figure.

in which the metal atom occupies the center. The coordination
of the atoms, the bond lengths, and the unit cell can be seen
in Figs. 1(a) and 1(b); for clarity the outer and inner S atoms
are shown in different colors in the figures. It is also worth
mentioning that the Ti-S distance varies in the compound
depending on the position of the bond in the structure. The
anisotropy of the crystal structure along a1 and a2 directions
is evident.

The quasiparticle band structure along the high symmetry
points of the rectangular Brillouin zone (BZ) of monolayer
TiS3 is shown in Fig. 1(c). According to our DFT calculations,
the TiS3 monolayer has a direct band gap of 0.30 eV at the �

point in the BZ, similar to the earlier PBE calculations [40,41].
As expected, the DFT gap is much smaller than the experimen-
tal electronic band gap and the optical band gap of TiS3, which
are reported to be around 1.2 and 1.1 eV, respectively [23–25].
Earlier calculations with the HSE06 hybrid functional reported
the electronic band gap of monolayer TiS3 as 1.05 eV [40],
and GW calculations using the plasmon-pole approximation
yielded around 1.15 eV [42,43]. It is important to mention that
the inclusion of the Cc changes the converged electronic gap of
pristine single-layer TiS3. Using settings and pseudopotentials
similar to the earlier studies, our calculations show that the
band gap of TiS3 monolayer becomes 1.2 and 1.4 eV without
and with Cc, respectively. This is an expected result because
Coulomb screening is larger if the Cc is not included in the
calculation due to the extra screening which originate from
the adjacent layers. The larger screening results in a smaller
band gap than in the calculation with Cc, which cancels the
interaction between the monolayer with its periodic image.
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FIG. 2. Calculated absorption spectra of TiS3 monolayer for
different light polarization directions (direction of the electric field
vector of light), in-plane (a1 and a2) and out-of-plane (a3), and the
contributed states to the particular excitonic peak.

The main reason why the electronic band gap is closer to the
experimental electronic band gap in the calculations without
Cc is the effect of the dielectric substrate whose screening tends
to reduce the band gap in experiments. Since we are dealing
with an isolated single layer and Cc is essential to cancel the
artificial interaction between monolayers, it is included in both
the G0W0 and the BSE steps in our calculations. Therefore, in
the BSE step the scissor operator is calculated considering the
electronic band gap value obtained from the G0W0 calculation
with Cc, which is 1.4 eV.

In Fig. 2, we present the absorption spectra of TiS3 mono-
layer for different polarization directions, meaning that the
electric field vector of the incoming light is along different
orthogonal lattice vectors. The absorption spectra of pris-
tine TiS3 monolayer are remarkably different for different
polarization directions due to the crystal anisotropy. Earlier
theoretical works also predicted the polarization dependent
absorption spectra of bulk TiS3, but did not investigate the
band composition responsible for the peaks in their absorption
spectra [24,43]. In Fig. 2, the first bright excitons of each
polarization direction are indicated in the figure as red, blue,
and green colors for a1, a2, and a3 polarization directions,
respectively. The excitonic state, which is due to the transition
from the valence band maximum (VBM) to the conduction
band minimum (CBM), is dark for in-plane polarizations
(electric field vector of light is along a1 and a2) but it is
bright for the out-of-plane polarization (electric field vector
of light is along a3). The spectral position of the first excitonic
peak is at 1.07 eV for the out-of-plane polarization direction,
which is actually close to the optical gap of multilayer TiS3

[24]. As expected, the absorption for out-of-plane polarization

is small compared with the in-plane polarization absorption.
Therefore, the absorption spectrum of the out-of-plane polar-
ization direction was multiplied with a factor of 200 in order
to provide a better visibility. The first bright excitons for the
in-plane polarization directions are not from the VBM to CBM
but from other bands around �, as shown in the same figure.
Therefore, these excionic peaks are higher in energy than the
exciton, which corresponds to the optical gap of the single-
layer TiS3. Another important conclusion that can be drawn
from our calculations is that, depending on the polarization of
the light, different excitons with different binding energies are
excited. The binding energies are calculated as 0.59, 0.68, and
0.32 eV along a1, a2, and a3 lattice directions, respectively.

