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Abstract

Power grids are critical infrastructure assets that face non-technical losses (NTL), which
include, but are not limited to, electricity theft, broken or malfunctioning meters and
arranged false meter readings. In emerging markets, NTL are a prime concern and often
range up to 40% of the total electricity distributed. The annual world-wide costs for
utilities due to NTL are estimated to be around USD 100 billion. Reducing NTL in order
to increase revenue, profit and reliability of the grid is therefore of vital interest to utilities
and authorities. In the beginning of this thesis, we provide an in-depth discussion of the
causes of NTL and the economic effects thereof.

Industrial NTL detection systems are still largely based on expert knowledge when de-
ciding whether to carry out costly on-site inspections of customers. Electric utilities are
reluctant to move to large-scale deployments of automated systems that learn NTL profiles
from data. This is due to the latter’s propensity to suggest a large number of unnecessary
inspections. In this thesis, we compare expert knowledge-based decision making systems
to automated statistical decision making. We then branch out our research into different
directions: First, in order to allow human experts to feed their knowledge in the decision
process, we propose a method for visualizing prediction results at various granularity levels
in a spatial hologram. Our approach allows domain experts to put the classification results
into the context of the data and to incorporate their knowledge for making the final de-
cisions of which customers to inspect. Second, we propose a machine learning framework
that classifies customers into NTL or non-NTL using a variety of features derived from the
customers’ consumption data as well as a selection of master data. The methodology used
is specifically tailored to the level of noise in the data. Last, we discuss the issue of biases
in data sets. A bias occurs whenever training sets are not representative of the test data,
which results in unreliable models. We show how quantifying and reducing these biases
leads to an increased accuracy of the trained NTL detectors.

This thesis has resulted in appreciable results on real-world big data sets of millions
customers. Our systems are being deployed in a commercial NTL detection software. We
also provide suggestions on how to further reduce NTL by not only carrying out inspections,
but by implementing market reforms, increasing efficiency in the organization of utilities
and improving communication between utilities, authorities and customers.
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1
Introduction

Modern societies are heavily dependent on electrical energy. This dependency increases
with the diminishing reserves of fossil fuels and the resulting changes to energy consump-
tion, such as a shift towards electric mobility as argued in [48]. For emerging markets,
energy consumption steadily increases due to increased economic wealth of market parti-
cipants. However, in those countries, large parts of the generated and transmitted power
are not accounted for and therefore bring no contribution to the profit margin of the electric
utility producing and distributing the power. In general, these transmission and delivery
(T&D) losses can be divided into technical losses and non-technical losses.

Technical losses occur mostly due to power dissipation. They are naturally caused by
internal electrical resistance in generators, transformers and transmission lines as well as
system use. In general, technical losses are around 1-2% of the total electricity distributed
in efficient systems, such as in Western Europe. In less efficient systems, they can range
up to 9-12% as reported in [74]. In contrast, [158] estimates technical losses to be in the
range of 2-6%.

In turn, non-technical losses (NTL) are caused by external entities. These entities can
be separated into customers that have an electrical energy supply contract and irregular
users. NTL consist primarily of electricity theft, faulty or broken infrastructure as well as
errors in meter reading, accounting and record-keeping as defined in [8].
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Electricity theft can be subdivided into:

• Fraud, e.g. by tampering with meters,

• bypassing metering equipment, e.g. by rigging wires, and

• arranged invoicing irregularities.

Examples of electricity theft are depicted in Figures 1.1 and 1.2.

Figure 1.1: Example of meter manipulationa.
a
Source: http://www.bbc.com/news/uk-england-35810183

In total, the annual world-wide financial losses due to NTL are estimated to be around
100 billion USD as reported in [38], [158]. Unlike technical losses these represent the major
share of the overall losses in emerging markets, which are the subject of interest in our
research. An example of what the consumption profile of a customer committing electricity
theft may look like is depicted in Figure 1.3. Even though the pattern of a sudden drop
is common among fraudsters, this drop can also have other causes. For example, tenants
can move out of a house or a factory can scale down its production.

1.1 Non-Technical Losses

The first instances of electricity theft go back to the late 19th century when utilities started
to deploy electricity to the masses. An example of electricity theft from 1886 in New York
City is reported in [133]. The corresponding newspaper article is depicted in Figure 1.4.
However, in some jurisdictions, electricity theft was not considered as being a crime. For
example, the Imperial Court of Justice of Germany ruled twice in 1896 and 1899 that
electricity theft was not included in the criminal law. The reason for that was that the
Court did not consider electricity to be an object as such and could thus not actually be
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1.1 Non-Technical Losses

Figure 1.2: Example of power distribution infrastructure manipulationa.
a
Source: http://extra.globo.com/casos-de-policia/fornecedoras-de-energia-do-rio-tem-

altos-gastos-com-combate-ao-gato-13321228.html

stolen. Both rulings are discussed in [94]. The German Parliament subsequently introduced
a law in 1900 making electricity theft punishable. In contrast, the Court of Cassation of
France ruled early that electricity theft was already covered by the existing criminal law,
as reviewed in [57].

A number of papers in the past have dealt with NTL detection and presented solutions
for minimizing NTL. However, they focus on technology, most importantly artificial intel-
ligence methods, and only take a quick glance at the economic side of NTL. An extensive
overview of technical approaches for NTL reduction can be found in Chapter 3 and in [113],
[170]. In the past decade, the technological means for detecting NTL have improved. How-
ever, a significant part of NTL persists as argued in [158]. We therefore take an additional
approach as we research the underlying causes of NTL. Based on them, we present further
approaches and guidelines to minimizing NTL in Chapter 7. Our recommendations can be
used for complementing technical measures of NTL reduction.

Our hypothesis is that a combined approach of the following is necessary for reducing
NTL:

• Technical measures against NTL,

• economic analysis of NTL,

• economic measures based on these findings and
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Figure 1.3: Typical example of electricity theft: The consumption time series of the cus-
tomer undergoes a sudden drop in the beginning of 2011 because the customer’s
meter was manipulated to record less consumption. This drop then persists over
time. Based on this pattern, an inspection was carried out in the beginning
of 2013, which detected an instance of electricity theft. This manipulation of
the infrastructure was reverted and the electricity consumption resumed to the
previous level. One year later, the electricity consumption dropped again to
about a third, which led to another inspection a few months later.

• legal and political frameworks that are supportive and consistent.

This combination then yields in an overall higher reduction of NTL compared to focusing
solely on technical measures.

The rest of this section is organized as follows. In Chapter 1.1.1, we provide an in-
depth review of the causes of NTL. Next, we discuss the global economic effects of NTL
in Chapter 1.1.2. These effects vary from country to country depending on the respective
proportion of NTL. We discuss this topic further in Chapter 1.1.3.
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Figure 1.4: Daily Yellowstone newspaper article from March 27, 1886 reporting early in-
stances of electricity theft, see [133].

1.1.1 Causes

NTL are caused both by customers who have a contract and by irregular users without
a contract. Customers not only cause NTL for example through fraudulent behavior or
faulty or broken infrastructure, but also by having unmetered access. However, unmetered
access is not necessarily fraudulent as some customers are allowed to have unmetered access
for political or historical reasons. One example of the latter category is discussed in [74]
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in which Indian farmers do not have meters, but pay a flat rate price in proportion to the
consumption required of their farming equipment. However, we would like to add that
the opposite may be true, too, though: in Brazil, some customers can buy energy directly
from a power plant. Their energy still passes through some distribution company network.
These customers are metered but not charged based on the meter value.

There are a number of other reasons why customers of electrical energy may cause NTL.
For example, [100], [178] report that some customers have insufficient income to cover the
costs, which is a main cause for electricity theft. Other customers may be generally able
to pay the energy at market price but are unwilling to do so. This can happen because the
customers assume that their non-compliance has no effects due a corrupt local structure
as argued in [14]. These assumptions appear to be reasonable, since [74] shows for the
Indian state of Uttar Pradesh that a quarter of the members of the state assembly are
either under criminal indictment or have been convicted on criminal charges.

Divergent Requirements of Utilities and Customers

In other cases where a customer wants a regular connection, the electric utility may be
unable or unwilling to provide access for various reasons. [90] provides the case of Indian
farmers who were legally eligible for a substantially subsidized connection. As providing
power to them would have decreased the profit of the electric utility, it deferred the con-
nection for up to 15 years. That delay tactic forced the farmers to establish irregular
connections. There may also be other reasons such as inefficiency when utilities are not
able to respond to demands of customers.

While the previous cases concern potential users that are able to sign a contract with
the energy supplier, the others do not fulfil the prerequisites. This could be caused by a
missing bank account which may be required as a payment option and a mean to verify the
identity of a customer. Also, potential customers may not have the documents required
for a contract. Furthermore, a lack of a regular address due to irregular housing could also
prevent a customer from getting a regular contract. Concerning irregular housing, areas
such as favelas are considered unmanageable due to the high crime rate. While they are
usually served by electric utilities, [8] argues that they may not be inspected by utilities
at all and thus make electricity theft more likely.

Unpaid Bills

[158] notes that some definitions of NTL also include unpaid bills, a special case when
electrical energy is consumed and billed, but the consumption does not increase the earnings
of the billing electric utility. Furthermore, unpaid bills impact the financial results of
utilities in more than one way. First, they directly reduce the revenue. Second, in some
markets, taxes regarding that bill must be paid in advance when it is generated. If the bill
is not paid, a complex tax reimbursement process must be followed. Third, a high amount
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of unpaid bills may require the electric utility to increase its financial provisions. This may
reduce the perceived value of a company listed in a stock market.

Contrary to other cases of theft, unpaid bills can be directly accounted to a specific
customer and the amount of billed and unpaid energy can be accurately assessed through
accounting. We therefore do not further include those losses in our discussion of NTL as
it is mostly a management and accounting issue.

1.1.2 Economic Effects

NTL have direct and indirect economic effects on the price of consumed electrical energy.
The direct effects of NTL are loss of revenue and profit for electric utilities. This can
lead to a price surcharge for regular customers. Indirect effects result from various causes:
electric utilities must regularly check for NTL by carrying out on-site inspections. An
inspection is expensive as it requires physical presence of usually two technicians. NTL can
also overload generation units, which results in an unstable and unreliable infrastructure.
[43], [74] report a number of physical impacts, such as brownouts and blackouts. The
lost revenue due to brownouts and blackouts is called value of lost load. [9] shows that
these reliability issues have a negative impact on business efficiency and compliance with
regulatory targets. Furthermore, NTL affect the overall economy as an unreliable network
prevents activities that rely on a stable network. In a similar vein, an unreliable network
requires entities to invest in safeguards such as batteries or generators as reasoned in [5].

[101] classifies the effects of electricity interruptions as a whole into direct economic
effects, indirect economic effects and social effects. Direct economic effects result from the
loss of production, the costs to restart production, equipment costs, repair costs, increased
wear and tear, rental equipment and additional use of materials. [162] reports mitigation
efforts to compensate for insufficient power quality, for example by using generators or
batteries. However, it has been shown in [101] that the extra cost of these actions may be
higher than the return on investment. The relationship between the effort spent on NTL
detection and the return on investment is sketched in Figure 1.5.

1.1.3 Variation

NTL have a high variation depending on the development status of a country. Typical
indicators for the development status are the human development index (HDI) and the
gross domestic product (GDP) per capita. These metrics are regularly published by the
United Nations, such as in [86].

In developed and economically wealthy countries, such as the United States or Western
Europe, NTL are less of an issue. Reasons for this include that the population can afford
to pay for electricity as well as the high quality of grid infrastructure as argued in [8]. In
developing countries - or emerging markets - such as Brazil, India or Pakistan the situation
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Figure 1.5: Relationship between the effort spent on NTL detection and the return on
investment (ROI): Different resources can be spent on the detection of NTL,
such as sending technicians for physical on-site inspections, investments in bet-
ter meters that are less prone to tampering, etc. These actions then reduce
NTL and thus lead to higher revenue and profit for the utilities. If an insuf-
ficient amount of resources is spent, the ROI is low. In contrast, if too many
resources are spent, the ROI is low, too. The optimal amount of resources
spent on NTL detection leading to a maximum ROI is in this range.

is different. While some emerging markets have low NTL, other countries have so far not
succeeded in significantly reducing NTL. The total annual financial losses in India due to
NTL are estimated in [38] to be around USD 16.2 billion and the NTL proportion may range
up to 70% of the total electricity distributed. For instance, the overall losses in the Indian
state of Uttar Pradesh are estimated to be in the range of 13.6-49.9%. These compose of
technical losses of 12% due to an inefficient power grid and of NTL between 1.6-37.9% in
[74]. We provide a summary of NTL estimates for selected countries in Table 1.1.

Table 1.1: NTL proportions in different countries.

Country NTL Proportion Reference

Brazil 3-40% [142]

India Up to 70% [90]

Rwanda 18% [119]

Turkey 4-73% [178]

Uttar Pradesh, India 1.6%-37.9% [74]

On the level of a single country, NTL can vary significantly as reported in [178]. A study
for Turkey shows that the regional distribution varies from 4% in the North West - the
European part of Turkey as well as the surrounding areas. The losses increase towards
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the South East, with the Anatolia region having losses around 73%. However, it must be
noted that the total electricity distributed in the North West significantly exceeds the one
distributed in the South East. Therefore, the absolute losses in North West should not
be underestimated even though the NTL percentage is far less than in the South East.
The study in [178] also shows that there is a correlation with the annual income, which
is between USD 3,515 in the South East regions and reaches up to USD 13,865 in the
North West. The price for electrical energy are the same, though. As a consequence, an
annual spending on electricity represents a higher fraction of the annual income in the less
developed area. Furthermore, that study shows a correlation between NTL and education,
population rate, temperature and agricultural production rate.

1.2 Research Framework

The research project that led to this thesis has been carried out within an innovation
ecosystem.

What is an innovation ecosystem? An idea is a problem-solving approach that aims
to improve the state of the art. A large part of all innovations in the field of artificial
intelligence originally started in academia. Most of this research is funded by third parties,
which therefore requires active collaboration with research funding agencies and industrial
partners. In order for new research findings to become a reality, and not just to be pub-
lished in journals or conferences, these results must be exposed early to interaction with
industry. In industry, however, there are predominantly practitioners and less scientists.
Modern university teaching must thus ensure that today’s computer science graduates are
prepared for the challenges of tomorrow. Interaction between academia and industry is
possible both with existing companies and through spin-offs. A close integration with
funding sources such as research funding agencies or venture capital is indispensable for
the rapid and competitive transformation of research results into value-adding products.
A good innovation ecosystem therefore consists of a functioning and dynamic combina-
tion of research, teaching, industry, research funding and venture capital, as depicted in
Figure 1.6.

Now we present our research project between the Interdisciplinary Center for Secur-
ity, Reliability and Trust (SnT)1, University of Luxembourg and the industrial partner
CHOICE Technologies2. CHOICE Technologies has been operating in the Latin American
market for more than 20 years with the goal of reducing NTL and electricity theft by using
AI. In order to remain competitive in the market, the company has chosen to incorporate
state-of-the-art AI technology into its products. Today, however, much of the innovation
in the field of AI starts at universities. For this reason, the company has decided to work

1
http://snt.uni.lu

2
http://www.choiceholding.com
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Figure 1.6: Composition of an AI innovation ecosystem.

with SnT, which specializes in conducting hands-on research projects with industrial part-
ners. The aim of these projects is not only to publish research results, but also to develop
concrete outcomes that can be used by the industrial partners. The third stakeholder is the
Luxembourg National Research Fund (FNR)3, a research funding agency that contributes
to the funding of this research project through a public-private partnership grant under
agreement number AFR-PPP 11508593. The activities of this innovation ecosystem are
shown in Figure 1.7, which we explain below.

At the beginning of a project iteration, the university staff and the company’s employees
agree on the requirements to be met. Next, the staff of the university prepare an extensive
literature review, which describes in detail the state of the art of research. Based on the
literature review and the company’s requirements, project goals are agreed on to deliver
both new research results and concrete results that the company can exploit. Afterwards,
the staff of the university carry out the research tasks and receive data from the company,
which consists among other things of electricity consumption measurements and the results
of physical on-site inspections. Throughout a project iteration, both sides regularly consult
with each other and adjust the requirements as needed. After completing the research, the
university staff present the research results to the company, including a software prototype.
The use of the results is now divided into two different directions: First, the results are
published by the university staff in suitable journals or presented at conferences. The
publications also refer to the support of the research funding organization, which can also
use these publications for marketing its research funding. In addition, the university staff
are able to integrate their new research findings into their courses, preparing the next
generation of researchers and developers for future challenges with state-of-the-art lecture
content. Second, the company integrates the relevant and usable research results into its
products. As a result, it can use the latest research results to not only to maintain its
competitiveness, but also to expand their business. After that, the next project iteration
begins, in which new requirements are identified. Ideally, these also contain feedback from

3
http://www.fnr.lu
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University

Research Project
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Conduct Research

Publish Results
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Industrial Partner

Promote Results

Funding Agency

Figure 1.7: Activities of the project in which this thesis research was carried out.

customers that use the new product functions resulting from the research results.

1.3 Research Question and Contributions

The main research question of this thesis is:

How can we detect non-technical losses better in the real world?

In Chapter 2, we provide a brief overview about the field of artificial intelligence, its
history, recent advances and most relevant questions for its future. We do so in order
to provide a larger view on the research field of this thesis. We therefore also lay the
groundwork for making this thesis accessible to a larger audience. Next, we provide an
overview about modern machine learning methods and then we provide an introduction to
the models most relevant to this thesis.

Below we describe in more detail the individual research questions and corresponding
contributions of this thesis:
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1. What are the Open Challenges of NTL Detection?
The predominant research direction is employing artificial intelligence to predict whether
a customer causes NTL. NTL detection methods reported in the literature fall into two
categories: expert systems and machine learning. Expert systems incorporate hand-crafted
rules for decision making. In contrast, machine learning gives computers the ability to learn
from examples without being explicitly programmed. Historically, NTL detection systems
were based on domain-specific rules. However, over the years, the field of machine learning
has become the predominant research direction of NTL detection. In Chapter 3, we first
survey the state-of-the-art research efforts in a up-to-date and comprehensive review of
algorithms, features and data sets used. We also compare the various approaches reported
in the literature. Next, we identify the key scientific and engineering challenges of NTL
detection that have not yet been addressed in scientific works. The challenges identified lay
the groundwork for the following detailed research questions. We also put these challenges
in the context of AI research as a whole as they are of relevance to many other real-world
learning and anomaly detection problems.

2. How can we Compare Industrial NTL Detection Systems based on Expert
Knowledge to those based on Machine Learning?
Industrial NTL detection systems are still largely based on expert knowledge when decid-
ing whether to carry out costly on-site inspections of customers. In Chapter 4, we use
an industrial NTL detection system based on Boolean logic. We improve it by fuzzifying
the rules and compare both to a NTL detection system based on machine learning. We
show that the one based on machine learning significantly outperforms the others based
on expert knowledge.

3. How can we Combine Industrial Expert Knowledge with Machine Learning
for the Decision Making?
Despite the superiority of machine learning-based approaches over expert knowledge for
NTL detection, electric utilities are reluctant to move to large-scale deployments of auto-
mated systems that learn NTL profiles from data due to the latter’s propensity to suggest
a large number of unnecessary inspections. In order to allow human experts to feed their
knowledge in the decision process, we propose in Chapter 4 a method for visualizing pre-
diction results of a machine learning-based system at various granularity levels in a spatial
hologram. Our approach allows domain experts to put the classification results into the
context of the data and to incorporate their knowledge for making the final decisions of
which customers to inspect.
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4. How can we Comprehensively Learn from the Customer Data how to Find
Customers with Irregular Behavior?
In Chapter 5, we take full advantage of the customer data in order to detect NTL better.
For doing so, we explore two different directions: We first derive features that include in-
formation about the neighborhood. We show that the neighborhood of customers contains
information about whether a customer may cause NTL or not. We analyze the statistical
properties of these features and show why they are useful for NTL detection. By using in-
formation of the neighborhood, we can predict NTL better as there are geographic clusters
of NTL among the customers. Next, we propose a novel and flexible framework to compute
a large number of domain-specific features and generic features from the noisy industrial
consumption time series of customers for NTL detection. We retain the statistically mean-
ingful features extracted from the noisy consumption data and optimize different classifiers
to predict NTL.

