
Efficient Implementation of the SHA-512 Hash
Function for 8-bit AVR Microcontrollers

Hao Cheng1, Daniel Dinu2, and Johann Großschädl1

1 CSC and SnT, University of Luxembourg
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

hao.cheng.001@student.uni.lu
johann.groszschaedl@uni.lu

2 Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA 24061, USA

ddinu@vt.edu

Abstract. SHA-512 is a member of the SHA-2 family of cryptographic
hash algorithms that is based on a Davies-Mayer compression function
operating on eight 64-bit words to produce a 512-bit digest. It provides
strong resistance to collision and preimage attacks, and is assumed to
remain secure in the dawning era of quantum computers. However, the
compression function of SHA-512 is challenging to implement on small
8 and 16-bit microcontrollers because of their limited register space and
the fact that 64-bit rotations are generally slow on such devices. In this
paper, we present the first highly-optimized Assembler implementation
of SHA-512 for the ATmega family of 8-bit AVR microcontrollers. We
introduce a special optimization technique for the compression function
based on a duplication of the eight working variables so that they can
be more efficiently loaded from RAM via the indirect addressing mode
with displacement (using the ldd and std instruction). In this way, we
were able to achieve high performance without unrolling the main loop
of the compression function, thereby keeping the code size small. When
executed on an 8-bit AVR ATmega128 microcontroller, the compression
function takes slightly less than 60k clock cycles, which corresponds to
a compression rate of roughly 467 cycles per byte. The binary code size
of the full SHA-512 implementation providing a standard Init-Update-
Final (IUF) interface amounts to approximately 3.5 kB.

Keywords: Internet of Things (IoT), Lightweight Cryptography, AVR
Microcontroller, Software Optimization, Performance Evaluation

1 Introduction

A cryptographic hash function takes data of arbitrary form and size as input to
produce a fixed-length output of typically between 160 and 512 bits that can be
seen as a “digital fingerprint” of the data [15]. Hash functions play a major role
in IT security and serve a wide variety of purposes, ranging from verifying the
integrity of data (e.g. messages, documents, software) over securing the storage

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/186473296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 H. Cheng et al.

of sensitive credentials (e.g. passwords, credit card numbers) to realizing proof-
of-work systems for digital currencies. In addition, hash functions are essential
building blocks of digital signature schemes, key derivation functions, message
authentication codes, and pseudo-random number generators. The design and
analysis of cryptographic hash functions has been an active area of research in
the past 30 years that yielded not only a large body of new algorithms but also
many insights on the security of existing ones. Among the most important and
commonly-used hash functions are the members of the SHA-2 family, which are
approved by the NIST [17] and many other standardization bodies around the
world. The SHA-2 family consists of six hash functions providing varying levels
of security with digests ranging from 224 to 512 bits. However, only two of the
six members, namely SHA-256 and SHA-512, can be seen as “original” designs
since the other four are just variants of them with different initial hash values
and truncated digests. SHA-256 and SHA-512 share many properties; they are
both based on the Merkle-Damgård structure with a Davies-Meyer compression
function that is solely composed of Boolean operations (bitwise AND, bitwise
XOR), modular additions, as well as rotations (resp. shifts). These operations
are performed on eight working variables, each of which has a length of 32 bits
in SHA-256 and 64 bits in SHA-512.

The enormous expansion of the Internet of Things (IoT) in recent years has
initiated a strong interest in lightweight cryptography, a relatively new subfield
of cryptography dealing with (i) the design of novel cryptographic algorithms
tailored to extremely constrained environments, and (ii) the efficient and secure
implementation of cryptographic algorithms with the objective to minimize the
execution time and resource requirements (e.g. power consumption and silicon
area in the case of hardware implementation, and RAM footprint and code size
when implemented in software) [1]. Optimization techniques to make SHA-256
suitable for resource-constrained IoT devices have been actively researched in
the past 10 years and numerous lightweight implementations in both hardware
[8] and software [4, 19] were reported in the literature. Balasch et al. describe in
[4] an optimized Assembler implementation of SHA-256 for the 8-bit AVR plat-
form that achieves a hash rate of 532 cycles per byte when hashing a 500-byte
message on an ATtiny45 microcontroller. The to-date fastest SHA-256 software
for an 8-bit processor was introduced by Osvik in [19] and reaches an execution
time of 21440 cycles for the compression function alone, which corresponds to
a compression rate of 335 cycles per byte. These results show that SHA-256 is
difficult to implement efficiently on small 8-bit microcontrollers, mainly due to
the severely limited register space of these platforms, which is not sufficient to
accommodate the working variables and provide storage for temporary values
or pointers to access RAM. Furthermore, rotations are generally slow on these
processors since they do not feature dedicated rotation hardware, which means
rotating an 8-bit register by n bits takes (at least) n clock cycles.