B. Neutral and charged excitons

In this section, we explore the neutral and charged excitons
of monolayer TiS3 using a Wannier-Mott model and focus
only on in-plane polarization directions for the incident light.
Therefore, we investigate only excitons labeled as X2 and X3

in the previous section (see Fig. 2). The conduction band for
both cases is the same, with effective masses mx

e = 12.07m0

and m
y
e = 0.42m0 in the �-X and �-Y directions, respectively,

where m0 is the free electron mass. On the other hand, the
effective masses corresponding to the valence band involved in
the X2 transition are mx

h = 0.36m0 and m
y

h = 0.90m0, whereas
m

y

h = 0.25m0 and mx
h � m

y

h for X3. In fact, the valence band
involved in X3 is basically flat in the �-X direction; therefore,
we just choose a very high number for the effective mass in
this direction (for practical purposes, we assume mx

h = 50m0).
Once the effective masses of electrons and holes are known,
one can estimate the binding energies of excitons in TiS3 within
the Wannier-Mott model, which can be compared to the BSE
results in the previous section. The advantage of developing
this more simplistic effective mass model, validated by the
BSE ones, lies in its flexibility. This approach allows us to
easily incorporate substrate screening effects in the binding
energy calculations, as well as to investigate charged excitons
(trions), as we demonstrate in detail further on.

The Wannier-Mott exciton binding energies are obtained by
numerically solving the Schrödinger equation in the electron-
hole relative coordinates �R = �rh − �re, whose Hamiltonian
reads [44]

Hexc = − 1

μx

∂2

∂X2
− 1

μy

∂2

∂Y 2
+ V (

√
X2 + Y 2), (3)

where μx(y) = (1/m
x(y)
e + 1/m

x(y)
h )−1 is the anisotropic re-

duced effective mass in the x (y) direction, energies are written
in units of the Rydberg energy, and distances are scaled to the
Bohr radius. The electron-hole interaction potential in such a
thin material undergoes screening by the TiS3 monolayer, as
well as screening by the substrate on which it is deposited,
with static dielectric constants ε and εs , respectively. The
interaction potential (assuming vacuum above the TiS3 layer)
is approximately [45–48]

V (R) = − 2π

(1 + εs )ρ0

[
H0

(
R

ρ0

)
− Y0

(
R

ρ0

)]
, (4)

where H0 and Y0 are Struve and Neumann functions,
respectively, ρ0 = Dε/(1 + εs ) is the screening length, and
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D = 8.89 Å is the monolayer thickness, estimated to be
the same as the interlayer distance. Anisotropy in the static
dielectric function of bulk TiS3 (εx = 14.99ε0, εy = 10.53ε0,
εz = 6.29ε0) is taken into account by a geometric average of
its components, ε = 3

√
εxεyεz [49]. It is worth pointing out that

the dielectric screening provided by the substrate induces not
only a smaller screening length for the electron-hole interaction
potential in Eq. (4), but also a quasiparticle gap renormal-
ization and, possibly, modifications to the band curvatures
and, consequently, effective masses. The latter may lead to
corrections on the exciton and trion binding energies, which
are neglected in our calculations as an approximation. The
exciton Hamiltonian Hexc is discretized in a nonuniform mesh,
within a finite difference scheme [44], and then numerically
diagonalized to obtain the excitonic spectrum.

As for charged excitons (trions), the system must be
described, in principle, by six coordinates, namely, (x, y)
coordinates for each of the three particles involved. In this case,
a different change of coordinates is proposed, in order to reduce
the dimensionality of the problem (see, e.g., the Supplemental
Material of Ref. [50]): we take �R (with corresponding mo-
mentum �P ) as the relative coordinate between an electron-hole
pair, and �r (with corresponding momentum �p) as the relative
coordinate between the extra charge (extra electron or hole, for
negatively or positively charged trions, respectively) and the
center of mass of that first electron-hole pair. This leads to a
trion Hamiltonian

H± = P 2
x

2μx
+ P 2

y

2μy
+ p2

x

2μx
t

+ p2
y

2μ
y
t

+ V±. (5)

The plus (minus) sign stands for a positively (negatively)
charged trion, where an extra hole h′ (electron e′) is added
through the trion reduced mass μ

x(y)
t = (1/μx(y) + 1/m̄

x(y)
h )−1

[μx(y)
t = (1/μx(y) + 1/m̄

x(y)
e )−1]. Accordingly, a more general

form of the interaction potential Eq. (4) must be provided:

V− = Veh(�rh − �re ) + Veh(�rh − �re′ ) + Vee(�re − �re′ ),

V+ = Veh(�rh − �re ) + Veh(�rh′ − �re ) + Vhh(�rh − �rh′ ), (6)

Vij = qiqj e
2

2(ε1 + ε2)ρ0

[
H0

( |�ri − �rj |
ρ0

)
− Y0

( |�ri − �rj |
ρ0

)]
,

where qe(h) = − (+) is the electron (hole) charge. Notice that
this final four-dimensional form of the trion Hamiltonian is
obtained by taking the center-of-mass terms of the overall
Hamiltonian to be zero, since the potential, Eq. (6), does not
depend on either the excitonic or electron-exciton center-of-
mass coordinates chosen in our transformation.