5. How can we Handle the Biases in the Inspection Data?
In machine learning, a bias occurs whenever training sets are not representative of the test
data, which results in unreliable models. The most common biases in data are arguably
class imbalance and covariate shift. In Chapter 6, we aim to shed light on this topic in
order to increase the overall attention to this issue in the field of machine learning. We
first provide an intensive introduction to the problem of biased data sets. Next, we pro-
pose an algorithm for quantifying covariate shift and show that the location and class of
customers have the strongest covariate shift in NTL detection. We then propose a scalable
novel framework for reducing multiple biases in high-dimensional data sets in order to train
more reliable predictors. We apply our methodology to the detection of NTL and show
that reducing these biases increases the accuracy of the trained predictors.

6. What are the Limitations of AI-based NTL Detection Systems?
Despite the advances made in this thesis, just using artificial methods is not enough in
order to reliably and sustainably reduce NTL. In addition, legal actions need to be taken,
market reforms need to be made and utilities need to make investments into enhanced
infrastructure components and streamlined methods of payment. We will discuss these
suggestions in Chapter 7.

1.4 References to Publications

This thesis interpolates material from 9 first-author publications by the author [59]–[63],
[67], [68], [72], [73]. This introductory chapter uses some material from [59]. Next,
Chapter 2 is based on [59], [62]. Chapter 3 is based on [67]. Meanwhile, Chapter 4
uses material from [60], [61]. Chapter 5 combines [61], [63]. Last, Chapter 6 is based on
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[68], [72], [73].
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2
Artificial Intelligence

There is not a day that passes on which we do not hear news about artificial intelligence
(AI): autonomous cars, spam filters, Siri, chess computers, killer robots and much more.
What exactly is AI? Peter Norvig, Research Director of Google, describes AI in one sen-
tence:

“AI is the science of knowing what to do when you don’t know what to do." [118]

Admittedly, at first glance, this description is somewhat confusing, but secondarily reas-
onable: the goal of AI is to solve complex computer problems that are often associated
with uncertainty.

This chapter first provides a brief review of the history of artificial intelligence, its recent
advances and most relevant questions for its future. We do so in order to provide a larger
view on the research field of this thesis. We therefore also lay the groundwork for making
this thesis accessible to a larger audience. Next, we provide an overview about modern
machine learning methods. Last, we provide an introduction to the models most relevant
to this thesis.
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2 Artificial Intelligence

2.1 History

The first theoretical foundations of AI were laid in the mid-20th century, especially in the
works of British mathematician Alan Turing [166]. The actual year of birth of AI is the year
1956, in which the six-week conference Summer Research Project on Artificial Intelligence
at Dartmouth College took place. For this purpose, an application for funding was made
in the previous year. The research questions contained therein proved to be indicative
of many of the long-term research goals of AI [110]. The conference was organized by
John McCarthy and was attended by other well-known scientists such as Marvin Minsky,
Nathan Rochester and Claude Shannon.

Over the following decades, much of AI research has been divided into two diametrically
different areas: expert systems and machine learning. Expert systems comprise rule-
based descriptions of knowledge and make predictions or decisions based on input/data.
In contrast, machine learning is based on recognizing patterns from training data. This
principle is further outlined in Definitions 2.1 and 2.2.

Definition 2.1. “[Machine learning is the] field of study that gives computers the ability
to learn without being explicitly programmed." [153]

Definition 2.2. “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E." [115]

Concretely, a machine learning algorithm learns patterns from examples as depicted in
Figure 2.1. These patterns are then used to make decisions based on inputs.

Figure 2.1: Machine learning: learning from examplesa.
a
Source: http://blog.capterra.com/what-is-machine-learning/
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Both, expert systems and machine learning, have their respective advantages and disad-
vantages: Expert systems on one hand have the advantage that they are understandable
and interpretable and that their decisions are therefore comprehensible. On the other
hand, it often takes a great deal of effort, or sometimes it even turns out to be impossible
to understand and describe complex problems in detail.

To illustrate this difficulty, an example of machine translation, the automatic translation
from one language to another, is very helpful: First, languages consist of a complex set
of words and grammar that are difficult to describe in a mathematical form. Second, one
does not necessarily use languages correctly, which can cause inaccuracies and ambiguities.
Third, languages are dynamic as they change over decades and centuries. Creating an
expert system for machine translation is thus a challenge. The three factors of complexity,
inaccuracy and dynamics occur in a variety of fields and prove to be a common limiting
factor when building expert systems.

Machine learning has the advantage that often less knowledge about a problem is needed
as the algorithms can learn patterns from data. This process is often referred to as “train-
ing" an AI. In contrast to expert systems, however, machine learning often leads to a black
box whose decisions are often neither explainable nor interpretable. Nonetheless, over the
decades, machine learning has gained popularity and largely replaced expert systems.

Of particular historical significance are so-called (artificial) neural networks. These are
loosely inspired by the human brain and consist of several layers of units - also called
“neurons". An example of a neural network is shown in Figure 2.2.

Figure 2.2: Neural network.

The first layer (on the left) is used to enter data and the last layer (on the right) to output
predictions or decisions. Between these two layers are zero to several hidden layers, which
contribute to the decision-making. Neural networks have experienced several popularity
phases over the past 60 years, which are explained in detail in [42]. In addition to neural
networks, there are a variety of other methods of machine learning, such as decision trees,
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support vector machines or regression models, which are discussed in detail in [16].

Over the past decades, a large number of innovative and value-adding applications have
emerged, often resulting from AI research results. Autonomously driving cars, speech
recognition and autonomous trading systems for example. Nonetheless, there have been
many setbacks. These were usually caused by too high and then unfulfilled expectations.
In this context, the term of an “AI winter" has been coined, with which periods of major
setbacks in recent decades, the loss of optimism and consequent cuts in funding are referred
to. Of course, this section can only provide an overview of the history of AI. The interested
reader is referred to a detailed discussion in [149].

2.2 Recent Advances

Although AI research has been practiced for over 60 years, many people first heard of AI
just a few years ago. This, in addition to the “Terminator" movie series, is largely due to
the huge advances made by AI applications over the past few years. Since 2006, there have
been a number of significant advances, especially in the field of neural networks, which are
now referred to as deep learning [78]. This term aims to ensure that (deep) neural networks
have many hidden layers. This type of architecture has proven to be particularly helpful
in detecting hidden relationships in input data. Although this was already the case in the
1980s, there was a lack of practical and applicable algorithms for training these networks
from data first and, secondly, the lack of adequate computing resources. However, today
there is much more powerful computing infrastructure available. In addition, significantly
better algorithms for training this type of neural network have been derived since 2006
[78].

As a result, many advances in AI research have been made, some of which are based
on deep learning. Examples are autonomously driving cars or the computer program
AlphaGo. Go is a board game that is especially popular in Southeast Asia, where players
have a much greater number of possible moves than in chess. Traditional methods, with
which, for example, the IBM program Deep Blue had beaten the then world chess champion
Garry Kasparov in 1997, do not scale to the game Go, since the mere increase of computing
capacity is not sufficient due to the high complexity of this problem. It was until a few
years ago the prevailing opinion within the AI community that an AI, which plays Go
on world level, was still decades away. The UK company Google DeepMind unexpectedly
introduced AlphaGo in 2015, which beat South Korean professional Go play Lee Sedol
under tournament conditions [157]. This success was partly based on deep learning and
led to an increased awareness of AI world-wide. Of course, in addition to the current
breakthroughs of AI mentioned in this section, there have been a lot of further success
stories and we are sure that more will follow soon.
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2.3 Frontiers

We would now like to discuss some current issues concerning AI and provide an outlook
on a possible future of AI. While many recent accomplishments are based in part on deep
learning, this new kind of neural network is only one of many modern techniques. It is
becoming increasingly apparent that there is a hype about deep learning and more and
more unrealistic promises are being made about it [97]. It is therefore essential to relate the
successes of deep learning and its fundamental limitations. The “no free lunch theorem",
which is largely unknown both in industry and academia, states that all methods of machine
learning averaged over all possible problems are equally successful [176]. Of course, some
methods are better suited to some problems than others, but perform worse on different
problems. Deep learning is especially useful for image, audio or video processing problems
and when having a lot of training data. By contrast, deep learning, for example, is poorly
suited to problems with a small amount of training data.

We have previously introduced the notion of an AI winter - a period of great setbacks,
the loss of optimism and consequent reductions in funding. It is to be feared that the
current and hype-based promise could trigger a new AI winter. It is therefore essential to
better understand deep learning and its potential and not neglect other research methods.
A big problem of deep learning - and neural networks in general - is that these are black
box models. As a consequence, the decisions made by them are often incomprehensible.
Some advances have been made in this area recently, such as local interpretable model-
agnostic explanations (LIME) [145] for supervised models. However, there is still great
research potential in this direction, as future advances may also likely increase the social
acceptance of AI. For example, in the case of autonomously driving cars, the decisions
taken by an AI should also be comprehensible for legal as well as software quality reasons.

In addition, the question arises as to how the field of AI will evolve in the long term,
whether one day an AI will exceed the intelligence of a human being and thus potentially
could make mankind redundant. The point of time when computers become more intel-
ligent than humans is referred to in the literature as the Technological Singularity [155].
There are various predictions as to when - or even if at all - the singularity will occur. They
span a wide range, from a period in the next twenty years, to predictions that are real-
istic about achieving the singularity around the end of the 21st century, to the prediction
that the technological singularity may never materialize. Since each of these predictions
makes various assumptions, a reliable assessment is difficult to make. Overall, today it is
impossible to predict how far away the singularity is. The interested reader is referred to a
first-class and extensive analysis on this topic and a discussion of the consequences of the
technological singularity in [155].

In recent years, various stakeholders have warned about so-called “killer robots" as a
possible unfortunate outcome of AI advances. What about this danger? Andrew Ng, one
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of the leading scientists in the field of machine learning, has set a much-noticed comparison
[175]: Ng’s view is that science is still very far away from the potential killer robot threat
scenario. In his opinion, the state of the art of AI can be compared with a planned manned
trip to Mars, which is currently being prepared by researchers. Ng further states that some
researchers are also thinking about how to colonize Mars in the long term, but no researcher
has yet tried to explore how to prevent overpopulation on Mars. Ng equates the scenario of
overpopulation with the scenario of a killer robot threat. This danger would also be so far
into the future that he was not able to work productively to prevent it at the moment, as
he first had to do much more fundamental work in AI research. Ng also points to potential
job losses as a much more tangible threat to people by AI in the near future.

2.4 The Three Pillars of Machine Learning

The field of machine learning can broadly be separated into three so-called pillars. Super-
vised learning uses pairs {(x(1), y(1)), (x(2), y(2)), ..., (x(m)

, y

(m)

)}, where x

(i) is the input
and y

(i) the label, respectively. The goal is to learn a function f : y

(i)

= f(x

(i)

). This is
also called function induction, because rules from examples are derived. Induction is the
opposite of deduction, which derives examples from rules. If all possible values in y are
a finite set of possible values, f does classification. In contrast, if that set is infinite, we
talk about regression. In any case, the labels y give an unambiguous “right answer" for
the inputs x.

In many problems, it is difficult to provide such an explicit supervision to a learning
problem. Therefore, in reinforcement learning, the algorithm is provided a reward (feed-
back) function which provides a reward or penalty depending on in which state the learning
agent goes. Reinforcement learning is therefore somewhat in between supervised and un-
supervised learning, as there is some supervision, but significantly less than in supervised
learning.

Unsupervised learning tries to find hidden structures in unlabeled data {x(1), x(2), ...,
x

(m)}. Common tasks are dimensionality reduction or clustering.

2.5 Most Popular Machine Learning Models in the Literature

In 2007, a paper named “Top 10 algorithms in data mining" identified and presented the
top 10 most influential data mining algorithms within the research community [177]. The
selection criteria were created by consolidating direct nominations from award winning re-
searchers, the research community opinions and the number of citations in Google Scholar.
The top 10 algorithms in that prior work are: C4.5 [138], k-means [104], support vector
machine [168], Apriori [3], EM [41], PageRank [129], AdaBoost [83], kNN [4], naive Bayes
[146] and CART [19].
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In the decade that passed since then, machine learning has expanded, responding to
incremental development of computational capabilities and substantial increase of problems
in the commercial applications. This section reflects on the top 10 most popular fields
of active research in machine learning, as they emerged from the quantitative analysis of
leading journals and conferences. This work sees some topics in the broader sense including
not only models but also concepts like data sets, features, optimization techniques and
evaluation metrics. This wider view on the entire machine learning field is largely ignored
in the literature by keeping a strong focus entirely on models [49].

Our core contribution in this section is that we provide a clear view of the active research
in machine learning by relying solely on a quantitative methodology without interviewing
experts. This attempt aims at reducing bias and looking where the research community
puts its focus on. The results of this study allow researchers to put their research into
the global context of machine learning. This provides researchers with the opportunity to
both conduct research in popular topics and identify topics that have not received sufficient
attention in recent research.

2.5.1 Methodology

In this section, we discuss how we determine quantitatively the top 10 topics in machine
learning from articles of leading journals and conferences published between January 2007
and June 2016. We selected referenced journals that cover extensively the field of machine
learning, neural networks, pattern recognition and data mining both from the theoretical
perspective and also with applications to image, video and text processing, inference on
networks and graphs, knowledge basis and applications to real data sets.

Data Collection

In the data collection, we focus on the abstracts of publications, as they provide the main
results and conclusions of a paper. In contrast, the full text includes details on the research,
which also comes with more noise that is not relevant to an overall summary of published
work. We have chosen 31 leading journals related to machine learning as summarized in
Table 2.1, ranked by their impact factor. For each journal, we have collected as many
abstracts as possible of articles published in the time frame of interest. In total, we have
collected 39,067 abstracts of those 31 journals, which also include special issues.

Furthermore, we have chosen 7 major international conferences related to machine learn-
ing as summarized in Table 2.2, ranked by their average citation count. We have collected
as many proceedings as possible of those conferences. In addition, we consider the Journal
of Machine Learning Research Workshop and Conference Proceedings series, which in-
cludes further conferences, such as International Conference on Artificial Intelligence and
Statistics and Asian Conference on Machine Learning among others. We have collected
14,459 abstracts from the proceedings of those conferences in the time frame of interest.

21



2 Artificial Intelligence

Table 2.1: Source journals.

Name Impact Factor #Abstracts

IEEE T. on Sys., Man, and Cybernetics, P. B. (Cyb.) 6.22 1,045
IEEE T. on Pattern Analysis and Machine Intell. 5.781 2,552
IEEE T. on Neural Networks and Learning Systems 4.291 1,518
IEEE T. on Evolutionary Computation 3.654 940
IEEE T. on Medical Imaging 3.39 2,470
Artificial Intelligence 3.371 668
ACM Computing Surveys 3.37 395
Pattern Recognition 3.096 3,016
Knowledge-Based Systems 2.947 1,905
Neural Networks 2.708 1,330
IEEE T. on Neural Networks 2.633 758
IEEE Computational Intelligence Magazine 2.571 574
IEEE T. on Audio, Speech and Language Processing 2.475 1,829
Journal of Machine Learning Research 2.473 986
IEEE Intelligent Systems 2.34 1,049
Neurocomputing 2.083 6,165
IEEE T. on Knowledge and Data Engineering 2.067 2,121
Springer Machine Learning 1.889 571
Computer Speech and Language 1.753 452
Pattern Recognition Letters 1.551 2,380
Computational Statistics & Data Analysis 1.4 3,063
Journal of the ACM 1.39 353
Information Processing & Management 1.265 730
ACM T. on Intelligent Systems and Technology 1.25 396
Data & Knowledge Engineering 1.115 660
ACM T. on Information Systems 1.02 229
ACM T. on Knowledge Discovery from Data 0.93 245
ACM T. on Autonomous and Adaptive Systems 0.92 231
ACM T. on Interactive Intelligent Systems 0.8 117
ACM T. on Applied Perception 0.65 234
ACM T. on Economics and Computation 0.54 85

Total (N=31) - 39,067
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Combining the journals and conference proceedings, we have collected 53,526 abstracts in
total.

Table 2.2: Source conferences.

Name #Avg. Citations #Abstracts Years

Inter. Conference on Computer Vision 11.9754 2,092
2007, 2009,
2011, 2013,

2015

Inter. Conference on Machine Learning 9.1862 1,185 2013-2016

Advs. in Neural Inf. Processing Syst. 8.5437 2,416 2007-2015

Conf. on Knowledge Discovery and Data M. 7.7269 1,035 2007-2015

Conf. on Comp. Vision and Pattern Recog. 6.6133 4,471 2007-2015

Conference on Learning Theory 4.2905 347 2011-2016

Inter. Conference on Data Mining 2.137 1,406 2007-2015

J. of Machine Learning Research Conf. Proc. 2.473a 1,507 2007-2016

Total (N=8) - 14,459 -

a
Computing the average citation count of this mixture of various conferences and workshops has proven

to not be feasible. Instead, we use the impact factor of the Journal of Machine Learning Research as

the average citation count. We expect the impact of the approximation error to be low since it only

concerns 1,507 of the total 53,526 abstracts used in this research.

Key Phrase Extraction

We focus on extracting the most relevant key phrases of each abstract, which we call topics
in the remainder of this study. First, we apply Porter stemming to an abstract [135]. In
stemming, only the stem of a word is retained. For example, “paper" and “papers" have
the same stem, which is “paper". For the extraction of key phrases from each abstract, we
compare two different methods:

1. We remove the stop words from each abstract. Stop words are the words most fre-
quently used in a language that usually provide very little information. For example,
“and" or "of" are typical stop words in the English language. After the stop word
removal, we then use all bigrams and trigrams as key phrases.

2. The Rapid Automatic Keyword Extraction Algorithm (RAKE) is an unsupervised,
domain-independent and language-independent learning algorithm that generates key
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phrases from text [148]. First, RAKE splits each abstract into parts that are sep-
arated by signs - such as commas and full stops - and stop words. These parts are
then split into n-gram key phrases. In our work, we use 1  n  4. Next, a word
co-occurrence graph is learned from the generated n-grams. Last, each key phrase is
ranked by the sum of the ratio of degree to frequency per word.

When merging the key phrases of different journals or conferences, we weight each key
phrase by the impact factor or average citation count, respectively. The list of key phrases
is then sorted in descending order by their total weighted count. We then manually clean
the top 500 key phrases by removing key phrases unrelated to machine learning, such as
“propos[ed]1 method" or “experiment[al] result[s] show", but also other irrelevant computer
science terms, such as “comput[er] vision". Last, starting with the most popular key phrase,
we iteratively skip related key phrases. We continue this merger until we find 10 distinct key
phrases of different topics, which are the top 10 topics in machine learning. For example,
key phrases related to “data set" are “train[ing] data" and “real data". Our implementation
is available as open source: http://github.com/pglauner/MLtop10.

2.5.2 Evaluation

Using method 1, which utilizes bigrams and trigrams for extraction, we only get very gen-
eral topics. Concretely, the top 5 topics are “network pretraining", “supervised classification
part", “learn binary representation", “unsupervised [and] supervised learning" and “predict
label [from the] input". In contrast, performing method 2, which is machine learning-based
key word extraction using RAKE, we get the top 10 topics depicted in Figure 2.3. We no-
tice that after the first three topics, i.e. “support vector machine", “neural network" and
“data set", there is a significant drop in terms of popularity. We notice another drop after
“objective function". The next 7 topics are vey close in terms of their popularity. “Hidden
Markov model" has a popularity only slightly lower than “principal component analysis".

2.5.3 Discussion

Comparing the two key phrase extraction methods, we see that using RAKE we obtain
more robust results that reflect frequent keywords and unbalanced terms much better.

Comparing our list of top 10 topics to the list of top 10 algorithms in data mining
from 2007 [177], we make the following important observations: Due to their popularity
in research, we have expected that support vector machines would appear in the top 10.
Also, neural networks have been celebrating a comeback under the umbrella term of “deep
learning" since 2006 [97]. We therefore expected them to appear in the top 10 as well under
either term. We can also confirm that Hidden Markov models have received significantly
less attention in research than neural networks over the last 10 years. We have not expected

1
Stemmed words are completed to their original form for clarity in this study.
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Figure 2.3: The top 10 topics in machine learning are highlighted in black, the top 11-20
topics in grey.

that the linear matrix inequality would appear in the top 10. However, given its importance
to the theoretical foundations of the field of machine learning it is absolutely justified to
appear in the top 10. Its appearance does not indicate a fallacy in our methodology.
Naive Bayes has often been described as a wide-spread baseline model in the literature.
Furthermore, tree classifiers such as random forests have become popular in the literature
and do not appear in the top 10 either. Both, C4.5 and CART are tree learning algorithms
that were found to be among the top 10 data mining algorithms in 2007. In terms of models,
we did not expect that Markov random fields and Gaussian mixture models receive more
attention than naive Bayes or tree based learning methods in current research publications.