SHA-512 is even more challenging to implement on small microcontrollers
than SHA-256 since each of the eight working variables has a length of 64 bits
instead of 32 bits, which doubles the register pressure. To our knowledge, it has



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 3

never been attempted before to optimize SHA-512 in Assembly language for an
8-bit microcontroller since the scientific literature does not provide any results
and also public repositories like GitHub do not contain any source codes. This
is quite surprising since SHA-512 is one of the most important hash functions
and especially popular on 64-bit platforms, where it significantly outperforms
SHA-256 [12]. It is expected that the (relative) importance of SHA-512 versus
SHA-256 will increase in the future, not only in the realm of high-performance
computing but also in the IoT, mainly for two reasons. The first reason is the
emergence of EdDSA, a state-of-the-art signature scheme using elliptic curves in
twisted Edwards form [6]. EdDSA is most commonly instantiated with a curve
that is birationally equivalent to Curve25519, providing a security level of ap-
proximately 128 bits, and SHA-512 as hash function, which is assumed to have
256 bits of security against collision attacks [14]. While it is common practice
to choose elliptic curves and hash functions of roughly equivalent security, the
designers of EdDSA decided to deviate from this practice and utilize a double-
size hash function in order to “help alleviate concerns regarding hash function
security” [6]. EdDSA comes with a number of features that make it attractive
for resource-limited IoT devices, most notably the outstanding efficiency of the
underlying elliptic-curve arithmetic. Speed-optimized EdDSA implementations
for the 8-bit AVR platform are described in [13, 16], but these implementations
are mainly tuned towards fast arithmetic (i.e. fast scalar multiplication) and do
not contain any Assembler optimizations for SHA-512.

The second reason why SHA-512 can be expected to increase in importance
compared to SHA-256 is the emerging threat of quantum cryptanalysis. Some
20 years ago, Grover [11] introduced a quantum algorithm for finding a specific
entry in an unsorted database of size n with complexity O(2n/2), providing (in
theory) a quadratic speedup compared to classical exhaustive search. Grover’s
algorithm is believed to have an effect on cryptanalysis; for example, it could be
applied to find the secret key used by an n-bit block cipher or a preimage of an
n-bit hash value in

√
n steps. Brassard et al. [7] proposed a quantum algorithm

for generic collision search based on Grover’s technique that needs to perform
only O(2n/3) quantum evaluations of a hash function, but requires a very large
amount of memory. Recently, Chailloux et al. [9] put forward a novel quantum
algorithm for finding collisions with a quantum-query complexity and also time
complexity of O(22n/5), a quantum-memory complexity of just O(n) qbits, and
a classical memory complexity of O(2n/5) bits. However, Bernstein [5] disputes
the complexity analysis given in [9] and argues that all of the currently-known
quantum algorithms for collision search are, in fact, less cost-effective than the
best classical (i.e. pre-quantum) technique when execution time and hardware
cost are considered appropriately. Nonetheless, the NIST published in [18] an
assessment of the impact of quantum computers on present-day cryptographic
algorithms according to which hash functions may need a larger output. In the
the context of the SHA-2 family, this obviously suggests to use a hash function
with a digest length of more than 256 bits, i.e. SHA-384 or SHA-512, when 128
bits of security against collision attacks are needed. Since research in quantum



4 H. Cheng et al.

cryptanalysis is still in its infancy, it seems prudent to err on the safe side and
deploy SHA-512 in applications that require long-term security3.

In this paper, we introduce a carefully-optimized Assembler implementation
of the SHA-512 hash function for 8-bit AVR microcontrollers, in particular the
ATmega series. As mentioned before, we are not aware of previous publications
concerned with implementation and optimization aspects of SHA-512 on small
8-bit platforms. Therefore, it is not known how to optimize SHA-512 for these
resource-constrained microcontrollers and what execution time can be reached
with hand-written Assembler code. The present paper intends to answer these
questions and describes two software optimization techniques that allow one to
achieve significant performance gains compared to standard C implementations
compiled with avr-gcc. Our first optimization technique aims to accelerate the
four sigma operations, especially the rotations (resp. shifts) of 64-bit operands
they perform. The other optimization speeds up the memory accesses that have
to be carried out during the computation of the SHA-512 compression function
by exploiting the indirect addressing mode with displacement (offset), which is
supported by the AVR architecture. Combining both optimization techniques
enabled our Assembler implementation of the compression function to outperform
C code compiled with optimization level -o2 by a factor of 4.42.

2 Overview of SHA-512

SHA-512 is a member of the NIST-standardized SHA-2 family of cryptographic
hash functions that produces a 512-bit digest and, therefore, provides 256 bits
of security against collisions [17]. The input message can have a length of up to
2128 − 1 bits and is processed in blocks of 1024 bits. Like other members of the
SHA-2 family, SHA-512 is based on the well-known Merkle-Damgård structure
with a Davies-Meyer compression function that uses solely Boolean operations
(i.e. bitwise AND, XOR, OR, and NOT), modular additions, as well as shifts
and rotations. All operations are applied to 64-bit words.