Numerical diagonalization of the matrix representing the
four-dimensional trion Hamiltonian, Eq. (5), discretized in
finite differences, requires a high computational cost. Alter-
natively, as we are interested only in the trion ground state,
we obtain it by evolving an arbitrary initial wave packet in
imaginary time τ = it until convergence is reached. The po-
tential and kinetic energy terms in the time evolution operator
U (τ + �τ, τ ) = exp(−H±�τ/h̄) are conveniently split into
a series of exponentials [51–53],

U (τ + �τ, τ ) ≈ e− �τ
2h̄

V e− �τ
h̄

T1e− �τ
h̄

T2 · · · e− �τ
h̄

TN e− �τ
2h̄

V , (7)
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FIG. 3. Energy spectra of X2 (red) and X3 (blue) exciton states
in monolayer TiS3 in (a) the suspended case and (b) deposited over a
SiO2 substrate, along with the symmetry corresponding to each state,
as calculated by the effective mass approach.

where Ti is the kinetic energy term in the i direction (for a
system with N dimensions). This procedure requires lower
computational cost, by paying the price of having a O(�τ 3)
error due to the noncommutativity between kinetic and po-
tential operators, which is controlled here by using a small
imaginary time step �τ . Finally, the resulting energy, obtained
by the bra-ket of H± with the time-evolved wave function, is
deducted from the exciton binding energy in order to obtain
the trion binding energy T ±

j , with j = 2, 3 representing the
type of exciton involved in this trion state.

The calculated binding energy of the X2 (red) and X3 (blue)
excitons of monolayer TiS3 are shown in Fig. 3 up to the third
excited state, along with the symmetry of the corresponding
wave functions of each state. High binding energies, of the
order of hundreds of meV, are observed, which is a hallmark of
2D materials [54–59]. Besides, similar to, e.g., black phospho-
rus, which also exhibits strongly anisotropic bands, excitonic
p states in monolayer TiS3 are found to be nondegenerate,
a feature that can be experimentally probed by two-photon
absorption [60], while the degeneracy between s and p states is
lifted by the non-Coulombic form of the electron-hole potential
[44]. Results are shown for the suspended case [Fig. 3(a)] and
for the case of TiS3 over SiO2 where εs = 3.9ε0 [Fig. 3(b)]. In
the former, we verify that the BSE results (open star symbols)
are very close to the Wannier-Mott ones (full symbols), which
helps to validate our model. Binding energies in the latter
are significantly reduced by the additional dielectric screening
provided by the substrate, but the ground state energy is still
found to be as high as 330 and 421 meV for X2 and X3,
respectively.

Figure 4 shows how the exciton and trion binding energies
depend on the effective dielectric constant of the substrate εs .
The trion states T ±

i are composed of an Xi (i = 2, 3) exciton
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FIG. 4. Binding energies of neutral (Xi), positively (T +
i , open

symbols), and negatively (T −
i , full symbols) charged excitons (i =

2, 3) in monolayer TiS3 as a function of the relative permittivity of
the substrate medium.

with an additional electron (hole), represented by the − (+)
superscript, which is assumed to be always in the minimum
(maximum) of the conduction (valence) band, even when the
charge carriers in the exciton are in a higher (lower) band (as is
the case for electrons in X2 and both charge carriers in X3; see
Fig. 2). Notice that the trion Hamiltonian (5) is exact, as long as
one assumes that the quasi-particle bands obtained by DFT are
not significantly modified by the interaction between charged
particles, which is just the usual approximation behind the
Wannier-Mott framework. In other words, a trion Hamiltonian
written in such a basis composed of T ±

2 and T ±
3 states is

expected to have negligibly small coupling between the bands
involved in the excitonic transitions, which is a reasonable
approximation, as these trion energies are relatively far from
each other in energy. Besides, X2 and X3 states are obtained
with different polarization directions, as previously discussed,
therefore, binding energies of T ±

2 and T ±
3 trions are more

conveniently calculated and are discussed separately. Trion
binding energies are observed to be tens of meV, similar
to those of monolayer TMDCs [59,61] and black phospho-
rus [50], except for T +

3 . Positive and negative trions have
significantly different binding energies, especially for T ±

3
(≈8 meV), which can be experimentally verified by checking
the trion peak position as a function of the doping of the TiS3

monolayer. In fact, as the dielectric constant of the substrate
increases, the positive trion T +

3 becomes weakly bound, with
very low binding energy. Notice that, for T ±

2 , it is T −
2 that is

less energetic.
Differences between positive and negative trion energies are

related to the difference between effective masses of electrons
and holes [62]. Moreover, the opposite behavior observed for
T ±

2 as compared to T ±
3 is a consequence of the different

band anisotropy axis, which affects the single-particle effective
masses involved. As previously mentioned, the electron band is
the same for both X2 and X3 (mx

e = 12.07m0, m
y
e = 0.42m0).