A quantitative approach comes with a potential new bias depending on which data
sources are used. Possible factors include the quality of publications and focus of each
source (journal/conference). The vast majority of source abstracts are from journals and
conferences that have a high impact factor or average citation count. We have made sure to
include as many sources as possible that have a wide scope. In return, we have attempted
to keep the number of sources with a very narrow scope to a minimum. Also, if the
inclusion or omission of a specific source is questioned, this has only very little impact due
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to the distribution of abstracts: there are in total 39 sources (31 journals + 8 conferences).
On average, a source has 1,372 abstracts or 2.56% of all abstracts. The largest source is
the Neurocomputing journal, which has 6,165 abstracts or 11.52% of all abstracts.

2.6 Review of Machine Learning Models Relevant to this
Thesis

In this section, we provide a brief introduction to the machine learning models that are
most relevant to this thesis. We chose these models due to their overall applicability to our
problems. Furthermore, we have identified the challenges of NTL detection in Chapter 3.4.
As we point out in Chapter 3.4.5, most models reported in the literature on NTL do not
scale to large data sets of potentially millions of customers. We therefore also refer to
scalability of these models and how these can be trained on big data sets.

2.6.1 Logistic Regression

Logistic regression is a linear classifier that optimizes a convex cross-entropy loss function
during the training of the weights [36]. It is related to linear regression, but feeds the
continuous output value in the Sigmoid function �(x) =

1

1+exp(�x)

in order to predict a
probability of binary class membership. Logistic regression scales to big data sets, as the
minibatch gradient descent, that is used to optimize the weights, can be parallelized among
different cores or nodes.

2.6.2 Support Vector Machine

A support vector machine (SVM) [168] is a maximum margin classifier, i.e. it creates
a maximum separation between classes. Support vectors hold up the separating hyper-
plane. In practice, the support vectors are just a small fraction of the training examples.
Therefore, SVMs are reported to tend to be less prone to overfitting than other classifiers,
such as neural networks [23]. The training of a SVM can be defined as a Lagrangian dual
problem having a convex cost function. In that form, the optimization formulation is only
written in terms of the dot product x(i) ·x(j) between points in the input space. By default,
the separating hyperplane is linear. For complex problems, it is advantageous to map the
data set to a higher dimension space, where it is possible to separate them using a linear
hyperplane. A kernel is an efficient function that implicitly computes the dot product
in the higher dimensional space. A popular kernel is the Gaussian radial basis function:
K(u, v) = exp(��ku� vk2). Training of SVMs using a kernel to map the input to higher
dimension is only feasible for a couple of dozen of thousands of training examples in a
realistic amount of time [25]. Therefore, for big data sets only a linear implementation of
SVMs is practically usable [131].
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2.6.3 Decision Tree

Decision tree learners such as ID3 [137] or C4.5 [138] recursively split the input space by
choosing the remaining most discriminative feature of a data set. This process is depicted
in Algorithm 2.1. The IMPORTANCE function usually utilizes the information gain or the
Gini coefficient for choosing the most discriminative feature. To predict, the learned tree
is traversed top-down.

Algorithm 2.1 Decision tree learning [149].
function DT-LEARNING(examples, attributes, parent_examples)

if empty(examples) then return PLURALITY-VAL(parent_examples)
else if all examples have same classification then return the classification
else if empty(attributes) then return PLURALITY-VAL(examples)
else

A  argmax

a2attributes
IMPORTANCE(a, examples)

tree  a new decision tree with root test A

for v

k

2 A do
exs  {e|e 2 examples ^ e.A = v

k

}
subtree  DT-LEARNING(exs, attributes�A, examples)
add a branch to tree with label (A = v

k

) and subtree subtree

end for
return tree

end if
end function

2.6.4 Random Forest

A random forest is an ensemble estimator that comprises a number of decision trees [79].
Each tree is trained on a subsample of the data and feature set in order to control overfit-
ting. In the prediction phase, a majority vote is made of the predictions of the individual
trees. Training of the individual trees is independent from each other, so it can be distrib-
uted among different cores or nodes. A random forest has been reported to empirically
tend to learn a reasonably good model for a large number of problems [53], [169].

2.6.5 Gradient-Boosted Tree

A gradient-boosted tree [28] is also an ensemble of decision trees. The ensemble is boosted
by combining weak classifiers (i.e. classifiers that work little better than a random guess)
into a strong one. The ensemble is built by optimizing a loss function.

2.6.6 k-Nearest Neighbors

k-nearest neighbors (kNN) is an instance-based or lazy learning method that does not
use weights, as there is no training phase as such [4]. During prediction, the class of an
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example is determined by selecting the majority class of the k nearest training examples.
Defining proximity is subject to the selection of a distance function, of which the most
popular ones include Euclidean, Manhattan or cosine. k is a smoothing parameter. The
larger k, the smoother the output. Since kNN in an instance-based method, predicting is
slow and prediction times grow with k. As the prediction of the class of an example in the
test set is independent from the other elements, the predictions can be distributed among
different cores or nodes.

2.6.7 Comparison

Based on the reviews of the models in this section, we now compare them in Table 2.3
in the context of the properties relevant to this thesis. We notice that decision trees,
gradient-boosted trees, logistic regression, random forest and linear support vector machine
particularly scale to training on big data sets. This makes them good candidates for further
evaluation in this thesis. k-nearest neighbors does not have an explicit training phase as
it is a lazy learning method. It somewhat scales to big data sets for a small value of k, the
number of nearest training examples.

Table 2.3: Machine learning models relevant to this thesis.

Model Decision Boundary
Maximum #Examples
for Training in Feasible

Amount of Time
Reference

Decision tree Non-linear >1M [137]

Gradient-boosted tree Non-linear >1M [28]

k-nearest neighbors Non-linear No training phase [4]

Logistic regression Linear >1M [36]

Random forest Non-linear >1M [79]

Support vector machine
Linear >1M [168]

Non-linear (with kernel) ⇠20K [131]
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2.7 Conclusions

Artificial intelligence allows computers to solve inherently challenging problems, in partic-
ular problems that include uncertainty. The field of artificial intelligence has evolved since
the 1950s. While expert system approaches have initially been most popular, there has
been a strong shift towards machine learning approaches in the the past decades. In this
chapter, we have laid the conceptual foundations in order to use artificial intelligence for
the detection of non-technical losses in the remainder of this thesis.

We also used machine learning to find the top 10 topics in machine learning from about
54K abstracts of papers published between 2007 and 2016 in leading machine learning
journals and conferences. Concretely, we found support vector machine, neural network,
data set, objective function, Markov random field, feature space, generative model, linear
matrix inequality, Gaussian mixture model and principal component analysis to be the
top 10 topics. Compared to previous work in this field from 2007, support vector machine
is the only intersection of both top 10 lists. This intersection is small for the following
reasons:

1. We do not only consider models, but span a wider view across the entire field of
machine learning also including features, data and optimization.

2. We perform a quantitative study rather than opinion-based surveying of domain
experts in order to reduce the bias.

3. The models of interest have significantly changed over the last 10 years, most prom-
inently symbolized by the comeback of neural networks under the term deep learning.

Overall, we are confident that our quantitative study provides a comprehensive view on
the ground truth of current machine learning topics of interest in order to strengthen and
streamline future research activities.

Readers interested in learning more about artificial intelligence and machine learning are
referred to [16], [149], two text books that are used in many graduate schools all around
the globe.
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3
The State of the Art

Most contemporary approaches for the detection of non-technical losses (NTL) utilize arti-
ficial intelligence methods. Early NTL detection systems were mainly based on rule-based
expert systems. Over the years, there has been a shift to machine learning - also called data
mining - methods. These employ statistical methods to learn fraudulent patterns from the
data of customers and known irregular behavior. Once these patterns are learned, they
predict for customers whether they should be inspected for NTL or not. Then, for some of
these customers, on-site inspections are carried out. This process is depicted in Figure 3.1.
This chapter provides an in-depth review of NTL detection systems based on artificial
intelligence, in particular machine learning methods.
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Figure 3.1: NTL detection system based on machine learning: First, meter readings and
other customer data are collected. Second, inspections of customers are car-
ried out by technicians. Third, the data of previously inspected customers is
loaded, which consists for example of their consumption data as well the inspec-
tion result. Fourth, features are extracted from the customer data. Fifth, these
features are reduced in order to only retain the statistically meaningful ones.
Sixth, using the reduced set of features and the results of previously carried out
inspections, classifiers are trained in order to detect NTL. Seventh, these clas-
sifiers are then used to predict for customers whether they should be inspected
for NTL or not. Eighth, domain expert at the utilities choose the customers
for which an inspection appears to be justified from an economic point of view.
Last, the inspections are carried out by technicians. See for example Figure 4.2
for a more complex process in a large NTL detection system.

3.1 Scope

NTL detection can be treated as a special case of fraud detection, for which general surveys
are provided in [17], [92]. Both highlight expert systems and machine learning as key
methods to detect fraudulent behavior in applications such as credit card fraud, computer
intrusion and telecommunications fraud. This section is focused on an overview of the
existing AI methods for detecting NTL. Existing short surveys of the past efforts in this
field, such as in [26], [89], [91], [111] only provide a narrow comparison of the entire range
of relevant publications. Two surveys [113], [170] provide broad reviews of the field of NTL
detection. Both works not only review AI methods, but also other approaches such as state
estimation and network analysis methods. However, both works lack detailed discussions
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of the works reviewed.
The novelty of our survey is to not only provide an extensive review of AI methods for

NTL detection and compare a wide range of results reported in the literature, but also to
derive the unsolved challenges of NTL detection.

3.2 Features

In this section, we summarize and group the features reported in the literature.

3.2.1 Monthly Consumption

Many works on NTL detection use traditional meters, which are read monthly or annually
by meter readers. Based on this data, average consumption features are used in [120],
[122]–[124]. In those works, the feature computation used can be summarized as follows:
For M customers {0, 1, ...,M�1} over the last N months {0, 1, ..., N�1}, a feature matrix
X is computed, in which element X

m,d

is a daily average kWh consumption feature during
that month:

x

(m)

d

=

L

(m)

d

R

(m)

d

�R

(m)

d�1

, (3.1)

where, for customer m, L(m)

d

is the kWh consumption increase between the meter reading
to date R

(m)

d

and the previous one R

(m)

d�1

. R(m)

d

�R

(m)

d�1

is the number of days between both
meter readings of customer m.

The previous 24 monthly meter readings are used in [116], [117]. The features computed
are the monthly consumption before the inspection, the consumption in the same month in
the year before the consumption in the past three months and the customer’s consumption
over the past 24 months. Using the previous six monthly meter readings, the following fea-
tures are derived in [6]: average consumption, maximum consumption, standard deviation,
number of inspections and the average consumption of the residential area. The average
consumption is also used as a feature in [34], [159].

3.2.2 Smart Meter Consumption

With the increasing availability of smart meter devices, consumption of electrical energy
in short intervals can be recorded. Consumption features of intervals of 15 minutes are
used in [22], [44], whereas intervals of 30 minutes are used in [121], [151]. The 4⇥ 24 = 96

measurements of [44] are encoded into a 32-dimensional space in [45], [46]. Each measure-
ment is 0 or positive. Next, it is mapped to 0 or 1, respectively. Last, the final 32 features
are computed. A feature is the weighted sum of three subsequent values, in which the first
value is multiplied by 4, the second by 2 and the third by 1. The maximum consumption
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in any 15-minute period is used as a feature in [140], [141], [143], [144]. The load factor
is computed by dividing the demand contracted by the maximum consumption. Features
from the consumption time series called shape factors are derived from the consumption
time series including the impact of lunch times, nights and weekends in [127].

3.2.3 Master Data

Master data represents customer reference data such as name or address, which typically
changes less frequently with respect to the consumption data. The work in [34] uses the
following features from the master data for classification: location (city and neighborhood),
business class (e.g. residential or industrial), activity type (e.g. residence or drugstore),
voltage (110V or 200V), number of phases (1, 2 or 3) and meter type. The demand
contracted, which is the number of kW of continuous availability requested from the energy
company and the total demand in kW of installed equipment of the customer are used in
[141], [143], [144]. In addition, information about the power transformer to which the
customer is connected to is used in [140]. The town or village in which the customer is
located, the type of voltage (low, median or high), the electricity tariff, the contracted
power as well as the number of phases (1 or 3) are used in [159]. Related master data
features are used in [127], including the type of customer, location, voltage level, type of
climate (rainy or hot), weather conditions and type of day.

3.2.4 Credit Worthiness

The works in [120], [122], [123] use the credit worthiness ranking (CWR) of each customer
as a feature. It is computed from the electric utility’s billing system and reflects if a
customer delays or avoids payments of bills. CWR ranges from 0 to 5 where 5 represents
the maximum score. It reflects different information about a customer such as payment
performance, income and prosperity of the neighborhood in a single feature.

3.3 Models

In this section, we summarize and group the models reported in the literature.

3.3.1 Expert Systems and Fuzzy Systems

Profiles of 80K low-voltage and 6K high-voltage customers in Malaysia having meter read-
ings every 30 minutes over a period of 30 days are used in [121] for electricity theft and
abnormality detection. A test recall of 0.55 is reported. This work is related to features
of [124], however, it uses entirely fuzzy logic incorporating human expert knowledge for
detection.
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The work in [123] is combined with a fuzzy logic expert system postprocessing the output
of the SVM in [124] for ⇠100K customers. The motivation of that work is to integrate
human expert knowledge into the decision making process in order to identify fraudulent
behavior. A test recall of 0.72 is reported.

Five features of customers’ consumption of the previous six months are derived in [6]:
average consumption, maximum consumption, standard deviation, number of inspections
and the average consumption of the residential area. These features are then used in a
fuzzy c-means clustering algorithm to group the customers into c classes. Subsequently,
the fuzzy membership values are used to classify customers into NTL and non-NTL using
the Euclidean distance measure. On the test set, an average precision (called average
assertiveness) of 0.745 is reported.

An ensemble pre-filters the customers to select irregular and regular customers in [117].
These customers are then used for training as they represent well the two different classes.
This is done because of noise in the inspection labels. In the classification step, a neuro-
fuzzy hierarchical system is used. In this setting, a neural network is used to optimize the
fuzzy membership parameters. A precision of 0.512 and an accuracy of 0.682 on the test
set are obtained.

3.3.2 Neural Networks

Extreme learning machines (ELM) are one-hidden layer neural networks in which the
weights from the inputs to the hidden layer are randomly set and never updated. Only
the weights from the hidden to output layer are learned. The ELM algorithm is applied
to NTL detection in meter readings of 30 minutes in [126], for which a test accuracy of
0.5461 is reported.

An ensemble of five neural networks (NN) is trained on samples of a data set containing
⇠20K customers in [116]. Each neural network uses features calculated from the consump-
tion time series plus customer-specific pre-computed attributes. A precision of 0.626 and
an accuracy of 0.686 are obtained on the test set.

A self-organizing map (SOM) is a type of unsupervised neural network training algorithm
that is used for clustering. SOMs are applied to weekly customer data of 2K customers
consisting of meter readings of 15 minutes in [22]. This allows to cluster customers’ behavior
into fraud or non-fraud. Inspections are only carried out if certain hand-crafted criteria
are satisfied including how well a week fits into a cluster and if no contractual changes of
the customer have taken place. A test accuracy of 0.9267, a test precision of 0.8526, and
test recall of 0.9779 are reported.

A data set of ⇠22K customers is used in [34] for training a neural network. It uses
the average consumption of the previous 12 months and other customer features such as
location, type of customer, voltage and whether there are meter reading notes during that
period. On the test set, an accuracy of 0.8717, a precision of 0.6503 and a recall of 0.2947
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are reported.

3.3.3 Support Vector Machines

Electricity customer consumption data of less than 400 highly imbalanced out of ⇠260K
customers in Kuala Lumpur, Malaysia are used in [120]. Each customer has 25 monthly
meter readings in the period from June 2006 to June 2008. From these meter readings,
daily average consumption features per month are computed. Those features are then
normalized and used for training in a SVM with a Gaussian kernel. In addition, credit
worthiness ranking (CWR) is used. It is computed from the electric utility’s billing system
and reflects if a customer delays or avoids payments of bills. CWR ranges from 0 to 5 where
5 represents the maximum score. It was observed that CWR is a significant indicator of
whether customers commit electricity theft. For this setting, a recall of 0.53 is achieved
on the test set. A related setting is used in [123], where a test accuracy of 0.86 and a test
recall of 0.77 are reported on a different data set.

SVMs are also applied to 1,350 Indian customer profiles in [44]. They are split into
135 different daily average consumption patterns, each having 10 customers. For each
customer, meters are read every 15 minutes. A test accuracy of 0.984 is reported. That
work is extended in [45] by encoding the 4⇥24 = 96-dimensional input in a lower dimension
indicating possible irregularities. This encoding technique results in a simpler model that is
faster to train while not losing the expressiveness of the data and results in a test accuracy
of 0.92.

Consumption profiles of 5K Brazilian industrial customer profiles are analyzed in [140].
Each customer profile contains 10 features including the demand billed, maximum demand,
installed power, etc. In this setting, a SVM slightly outperforms k-nearest neighbors (kNN)
and a neural network, for which test accuracies of 0.9628, 0.9620 and 0.9448, respectively,
are reported.

The work of [45] is extended in [46] by introducing high performance computing al-
gorithms in order to enhance the performance of the previously developed algorithms.
This faster model has a test accuracy of 0.89.

3.3.4 Genetic Algorithms

The work in [120], [123] is extended by using a genetic SVM for 1,171 customers in [122].
It uses a genetic algorithm in order to globally optimize the hyperparameters of the SVM.
Each chromosome contains the Lagrangian multipliers (↵

1

, ...,↵

i

), regularization factor C

and Gaussian kernel parameter �. This model achieves a test recall of 0.62.
A data set of ⇠1.1M customers is used in [35]. The paper identifies the much smal-

ler class of inspected customers as the main challenge in NTL detection. It then proposes
stratified sampling in order to increase the number of inspections and to minimize the stat-
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istical variance between them. The stratified sampling procedure is posed as a non-linear
restricted optimization problem of minimizing the overall energy loss due to electricity
theft. This minimization problem is solved using two methods: (1) genetic algorithm and
(2) simulated annealing. The first approach outperforms the second one. Only the reduced
variance is reported, which is not comparable to the other research and therefore left out
of this survey.

3.3.5 Rough Sets

Rough sets give lower and upper approximations of an original conventional or crisp set.
The first application of rough set analysis applied to NTL detection is described in [21]
on 40K customers, but lacks details on the attributes used per customer, for which a test
accuracy of 0.2 is achieved. Rough set analysis is also applied to NTL detection in [159] on
features related to [34]. This supervised learning technique allows to approximate concepts
that describe fraud and regular use. A test accuracy of 0.9322 is reported.

3.3.6 Miscellaneous

Different feature selection techniques for customer master data and consumption data are
assessed in [127]. Those methods include complete search, best-first search, genetic search
and greedy search algorithms for the master data. Other features called shape factors are
derived from the consumption time series including the impact of lunch times, nights and
weekends on the consumption. These features are used in k-means for clustering similar
consumption time series. In the classification step, a decision tree is used to predict whether
a customer causes NTL or not. An overall test accuracy of 0.9997 is reported.

Optimum path forests (OPF), a graph-based classifier, is used in [141]. It builds a graph
in the feature space and uses so-called “prototypes" or training samples. Those become
roots of their optimum-path tree node. Each graph node is classified based on its most
strongly connected prototype. This approach is fundamentally different to most other
learning algorithms such as SVMs or neural networks which learn hyperplanes. Optimum
path forests do not learn parameters, thus making training faster, but predicting slower
compared to parametric methods. They are used in [143] for 736 customers and achieved
a test accuracy of 0.9021, outperforming SMVs with Gaussian and linear kernels and a
neural network which achieved test accuracies of 0.8893, 0.4540 and 0.5301, respectively.
Related results and differences between these classifiers are also reported in [144].