SHA-512 consists of two stages: preprocessing and hash computation. In the
former stage, the eight working variables, denoted as a, b, c, d, e, f , g, and h in
[17], are initialized to certain fixed constants. Furthermore, the input message
is padded and then divided into 1024-bit blocks. The actual hash computation
passes each message block (represented by 16 words m0, m1, . . . m15 of 64 bits
each) through a message schedule (illustrated in Fig. 1) to expand them to 80
words wi with 0 ≤ i ≤ 79. Then, the eight working variables are updated using
a compression function that consists of 80 rounds. A round of the compression
function is exemplarily depicted in Fig. 2. The processing of a 1024-bit message
block results in eight 64-bit intermediate hash values. After the whole message
has been processed, the 512-bit digest is generated by simply concatenating the
eight intermediate hash values.
3 A common example of a class of IoT devices with long-term security requirements
are smart meters because they are expected to reach lifetimes of between 10 and 25
years (according to [22, Table 2]) without requiring regular maintenance.



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 5

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

wi−16

wi−7

wi−1

wiσ1σ0

σ0,i = (wi−15 ≫ 1)⊕ (wi−15 ≫ 8)⊕ (wi−15 � 7)

σ1,i = (wi−2 ≫ 19)⊕ (wi−2 ≫ 61)⊕ (wi−2 � 6)

wi = wi−16 � σ0,i � wi−7 � σ1,i

Fig. 1. The message schedule of SHA-512.

Each round of the compression function consists of seven modular additions
of 64-bit words and four relatively more costly operations: Maj (Majority) and
Ch (Choice) are composed of a sequence of bitwise operations (mainly logical
AND and XOR), whereas the two sigma operations Σ0, Σ1 perform XORs and
rotations of a 64-bit word by a fixed amount of bit-positions. Furthermore, in
each round i of the compression function, the set of eight working variables is
rotated word-wise. The word ki in Fig. 2 is one of eighty 64-bit constants.

a b c d e f g h

Σ0 Maj (a, b, c) Σ1 Ch(e, f, g)

wi � ki

Σ0,i = (ai ≫ 28)⊕ (ai ≫ 34)⊕ (ai ≫ 39)

Maj i = (ai ∧ bi)⊕ (ai ∧ ci)⊕ (bi ∧ ci)
t2,i = Σ0,i �Maj i

Σ1,i = (ei ≫ 14)⊕ (ei ≫ 18)⊕ (ei ≫ 41)

Chi = (ei ∧ fi)⊕ (ēi ∧ gi)
t1,i = hi �Σ1,i � Chi � ki � wi

(hi+1, gi+1, fi+1, ei+1) = (gi, fi, ei, di � t1,i)

(di+1, ci+1, bi+1, ai+1) = (ci, bi, ai, t1,i � t2,i)

Fig. 2. A round of the SHA-512 compression function.

As pointed out in [17, Sect. 6.1.3], the message schedule can either be pre-
computed (so that the expanded message block is available before starting the



6 H. Cheng et al.

first round of the compression function) or executed “on the fly” in an iterative
fashion, e.g. 16 words at a time. The latter method is more RAM-friendly since
there is no need to store all 80 words wi of the expanded message block, while
the former approach is usually a bit faster. A more detailed description of the
SHA-512 hash function can be found in the specification [17].

3 Evaluation of Existing C/C++ Implementations

As indicated in Sect. 1, we are not aware of any previous Assembler implemen-
tation of SHA-512 for 8-bit AVR microcontrollers. However, there exist various
lightweight C/C++ implementations that can be compiled to run on AVR.

3.1 8-bit AVR Architecture

The popular AVR architecture was originally developed by Atmel Corporation
(now part of Microchip Technology, Inc.) on basis of the RISC philosophy and a
modified Harvard memory model. Its latest revision supports 129 instructions
altogether, the vast majority of which have a fixed length of two bytes [2]. The
register file is relatively large and contains 32 general-purpose working registers
(named R0 to R31) of 8-bit width that are directly connected to the Arithmetic
Logic Unit (ALU). Standard arithmetic/logical instructions have a two-address
format, which means they can read two 8-bit operands independently from two
of the working registers and write the result back to one of them. Since AVR is
a “Harvard-based” architecture, it uses separate memories, buses, and address
spaces for program and data to maximize performance and parallelism. Three
pairs of working registers can operate as 16-bit pointers (X, Y, and Z) to access
data memory, whereby five addressing modes are supported. Furthermore, the
pointer Z can be used to read from (and write to) program memory.

The specific AVR microcontroller on which we simulated the execution time
of our SHA-512 software is the ATmega128 [3]. It features a two-stage pipeline
capable to execute an instruction while the next instruction is fetched from the
program memory. Conventional ALU instructions take one clock cycle, whereas
load/store instructions from/to data memory have a latency of two cycles. The
memory sub-system includes 128 kB flash memory and 4 kB SRAM.