In the T ±
2 case, we start with an X2 exciton, whose hole band

exhibits anisotropy axis perpendicular to that of the electron
band (mx

h = 0.36m0, m
y

h = 0.90m0). Conversely, for T ±
3 , we

FIG. 5. Correlation function ge-h between the first electron and
hole for (a,c) positively and (b,d) negatively charged trions. The upper
(lower) row is for T ±

2(3) trions.

have an X3 exciton whose hole band is qualitatively similar to
that of the electron (mx

h = 50m0 and m
y

h = 0.25m0). The third
particle, in both cases, is then either an electron in the lowest
conduction band (m̄x

e = 1.54m0, m̄
y
e = 0.46m0) or a hole in

the highest valence band (m̄x
h = 0.36m0, m̄

y

h = 0.90m0).
In order to investigate the effect of such interplay between

effective mass anisotropies of conduction and valence bands
in T ±

2 and T ±
3 trion states, we analyze, for each case, the

correlation functions

ge-h( �ρ) = 〈δ( �ρ − �R)〉 =
∫

Sr

|�(�r, �ρ )|d2r, (8)

between the electron and hole that compose the exciton, and

gc-c.m.( �ρ) = 〈δ( �ρ − �r )〉 =
∫

SR

|�( �ρ, �R)|d2R, (9)

between the third charge and the exciton center of mass,
where |�(�r, �R)| is the trion ground state wave function for
the Hamiltonian (5). The resulting color plot map of the
exciton correlation function ge-h( �ρ) is shown in Figs. 5(a) and
5(b), for T +

2 and T −
2 , and Figs. 5(c) and 5(d), for T +

3 and
T −

3 , respectively. The consistently perpendicular anisotropy
axis for both electrons (holes) and the hole (electron) in
T

−(+)
2 makes the excitonic pair contribution to the trion more

circularly symmetric, even when compared to other anisotropic
systems, such as monolayer black phosphorus [50]. On the
other hand, for T −

3 , both electrons and the hole share the
same anisotropy axis, thus leading to an exciton correlation
function that is strongly squeezed in the x direction. Even
though the second hole in T −

3 has its effective mass anisotropy
axis perpendicular to that of the electron and the first hole in
this trion, it is not enough to equilibrate the exciton correlation
function anisotropy, which is still qualitatively similar to that
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FIG. 6. Correlation function gc-c.m. between the third charge and
the exciton center of mass for (a,c) positively and (b,d) negatively
charged trions. The upper (lower) row is for T ±

2(3) trions.

of the T +
3 trion. As a consequence, ge-h( �ρ) for each trion state

is not significantly different for the different extra charges
and, although not shown here, it is also qualitatively similar
to the wave functions of the X2 and X3 excitons themselves.
However, the sign of the charge of the third particle in the trion
strongly determines its correlation gc-c.m.( �ρ) with the exciton
center of mass: Figs. 6(a) and 6(b), for T +

2 and T −
2 , respectively,

show gc-c.m.( �ρ) stretched along different directions. Indeed,
the probability density for the third particle with respect to the
exciton center of mass must exhibit a peak at a certain distance
from the origin, since this particle is attracted by one of the
charges composing the exciton, but repelled by the other. In an
isotropic system, the third particle could be anywhere at some
distance to the origin, so that its correlation function has a ring
shape [50]. However, in such an anisotropic system, it must
lie in the direction where the effective mass is lighter. This is

verified by the fact that gc-c.m.( �ρ ) exhibits peaks in the x(y)
direction when the third charge is positive (negative). As for
T +

3 and T −
3 , the gc-c.m.( �ρ) respectively shown in Figs. 6(c) and

6(d) exhibit peaks in the same direction. This is a consequence
of the fact that even though the extra hole in T +

3 has its effective
mass anisotropy axis perpendicular to that of the electron, there
is still a much heavier hole in this trion whose anisotropy axis is
in the same direction as the one of the electron, thus stretching
gc-c.m.( �ρ) in the same direction for both T +

3 and T −
3 .

III. CONCLUSIONS

The absorption spectra for different light polarization di-
rections exhibit very different excitonic peak features if the
compound exhibits reduced in-plane structural symmetry. In
contrast with one of the most prominent anisotropic 2D
materials, namely few-layer BP, interband transitions for light
polarized in the zigzag direction of TiS3 are allowed, but rather
exhibit peaks at different energies. Exciton binding energies
found in the BSE step are in good agreement with those
obtained by effective mass theory for a planar Wannier exciton
with electrons and holes interacting via the Rytova-Keldysh
potential. Within this model, we are also able to calculate
trion binding energies, which are shown to be significantly
different for the positively and negatively charged cases,
and to exhibit anisotropic probability density distributions.
The strikingly different physical properties of excitons and
trions excited by light with different polarization directions
render monolayer TiS3 a highly tunable material for future
optoelectronic applications.
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