A different method is to estimate NTL by subtracting an estimate of the technical losses
from the overall losses reported in [151]. It models the resistance of the infrastructure in
a temperature-dependent model using regression which approximates the technical losses.
It applies the model to a data set of 30 customers for which the consumption was recorded
for six days with meter readings every 30 minutes for theft levels of 1, 2, 3, 4, 6, 8 and
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10%. The respective test recalls in linear circuits are 0.2211, 0.7789, 0.9789, 1, 1, 1 and 1,
respectively.

3.3.7 Summary

A summary and comparison of models, data sets and performance measures of selected
works discussed in this review is reported in Table 3.1. The most commonly used models
comprise SVMs and neural networks. In addition, genetic methods, OPF and regression
methods are used. Data set sizes have a wide range from 30 up to 700K customers.
However, the largest data set of 1.1M customers in [35] is not included in the table because
only the variance is reduced and no other performance measure is provided. Accuracy and
recall are the most popular performance measures in the literature, ranging from 0.45 to
0.99 and from 0.29 to 1, respectively. Only very few publications report the precision of
their models, ranging from 0.51 to 0.85.

3.4 Challenges

The research reviewed in the previous section indicates multiple open challenges. These
challenges do not apply to single contributions, rather they spread across different ones.
In this section, we discuss these challenges, which must be addressed in order to advance
in NTL detection. Concretely, we discuss common topics that have not yet received the
necessary attention in previous research and put them in the context of AI research as a
whole.

3.4.1 Class Imbalance and Evaluation Metric

Imbalanced classes appear frequently in machine learning, which also affects the choice of
evaluation metrics as discussed in [87], [161]. Most NTL detection research do not address
this property. Therefore, in many cases, high accuracies or high recalls are reported, such as
in [34], [35], [120], [141], [159]. Example 3.1 demonstrates why those performance measures
are not suitable for NTL detection in imbalanced data sets.

Example 3.1. Anomaly detection problems often work on particularly imbalanced data
sets. A test set containing 1K customers of which 999 have regular behavior and 1 has
irregular behavior, (1) a classifier always predicting regular behavior has an accuracy of
99.9%, whereas in contrast, (2) a classifier always predicting irregular behavior has a recall
of 100%. While the classifier of the first example has a very high accuracy and intuitively
seems to perform very well, it will never find any irregular behavior. In contrast, the
classifier of the second example will find all customers that have irregular behavior, but
may potentially trigger many costly and unnecessary interventions for customers that have
a regular behavior.
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Table 3.1: Summary of models, data sets and performance measures (two-decimal preci-
sion).

Reference Model #Customers Accuracy Precision Recall NTL/Theft
Proportion

[22] SOM 2K 0.93 0.85 0.98 -

[34] NN 22K 0.87 0.65 0.29 -

[44] SVM (Gauss) 1,350 0.98 - - -

[117] Neuro-fuzzy 20K 0.68 0.51 - -

[120] SVM < 400 - - 0.53 -

[122] Genetic SVM 1,171 - - 0.62 -

[123] SVM (Gauss) < 400 0.86 - 0.77 -

[124] SVM + fuzzy 100K - - 0.72 -

[127] Decision tree N/A 0.99 - - -

[140] SVM 5K 0.96 - - -

[140] kNN 5K 0.96 - - -

[140] NN 5K 0.94 - - -

[143] OPF 736 0.90 - - -

[143] SVM (Gauss) 736 0.89 - - -

[143] SVM (linear) 736 0.45 - - -

[143] NN 736 0.53 - - -

[151] Regression 30 - - 0.22 1%

[151] Regression 30 - - 0.78 2%

[151] Regression 30 - - 0.98 3%

[151] Regression 30 - - 1 4-10%

[159] Rough sets N/A 0.93 - - -

This topic is rarely addressed in NTL literature, such as in [47], [116], and these contri-
butions do not use a proper single measure of performance of a classifier when applied to
an imbalanced data set.
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3.4.2 Feature Description

Generally, hand-crafting features from raw data is a long-standing issue in machine learning
having significant impact on the performance of a classifier, as discussed in [49]. Different
feature description methods have been reviewed in the previous section. They fall into two
main categories: features computed from the consumption profile of customers, which are
from monthly meter readings, for example in [6], [34], [116], [117], [120], [122]–[124], [159],
or smart meter readings, for example in [22], [44]–[46], [121], [127], [140], [141], [143], [144],
[151], and features from the customer master data in [34], [127], [140], [141], [143], [144],
[159]. The features computed from the time series are very different for monthly meter
readings and smart meter readings. The results of those works are not easily interchange-
able. While electric utilities continuously upgrade their infrastructure to smart metering,
there will be many remaining traditional meters. In particular, this applies to emerging
countries.

Also, almost all works on NTL detection define features and subsequently report im-
proved models that were mostly found experimentally without having a strong theoretical
foundation.

3.4.3 Data Quality

In the preliminary work of this thesis, we noticed that the inspection result labels in the
training set may not always be correct and that some fraudsters may be labelled as non-
fraudulent. The reasons for this may include bribing, blackmailing or threatening of the
technician performing the inspection. Also, the fraud may be hidden well and is therefore
not observable by technicians. Another reason may be incorrect processing of the data.
It must be noted that the latter reason may, however, also label non-fraudulent behavior
as fraudulent. Handling noise is a common challenge in machine learning. In supervised
machine learning settings, most existing methods address handling noise in the input data.
There are different regularization methods such as L

1

or L

2

regularization discussed in
[125] or learning of invariances allowing learning algorithms to better handle noise in the
input data discussed in [16], [96]. However, handling noise in the training labels is less
commonly addressed in the machine learning literature. Most NTL detection research use
supervised methods. This shortcoming of the training data and potential wrong labels
in particular are only rarely reported in the literature, such as in [117], which uses an
ensemble to pre-filter the training data.

3.4.4 Covariate Shift

Covariate shift refers to the problem of training data (i.e. the set of inspection results)
and production data (i.e. the set of customers to generate inspections for) having different
distributions. This fact leads to unreliable NTL predictors when learning from the training
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data. Historically, covariate shift has been a long-standing issue in statistics, as surveyed in
[75]. For example, The Literary Digest sent out 10M questionnaires in order to predict the
outcome of the 1936 US Presidential election. They received 2.3M returns. Nonetheless,
the predicted result proved to be wrong because the voters contacted by the Literary
Digest represented a biased sample of the overall population. In contrast, George Gallup
only interviewed 3K handpicked people, which were an unbiased sample of the population.
As a consequence, Gallup could predict the outcome of the election very well. We discuss
this historical artifact in detail in Example 6.2.

For about the last fifteen years, the big data paradigm followed in machine learning
has been to gather more data rather than improving models. Hence, one may assume
that having simply more customers and inspection data would help to detect NTL more
accurately. However, in many cases, the data may be biased as depicted in Figure 3.2.

Figure 3.2: Example of spatial bias: The large city is close to the sea, whereas the small
city is located in the interior of the country. The weather in the small city
undergoes stronger changes during the year. The subsequent change of electri-
city consumption during the year triggers many inspections. As a consequence,
most inspections are carried out in the small city. Therefore, the sample of
customers inspected does not represent the overall population of customers.

One reason is, for example, that electricity suppliers previously may have focused on cer-
tain neighborhoods for inspections. Concretely, the set of customers inspected is a sample
of the overall population of customers. In this example, there is a spatial bias. Hence, the
inspections do not represent the overall population of customers. As a consequence, when
learning from the inspection results, a bias is learned, making predictions less reliable.
Aside from spatial covariate shift, there may be other types of covariate shift in the data,
such as the meter type, connection type, etc.

To the best of our knowledge, the issue of covariate shift has not been addressed in
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the literature on NTL detection. However, in many cases it may lead to unreliable NTL
detection models. Therefore, we consider it important to derive methods for quantifying
and reducing the covariate shift in data sets relevant to NTL detection. This will allow to
build more reliable NTL detection models.

3.4.5 Scalability

The number of customers used throughout the research reviewed significantly varies. For
example, [120], [151] only use less than a few hundred customers in the training. A SVM
with a Gaussian kernel is used in [120]. In that setting, training is only feasible in a realistic
amount of time for up to a couple of tens of thousands of customers in current implement-
ations as discussed in [25]. A regression model using the Moore-Penrose pseudoinverse
introduced in [132], [151]. This model is also only able to scale to up to a couple of tens of
thousands of customers. Neural networks are trained on up to a couple of tens of thousands
of customers in [34], [116]. The training methods used in prior work usually do not scale to
significantly larger customer data sets. A large data set using up to hundreds of thousands
in [35] uses genetic algorithms. An important property of NTL detection methods is that
their computational time must scale to large data sets of hundreds of thousands or millions
of customers. Most works reported in the literature do not satisfy this requirement.

3.4.6 Comparison of Different Methods

Comparing the different methods reviewed in this chapter is challenging because they are
tested on different data sets, as summarized in Table 3.1. In many cases, the description of
the data lacks fundamental properties such as the number of meter readings per customer,
NTL proportion, etc. In order to increase the reliability of a comparison, joint efforts of
different research groups are necessary. These efforts need to address the benchmarking
and comparability of NTL detection systems based on a comprehensive freely available
data set.

3.5 Conclusions

Non-technical losses (NTL) are the predominant type of losses in electricity power grids.
In the literature, a vast variety of NTL detection methods employing artificial intelligence
methods are reported. Expert systems and fuzzy systems are traditional detection models.
Over the past years, machine learning methods have become more popular. The most com-
monly used methods are support vector machines and neural networks, which outperform
expert systems in most settings. These models are typically applied to features computed
from customer consumption profiles such as average consumption, maximum consumption
and change of consumption in addition to customer master data features such as type of
customer and connection types. Sizes of data sets used in the literature have a large range
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from less than 100 to more than one million. In this chapter, we have also identified the six
main open challenges of NTL detection: handling imbalanced classes in the training data
and choosing appropriate evaluation metrics, describing features from the data, handling
incorrect inspection results, correcting the covariate shift in the inspection results, building
models scalable to big data sets and making results obtained through different methods
comparable. We believe that these need to be accurately addressed in future research in
order to advance in NTL detection methods. This will allow to share sound, assessable,
understandable, replicable and scalable results with the research community. We are con-
fident that this comprehensive survey of challenges will allow other research groups to not
only advance in NTL detection, but in anomaly detection as a whole.
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4
Expert Knowledge, Machine

Learning and Visualization

of Predictions

To date, most NTL detection systems deployed in industry are based on expert knowledge
rules. In contrast, the predominant research direction reported in the recent research
literature is the use of machine learning/data mining methods, which learn from customer
data and known irregular behavior that was reported through inspection results. Due
to the high costs per inspection and the limited number of possible inspections, electric
utilities aim to maximize the return on investment (ROI) of inspections. In this chapter,
we compare expert systems to machine learning for NTL detection. We specifically address
the challenges of class imbalance and evaluation metric, feature description and scalability
that we identified in Chapters 3.4.1, 3.4.2 and 3.4.5, respectively.

As electric utilities are keen to include their expert knowledge when deciding which cus-
tomers to inspect, we then combine both worlds in a new approach that allows domain
experts to visualize the prediction results of NTL classifiers in a holographic spatial visual-
ization. An example of this holographic visualization is depicted in Figure 4.1. Using this
hologram, domain experts can then review and amend the suggestions of which customers
to inspect in order to increase the return on investment of inspections. The entire NTL
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detection process proposed and evaluated in this chapter is depicted in Figure 4.2.

Figure 4.1: Example usage of our NTL detection system: Customers are classified as either
regular (green), irregular (red) or suspicious (yellow) by a machine learning
system. Holographic spatial visualization of customers allows domain experts
at the electric utilities to gather information about the customers as well as
their neighborhood in order to decide which customers to inspect. The figure
depicts the profile of an irregular customer whose consumption has significantly
dropped in the last few months.

4.1 Detecting Irregular Power Usage

The data used in this chapter is from an electric utility in Brazil. It consists of three parts:
(i) ⇠700K customer data, such as location, type, etc., (ii) ⇠31M monthly consumption
data from January 2011 to January 2015 such as consumption in kWh, date of meter
reading and number of days between meter readings and (iii) ⇠400K inspection data such
as presence of fraud or irregularity, type of NTL and inspection notes.

Most inspections did not find NTL, making the classes highly imbalanced. In order for
the models to be applied to other regions or countries, they must be assessed on different
NTL proportions. Therefore, the data was subsampled using 17 different NTL proportion
levels: 0%, 0.1%, 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%
and 100%. Each sample contains ⇠100K inspection results.
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Figure 4.2: NTL detection system combining machine learning and expert knowledge ex-
tending the general NTL detection process depicted in Figure 3.1: First, meter
readings and other customer data are collected. Second, inspections of cus-
tomers are carried out by technicians. Third, the data of previously inspected
customers is loaded, which consists for example of their consumption data as
well the inspection result. Fourth, features are extracted from the customer
data. Fifth, these features are reduced in order to only retain the statistic-
ally meaningful ones. Sixth, using the reduced set of features and the results
of previously carried out inspections, classifiers are trained in order to detect
NTL. Seventh, these classifiers are then used to predict for customers whether
they should be inspected for NTL or not. Eighth, domain experts visualize the
customers, their neighbors, inspection results and other data such as the con-
sumption data in a spatial 3D hologram. Ninth, domain expert at the utilities
choose the customers for which an inspection appears to be justified from an
economic point of view. Last, the inspections are carried out by technicians.
Please note that the fifth step is not performed in this chapter. Instead, it is
extensively performed in Chapters 5 and onwards.

4.1.1 Models

We now describe three different models for NTL detection. The first model is a CHOICE
Technologies product based on Boolean logic and is used as a baseline. It is extended to
fuzzy logic in the second model in order to smoothen the decision making process. The
third model is a Support Vector Machine, a state-of-the-art machine learning algorithm.
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Expert System

This model is an expert system, it consists of hand-crafted rules created by the CHOICE
Technologies expert team which are conjunctions of (in)equality terms, such as:
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are so-called attributes. Possible attributes are change of consumption over the last
3 months, slope of consumption curves. v

x

are numeric values. In total, 42 attributes
are used in 14 rules. If at least one rule outcome is true, that customer is considered to
potentially cause NTL.

Fuzzy systems [7] have a long tradition in control applications allowing to implement
expert knowledge in a softer decision making process. They can be used to relate to
classes of objects, breaking up boundaries, making membership a matter of degree. In this
chapter, the 14 Boolean rules were fuzzified and incorporated in a Mamdani fuzzy system
using the centroid defuzzification method [7]. Fuzzy rules rely on membership functions.
The number of membership functions for each attribute depends on the ranges of values
found in the rules among which 1 attribute has 1 function, 32 attributes have 2 functions
and 9 attributes have 4 functions. In most cases, trapezoid membership functions are used
to keep the model simple. The exact parameters, such as membership function boundaries
or the mean of sigmoid membership functions were determined from the distribution of
attribute values.

However, these parameters could be optimized using: (i) gradient techniques [147], (ii)
genetic algorithms [147] or (iii) neuro-fuzzy systems [2]. Techniques (i) and (ii) are highly
constrained optimization problems due to dependence among parameter values to keep the
fuzzy system valid. Technique (iii) requires a Sugeno instead of a Mamdani fuzzy system,
in which the number of rules equals the number of output membership functions, which
is not applicable to the rules used in this chapter. Technique (i) was implemented and
studied further. Its results are reported in this chapter.

Machine Learning

Inspired by [123], we compute for M customers {0, 1, ...,M � 1} over the last N months
{0, 1, ..., N � 1}, a feature matrix X. Element X

m,d

is the daily average kWh consumption
feature during that month d of customer m that is computed using Equation 3.1. Similarly,
a binary target vector y is created in which element y(m) is the most recent inspection result
for customer m in the respective period of time. NTL are encoded by 1 if they are detected
and 0 if not.
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4.1.2 Evaluation

Metric

In many classification problems, the classification rate, or accuracy is used as a performance
measure. Given the number of true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN):

ACC =

TP+TN

TP+TN+FP+FN

. (4.2)

However, many publications ignore that it is only of minor expressiveness for imbal-
anced classes as discussed in Example 3.1. It clearly demonstrates that other performance
measures must be used for NTL detection.

The recall is a measure of the proportion of the true positives found. It is also named
true positive rate (TPR) or sensitivity:

Recall =

TP

TP+FN

. (4.3)

The specificity is a measure of the proportion of the true negatives classified as negative.
It is also named true negative rate (TNR):

Specificity =

TN

TN+FP

. (4.4)

The false positive rate (FPR) is 1� TNR.
A receiver operating characteristic (ROC) curve plots the TPR against the FNR. The

area under the curve (AUC) is a performance measure between 0 and 1, where any binary
classifier with an AUC > 0.5 performs better than random guessing. While in many
applications multiple thresholds are used to generate points plotted in a ROC curve, the
AUC can also be computed for a single point, when connecting it with straight lines to
(0, 0) and (1, 1) as shown in [82]:

AUC =

Recall + Specificity

2

. (4.5)

For NTL detection, the goal is to reduce the FPR to decrease the number of costly
inspections, while increasing the TPR to find as many NTL occurrences as possible. In
order to assess a NTL prediction model using a single performance measure, the AUC is
the most suitable.
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Methodology

Throughout the experiments, consumption readings and inspection result data are used.
Further data, such as location of customers are not used. In the comparison of the three
classifiers, the AUC performance measure is used for the different levels of NTL proportion
mentioned in the beginning of this chapter. We assessed different values for the number of
the most recent meter readings N . Only customers with a complete time series of the last
N months before the respective inspection are considered. The larger N , the less data is
available. At least 12 months should be considered in order to represent seasonality effects.
Experiments for the last 12, 18 and 24 months were carried out, for which 12 months have
proven to lead to the best results as the other experiments lead to more overfitting.

The SVM is the only classifier that requires training in our experiments. However, since
it is a binary classifier, it could not be trained on NTL proportions of 0% and 100%. For
the NTL proportions used for training, 10-fold cross-validation is performed for every NTL
proportion, splitting the data into a 60%/20%/20% training/validation/test ratio. The
AUC score is used as the validation measure to pick the best classifier fold. Throughout
the experiments, a linear SVM is used. The same experiments were repeated using a
Gaussian Kernel, which proved to overfit for all NTL proportions.

Implementation

The Boolean and fuzzy classifiers were implemented in MATLAB, the latter using the Fuzzy
Logic Toolbox [108]. The SVM classifier was implemented in Python using scikit-learn
[131], which builds on top of LIBSVM [25]. The regularization parameter and the inverse
variance parameter � of the Gaussian kernel were optimized using scikit-learn. Using
10-fold cross-validation to train 10 SVMs and to select the best one takes about 2 minutes
per NTL proportion on a state-of-the-art i5 notebook. Using the Boolean or fuzzy systems
to classify the same amount of data takes about 1 second. However, both classifiers use
pre-computed customer-specific attributes. Computing those takes a couple of hours in a
cloud infrastructure.

Comparison of Classifier Performance

For different NTL proportions, the change of test AUC for the Boolean and fuzzy systems
and the SVM can be observed in Figure 4.3. The Boolean classifier has an AUC < 0.5

for all NTL proportions and therefore performs worse than random guessing. The same
applies for the fuzzy system, except for a NTL proportion of 0.1%. The SVM performs
only (noticeably) better than random guessing for NTL proportions between 50% and 80%.

Given the theory of fuzzy systems and their potential, the parameters of the fuzzy
system were optimized using stochastic gradient descent (SGD) for each of the 15 binary
NTL proportions: 0.1% to 90%. Out of the 15 optimized fuzzy systems, the one with

50



4.1 Detecting Irregular Power Usage

AUC for different NTL proportions

Figure 4.3: Comparison of classifiers tested on different NTL proportions.

the greatest AUC test score is picked and tested on all NTL proportions. The fuzzy
system trained on 30% and tested on all NTL proportions - Fuzzy SGD 30% - significantly
outperforms both, the Boolean and fuzzy systems, as shown in Figure 4.4.