3.2 Performance Analysis

At the beginning of our research effort towards high-speed SHA-512 hashing on
8-bit AVR micrcontrollers was a careful analysis of some existing open-source
C and C++ implementations, including the SHA-512 software contained in the
Arduino Cryptography Library [20]. We compiled the source codes with version
5.4.0 of avr-gcc (optimization option -o2) and determined the execution times
through simulations using the ATmega128 as target platform [3]. The SHA-512
implementation from the Arduino Cryptography Library needs 1341398 cycles
to compute the digest of a 500-byte message, which corresponds to a hash rate



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 7

of 2683 cycles per byte. We also evaluated a couple of other C implementations
that were available on source-code repositories like GitHub and found them to
be very similar in terms of performance. In addition, we searched the literature
for lightweight SHA-512 software, but did not discover any recent (i.e. less than
five years old) publications with implementation results for AVR. However, we
came across a paper by Wenzel-Brenner et al. [21] from 2012 that analyzes the
performance of several hash algorithms, including a C implementation of SHA-
512, on an ATmega1284P. They reported a hash rate of more than 8000 cycles
per byte when hashing a long message, but this result should taken with some
caution because it was obtained with a now-outdated version of avr-gcc that is
not state-of-the-art anymore. For comparison, the to-date best implementation
of SHA-256 was written in AVR Assembly language and reaches a compression
rate of 335 cycles per byte [19]. These results immediately prompt the question
of why the compiler-generated code for SHA-512 is approximately eight times
less efficient than the hand-optimized Assembler code for SHA-256. In order to
answer this question, we inspected the Assembler output generated by avr-gcc
and found two reasons for the rather poor performance of SHA-512. First, the
four sigma operations are much slower than they could be because avr-gcc uses
the “generic” rotation functions for 64-bit words from libgcc. Second, the code
generated by avr-gcc contains an unnecessarily large number of load and store
instructions due to register spills, which could be massively reduced by means
of a sophisticated register allocation strategy. What makes things even worse is
that many of these load/store operations involve costly address arithmetic.

The four sigma operations have a major impact on the overall performance
of the SHA-512 compression function. In essence, they comprise a few rotations
of 64-bit words by a fixed number of bit-positions and logical XOR operations
[17]. Rotations are generally slow on 8-bit AVR microcontrollers since, unlike
to ARM processors, they do not feature a dedicated functional unit that could
execute rotations by several bit-positions in a single clock cycle. Therefore, all
multi-bit rotations need to be composed of several rotations by one bit. When-
ever avr-gcc discovers a rotation of a 64-bit word in C code, it implements this
rotation using functions named rotldi3 (to rotate left) or rotrdi3 (to rotate
right), which are part of the avr-gcc low-level runtime library libgcc. Both are
generic rotation functions that consist of two loops; the first loop performs one
or more bytewise rotations (by simply copying the content of registers via the
mov instruction [2]) and the second loop a sequence of bitwise rotations. When
rotating by n bits, then the first loop is iterated (at most) bn/8c times and the
second loop (n mod 8) times. Unfortunately, it seems avr-gcc is not capable to
“globally” optimize the sigma operations since it just calls rotldi3/rotrdi3 to
perform the rotations and then executes eor instructions without taking into
account that the bytewise rotations and XORs can be merged. We describe in
Subsect. 4.1 hand-written Assembler implementations of the sigma operations
that reduce the execution time significantly compared to C code.

Another reason for the relatively poor performance of C implementations is
that each of the eight working variables has a length if 64 bits, which amounts



8 H. Cheng et al.

to 64 bytes altogether. However, the register file of an AVR microcontroller can
accommodate only 32 bytes, i.e. just half of the size of all working variables. In
addition, it has to be taken into account that not every register can be used to
store working variables since some registers are needed for temporary variables
or to hold the 16-bit pointers. Thus, it is only possible to keep (at most) three
64-bit words in the register file at any time, which implies the majority of the
working variables has to be kept in RAM rather than in registers. Our analysis
of the Assembler code generated by avr-gcc showed that the register allocation
strategy is far from ideal, which causes a massive number of memory accesses
(i.e. loads and stores) that could be avoided. Most of these loads/stores require
further instructions for address (i.e. pointer) arithmetic. Particularly costly in
terms of memory accesses is the word-wise cyclic rotation of the set of working
variables, which, as explained in Sect. 2, has to be carried out in each iteration
of the compression function. However, it is possible to completely avoid these
word-wise rotations by (partially) unrolling the main loop and replicating the
loop body eight times. This unrolling enables one to accomplish the word-wise
rotation in an implicit (i.e. “hard-coded”) way by simply adapting the order in
which the eight working variables are accessed. Unfortunately, the performance
gained by this technique has to be paid with a significant increase of code size
due to the loop unrolling. We present in Subsect. 4.2 a new approach to reduce
the cost of the word-wise rotations that increases the code size only slightly.

4 Our Assembler Implementation

In the following, we present the Assembler optimizations we developed to speed
up the sigma operations and memory accesses of the compression function.

4.1 Optimization of the Sigma Operations

Our decision to develop Assembler optimizations for the four sigma operations
σ0, σ1, Σ0, and Σ1, which are used in the SHA-512 compression function, was
motivated by the high potential for improvement we identified by analyzing the
Assembler code generated by avr-gcc and comparing it with the best-optimized
implementations of rotations on 8-bit AVR from [10]. In short, our strategy to
speed up the sigma operations was to minimize the overall number of bitwise
rotations and to “merge” the bytewise rotations with XORs.