AUC for different NTL proportions

Figure 4.4: Comparison of optimized classifiers tested on different NTL proportions.
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However, comparing the confusion matrices of both classifiers, they perform very differ-
ently as shown in Tables 4.1 and 4.2 for selected NTL levels of 5% and 20%, respectively.
The optimized fuzzy system has a higher TNR, but lower TPR compared to the optimized
SVM. In return, the SVM has a higher TPR, but a lower FNR.

Table 4.1: Normalized confusion matrices for test on 5% NTL proportion.
Predicted

Classifier Actual TNR FPR
FNR TPR

Boolean Actual 0.53 0.47
0.60 0.40

Fuzzy SGD 30% Actual 0.87 0.13
0.77 0.23

SVM 60% Actual 0.36 0.64
0.26 0.74

Table 4.2: Normalized confusion matrices for test on 20% NTL proportion.
Predicted

Classifier Actual TNR FPR
FNR TPR

Boolean Actual 0.53 0.47
0.58 0.42

Fuzzy SGD 30% Actual 0.87 0.13
0.78 0.22

SVM 60% Actual 0.35 0.65
0.25 0.75

4.1.3 Discussion

The initial industrial Boolean and fuzzy models perform worse than random guessing and
are therefore not suitable for real data, as they trigger too many inspections while not
many of them will lead to NTL detection. Optimized fuzzy and SVM models trained
on 30% and 60% NTL proportion, respectively, result in significantly greater AUC scores.
However, both perform very differently, as the optimized fuzzy system is more conservative
in NTL detection. In contrast, the optimized SVM is more optimistic, leading also to a
higher FPR. In general, neither can be named better than the other one, as picking the
appropriate model from these two is subject to business decisions.

However, this work also demonstrates that for real data, NTL classifiers using only the
consumption profile are limited. Therefore, it is desirable to use more features like location,
inspection notes, etc. Another issue with the real data is the potential bias of inspections
so that this sample of customers does not represent the overall population of customers.
We expect a correction of the bias to lead to better predictions, too.
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4.2 Holographic Visualization of Irregular Power Usage

The NTL detection approach based on machine learning presented in this chapter allows
to predict whether customers cause NTL or not. It can then be used to trigger possible in-
spections of customers that have irregular electricity consumption patterns. Subsequently,
technicians carry out inspections, which allow them to remove possible manipulations or
malfunctions of the power distribution infrastructure. Furthermore, the fraudulent cus-
tomers can be charged for the additional electricity consumed. Generally, carrying out
inspections is costly, as it requires physical presence of technicians. In order to increase
both the return on investment (ROI) of the limited number of inspections and the reli-
ability and stability of the power grid, electric utilities in practice strongly rely on expert
knowledge for making the decision of whether to inspect a customer or not. As a con-
sequence, electric utilities are reluctant to move to large-deployments of NTL detection
systems based on machine learning. Our goal is to visualize customers, their neighborhood
and predictions whether customers cause NTL in 3D spatial holograms that are for ex-
ample depicted in Figures 4.1 and 4.5. We therefore aim to combine automated statistical
decision making for generating inspection proposals with incorporating knowledge of the
domain experts at the electric utilities for making the final decisions of which customers
to inspect as depicted in Figure 4.2.

Figure 4.5: Gesture interactions with the spatial hologram allow to select customers as well
as to zoom into or rotate holograms. We also provide a future yellow label that
depicts a borderline case, which requires a manual check by domain experts.

4.2.1 Related Work

In the literature, different approaches for visualization of NTL are reported. In order to
support the decision making, the visualization of the network topology on feeder level as
well as load curves on transformer level is proposed in [1]. In addition, the density of NTL
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in a 2D map is visualized in [134]. For analytics in power grids as a whole, the need for novel
and more powerful visualization techniques is argued in [165]. The proposed approaches
include heat maps and risk maps. All methods for visualization of NTL proposed in the
literature focus only on 2D representations.

We are currently undergoing a paradigm shift in data visualization from not only 2D to
3D, but rather to augmented reality using holographic projections [128]. This shift allows
to better understand and experience data [81]. Users are not constrained to looking at data
on a screen, as they can interact with the data, e.g. walking around holograms to get a
better understanding of big data sets. This comes with the benefit of increased productivity
as users can use their hands to turn and manipulate objects rather than getting distracted
caused by a change of focus from the screen to the input devices such as keyboards or mice
[103]. A number of successful applications of holographic projections have been described
in the literature including guided assembly instructions [51] as well as a combination of
different geographical information data sources in city management [103]. The literature
also discusses the limitations of 3D visualizations, such as that users mistakenly may have
greater confidence in the quality of the data [181].

4.2.2 Microsoft HoloLens

Mixed reality smart glasses such as the Microsoft HoloLens [31] depicted in Figure 4.6
allow users to combine holographic projections with the real world. The HoloLens offers
their user a new perception of 3D models and, perhaps, can provide a new meaning to
it. Visualization of data through holograms has found its application in many areas. In
medicine, future doctors can study human anatomy by looking at a representation of the
human body and navigate through muscles, organs and skeletons [163]. The HoloLens has
the ability to perform the so-called holoportation. It allows to virtually place users to
remote locations to see, hear and interact with others. Users can walk around holograms
and interact with them using gaze, gestures or voice in the most natural way. Spatial
sound allows hearing holograms even if they are behind the user, considering its position
and direction of the sound. Spatial mapping features provide a real-world representation
of surfaces, creating convincing holograms in augmented reality.

4.2.3 Architecture

We now describe the architecture of our visualization in the HoloLens. First, we create
a 3D model of the map. A movie is recorded to capture the scene and all its objects
from the different angles through Google Earth Pro. Afterwards, images are extracted in
Windows Movie Maker from that movie at the best experimentally determined rate of 1
frame/sec. Then, those images are loaded in Blender, which in turn creates a 3D FBX
model. This model is exported to Unity. Holographic effects are implemented through
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Figure 4.6: Microsoft HoloLensa.
a
Source: http://www.microsoft.com/en-us/hololens

HoloToolkit-Unity [32]. Second, we load the customer data from the database. For
example, we load the customers’ locations as well as their past consumption profiles. Third,
we use a machine learning system that predicts whether a customer causes NTL or not. We
visualize each prediction at the location of the respective customer. The entire architecture
is depicted in Figure 4.7.

Figure 4.7: Visualization architecture: Map data, customer data and predictions are fed
into the HoloLens in order to visualize a holographic spatial visualization.
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4.2.4 Evaluation

This application is used by domain experts at the electric utilities and perceive that cus-
tomers are classified as either regular (green) or irregular (red). Domain experts can walk
around a spatial hologram and observe the data from different directions. Using their
hands, they can also interact with the hologram in different ways, such as zooming into or
rotating the hologram as depicted in Figure 4.8.

Figure 4.8: Zoomed and rotated view on the spatial hologram.

Domain experts can also learn more about a customer by tapping on it with their finger.
The spatial hologram then also depicts the consumption profile of the respective customer
over a selected period of time such as the previous 12 months. A customer with a predicted
regular consumption profile is depicted in Figure 4.9. This customer’s consumption has only
changed very little in the last 12 months. As a consequence, the machine learning system
classifies this customer as non-NTL (green). A customer with an irregular consumption
profile is depicted in Figure 4.1. This customer’s consumption has undergone a significant
drop over the last few months. Therefore, the machine learning system classifies this
customer as NTL (red). In both cases, domain experts can compare their observations with
the prediction made by the machine learning system. If the prediction is not plausible,
domain experts can choose not to follow the recommendation and therefore decide whether
to inspect a customer. Our visualization allows domain experts to take the neighborhood
of customers into account in order to decide which customers to inspect. Aside from the
actual spatial visualization of satellite images of a neighborhood, domain experts can also
visualize the consumption profile of neighbors as visualized in Figure 4.10 for comparing
customers in order to decide whether to inspect a customer.
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Figure 4.9: Detailed view of a customer depicted by a green dot predicted to have a regular
power consumption pattern.

Figure 4.10: Multi-view on multiple customers’ power consumption history.

4.2.5 Discussion

Our holographic spatial visualization of customers and their neighborhood comes with the
benefit of increased productivity. We will show in Chapter 5 that the neighborhoods of
customers yield significant information in order to decide whether a customer causes NTL
or not. There are many interpretations of this fact. For example, fraudulent customers
may share their knowledge with neighbors or there may be a correlation between electricity
theft and the level of prosperity of a neighborhood. Our system allows to increase the ROI

57



4 Expert Knowledge, Machine Learning and Visualization of Predictions

of inspections as well as to increase both the reliability and stability of the power grid by
incorporating expert knowledge in the decision making process. Also, domain experts can
use their hands to turn and manipulate objects rather than getting distracted by a change
of focus from the screen to the input devices such as a keyboard or mouse.

4.3 Conclusions

In this chapter, we have proposed three models for NTL detection for large data sets of
100K customers: Boolean, fuzzy and machine learning using a Support Vector Machine. In
contrast to other results reported in the literature, the optimized fuzzy and SVM models
were assessed for varying NTL proportions on imbalanced real-world consumption data.
Both have an AUC > 0.5 for all NTL proportions > 0.1% and significantly outperform
simple Boolean or optimized fuzzy models. The improved models are about to be deployed
in a CHOICE Technologies product. The issue of class imbalance will be discussed from a
more generic and unified perspectives on biases in data sets in Chapter 6.

However, electric utilities are still keen to include expert knowledge in their decision
making process when identifying the customers to be inspected. We have therefore pro-
posed a novel system for detecting non-technical losses (NTL) for a real-world data set,
depicted in Figure 4.2. In the first stage, the machine learning system learns to predict
whether a customer causes NTL or not. Our machine learning system allows to detect
NTL better than using an expert system. In the second stage, we put the prediction
results into context by visualizing further data of the customers and their neighborhoods
in a spatial hologram using a Microsoft HoloLens. Using this hologram, domain experts
can then review and amend the suggestions of which customers to inspect. As a result,
they can make the final decisions of which customers to inspect in order to increase the
return on investment (ROI) of the limited number of inspections. We are confident that
this approach will lead to an increase of both stability and reliability of power grids by
making better use of the limited number of inspections as well as lead to a greater ROI
of the limited number of inspections. We are also planning to evaluate our visualization
approach through a future user study.
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We have proposed a machine learning system based on average consumption features for
detecting NTL in Chapter 4. In this chapter, we further address the challenge of feature
description that we identified in Chapter 3.4.2. We thus take full advantage of the customer
data in order to detect NTL better by exploring two different directions motivated below.
Both approaches also address the challenge of scalability that we identified in Chapter 3.4.5.

The main idea of the first approach is to derive features that include information about
the neighborhood. We show that the neighborhood of customers contains information
about whether a customer may cause NTL or not. We analyze the statistical properties
of these features and show why they are useful for NTL detection. By using information
of the neighborhood, we can predict NTL better as there are geographic clusters of NTL
among the customers. To the best of our knowledge, we are not aware of any previously
published research that addressed this topic.

In the second approach, we propose a novel and flexible framework to compute a large
number of domain-specific features and generic features from the noisy industrial consump-
tion time series of customers for NTL detection. We retain the statistically meaningful
features extracted from the noisy consumption data and optimize different classifiers to
predict NTL better.
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5.1 Information in Spatial Data

We use the same data set as in Chapter 4. About one third of the inspections found NTL.
However, the models of this chapter must also work in other regions which have different
NTL proportions. Therefore, the 14 samples each having 100K inspects results with the
following NTL proportions are used: 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80% and 90%.

5.1.1 Features

We derive two new types of features from the customer data: features from the neighbor-
hood as well as features from the master data of the customers. In addition, we also use
the daily average consumption features derived in Equation 3.1 that we have previously
used in Chapter 4. We also analyze the statistical properties of features derived from the
neighborhood and explain why they are useful for NTL detection.

Neighborhood

Certain areas are more likely to cause NTL than others. Therefore, features based on the
neighborhood are interesting in order to improve predictions. The data includes invalid
coordinates of customers, such as coordinates in the ocean. For this, all customers outside
a deviation from the mean coordinates are removed. We empirically found that removing
the 1K customers that are not within five standard deviations from the mean coordinates
worked the best. The bounding box around the remaining valid coordinates is about 200
km along the longitude and about 500 km along the latitude. Therefore, the bounding box
has an area of approximately 100,000 km2. This bounding box is split into a grid along
the longitude and latitude.

In each cell
ij

, the proportion of inspected customers and the proportion of NTL found
among the inspected customers are computed:

inspected_ratio

ij

=

#inspected

ij

#customers

ij

, (5.1)

NTL_ratio

ij

=

#NTL

ij

#inspected

ij

. (5.2)

An example cell is provided in Figure 5.1.
The grid sizes used are 50, 100, 200 and 400 cells along the longitude and latitude,

respectively. For each grid size, both features are assigned to each customer registered in
the respective cell. The area per cell is depicted in Table 5.1 for each grid size.

As four grid sizes are used, a total of 4⇥ 2 = 8 neighborhood features are computed per
customer. For both classes, the distributions of the values of both features for these four
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Figure 5.1: Example cell with 5 customers, 3 out of 5 were inspected (I) and 1 out of 3
inspected customers caused NTL.

Table 5.1: Area per cell for all grid sizes.

Grid Size Area per Cell [km2]

50⇥ 50 40

100⇥ 100 10

200⇥ 200 2.5

400⇥ 400 0.625

grid sizes are depicted in Figure 5.2 for a NTL proportion of 20% and in Figure 5.3 for a
balanced NTL proportion.

The distributions of both neighborhood features represent the prior distributions of a
Bayesian approach. However, none of the distributions is Gaussian, and it is therefore
interesting to study how their properties change for varying NTL proportions of the data
set and how they allow to separate between no NTL found and NTL found.

The mean of each feature distribution is depicted in Figure 5.4. The means of the inspec-
ted ratio distributions are expected to be around 0.14 because there are 700K customers
and each NTL proportion file contains 100K inspections. However, the means slightly de-
crease for greater NTL proportions for customers for which no NTL was found and slightly
increase for customers for which NTL was found. We have not found any cause of this in
our experiments, however, we believe that this is caused by the sampling of the data. How-
ever, this helps to separate both classes. The means of the NTL found ratio distributions
are approximately the NTL proportion as expected. For all grid sizes, the distributions of
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Figure 5.2: Distributions of both neighborhood features for varying grid sizes for 20% NTL.

means are approximately the same for the inspected ratio and NTL found ratio features,
respectively.

The variance of each feature distribution is depicted in Figure 5.5. For the inspected
ratio feature, we see that the variance is lower for the customers for which NTL was found
than for those for which no NTL was found. There is only an exception for the grid size of
100 for NTL proportions > 70%. The variance of the NTL found ratio feature is greater
for the customers for which NTL was found than those for which no NTL was found for
NTL proportions < 50% and then flips around 50% for all grid sizes. This demonstrates
an inverse relationship between the distributions of variances of both features for NTL
proportions < 50%. For both features, the variances are in different ranges for each grid
sizes, which helps to separate between both classes.

Skewness is the extent to which the data are not symmetrical [40]. It is the third
standardized moment, defined as:
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where µ

3

is the third central moment, µ is the mean, � is the standard deviation and E is
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Figure 5.3: Distributions of both neighborhood features for varying grid sizes for 50% NTL.
Example: the red NTL peak around 0.5 in the NTL found ratio, grid=200x200
plot represents a type of favela neighborhood, in which every second customer
causes NTL.

the expectation operator. Positively skewed data have a tail that points to the right. In
contrast, negatively skewed data have a tail that points to the left. The skewness of each
feature distribution is depicted in Figure 5.6.

All inspected ratio distributions are positively skewed. This skewness means that there
are more grid cells with very high inspected ratios than cells with very low inspection
ratios. There is no significant difference between both classes for most NTL proportions
and therefore this property does not help much to separate between both. All NTL found
ratio distributions are positively skewed for NTL proportions  50%. For NTL proportions
> 50%, the distributions are negatively skewed for the non-NTL class. The change of sign
in the skewness distributions for samples with low NTL proportions shows the existence
of clusters of low NTL of different sizes. The skewness of this feature is generally greater
for the NTL class than the non-NTL class for all grid sizes, which allows to separate both
classes better.

Kurtosis indicates how the peak and tails of a distribution differ from the normal distri-
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Figure 5.4: Mean of each feature distribution for different NTL proportions. Legend: the
blue dashed curve represents the non-NTL class and the red solid curve rep-
resents the NTL class.

bution [40]. It is the fourth standardized moment, defined as:

Kurt[X] =
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])

2

� 3, (5.4)

where µ

4

is the fourth moment about the mean and � is the standard deviation. A
distribution with a positive kurtosis value has heavier tails and a sharper peak than the
normal distribution. In contrast, a distribution with a negative kurtosis value indicates
that the distribution has lighter tails and a flatter peak than the normal distribution. The
kurtosis of each feature distribution is depicted in Figure 5.7.

The kurtosis values of all distributions of both features are positive and therefore have
sharper peaks than the normal distribution. For the inspection ratio features, the kurtosis
is greater for the NTL class for most NTL proportions, meaning these features are less
Gaussian than for the NTL class, which helps to separate both classes. The same applies
to the NTL found ratio feature for NTL proportions < 50%.

Overall, the plots of variance, skewness and kurtosis of both classes show that for both
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Figure 5.5: Variance of each feature distribution for different NTL proportions. Legend:
the blue dashed curve represents the non-NTL class and the red solid curve
represents the NTL class.

features the values of the distributions for the different grid sizes have different ranges.
This is helpful in order to discriminate between NTL and no NTL.

Categorial Master Data

In addition, more information about the customer should be considered in the prediction.
The categorial master data available for each customer is summarized in Table 5.2. Each
feature is converted to one-hot coding. Therefore, there are 8 + 3 + 3 + 2 = 16 binary
features per customer.

In order to reduce overfitting, only representative binary features are kept. These could
be found using the principal component analysis (PCA) [130]. However, PCA is not
able to handle noise in the data well. Since this real data set is noisy, PCA is not used
for the reduction of the binary features. Instead the dimensionality reduction approach
is as follows: All features that are either one or zero in more than p ⇥ 100% of each
proportion sample are removed. These binary features are Bernoulli random variables,
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Figure 5.6: Skewness of each feature distribution for different NTL proportions. Legend:
the blue dashed curve represents the non-NTL class and the red solid curve
represents the NTL class.

Table 5.2: Available master data.

Name Possible Values

Class

Residential, commercial, industrial,

public illumination, rural,

public, public service, power

generation infrastructure

Contract status Active, suspended, inactive

Number of wires 1, 2, 3

Voltage >2.3kV, 2.3kV
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Figure 5.7: Kurtosis of each feature distribution for different NTL proportions. Legend:
the blue dashed curve represents the non-NTL class and the red solid curve
represents the NTL class.

and the variance of such variables is given by:

Var[X] = p(1� p). (5.5)

For the following experiments in this chapter, p = 0.9 was experimentally determined to
work the best.

Final Feature Set

For each NTL proportion, the feature matrix has at least 20 features, which are the 8 neigh-
borhood features combined with the 12 daily average consumption features. Depending on
the distribution of customers in each NTL proportion, up to 16 binary master data features
are added. However, only a fraction of them is expressive enough to improve the prediction
results. The number of retained and number of total features per NTL proportion sample
are summarized in Table 5.3.

In order to optimize the training, each of the 8 neighborhood features and 12 daily
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Table 5.3: Number of features used per NTL proportion.

NTL Proportion #Retained Binary Features #Total Features

1% - 10% 5 25

30% - 70% 4 24

20%, 80%, 90% 6 26

average consumption features is normalized:

x

j

0 = x

j

� x̄

j

�

j

. (5.6)

This normalization makes the values of each future in the data have zero mean and unit
variance. This allows to reduce the impact of features with a broad range of values. As an
outcome, each feature contributes approximately proportionally to the classification.

5.1.2 Evaluation

In this chapter, we train logistic regression, k-nearest neighbors, support vector machine
and random forest classifiers.

Implementation

All computations were run on a server with 24 cores and 128 GB of RAM. The entire code
was written in Python. The neighborhood features were computed using Spark [180]. For
all experiments, scikit-learn [131] was used, which allows to distribute the training and
evaluation of each of the four classifiers among all cores.