The only rotation instructions supported by the 8-bit AVR architecture are
rotations of 8-bit operands by one bit to the left (rol) and right (ror). There-
fore, rotations of 8-bit words by other amounts, and also rotations of operands
that are longer than eight bits, have to be carried out by executing a sequence
of 1-bit rotations and other instructions [10]. For example, a 1-bit left-rotation
of a 64-bit operand consists of a 1-bit logical left-shift (lsl), followed by seven
1-bit left-rotations through carry (rol), and an addition with carry (adc). The
overall execution time of this sequence of instructions is nine clock cycles (see
[10, p. 251] for further details). A rotation of a 64-bit operand by n bits, where



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 9

1 < n < 8, can be computed by repeating n times the sequence of instructions
for rotating a 64-bit quantity by one bit in the same direction. However, it has
to be pointed out that a left-rotation and a right-rotation by one and the same
number of bits can have different execution times. For example, a right-rotation
of a 64-bit operand by one bit requires ten cycles, which is one cycle more than
what is needed for a left-rotation. Consequently, it makes sense to compare the
two possible options for a rotation, namely rotation by n bits to the left versus
rotation by (64− n) bits to the right, to select the most efficient one [10].

By combining our efficient implementations of the rotations with the XORs
performed in each of the four sigma operations, we were able to further reduce
the execution time of the compression function. Our basic idea is to exploit the
fact that a bytewise rotation of a 64-bit operand can be executed for free when
it is XORed with another 64-bit operand. More concretely, an operation of the
form x = x⊕ (y≫ 8) can be performed with just eight eor instructions on an
AVR processor by simply XORing the bytes of x and y in such a way that the
bytewise rotation is “implicitly” carried out. This approach can also be applied
for rotations by other amounts. For example, the operation x = x⊕ (y≫ 7) is
normally implemented as a bitwise rotation to the left by one bit (which takes
nine clock cycles), followed by a bytewise right-rotation (also nine cycles), and
an XOR (eight cycles). However, by integrating the bytewise right-rotation into
the XOR, the total execution time decreases to 17 clock cycles. Similar savings
in execution time are possible when rotations by a larger number of bits have to
be performed since our idea also works for multiples of eight bits.

The “small” sigma operations σ0, σ1 are used in the message schedule, while
the “big” sigma operations Σ0, Σ1 are essential components of the compression
function. They can be expressed through the following formulae [17].

σ0 = (x≫ 1)⊕ (x≫ 8)⊕ (x� 7)

σ1 = (x≫ 19)⊕ (x≫ 61)⊕ (x� 6)

Σ0 = (x≫ 28)⊕ (x≫ 34)⊕ (x≫ 39)

Σ1 = (x≫ 14)⊕ (x≫ 18)⊕ (x≫ 41)

By applying the optimization techniques described above, the formulae for the
four sigma operations can be rewritten to clearly show the bitwise and bytewise
rotations and whether they go to the left or to the right. Rotations by amounts
that are multiple of eight, marked in green, are executed implicitly (i.e. merged
into a 64-bit XOR operation) and do not increase the execution time.

σ0 = (x≫ 1)⊕ (x≫ 8)⊕ (((x≪ 1)≫ 8) ∧ (257 − 1))

σ1 = (((x≪ 2)≫ 8) ∧ t)⊕ ((x≪ 2)≪ 1)⊕ ((((x≪ 2)≪ 1)≪ 2)≫ 24)

Σ0 = ((x≫ 40)≪ 1)⊕ ((x≫ 2)≫ 32)⊕ (((x≫ 2)≫ 2)≫ 24)

Σ1 = ((x≫ 16)≪ 2)⊕ ((x≫ 1)≫ 40)⊕ (((x≫ 1)≫ 1)≫ 16)

We implemented the four sigma operations in AVR Assembly language using the
optimized formulae given above. The value of t on the right side of the formula



10 H. Cheng et al.

Table 1. Execution time and code size of the sigma operations on the ATmega128.

Assembler C language
Operation Time Code size Time Code size

(cycles) (bytes) (cycles) (bytes)
σ0 41 82 525 168
σ1 71 142 399 168
Σ0 71 142 431 168
Σ1 58 116 521 168

for σ1 is 258 − 1 so that it can be used to mask off the six most-significant bits
of a 64-bit operand. Our implementations perform the rotations by a multiple
of eight bit-positions implicitly (i.e. “merged” into an XOR); only the rotations
by less than eight bits to the left or right are actually executed. Table 1 shows the
execution time and code size of our optimized Assembler implementations and
that obtained by compiling C code for the sigma functions. The C sources were
compiled with avr-gcc, which uses generic rotation functions from the low-level
runtime library libgcc, such as rotldi, to rotate a 64-bit operand. Our results
show that the optimized Assembler implementations are between 5.6 and 12.8
times faster and up to 2.04 times smaller than their C counterparts.

4.2 Optimization of the Memory Accesses

As analyzed in Subsect. 3.2, one of the reasons for the suboptimal performance
of the binary code generated by the avr-gcc compiler is an unnecessarily large
number of memory access to load or store the eight working variables (or parts
of them) from/to the SRAM. Especially costly is the word-wise rotation of the
set of working variables that has to be carried out during each iteration of the
compression function as is explained in Sect. 2 and illustrated in Fig. 2. Some
implementations unroll (or partially unroll) the loops to avoid these word-wise
rotation, which comes at the expense of increased code size. To overcome this
problem, we developed a special optimization strategy that maintains two sets
of working variables in SRAM (i.e. we “duplicate” the eight working variables)
and intensively uses the indirect addressing mode with displacement [2] of the
AVR architecture to avoid the word-wise rotation in each iteration without the
need to unroll the main loop of the compression function. In this way, we were
able to achieve both high performance and small code size.

The indirect addressing mode with displacement is one of several modes to
address data in SRAM and can be used with the 16-bit pointer registers Y and
Z. This mode forms the actual address by adding a “displacement” (sometimes
called offset) to the content of a pointer register. In AVR, the displacement is
a 6-bit constant that is embedded into the instruction word (i.e. the maximum
displacement is 63). Other embedded RISC architectures like ARM are more
flexible since the displacement (or offset) does not need to be constant but can
also be a variable stored in a general-purpose register. Two AVR instructions



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 11

a b c d e f g h a b c d e f g h

Y

i=7

Y

i=6

Y

i=5

Y

i=4

Y

i=3

Y

i=2

Y

i=1

Y

i=0

Fig. 3. Graphical representation of the “duplicated” set of working variables stored in
an array of 128 bytes.

that support indirect addressing with displacement are ldd and std, which can
be used to efficiently access a given element of an array when its index is fixed
and known a priori (i.e. at compile time). Concretely, when pointer Y holds the
start address of a byte-array S, then the Assembler statement ldd r4,Y+2 can
be used to load S[2] (i.e. the third byte of the array S) to register r4, whereby
the pointer Y itself does not get modified in any way.

Our optimized Assembler implementation of the compression function uses
two sets of working variables to simplify the address calculations. At the begin-
ning (i.e. before the very first iteration), the second set is simply a copy of the
first one, which means both sets are identical. The two sets are stored in a byte
array S of length 128 bytes in SRAM in such a way that the first set occupies
the upper half of the array (i.e. the bytes from S[64] to S[127]) and the second
set the lower half (S[0] to S[63]). Figure 3 illustrates the byte array S with the
first set of working variables colored in green on the right side and the second
set in blue on the left side. We use pointer-register Y to access the array. In the
very first iteration (i.e. in the iteration with loop-counter i = 0), Y contains the
start address of working variable a of the first set (i.e. the least-significant byte
of the green a), which is the address of S[64]. All eight working variables of the
first (green) set can be conveniently accessed via the indirect addressing mode
with displacement since the offset will never be bigger than 63. Thanks to this
addressing mode, no costly address arithmetic needs to be performed to obtain
the actual addresses of the bytes of the working variables. Our implementation
first computes the Maj operation, which requires to load the working variables
a, b, and c from the green set. The offsets for these three working variables are
0 – 7, 8 – 15, and 16 – 23, respectively. Thereafter, Σ0, Ch, and Σ1 are computed
and finally the temporary values t1 and t2. In a “conventional” implementation
of the compression function (i.e. an implementation that actually performs the
word-wise rotation of the set of working variables), the sum t1 + t2 is assigned
to a and the sum d+ t1 to e (see Sect. 2). However, our implementation does
not perform a word-wise rotation and, therefore, d+ t1 is written to the green
d and t1 + t2 to the blue h. The last step is to decrement Y by eight.

At the beginning of the second iteration (i.e. the iteration where i = 1), the
pointer-register Y contains the address of the least-significant byte of the blue
h, i.e. the address of S[56]. The second iteration is carried out quite similar to
the first iteration, which means we start with computing the Maj operation as
before. This computation requires to load the blue h and the green a, b from



12 H. Cheng et al.

SRAM. As pointed out above, our implementation does not rotate the working
variables word-wise, and therefore the blue h contains the sum t1 + t2 that was
calculated in the previous iteration (i.e. the blue h corresponds to variable a in
a “rotated” implementation). These variables have the offsets 0 – 7, 8 – 15, and
16 – 23, respectively, exactly like in the first iteration. Also Σ0, Ch, and Σ1 are
computed in the same fashion as above. At the end of the second iteration, the
pointer register Y is again decremented by eight. Subsequent iterations are also
performed in this way. It is important to understand that in each iteration, the
offsets used to access the bytes of the working variables are always the same as
in the first iteration, only the base address in Y is different. In this way, we can
avoid the word-wise rotations without loop unrolling. However, after eight iter-
ations, the two sets of working variables must be “synchronized,” which means
the second (blue) set has to be copied to the first (green) set so that both sets
are identical again. Fortunately, this duplication of the variables is only needed
in every eighth iteration; therefore, it is much more efficient than rotating the
set of working variables word-wise in each iteration. The only drawback of this
approach is a slight increase in RAM consumption (by 64 bytes) since two sets
of working variables are needed.