Experimental Setup

For every NTL proportion, the data set is split into training, validation and test sets with
a ratio of 80%, 10% and 10%, respectively. Each of the four models is trained using 10-
fold cross-validation. For each of the four models the trained classifier that performed
the best on the validation set in any of the 10 folds is selected and tested on the test
set to report the test AUC. This methodology is related to Chapter 4. For each of the
four models, the following parameter values were determined empirically as a compromise
between expressiveness, generalization of models and training time. For logistic regression
and SVM, the inverse regularization factor C is set to 1.0. K = 100 neighbors are visited in
kNN. The random forest consists of 1K trees. Running the following experiments including
cross-validation takes about 4 hours on this computing infrastructure.
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Results

For different NTL proportions, the test AUC of the logistic regression (LR) classifiers is
depicted in Figure 5.8. Using only the time series daily average consumption features of the
last 12 months results in a classifier that performs like chance for most NTL proportions.
It only performs better than chance for NTL proportions of 50%-80% with a maximum
AUC of 0.525 for a NTL proportion of 50%. However, by adding the neighborhood and
selected categorial features, the classifier performs noticeably better than chance for all
NTL proportions and significantly better than time series features only for NTL proportions
of 30%-70%.

Figure 5.8: Test performance of logistic regression classifier on different NTL proportions
for time series and all features.

Similar experiments are run for the kNN, SVM and random forest (RF) classifiers and
summarized in Table 5.4. It can be observed that the extra features help all classifiers to
maximize the overall AUC scores and that the classifiers perform noticeably better than
chance for more NTL proportions.

The LR, kNN and SVM classifiers perform the best for a balanced data set of 50%. The
RF classifiers perform the best for 60% and 40% using only the time series or all features,
respectively. However, it must be noted that for 50%, both RF classifiers perform close to
the optimal AUC scores achieved. This is most likely due to the ensemble, which allows to
better adopt to variations in the data set. The four models that performed the best on all
features are then tested on all proportions. The results are summarized in Table 5.5 and
visualized in Figure 5.9.
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Table 5.4: Comparison of classifiers trained on time series and all features.
t

denotes that
only the time series is used in the models.

a

denotes that all features are used:
time series, neighborhood features and selected master data. Best proportion
per model in bold.

NTL Proportion LR
t

LR
a

kNN
t

kNN
a

SVM
t

SVM
a

RF
t

RF
a

1% 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.505

2% 0.5 0.509 0.5 0.5 0.5 0.5 0.5 0.505

3% 0.5 0.507 0.5 0.5 0.5 0.505 0.5 0.511

4% 0.5 0.506 0.5 0.5 0.5 0.503 0.502 0.509

5% 0.5 0.503 0.5 0.5 0.5 0.504 0.5 0.511

10% 0.5 0.507 0.504 0.5 0.5 0.505 0.504 0.519

20% 0.5 0.516 0.523 0.506 0.5 0.511 0.509 0.539

30% 0.5 0.557 0.53 0.549 0.5 0.552 0.535 0.578

40% 0.5 0.595 0.546 0.587 0.5 0.592 0.55 0.619

50% 0.525 0.597 0.57 0.596 0.521 0.6 0.572 0.618

60% 0.509 0.548 0.545 0.556 0.509 0.546 0.579 0.582

70% 0.507 0.532 0.526 0.53 0.507 0.529 0.55 0.553

80% 0.501 0.506 0.508 0.505 0.502 0.51 0.527 0.514

90% 0.5 0.508 0.5 0.5 0.502 0.506 0.507 0.506

The RF classifier achieves the greatest AUC throughout the experiments of 0.628 for
a NTL proportion of 3% and achieves the best AUC among all classifiers for 7 of the 14
classifiers. The SVM performs the best on 4 proportions, the LR performs performs the
best on 2 proportions. Both classifiers perform similarly well on the NTL proportion of
10%. The kNN classifier only performs the best on one proportion. Even though the RF
achieved the maximum AUC, it also has the lowest AUC throughout the experiments.
Furthermore, it has the greatest standard deviation of all classifiers.
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Table 5.5: Performance of optimized models on all NTL proportions. Model XY% stands
for a model that was trained on a NTL proportion of XY% and tested on all
proportions. Best model per proportion in bold.

NTL Proportion LR 50% kNN 50% SVM 50% RF 40%

1% 0.601 0.585 0.602 0.62

2% 0.611 0.614 0.611 0.606

3% 0.596 0.566 0.598 0.628

4% 0.593 0.587 0.604 0.565

5% 0.588 0.581 0.588 0.596

10% 0.585 0.583 0.585 0.561

20% 0.585 0.576 0.583 0.6

30% 0.596 0.581 0.594 0.603

40% 0.598 0.586 0.601 0.619

50% 0.597 0.596 0.6 0.59

60% 0.6 0.591 0.598 0.598

70% 0.596 0.595 0.597 0.598

80% 0.606 0.591 0.588 0.583

90% 0.591 0.596 0.605 0.596

Max 0.611 0.614 0.611 0.628

Min 0.585 0.566 0.583 0.561

AUC 0.5959 0.5877 0.5967 0.5973

�

AUC

0.0071 0.0108 0.0079 0.0183

5.1.3 Discussion

Overall, all four classifiers perform in the same regime, as their mean AUC scores over all
NTL proportions are very close. This observation is often made in machine learning, as the
actual algorithm is less important, but having more and representative data is generally
considered to be more important [11]. This can also be justified by the "no free lunch
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Figure 5.9: Test performance of optimized classifiers on different NTL proportions.

theorem", which states that no learning algorithm is generally better than others [176].
We only used the features derived from the consumption time series in Chapter 4. Using
also the neighborhood information and categorial customer master data, each of the four
classifiers consistently performs better than the classifiers in our previous work for all NTL
proportions.

5.2 Information in Consumption Records

The data used in this NTL detection method comes from an electric utility in Brazil and
consists of 3.6M customers. The data contains 820K inspection results, such as inspection
date, presence of fraud or irregularity, type of NTL and inspection notes. 620K customers
have been inspected at least once and the remaining ⇠3M customers have never been
inspected. Third, there are 195M meter readings from 2011 to 2016 such as consumption
in kWh, date of meter reading and number of days between meter readings. From the
620K customers for which an inspection result is available, only the most recent inspection
result is used in the following experiments.

The available data per customer m is a complete time series of monthly meter readings of
electricity consumption in kWh over the last N months before the most recent inspection,
described as follows:

C

(m)

= [C

(m)

0

, ..., C

(m)

N�1

], (5.7)
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where C

(m)

N�1

is the most recent meter reading before the inspection. For greater N , less
customers with a complete time series are available. In contrast, for smaller N , less in-
formation per customer is available.

5.2.1 Features

In this section, we describe the features that we compute from a customer’s consumption
time series C

(m) for the detection of NTL.

Difference Features

The intra year difference

intra_year

(m)

d

= C

(m)

d

� C

(m)

d�K

, (5.8)

for K = 12, is the change of consumption to the consumption in the same month of the
previous year. In total, there are N � 12 intra year difference features.

The intra year seasonal difference

intra_year_seasonal

(m)

d

= C

(m)

d

� 1

3

⇥
d�K+1X

k=d�K�1

C

(m)

k

, (5.9)

for K = 12, is the change of consumption to the mean of the same season in the previous
year. In total, there are N � 13 intra year seasonal difference features.

The fixed interval

fixed_interval

(m)

d

= C

(m)

d

� 1

K

⇥
d�1X

k=d�K

C

(m)

k

, (5.10)

for K 2 {3, 6, 12}, is the change of consumption to the mean consumption in a period of
time directly before a meter reading. In total, there are 3⇥(N�12) fixed interval features.
These features are inspired by our previous work [112], in which we have proposed them
only for the most recent meter reading. Instead, we now compute these features for the
entire consumption time series.

Daily Averages

We again use the daily average features derived in Equation 3.1.

Generic Time Series Features

In order to catch more characteristics of the consumption time series, we compute 222
generic time series features from it, comprising:
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• Summary statistics, such as maximum, variance or kurtosis.

• Characteristics from sample distribution, such as absolute energy, whether a distri-
bution is symmetric or the number of data points above the median.

• Observed dynamics, such as fast Fourier transformation coefficients, autocorrelation
lags or mean value of the second derivative.

The full list of features is provided in [29].

5.2.2 Feature Selection

In total, 304 features are computed. In the subsequent learning phase, only the meaningful
features should be used. One common dimensionality reduction method is the principal
component analysis (PCA). However, time series, and in particular real-world data sets,
are noisy, which can lead to poor performance of PCA [55]. It is for that reason that we do
not use PCA for the feature selection. Instead, we employ hypothesis tests to the features
in order to retain the ones that are statistically relevant [30]. These tests are based on the
assumption that a feature x

k

is meaningful for the prediction of the binary label vector
y if x

k

and y are not statistically independent [139]. For binary features, we use Fisher’s
exact test [54]. In contrast, for continuous features, we use the Kolmogorov-Smirnov test
[107].

5.2.3 Evaluation

As in our previous experiments, we use the AUC metric for all experiments.

Experimental Setup

We experimentally determined N = 24 months to work the best for the following experi-
ments. Using N = 24 allows the consumption data to reflect seasonality in the experiments.
As a consequence, M = 150, 700 customers are retained for the experiments. This data set
is imbalanced: 100,471 have a negative label (non-NTL), whereas 50,229 have a positive
one (NTL). Therefore, 33.33% of the customers used in the following experiments have
been found to cause NTL.

We train the decision tree (DT), random forest (RF), gradient-boosted tree (GBT) and
linear support vector machine (LSVM) classifiers as follows:

• Handling class imbalance: We handle the class imbalance during training by assigning
class weights to the examples of both classes in the training set:

w

0

=

#examples

# examples

C=0

, (5.11)

w

1

=

#examples

# examples

C=1

. (5.12)
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• Performing model selection: We want to find the model which is able to distinguish
between NTL and non-NTL customers the best. For this, we optimize various para-
meters for every classifier. The complete list of parameters and considered values
per classifier is depicted in Table 5.6. We use randomized grid search, which samples
from the joint distribution of model parameters. In contrast to grid search, random-
ized grid search does not try out all parameter values. We use 100 sampled models
in every model selection.

• Handling overfitting: We also employ model selection that splits the data set into
k = 10 folds. This leads to a more reliable model for NTL detection. The AUC
reported per model is the average of the AUCs of the k test sets.

Table 5.6: Model parameters.

Parameter Values DT RF GBT LSVM

Learning rate [0.0001, 1] (log space) X

Loss function {AdaBoost, deviance} X

Max. number of leaves [2, 1000) X X X

Max. number of levels [1, 50) X X X

Measure of the purity of a split {entropy, gini} X X

Min. number of samples at leaf [1, 1000) X X X

Min. number of samples to split node [2, 50) X X X

Number of estimators 20 X X

L

2

regularization [0.001, 10] (log space) X

Implementation

All computations were run on a server with 80 cores and 128 GB of RAM. The entire code
was implemented in Python using scikit-learn [131] for machine learning. scikit-learn
allows to distribute the training of the numerous classifiers among all cores. Using this
infrastructure, the extraction of features took 6 hours. The feature selection took only
1 minute. The extensive model selection of classifiers took 4 days. In deployment, the
training of classifiers will perform significantly faster as the extensive model selection needs
to be performed only when a new data set is used. We have also noticed that about 90% of
the training time was spent on the gradient-boosted tree. Therefore, a significant speedup
can be achieved in deployment when skipping the training of this classifier.
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Feature Selection

We first compute the features defined previously and then perform the feature selection.
In summary, there are three types of features: (1) generic time series (GTS) features, (2)
daily average features (AVG) and (3) difference features (DIF) composed of fixed interval,
intra year difference and intra year seasonal difference features. The numbers of features
before and after selection are depicted in Table 5.7.

Table 5.7: Number of features before and after selection.

Name #Features #Retained Features

Daily average (AVG) 23 18

Fixed interval 36 34

Generic time series (GTS) 222 162

Intra year difference 12 12

Intra year seasonal difference 11 11

Total 304 237

In total, 237 out of the 304 features are retained. The relevance of our hand-crafted
difference features is confirmed: all intra year difference and intra year seasonal difference
features are retained. In addition, 34 out of 36 fixed interval features are retained. The 2
features are not retained for K = 3, which is most likely due to the too short span of time
they reflect. As a matter of fact, daily average features are widely used in the research
literature on NTL detection. However, only 18 out of 23 daily average consumption features
(i.e. 78%) are retained. The 5 daily average consumption features that are not retained are
the ones for the first - i.e. the oldest - 6 months of the 24-month window. The statistical
feature check leads to the conclusion that this type of feature is only useful for about 1.5
years of our data for NTL detection. In addition, 73% of the generic time series features
are retained after the statistical relevance check. As these features are generic and not
particularly made for NTL detection, it is to no surprise that the retention rate for these
features is the lowest.

Classification Results

We train the four classifiers on each of the GTS, AVG and DIF feature sets as well as on
all combinations thereof. The test performance of the best model per experiment returned
by the model selection is depicted in Tables 5.8, 5.9 and 5.10.

The best test AUC of 0.65977 is achieved for training the random forest classifier on the
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Table 5.8: Test performance of classifiers on features from measured consumption data.
Test AUC for combinations of decision tree (DT), random forest (RF), gradient-
boosted tree (GBT) and linear support vector machine (LSVM) classifiers
trained on sets composed of general time series (GTS), daily average (AVG)
and difference (DIF) features. Per combination of classifier and feature set, the
better result on either a full feature set (X

all

) or retained feature set (X
ret

) is
highlighted . c denotes the best classifier per feature set.

Classifier
GTS AVG DIF

X

all

X

ret

X

all

X

ret

X

all

X

ret

DT 0.64544 0.64625 0.64037 0.63985 0.63730 0.63792

RF 0.65665

c

0.65726

c

0.65083

c

0.65248

c

0.65529

c

0.65459

c

GBT 0.63149 0.63125 0.63234 0.63186 0.62869 0.63019

LSVM 0.63696 0.63656 0.54982 0.54933 0.55749 0.55843

Table 5.9: Test performance of classifiers on combined featured sets from measured con-
sumption data. f denotes the best feature set per classifier.

Classifier
GTS+AVG GTS+DIF AVG+DIF

X

all

X

ret

X

all

X

ret

X

all

X

ret

DT 0.64712 0.64705 0.64638 0.64647 0.64348 0.64312

RF 0.65800

c

0.65835

c

0.65911

c

0.65896

c

0.65858

c

0.65755

c

GBT 0.63262 0.63322 0.63319 0.63358

f 0.63261 0.63245

LSVM 0.63725 0.63689 0.63731 0.63693 0.57173 0.57432

combination of the retained GTS, AVG and DIF features in Table 5.10. In general, the
random forest classifier works the best for every feature set. In total, we report the results
of 28 experiments in the three tables, both for the full feature sets as well as the retained
feature sets. In 16 experiments, the feature selection leads to better results over using all
features. Our observation can be explained by the “no free lunch theorem", which states
that no model is generally better than others [176]. However, our best result of 0.65977 is
achieved for the retained feature set.
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Table 5.10: Test performance of classifiers on full feature set from measured consumption
data. The best overall combination of classifier and feature set is in bold.

Classifier
GTS+AVG+DIF

X

all

X

ret

DT 0.64646 0.64765

f

RF 0.65747

c 0.65977cf

GBT 0.63354 0.63355

LSVM 0.63728 0.63760

f

Generally, we observe that a combination of two or three feature sets leads to a better
test result than for any of the respective single feature sets. An example to demonstrate
this observation is as follows: The random forest classifier achieves test AUCs of 0.65726,
0.65248 and 0.65459 for the retained GTS, AVG and DIF features, respectively. It then
achieves test AUCs of 0.65835, 0.65896, 0.65755 and 0.65977 for the retained GTS+AVG,
GTS+DIF, AVG+DIF and GTS+AVG+DIF feature sets, respectively. Therefore, the test
AUCs for each of the combined feature sets are greater than the test AUCs for any of the
single feature sets.

5.2.4 Discussion

Our previous works in Chapter 4 that employ the widely-used daily average features es-
tablished a baseline that only achieved an AUC of slightly above 0.5, i.e. slightly above
chance, on real-world NTL detection data sets using linear classifiers. First and foremost,
we want to highlight that increasing the performance of machine learning models on noisy
real-world data sets is far more challenging than doing so on academic data sets that
were created and curated in controlled environments. Furthermore, a small increase of the
performance of a real-world model can lead to a major increase of the market value of a
company. Our framework presented in this chapter significantly outperforms the baselines
established in the literature. As a consequence, our models lead to a better detection of
NTL and thus to an increase of revenue and profit for electric utilties as well as an increase
of stability and reliability in their critical infrastructure. Our NTL detection framework
allows other electric utilities to apply our extensive feature extraction, feature selection
and model selection techniques to their data sets, which can lead to potentially greater
improvements of NTL detection in their power networks.

It is to our surprise that the gradient-boosted tree classifier performs consistently worse
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than the random forest classifier in our experiments. In the literature, the gradient-boosted
tree is reported to often lead in a wide range of classification problems [28]. However, our
observation can also be explained by the “no free lunch theorem".

5.3 Conclusions

In this chapter, we have proposed two neighborhood features for detecting non-technical
losses (NTL) of a big data set of 700K customers and 400K inspection results by splitting
the area into a grid: the ratio of customers inspected and ratio of inspected customers for
which NTL was detected. We generated these features for four different grid sizes. We have
analyzed the statistical properties of their distributions and showed why they are useful for
predicting NTL. These features were combined with daily average consumption features
of the last 12 months before the most recent inspection of a customer from a big data set,
which contains 32M meter readings in total. Furthermore, we also used selected customer
master data, such as the customer class and voltage of the connection of the customer.
We used four machine learning algorithms that are particularly suitable for big data sets
to predict if a customer causes NTL or not: logistic regression, k-nearest neighbors, linear
support vector machine and random forest. We observed that all models significantly
perform better when using the neighborhood and customer master data features compared
to using only the time series features. All models perform in the same regime measured
by the AUC score. In total, the random forest classifier slightly outperforms the other
classifiers.

In a different vein, we have also proposed a novel system for detecting NTL for a real-
world data set of 3.6M customers that extracts a number of domain-specific features from
the noisy consumption data. We have shown the statistical relevance of these features
over generic time series features. As a consequence, our machine learning system allows to
detect NTL better than previous works described in the literature.

79





6
Biases in Inspection Data

The underlying paradigm of big data-driven machine learning reflects the desire of deriving
better conclusions from analyzing more data, without the necessity of looking at theory and
models. Is having simply more data always helpful? In 1936, The Literary Digest collected
2.3M filled in questionnaires to predict the outcome of that year’s US presidential election.
The outcome of that big data prediction proved to be entirely wrong, whereas George
Gallup only needed 3K handpicked people to make an accurate prediction.

Generally, biases occur in machine learning whenever the distributions of training set
and test set are different, for which an example is depicted in Figure 6.1. In this work, we
provide a review of different sorts of biases in (big) data sets in machine learning. We aim
to shed light on this topic in order to increase the overall attention to this issue in the field
of machine learning. We thus provide definitions and discussions of the most commonly
appearing biases in machine learning: class imbalance and covariate shift. We also show
how these biases can be quantified and corrected.

In Chapter 3 we have identified the open challenges of NTL detection. Two of them
address biases: class imbalance and covariate shift that we motivate in Chapters 3.4.1 and
3.4.4, respectively. While we have previously addressed class imbalance in Chapters 4 and
5, we will re-discuss this topic from a more general and more holistic perspective. We
have also discussed the issue of covariate shift and provided an example in Figure 3.2.
The customers inspected are a sample of the overall population of customers. However,
that sample may be biased as electricity suppliers previously may have focused on certain
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Figure 6.1: Bias: Training and test data sets are drawn from different distributions.

criteria, such as neighborhoods, for inspections. We propose a novel method for quantifying
covariate shift and show that some features have a stronger covariate shift than others,
making predictions less reliable. In particular, previous inspections were focused on certain
neighborhoods or customer classes and that they were not sufficiently spread among the
population of customers. We then propose a scalable novel framework for reducing multiple
biases in high-dimensional data sets in order to train more reliable predictors. We apply
our methodology to the detection of NTL and show that reducing these biases increases
the accuracy of the trained predictors.

6.1 The More Data, the Better?

For about the last decade, the big data paradigm that has dominated research in machine
learning can be summarized as follows: “It’s not who has the best algorithm that wins.
It’s who has the most data." [11] In practice, however, most data sets are (systematically)
biased. One example we deal with every day is described in Example 6.1.