5 Results and Comparison

We developed besides the AVR Assembler implementation of the compression
function also a C version based on the same optimization techniques using two
sets of working variables. All other parts of the SHA-512 algorithm, such as the
padding, were written only in C since they are not really performance-critical
[19]. Our software provides both a high-level and a low-level API, whereby the
former consists of just a single function, namely sha512_hash. The low-level
API, on the other hand, comes with the standard IUF (init, update, final)
functions that allow for hashing of very large or fragmented data without the
need to have the full data in SRAM.

We used Atmel Studio v7.0 as development environment with an extension
that provides the 8-bit AVR GNU toolchain including avr-gcc version 5.4.0. All
execution times reported in this section were determined with the help of the
cycle-accurate instruction set simulator of Atmel Studio, whereby we used the
ATmega128 microcontroller as target device. We simulated the execution time
of the Assembler version and the C version of the compression function alone
and also the time required to hash a 500-byte message so that we can compare
our results with those from previous papers such as [4]. The latter performance
test was carried out with the help of the high-level API by simply calling the
sha512_hash function. Our simulations gave an execution time of 59768 cycles
for the AVR-Assembler version of the compression function and 264133 cycles
for the C implementation. In both cases, the function call overhead is included
in the specified cycle count. These execution times represent compression rates
of approximately 467 and 2064 cycles per byte, respectively, which means the
Assembler implementation outperforms the C version by a factor of 4.42. We



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 13

Table 2. Performance (i.e. hash rate when hashing a 500-byte message) and code size
of different hash functions on the ATmega128.

Hash rate Code sizeReference Algorithm Impl.
(cyc/byte) (bytes)

This paper SHA-512 C 2654 4610
This paper SHA-512 C+Asm 611 3460

Weatherley [20] SHA-512 C++ 2683 8072
Osvik [19] SHA-256 (CP) Asm 335 2720

Balasch et al. [4] SHA-256 Asm 532 1090
Balasch et al. [4] Blake (256 bit) Asm 562 1166
Balasch et al. [4] Grøstl (256 bit) Asm 686 1400
Balasch et al. [4] Keccak (256 bit) Asm 1432 868
Balasch et al. [4] Photon (256 bit) Asm 6210 1244

also simulated the execution time of the compression function of the SHA-512
software contained in the Arduino Cryptography Library [20] and found it to be
slightly slower than our own C implementation.

When hashing a message of length 500 bytes (using the high-level function
sha512_hash), we obtained an overall execution time of 1327132 cycles for the
“pure” C implementation and 305303 cycles for the Assembler version. These
two cycle counts translate to hash rates of approximately 611 and 2654 cycles
per byte, respectively, which means the Assembler optimizations we proposed
yield a speed-up by a factor of about 4.34 over the C code. The hash rates are
significantly worse than the compression rates, which is mainly because of the
padding. Normally, a 500-byte message fits into four 128-byte blocks, but due
to padding, the compression function gets executed five times altogether. If we
would hash e.g. a 620-byte message, we get exactly the same execution time as
for a 500-byte message (since in both cases the compression function is called
five times), but the hash rate is much better because the cycle count is divided
by 620 instead of 500. Table 2 compares our results with that of a few previous
SHA-2 implementations and three SHA-3 candidates from [4]. It is remarkable
that our Assembler version of the SHA-512 hash algorithm is only slightly less
efficient than Balasch et al.’s Assembler implementation of SHA-256 [4], even
though using a 500-byte message for benchmarking favors SHA-256 over SHA-
512. Namely, as pointed out before, hashing 500 bytes with SHA-512 requires
five calls of the compression function (whereby each time a 128-byte block gets
processed), but in the case of SHA-256 the compression function is only called
eight times (to process 64 bytes each time). When we hash a 620-byte message
instead of the 500-byte message, then our SHA-512 software actually achieves
a better hash rate than the SHA-256 implementation of Balasch et al.

The code size of our implementation, including both the high-level function
sha512_hash and the low-level functions init, update, final, along with the
compression function (in Assembler), amounts to 3460 bytes. The compression
function alone has a size of 2206 bytes and occupies 158 bytes on the stack.



14 H. Cheng et al.

6 Conclusions

We demonstrated that the execution time of SHA-512 on 8-bit AVR microcon-
trollers can be significantly improved through hand-optimized Assembler code
for the compression function. Our implementation of the compression function
takes 59768 clock cycles on an ATmega128 microcontroller, which corresponds
to a compression rate of approximately 467 cycles per byte. For comparison, an
implementation in C compiled with avr-gcc 5.4.0 is about 4.42 times slower as
it requires 264133 cycles (i.e. roughly 2064 cycles per byte). Hashing a 500-byte
message with and without Assembler optimizations takes 305303 and 1327132
cycles, respectively, which represents a nearly 4.35-fold difference in execution
time. We achieved this performance gain through a careful optimization of the
four sigma operations and by minimizing the cost of memory (SRAM) accesses
via a novel approach that duplicates the working variables but does not require
loop unrolling. The latter optimization technique can potentially be applied in
various other contexts beyond the acceleration of SHA-512 on AVR. It can be
easily adapted to other architectures that feature an indirect addressing mode
(e.g. MSP430, ARM) and may be useful for other cryptosystems that perform
word-wise rotation of working variables or a state. We hope that our work will
contribute to a more wide-spread deployment of SHA-512 (and cryptosystems
that use SHA-512, in particular EdDSA) on constrained IoT devices.