Example 6.1. A spam filter is trained on a data set that consists of positive and negative
examples. However, that training set was created a few years ago. Recent spam emails are
different in two ways: the content of spam emails is different and the proportion of spam
among all emails sent out has changed. As an outcome, the spam filter does not detect
spam reliably and becomes even less reliable over time.
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The appearance of biases in data sets imply a number of severe consequences including,
but not limited to, the following: First, conclusions derived from biased - and therefore
unrepresentative - data sets could simply be wrong due to lack of reproducibility and lack
of generalizability. This is a common issue in research as a whole, as it has been argued
that most research published may actually be wrong [84]. Second, these machine learning
models may discriminate against subjects of under-represented categories [37], [172].

From a technical perspective, the most commonly appearing biases include class imbal-
ance and covariate shift. Class imbalance is the case where classes are unequally represen-
ted in the data. An example is visualized in Figure 6.2

Figure 6.2: Class imbalance: Classes are unequally represented in the data.

Covariate shift is the problem of drawing training and test data sets from different
distributions. An example is visualized in Figure 6.3.

These biases are often ignored in both research and practical applications. In part of
the statistical literature, the phenomenon of biased data sets is called non-stationarity.
In essence, this term indicates different statistics at a different time of collection of the
training and test data sets, respectively [154].

More generally, however, the term bias is multifaceted in the field of machine learning
and describes different matters: The inductive bias of a learning algorithm refers to the
set of assumptions a learner makes [115]. For example, logistic regression assumes that the
training data is linearly separable. In contrast, the term bias is often used as a synonym
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Figure 6.3: Covariate shift: Training and test data sets are drawn from different distribu-
tions.

for underfitting in the literature [16]. Moreover, the parameter w

0

of a hypothesis

h(x) = w

0

+ w

1

x

1

+ ...+ w

n

x

n

(6.1)

is sometimes called bias as it allows to shift a hypothesis by a fixed offset [16].
Historically, biased data sets have been a long-standing issue in statistics. The failed

prediction of the outcome of the 1936 US presidential election is described in Example 6.2.
It is often cited in the statistics literature in order to illustrate the impact of biases in data.
This example is discussed in detail in [20].

Example 6.2. The Democratic candidate Franklin D. Roosevelt was elected President in
1932 and ran for a second term in 1936. Roosevelt’s Republican opponent was Kansas
Governor Alfred Landon. The Literary Digest, a general interest weekly magazine, had
correctly predicted the outcomes of the elections in 1916, 1920, 1924, 1928 and 1932 based
on straw polls. In 1936, The Literary Digest sent out 10M questionnaires in order to predict
the outcome of the presidential election. The Literary Digest received 2.3M returns and
predicted Landon to win by a landslide. However, the predicted result proved to be wrong,
as quite the opposite happened: Roosevelt won by a landslide, as depicted in Figure 6.4.
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Figure 6.4: 1936 US presidential election results mapa.
a
Source: http://en.wikipedia.org/United_States_presidential_election,_1936

This leads to the following questions:

1. How could the prediction turn out to be completely wrong despite the 2.3M parti-
cipants?

2. How could The Literary Digest actually collect 10M addresses in 1936?

The Literary Digest compiled their data set of 10M recipients mainly from car registrations
and phone directories. In that time, the households that had a car or a phone represented
a disproportionally rich, and thus biased, sample of the overall population that particularly
favored the Republican candidate Landon. In contrast, George Gallup only interviewed 3K
handpicked people, which were an unbiased sample of the population. As a consequence,
Gallup could predict the outcome of the election very accurately [75].

Even though this historic example is well understood in statistics nowadays, similar or
related issues happened for the elections in 1948 and 2016, for which examples are depicted
in Figures 6.5 and 6.6, respectively.

Furthermore, in modern big data-oriented machine learning, biases may cause severe
impact every day dozens of times, such as in Example 6.3.

Example 6.3. It has been argued that most data on humans may be on white people and
thus may not represent the overall population [136]. As a consequence, the predictions
of models trained on such biased data may cause infamous news. For example, in 2015,
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Figure 6.5: 1948 US presidential election result: President Truman was not defeated by
Governor Thomas Deweya.

a
Source: http://www.gettyimages.ca/event/the-dewey-truman-election-81078980#victorious-

cand-pres-harry-truman-jubilantly-displaying-chicago-daily-picture-id50606875

Google added an auto-tagging feature to its Photos app. This new feature automatically
assignes tags to photos, such as bicycle, dog, etc. However, some black users reported
that they were tagged as “gorillas", which led to major criticism of Google [37]. Most
likely, this mishap was caused by a biased training set, in which black people were largely
underrepresented.

The examples provided in this section show that having simply more data is not always
helpful in training reliable models, as the data sets used may be biased. In the following
sections, we discuss the most commonly appearing biases in data sets. We also present
different strategies for assessing biased models and how to correct biases. These techniques
include weighting training examples as well as subsampling methods. As a consequence,
having data that is more representative is favorable, even if the amount of data used is less
than just using the examples from a strongly biased data set.
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Figure 6.6: 2016 US presidential election result: Secretary Hillary Clinton did not defeat
Donald Trumpa.

a
Source: Märkische Allgemeine newspaper cover from November 9, 2016.

6.2 Biases in Data Sets

In supervised learning, training examples (x(i), y(i)) are drawn from a training distribution
P

train

(X,Y ), where X denotes the data and Y the label, respectively. The training set is
biased if the following inequality holds true:

P

train

(X,Y ) 6= P

test

(X,Y ). (6.2)

Different biases are visualized in Figures 6.2 and 6.3. In order to reduce a bias, it has been
shown that example (x

(i)

, y

(i)

) can be weighted during training as follows [87]:

w

i

=

P

test

(x

(i)

, y

(i)

)

P

train

(x

(i)

, y

(i)

)

. (6.3)

However, computing P

train

(x

(i)

, y

(i)

) may be impractical in many cases because of the
limited amount of data in the training domain. In the following sections, we discuss
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different biases for which specific assumptions about P
train

(X,Y ) and P

test

(X,Y ) are made.

6.2.1 Class Imbalance

Class imbalance refers to the case where classes are unequally represented in the data.
When comparing training set and test set, respectively, we assume [88]:

P

train

(Y ) 6= P

test

(Y ), (6.4)

P

train

(X|Y ) = P

test

(X|Y ). (6.5)

An example is depicted in Figure 6.2. Imbalanced classes appear frequently in machine
learning, such as in Example 6.4.

Example 6.4. The Modified National Institute of Standards and Technology (MNIST)
database consists of 60K training images and 10K test images used for recognition of
hand-written digits [98], for which examples are depicted in Figure 6.7.

Figure 6.7: MNIST example images.

MNIST has been used in the fields of computer vision and machine learning for the last
20 years. The test accuracies reported in recent research are above 99.6% [150], [171].
The distribution of test labels is depicted in Figure 6.8. We notice that this data set is
mainly imbalanced between the different classes. As a consequence, the accuracy is not
the right metric for MNIST, as an increase of this metric does not necessarily imply an
increased predictive power of a model. We would like to add that the distribution of labels
is nearly the same for the training set. Furthermore, there is another imbalance between
the training set and test set, respectively. However, that imbalance is less noticeable and
we have therefore focused on the imbalance between the labels in each set.
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Figure 6.8: Distribution of test labels in MNIST.

Impact on Metrics

Machine learning models trained on imbalanced data sets often tend to predict the majority
class. The appearance of imbalanced classes also affects the choice of evaluation metric.
Accuracy and recall are the most commonly used metrics in contemporary research works
in machine learning [87], [161]. However, both metrics are affected by class imbalance, as
discussed in Example 3.1. As a consequence, in many machine learning works, overly high
accuracies or recalls are reported for NTL detection in Chapter 3.

A number of metrics that are insensitive to class imbalance can be found in the literature.
One common metric is to use a receiver operating characteristic (ROC) curve, which plots
the true positive rate against the false positive rate for varying decision threshold values.
An example is depicted in Figure 6.9.

Figure 6.9: Example of receiver operating characteristic (ROC) curve.

The area under the curve (AUC) is a performance measure between 0 and 1, where any
binary classifier with an AUC > 0.5 performs better than random guessing [52].
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6 Biases in Inspection Data

Another metric that is insensitive to class imbalance is the Matthews correlation coeffi-
cient (MCC):

TP ⇥ TN � FP ⇥ FNp
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, (6.6)

which measures the accuracy of binary classifiers taking into account the imbalance of both
classes, ranging from �1 to +1 [109].

Furthermore, for multi-class problems the intraclass correlation coefficient (ICC) has
been proposed [160]. It can be interpreted as the fraction of the total variance that is
between the different classes. It has been successfully applied to imbalanced multi-class
learning problems [174].

Correction

In order to correct the class imbalance during training, a number of methods are proposed
in the literature. First, weighting examples by the inverse proportion of examples per
class using Equation 6.3 is proposed in the literature [88]. On the one hand, one intuit-
ive method is undersampling the majority classes by dropping training examples, either
randomly or by specific criteria [105], [164]. This approach leads to smaller data sets, but
may lack variation, as important examples could have been dropped. On the other hand,
oversampling the minority classes by creating more training examples is proposed in the
literature. Most trivially, training examples can simply be randomly copied. However,
there are also more sophisticated algorithms, such as the synthetic minority over-sampling
technique (SMOTE), which attempts to create synthetic examples representing the minor-
ity class by interpolating between neighboring data points [27]. Generally, adding more
examples leads to larger training sets, which, in turn, leads to increased training time.
Therefore, combinations of oversampling and undersampling were proposed [12], [102].

6.2.2 Covariate Shift

The problem of training data and production data having different distributions has ini-
tially been addressed in the field of computational learning theory [33], which also calls it
covariate shift, sampling bias or sample selection bias. We assume [88]:

P

train

(X) 6= P

test

(X), (6.7)

P

train

(Y |X) = P

test

(Y |X). (6.8)

Covariate shift appears frequently in machine learning as discussed in Example 6.1.
Machine learning models trained on biased training sets tend not to generalize on test data
that is from the true underlying distribution of the population. An example of covariate
shift is depicted in Figure 6.3.
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6.2 Biases in Data Sets

However, there are alternate definitions, such as in [179]:

• Assume that all examples are drawn from a distribution D with domain X ⇥ Y ⇥ S,

• where X is the feature space,

• Y is the label space and

• S is {0, 1}.

Examples (x, y, s) are drawn independently from D. s = 1 denotes a selected example,
whereas s = 0 denotes the opposite. The training is performed on a sample that comprises
all examples that have s = 1. P (s|x, y) = P (s|x) implies that s is independent of y given
x. In this case, the selected sample is biased but the bias only depends on the feature
vector x [179].

The literature distinguishes classifiers into local learners and global learners, respectively
[179]. The terms “global" and “local”, respectively, have been established as follows: A
global learner also uses P (X), which is a (global) distribution over the entire input data. In
contrast, a local learner uses P (Y |X), which refers for every x

(i) 2 X to a local distribution
P (Y |x(i)).

Local Learners

For a local learner, the prediction of the learner depends only on P (Y |X) for an increasing
number of training examples. Previous research addresses this behavior with the term
“asymptotically". We assume P

train

(Y |X) = P

test

(Y |X) in Equation 6.8. Hence, a local
learner is not affected by covariate shift. Examples include logistic regression and hard-
margin support vector machine (SVM) [179].

Global Learners

In contrast, the prediction of a global learner depends asymptotically on both, P (Y |X)

and P (X). We assume P

train

(X) 6= P

test

(X) in Equation 6.7. Hence, a global learner is
affected by covariate shift. Examples include decision tree learners such as ID3 or C4.5,
naive Bayes and soft-margin SVM [179].

Reduction

Instance weighting using density estimation has been proposed for correcting covariate
shift [156]. Examples can either be weighted during training [33] or the weights can be
used for rejection sampling [179]. Historically, the Heckman method has been proposed
to correct covariate shift by estimating the probability of an example being selected into
the training sample [76]. However, the Heckman method only applies to linear regression
models.
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6.2.3 Other Biases

Below we list other types of biases that have been investigated. Without any pretension
for exhaustivity, we define those biases and refer the reader to the corresponding literature
for further details. For instance, a change of functional relations can create a new bias
and thus lead to P

train

(Y |X) 6= P

test

(Y |X) [88]. Also, it has been shown that biases can
be created by transforming the feature space [13]. Furthermore, a bias specific to neural
networks has been reported: During training, a change of the weights in one layer may alter
the distribution of the input to the following layer. This so-called internal covariate shift
slows down convergence of training a neural network and may result in a neural network
that overfits [85]. Internal covariate shift can be compensated by normalizing the input
of every layer. By doing so, it has been reported that the training can be significantly
accelerated. The resulting neural network is also less likely to overfit. This approach is
radically different to regularization [15], as it addresses the cause of overfitting rather than
trying to improve a model that overfits.

6.3 Quantifying Covariate Shift

When using a data set, we need to assess whether the training set actually has actually a
covariate shift before thinking about reducing the later. The Kullback-Leibler divergence
[93] is a measure of the difference of two probability distributions P and Q:

D

KL

(PkQ) = �
X

i

P (i) log

Q(i)

P (i)

, (6.9)

which is equivalent to

D

KL

(PkQ) =

X

i

P (i) log

P (i)

Q(i)

. (6.10)

However, it is challenging (1) to adapt this measure to multi-dimensional data that is
a combination of discrete and continuous features, which is common in machine learning,
and (2) to define criteria from what values on a distance is an indicator for a covariate
shift.

6.3.1 Methodology

Instead, a preferred methodology for quantifying covariate shift is:

1. First, we add a feature s and assign the values 1 or 0 to the training data (s = 1) or
production data (s = 0), respectively.
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6.3 Quantifying Covariate Shift

2. These data sets are furthermore merged into one data set. This latter is split into a
training set X1 (with no relation to the original training set) and a test set X2.

3. The objective is to develop a supervised learning method capable of predicting the
feature s using X1.

4. The performance of the classifier on X2 is then quantified using the Matthews cor-
relation coefficient (MCC) defined in Equation 6.6. which measures the accuracy of
binary classifiers taking into account the imbalance of both classes, ranging from �1
to +1 [109].

5. The greater the MCC, the greater the covariate shift. A concrete threshold for
covariate shift depends on the problem, however 0.2 has been proposed [106]. Though
a low MCC does not automatically imply the lack of a covariate shift, a significant
MCC value is an indicator of covariate shift.

We propose to add the following following novelties to this approach:

1. Tree classifier: Decision tree learning is affected by covariate shift. Decision trees
scale to very large data sets while they allow to learn non-linearities. Soft-margin
SVMs are also global learners, however, for large data sets only a linear kernel is
learnable in a feasible amount of time.

2. Model selection: We want to find a model which is able to distinguish between both
distributions. Thus maximizing the MCC on the test set is equivalent to finding
the best two-class classification between production data and original training data.
For this, we optimize the five most important tree model parameters by randomly
drawing from probability distributions: Max. number of leaves, max. number of
levels, measure of the purity of a split, min. number of samples required to be at a
leaf and min. number of samples required to split a node.

3. Cross-validation: We also split the data set into k folds in order to reduce the over-
fitting. This leads to a more reliable model for covariate shift quantification. The
MCC per model, denoted by MCC, is the average of the MCCs of the k test sets.
The standard deviation of the k test MCCs serves as the reliability of MCC. The
lower the standard deviation, the more reliable MCC.

Our proposed methodology is depicted in Algorithm 6.1.
Note: the inspection results are not taken into account as covariate shift only concerns

the distributions of the inputs.

6.3.2 Evaluation

We use the same data as in Chapter 5.2. A complete list of the customer master data used
in the following experiments is depicted in Table 6.1.
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Algorithm 6.1 Quantifying covariate shift.
result 0

reliability  0

selected train_data.add_feature(s, 1)

not_selected prod_data.add_feature(s, 0)

data selected [ not_selected

folds cv_folds(data, k)

for model in get_model_candidates() do
mccs list()

for fold in folds do
X

train

, X

test

, y

train

, y

test

 fold

classifier  DecisionTree(model)

classifier.train(X

train

, y

train

)

y

pred

 classifier.predict(X

test

)

mccs.append(MCC(y

test

, y

pred

))

end for
mcc_mean mean(mccs)

if mcc_mean > result then
result mcc_mean

reliability  std(mccs)

end if
end for
return result, reliability

Table 6.1: Assessed features.

Feature Possible Values

Class

Power generation infrastructure, residential,

commercial, industrial, public,

public illumination, rural, public service,

reseller

Contract status Active, suspended

Location Longitude and latitude

Meter type 22 different meter types

Number of wires 1, 2, 3

Voltage 2.3kV, >2.3kV

Implementation

All computations were run on a server with 24 cores and 128 GB of RAM. The entire code
was implemented in Python using scikit-learn [131] for machine learning. scikit-learn
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6.3 Quantifying Covariate Shift

allows to distribute the training of the cross-validated classifiers among all cores. The maps
were plotted using cartopy [114]. In total, all results and plots reported in this chapter
were computed in 12 hours using this infrastructure. Our implementation is available as
open source: http://github.com/pglauner/SpatialBiasNTL.

Model Parameters

In the following experiments, we use k = 10-fold cross-validation. In each experiment, we
train 1K trees, which are 100 different tree models trained on each of the 10 folds. We
optimize the five tree model parameters by randomly drawing from predefined uniform
probability distributions depicted in Table 6.2.

Table 6.2: Tree model parameters.

Parameter Range

Max. number of leaves [2, 20)

Max. number of levels [1, 20)

Measure of the purity of a split {entropy, gini}

Min. number of samples required to be at a leaf [1, 20)

Min. number of samples required to split a node [2, 20)

We have chosen these ranges based on best practice recommendations and our own
experience. Furthermore, the two classes (s = 1 and s = 0) are imbalanced, i.e. there
are more examples of the non-inspected customers than the inspected ones. In order to
take this into account during training, we associate weights with the classes such that the
examples of the minority class have stronger impact.

Global Covariate Shifts

In the following experiments, we compute different global types of covariate shift by using
all customers in each experiment. We therefore do not split the customers into different
geographical areas. We have previously presented the customer master data features avail-
able in Table 6.1. We compute the global covariate shift of each of these features. We
report our results in Table 6.3.

Overall, the strongest covariate shift is in the location with a MCC value of 0.22367.
This means that previous inspections are mostly biased towards the location of customers.
The location is also the only feature that is beyond the threshold of 0.2 mentioned before.
The features class, number of wires and meter type are below the threshold but are greater
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Table 6.3: Global covariate shift of single features. MCC

max

denotes the maximum aver-
age of the MCCs of the k = 10 test sets among all 100 tree models trained on
a feature. � denotes the standard deviation of those k = 10 MCC test scores,
which is a reliability measure of MCC

max

.

Feature MCC

max

�

Location 0.22367 0.03453

Class 0.16255 0.01371

Number of wires 0.14111 0.00794

Meter type 0.13158 0.00382

Voltage 0.07092 0.02375

Contract status 0.03744 0.09183

than 0.1. There is almost no covariate shift of previous inspections towards the voltage
and contract status features. The standard deviation of the MCCs is the greatest for the
contract status. The reason for this is a strong overfit in one of the folds. All other MCCs
have a much lower standard deviation, making them more reliable.

Next, we create compound features that are composed of multiple features. Due to
the great number of possible combinations, we assess all 2-combinations as well as the
6-combination of all features. We visualize the MCCs for all 2-combinations in Figure 6.10
and report the MCCs in Table 6.4.

For the 6-combination comprising all features, we computed MCC

max

= 0.27325, which
is the maximum covariate shift of all compound features. Therefore, the spatial covari-
ate shift contributes to this covariate shift the most, however, the other covariate shifts
contribute a fraction as well.

Local Covariate Shifts

We now entirely focus on spatial covariate shift since it is the strongest one among the
different types of covariate shift. In the following experiments we compute local covariate
shifts by splitting the customers in different locations. The data set provides the following
divisions in the following hierarchical order:

1. 9 regions

2. 261 municipalities

3. 1,380 localities
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6.3 Quantifying Covariate Shift

Figure 6.10: Global covariate shift of compound features.

4. 19,026 neighborhoods

All customers are located in one Brazilian state. We observe that spatial covariate shift
is smoothened for regional level in Figure 6.11. It becomes increasingly more granular at
municipal, local and neighborhood levels in Figures 6.12 through 6.14, respectively. We
also notice that the spatial covariate shifts at lower levels tend to increase, which is depicted
by increasing upper limits of the color bars.