References

1. C. Alippi, A. Bogdanov, and F. Regazzoni. Lightweight cryptography for constrained
devices. In Proceedings of the 14th International Symposium on Integrated Circuits
(ISIC 2014), pages 144–147. IEEE, 2014.

2. Atmel Corporation. 8-bit AVR Instruction Set. User guide, available for download
at http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf, 2008.

3. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System Pro-
grammable Flash: ATmega128, ATmega128L. Datasheet, available for download at
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf, 2008.

4. J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Güneysu, S. Heyse,
S. Kerckhof, F. Koeune, T. Plos, T. Pöppelmann, F. Regazzoni, F.-X. Standaert,
G. Van Assche, R. Van Keer, L. van Oldeneel tot Oldenzeel, and I. von Maurich.
Compact implementation and performance evaluation of hash functions in ATtiny
devices. In S. Mangard, editor, Smart Card Research and Advanced Applications —
CARDIS 2012, volume 7771 of Lecture Notes in Computer Science, pages 158–172.
Springer Verlag, 2013.

5. D. J. Bernstein. Quantum algorithms to find collisions. The cr.yp.to blog, available
online at http://blog.cr.yp.to/20171017-collisions.html, 2017.

6. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. In B. Preneel and T. Takagi, editors, Cryptographic Hardware
and Embedded Systems — CHES 2011, volume 6917 of Lecture Notes in Computer
Science, pages 124–142. Springer Verlag, 2011.

7. G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free
functions. In C. L. Lucchesi and A. V. Moura, editors, LATIN ’98: Third Latin



Efficient Implementation of SHA-512 for 8-bit AVR Microcontrollers 15

American Symposium on Theoretical Informatics, volume 1380 of Lecture Notes in
Computer Science, pages 163–169. Springer Verlag, 1998.

8. X. Cao and M. O’Neill. Application-oriented SHA-256 hardware design for low-cost
RFID. In Proceedings of the 45th IEEE International Symposium on Circuits and
Systems (ISCAS 2012), pages 1412–1415. IEEE, 2012.

9. A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher. An efficient quantum
collision search algorithm and implications on symmetric cryptography. In T. Takagi
and T. Peyrin, editors, Advances in Cryptology — ASIACRYPT 2017, volume
10625 of Lecture Notes in Computer Science, pages 211–240. Springer Verlag, 2017.

10. D. Dinu. Efficient and Secure Implementations of Lightweight Symmetric Crypto-
graphic Primitives. PhD thesis, University of Luxembourg, 2017.

11. L. K. Grover. A fast quantum mechanical algorithm for database search. In G. L.
Miller, editor, Proceedings of the 28th Annual ACM Symposium on the Theory of
Computing (STOC 1996), pages 212–219. ACM Press, 1996.

12. S. Gueron, S. Johnson, and J. Walker. SHA-512/256. Cryptology ePrint Archive,
Report 2010/548, 2010. Available for download at http://eprint.iacr.org/2010/
548.

13. M. Hutter and P. Schwabe. NaCl on 8-bit AVR microcontrollers. In A. Youssef,
A. Nitaj, and A. E. Hassanien, editors, Progress in Cryptology — AFRICACRYPT
2013, volume 7918 of Lecture Notes in Computer Science, pages 156–172. Springer
Verlag, 2013.

14. S. Josefsson and I. Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA).
Internet Research Task Force, Crypto Forum Research Group, RFC 8032, Jan.
2017.

15. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press Series on Discrete Mathematics and Its Applications.
CRC Press, 1996.

16. E. Nascimento, J. López, and R. Dahab. Efficient and secure elliptic curve cryp-
tography for 8-bit AVR microcontrollers. In R. S. Chakraborty, P. Schwabe, and
J. A. Solworth, editors, Security, Privacy, and Applied Cryptography Engineering —
SPACE 2015, volume 9354 of Lecture Notes in Computer Science, pages 289–309.
Springer Verlag, 2015.

17. National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHS). Federal Information Processing Standards Publication 180-4, available for
download at http://dx.doi.org/10.6028/NIST.FIPS.180-4, Aug. 2015.

18. National Institute of Standards and Technology (NIST). Report on Post-Quantum
Cryptography. Internal Report 8105, available for download at http://dx.doi.
org/10.6028/NIST.IR.8105, Apr. 2016.

19. D. A. Osvik. Fast embedded software hashing. Cryptology ePrint Archive, Report
2012/156, 2012. Available for download at http://eprint.iacr.org/2012/156.

20. R. Weatherley. Arduino Cryptography Library. Source code, available online at
http://github.com/rweather/arduinolibs, 2018.

21. C. Wenzel-Benner, J. Gräf, J. Pham, and J.-P. Kaps. XBX benchmarking results
January 2012. In Proceedings of the 3rd SHA-3 Candidates Conference, 2012.

22. S. Zhou and M. A. Brown. Smart meter deployment in Europe: A comparative case
study on the impacts of national policy schemes. Journal of Cleaner Production,
144:22–32, Feb. 2017.