6.3.3 Discussion

We have shown that covariate shift exists in our real-world data set. The features of
the customer data that are most affected by covariate shift are the location, followed by
class, number of wires and meter type. Classifiers that use other features such as the
voltage or contract status instead tend to be more reliable. We have also shown that the
spatial covariate shift exists on different levels of granularity and that municipalities and
localities with very strong covariate shifts exist. Subsequently, these local covariate shifts
have significant impact on the covariate shifts on higher levels or even globally on the entire
data set. Therefore, using all inspection results of the data set for training a NTL predictor
from a big data perspective leads to biased models that may not reliably detect NTL. As
a consequence, reducing the spatial covariate shift in the data set must be a priority in
order to learn reliable NTL predictors.
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Table 6.4: Global covariate shift of compound features.

Feature MCC

max

�

All 0.27325 0.03014

Location + number of wires 0.26206 0.03676

Location + class 0.25796 0.03540

Location + meter type 0.25479 0.03884

Location + voltage 0.22944 0.03544

Location + contract status 0.22335 0.03454

Class + number of wires 0.17501 0.00468

Class + meter type 0.16472 0.00309

Class + voltage 0.16322 0.01400

Number of wires + meter type 0.15283 0.00274

Class + contract status 0.15158 0.00992

Number of wires + voltage 0.14156 0.00800

Number of wires + contract status 0.14111 0.00794

Meter type + voltage 0.13165 0.00381

Meter type + contract status 0.13155 0.00382

Voltage + contract status 0.08213 0.08301

However, the finer the hierarchical granularity, the more divisions cannot be used for the
computations for the following reasons. First, using k = 10-fold cross-validation, training
is only possible if a division has at least k customers. Second, the k � 1 folds used for
training must have examples of both classes. Third, the MCC can only be computed for
denominator 6= 0, which is the case for (TP > 0 ^ TN > 0) _ (FP > 0 ^ FN > 0). If
the test MCC cannot be computed for a fold of a model, only the MCCs of the remaining
folds are used in cross-validation. If no MCCs can be computed for a division, we skip it
in the plotting. For instance, this effect has become most apparent at neighborhood level
in the west of that state due to the low population density.
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Figure 6.11: Spatial covariate shift at regional level. For each division, we compute the
median location of the respective customers and assign MCC

max

to it. We
then use nearest interpolation to generate the local covariate shift maps.

Figure 6.12: Spatial covariate shift at municipal level.

6.4 Reducing Multiple Biases

We propose the following methodology employing instance weighting that is defined in
Equation 6.3.
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Figure 6.13: Spatial covariate shift at local level.

Figure 6.14: Spatial covariate shift at neighborhood level.

6.4.1 Methodology

Given the assumptions made for class imbalance in Equations 6.4 and 6.5, we compute the
corresponding weight for example i having a label of class k as follows:

w

i,k

=

P

test

(x

(i)

, y

(i)

k

)

P

train
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(i)
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(i)
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)
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(i)
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)

. (6.11)

We use the empirical counts of classes for computing P

<dist>

(y

k

).
Given the assumptions made for covariate shift Equations 6.7 and 6.8, we compute the
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corresponding weight for the bias in feature k of example i as follows:

w
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We use density estimation for computing P

<dist>

(x

(i)

k

) [131].
There may be a variety of biases in a learning problem that are far more than just class

imbalance and covariate shift on a single dimension. We have shown previously that there
may be multiple types of covariate shift, for example spatial covariate shifts on different
hierarchical levels. As we have shown in Chapter 6.3, there may be also covariate shifts
for other master data, such as for the customer class or for the contract status.

We now aim to correct n different biases at a same time, e.g. for class imbalance as
well as different types of covariate shift. As x

(i) has potentially many dimensions with a
considerable covariate shift, computing the joint P

<dist>

(x

(i)

) becomes impractical for an
increasing number of dimensions. We propose a uniformed and scalable solution to combine
weights for correcting the n different biases, comprising for example of class imbalance and
different types of covariate shift. The corresponding weights per bias of an example are
w

i,1

, w

i,2

, ..., w

i,n

. The example weight w
i

is the harmonic mean of the weights of the biases
considered is computed as follows:

w

i

=

n

1

wi,1
+

1

wi,2
+ · · ·+ 1

wi,n

=

n

nP
k=1

1

wi,k

. (6.13)

As the different w

i,k

are computed from noisy, real-world data, special care needs to
be paid to outliers. Outliers can potentially lead to very large values w

i,k

for the density
estimation proposed above. It is for that reason that we choose the harmonic mean, as it
allows to penalizes extreme values and give preference to smaller values.

6.4.2 Evaluation

We use the same data as in Chapter 5.2. We retain M = 150, 700 customers. For these
customers, we have a complete time series of 24 monthly meter readings before the most
recent inspection. From each time series, we compute 304 features comprising generic time
series features, daily average features and difference features, as detailed in Table 5.7. We
employ hypothesis tests to the features in order to retain the ones that are statistically
relevant. These tests are based on the assumption that a feature x

k

is meaningful for the
prediction of the binary label vector y if x

k

and y are not statistically independent [139].
For binary features, we use Fisher’s exact test [54]. In contrast, for continuous features,
we use the Kolmogorov-Smirnov test [107]. We retain 237 of the 304 features.

We previously found a random forest (RF) classifier to perform the best on this data
compared to decision tree, gradient-boosted tree and support vector machine classifiers.
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It is for this reason that in the following experiments, we only train RF classifiers. When
training a RF, we perform model selection by doing randomized grid search, for which the
parameters are detailed in Table 6.5. We use 100 sampled models and perform 10-fold
cross-validation for each model.

Table 6.5: Model parameters for random forest.

Parameter Values

Max. number of leaves [2, 1000)

Max. number of levels [1, 50)

Measure of the purity of a split {entropy, gini}

Min. number of samples required to be at a leaf [1, 1000)

Min. number of samples required to split a node [2, 50)

Number of estimators 20

6.4.3 Discussion

We have previously shown in Chapter 6.3 that the location and class of customers have
the strongest covariate shift. When reducing these, we first compute the weights for the
class imbalance, the spatial covariate shift and customer class covariate shift, respectively,
as defined in Chapter 6.2. For covariate shift, we use randomized grid search for a model
selection of the density estimator that is composed of the kernel type and kernel bandwidth.
The complete list of parameters and considered values is depicted in Table 6.6.

Table 6.6: Density estimation parameters.

Parameter Values

Kernel
{gaussian, tophat, epanechnikov,

exponential, linear, cosine}

Bandwidth [0.001, 10] (log space)

Next, we use Equation 6.13 to combine these weights step by step. For each step, we
report the test performance of the NTL classifier in Table 6.7. It clearly shows that the
larger the number of addressed biases, the higher the reliability of the learned predictor.
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Table 6.7: Test performance of random forest. AUC denotes the mean test AUC of the 10
folds of cross-validation for the best model.

Biases Reduced AUC

None 0.59535

Class imbalance 0.64445

Class imbalance + spatial covariate shift 0.71431

Class imbalance + spatial covariate shift
0.73980

+ customer class covariate shift

6.5 Conclusions

In this chapter, we first have presented a number of historic and modern examples of
biased data sets that resulted in unreliable models. Biases occur in machine learning
whenever training sets are not representative of the test data. Even though biases have
been recognized as an issue in statistics since the mid-20th century, they only recently
started to get more attention in machine learning, yet the situation is evolving. We then
provided an extensive review of biases in machine learning, with a (special) focus on the
most common ones: class imbalance and covariate shift. As a consequence, in many cases
it may not be helpful to simply have more data, but rather to have (possibly less) data
that is more representative.

We have then proposed a novel framework for quantifying and visualizing covariate shift
in data sets, with a particular focus on spatial data sets. In the context of non-technical loss
(NTL) detection, we showed that there is a covariate shift between the inspected customers
and the overall population of customers. We showed that some features have a stronger
covariate shift than others. In particular, the spatial covariate shift is the strongest and
appears in different hierarchical levels. Subsequently, machine learning models trained on
this data will lead to unreliable NTL predictions. Last, we proposed a scalable model
for reducing multiple biases in high-dimensional data at the same time. We applied our
methodology to NTL detection. Our model leads to more reliable predictors, thus allowing
to better detect customers that have an irregular power usage.
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7
Conclusions and Prospects

In emerging markets, non-technical losses (NTL) constitute the dominant part of losses in
power grids. Concretely, they may range up to 40% of the total electricity distributed in
countries such as Brazil, India or Pakistan. The economic effects thereof for utilities are
enormous as the world-wide total financial losses are about USD 100 billion per year.

The main research question of this thesis is:

How can we detect non-technical losses better in the real world?

In this research and implementation of machine learning for NTL detection using real-
world data, we have shown that our solution has a large part to play in the future of NTL
detection. Our models have the potential to generate significant economic value in real-
world applications, as they are being deployed in a commercial NTL detection software.
To conclude this thesis, we will review what we consider are the main contributions made
and discuss plans for future related work.
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7.1 Contributions

The main achievements of this thesis can be outlined as follows:

1. Review of Causes and Economic Impact of NTL
In Chapter 1, we have provided an in-depth discussion of the causes of NTL. Our review
has shown that NTL are a prime concern and often range up to 40% of the total electricity
distributed. The annual world-wide costs for utilities due to NTL are estimated to be
around USD 100 billion. Reducing NTL in order to increase revenue, profit and reliability
of the grid is therefore a vital interest to utilities and authorities.

2. Identification of the Open Challenges of NTL Detection
In Chapter 3, we first surveyed the state-of-the-art research efforts in a up-to-date and
comprehensive review of algorithms, features and data sets used. We also compared the
various approaches reported in the literature. Next, we identified the key scientific and en-
gineering challenges of NTL detection that have not yet been addressed in scientific works.
We put these challenges in the context of AI research as a whole as they are of relevance
to many other real-world learning and anomaly detection problems.

3. Comparing Industrial NTL Detection Systems based on Expert Knowledge
to those based on Machine Learning
In Chapter 4, we used an industrial NTL detection system based on Boolean logic. We
improved it by fuzzifying the rules and compared both to a NTL detection system based
on machine learning. We showed that the one based on machine learning significantly
outperforms the others based on expert knowledge.

4. Combining Industrial Expert Knowledge with Machine Learning for the
Decision Making
Despite the superiority of machine learning-based approaches over expert knowledge for
NTL detection, electric utilities are reluctant to move to large-scale deployments of auto-
mated systems that learn NTL profiles from data due to the latter’s propensity to suggest
a large number of unnecessary inspections. In order to allow human experts to feed their
knowledge in the decision process, we proposed in Chapter 4 a method for visualizing pre-
diction results of a machine learning-based system at various granularity levels in a spatial
hologram. Our approach allows domain experts to put the classification results into the
context of the data and to incorporate their knowledge for making the final decisions of
which customers to inspect.
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5. Comprehensive Learning from the Customer Data how to Find Customers
with Irregular Behavior
In Chapter 5, we took full advantage of the customer data in order to detect NTL bet-
ter. We derived features that include information about the neighborhood. We showed
that the neighborhood of customers contains information about whether a customer may
cause NTL or not. We analyzed the statistical properties of these features and showed
why they are useful for NTL detection. By using information of the neighborhood, we can
predict NTL better as there are geographic clusters of NTL among the customers. Next,
we proposed a novel and flexible framework to compute a large number of domain-specific
features and generic features from the noisy industrial consumption time series of custom-
ers for NTL detection. We retained the statistically meaningful features extracted from
the noisy consumption data and optimized different classifiers to predict NTL.

6. Handling the Biases in the Inspection Data
In Chapter 6, we provided an unified and holistic introduction to the problem of biased
data sets. We have demonstrated its importance not only to NTL detection, but to ma-
chine learning as a whole. We proposed an algorithm for quantifying covariate shift and
showed that the location and class of customers have the strongest covariate shift in NTL
detection. We then proposed a scalable novel framework for reducing multiple biases in
high-dimensional data sets in order to train more reliable predictors. We applied our
methodology to the detection of NTL and showed that reducing these biases increases the
accuracy of the trained predictors.

7.2 Future Work

The framework put in place by the work in this thesis gives a strong basis for several
interesting directions of future work, which are likely to lead to increasing levels of NTL
detection in useful applications. In order to advance the field of NTL detection, we feel
that work should be concentrated on four main areas:

1. Creation of a Publicly Available Real-World Data Set
How can we compare different models?

The works reported in the literature describe a wide variety of different approaches for
NTL detection. Most works only use one type of classifier, such as in [22], [34], [123], [151],
whereas some works compare different classifiers on the same features, such as in [126],
[140], [141]. However, in many cases, the actual choice of classification algorithm is less
important. This can also be justified by the “no free lunch theorem" introduced in [176],
which states that no learning algorithm is generally better than others.

We are interested in not only comparing classification algorithms on the same features,
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but instead in comparing totally different NTL detection models as argued in Chapter 3.4.6.
We suggest to create a publicly available data set for NTL detection. Generally, the more
data, the better for this data set. However, acquiring more data is costly. Therefore,
a tradeoff between the amount of data and the data acquisition costs must be found.
The data set must be based on real-world customer data, including meter readings and
inspection results. This will allow to compare various models reported in the literature.
For these reasons, it should reflect at least the following properties:

• Different types of customers: the most common types are residential and indus-
trial customers. Both have very different consumption profiles. For example, the
consumption of industrial customers often peaks during the weekdays, whereas res-
idential customers consume most electricity on the weekends.

• Number of customers and inspections: the number of customers and inspections must
be in the hundreds of thousands in order to make sure that the models assessed scale
to big data sets.

• Spread of customers across geographical area: the customers of the data set must
be spread in order to reflect different levels of prosperity as well as changes of the
climate. Both factors affect electricity consumption and NTL occurrence.

• Sufficiently long period of meter readings: due to seasonality, the data set must
contain at least one year of data. More years are better to reflect changes in the
consumption profile as well as to become less prone to weather anomalies.

We had initial discussions with the IEEE Power & Energy Society (PES) on this oppor-
tunity in autumn 2018. As a result, senior PES members have expressed interest in this
topic. They are confident that some utilities will be open to sharing some anonymized data
with a future PES working group. We are also currently involved in a respective grant
application together with a university from Uruguay. Our collaborators have also already
started initial negotiations with a local utility.

2. Deep Learning for Smart Meter Recordings
In order to improve the predictive power of the process depicted in Figure 3.1, [38], [142]
suggest to roll out more smart meters in order to have more data available for better
decision making when predicting NTL for individual customers. However, to date, many
customers in emerging markets do not have smart meters yet due to the high rollout costs.
Nonetheless, over time more smart meters will be deployed.

Deep learning allows to self-learn hidden correlations and increasingly more complex
feature hierarchies from the raw data input as discussed in [97]. This approach has led to
breakthroughs in image analysis and speech recognition as presented in [77].
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Smart meters provide meter readings every 15 or 30 minutes instead of every 1 month.
The following advances in deep learning have the potential to take advantage of this in-
formation in that data and thus to predict NTL more accurately:

• A long short-term memory (LSTM) defined in [80] is a modular recurrent neural net-
work composed of LSTM cells. Training LSTMs takes advantage of backpropagation
through time, a variant of backpropagation. Its goal is to minimize the LSTM’s total
cost on a training set. LSTMs have been reported to outperform regular recurrent
neural networks (RNN) and hidden Markov models (HMM) in classification and time
series prediction tasks [152].

• Convolutional neural networks (CNN) implement invariance in neural networks and
are inspired by biological processes [99]. Traditionally, they have been mostly applied
to computer vision problems, such as hand-written digit recognition. However, they
have recently been used for time series analysis. They have in particular demon-
strated to be easier to be trained for this task [39], [167].

• The literature also proposes to transform a time series into an image using different
transformations, such as gramian angular summation fields, gramian angular dif-
ference fields and Markov transition fields [173]. The images generated from these
transformations can then be analyzed using a CNN.

Furthermore, deep learning also has the potential to (partially) overcome the challenge
of feature description for NTL detection, see Chapter 3.4.2, as a whole.

3. Explainability of Automated Decision Making
We have previously discussed in Chapter 4 that electric utilities are reluctant to move to
machine learning-based detection of customers that potentially cause NTL. Due to the
high costs of physical on-site inspections, utilities want to understand why a certain cus-
tomer may cause NTL. We have therefore proposed a combination of machine learning
with augmented reality such that decision makers with the utilities can understand the
predictions in the context of the data. The field of explainable machine learning has got
more attention in the last few years, in particular for decisions that involve significant costs
or may cause damage or loss to human life [10], [18], [145]. We are therefore interested in
building machine learning models for NTL detection that automatically reason why they
made a certain decision. This would help to increase acceptance of machine learning-based
solutions with the utilities as well as to further increase the return on investment of on-site
physical inspections.

4. Modeling of Spatio-Temporal Behavior
A temporal process, such as a Hawkes process [95], models the occurrence of an event
that depends on previous events. Hawkes processes include self-excitement, meaning that
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once an event happens, that event is more likely to happen in the near future again and
decays over time. In other words, the further back the event in the process, the less impact
it has on future events. The dynamics of Hawkes processes look promising for modeling
NTL: Our first hypothesis is that once customers were found to steal electricity, finding
them or their neighbors to commit theft again is more likely in the near future and decays
over time. A Hawkes process allows to model this first hypothesis. Our second hypothesis
is that once customers were found to steal electricity, they are aware of inspections and
subsequently are less likely to commit further electricity theft. Therefore, finding them
or their neighbors to commit theft again is more likely in the far future and increases
over time as they become less risk-aware. As a consequence, we need to extend a Hawkes
process by incorporating both, self-excitement in order to model the first hypothesis, as
well as self-regulation in order to model the second hypothesis. Only few works have been
reported on modeling anomaly detection using self-excitement and self-regulation, such as
finding faulty electrical equipment in subway systems in [50].

We have shown in Chapter 5 that the neighborhood is essential from our point of view as
neighbors are likely to share their knowledge of NTL as well as the outcome of inspections
with their neighbors. We therefore want to extend that model by optimizing the number
of temporal processes to be used. In the most trivial case, one temporal process could
be used for all customers combined. However, this would lead to a model that underfits,
meaning it would not be able to distinguish among the different fraudulent behaviors. In
contrast, each customer could be modeled by a dedicated temporal process. However, this
would not allow to catch the relevant dynamics, as most fraudulent customers were only
found to steal once. Furthermore, the computational costs of this approach would not be
feasible. Therefore, we suggest to cluster customers based on their location and then to
train one temporal process on the customers of each cluster. Finally, for each cluster, the
conditional intensity of its temporal process at a given time can then be used as a feature
for the respective customers. In order to find reasonable clusters, we suggest to pose an
optimization problem which includes the number of clusters, i.e. the number of temporal
processes to train, as well as the sum of prediction errors of all customers.

7.3 Further Measures beyond Artificial Intelligence

In this thesis, we have discussed a broad number of causes of NTL. The predominant ap-
proach to detect NTL is to employ artificial intelligence methods for determining the most
suspicious customers for inspection. However, only carrying out inspections is not enough.
In this section, we review and discuss a number of possible measures for further reducing
NTL. We are confident that once electric utilities take these measures into account, they
can further reduce NTL and thus increase revenue, profit and reliability of the grid.
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1. Legal Actions and Market Reforms

First of all, it is important to make sure that the criminal law of a jurisdiction includes
electricity theft. In order to emphasize this issue, we have discussed historical examples
from Germany and France in Chapter 1. However, even if electricity theft is included, not
all customers in emerging markets may be aware of the legal framework of a country. [43]
reasons that it therefore may be important to make them aware of electricity theft being
illegal. Next, countries should enforce legal actions and sentences. Prohibitive actions are
also recommended in [8], including making major frauds public.

Furthermore, market reforms have been suggested, including privatization. It is argued
in [8] that private utilities need to generate profit and that they are thus more willing to
reduce NTL. Other studies, such as [90], [178], indicate that an income-aware approach
to pricing might offset differences within a country and may thus reduce NTL. Typically,
NTL reduction efforts face the problem of having to find irregular customers of electrical
energy and correctly assessing the scale of the losses incurred. In case of correct, yet un-
paid bills, these problems do not exist. Instead, a regular customer who has been charged
correctly does not pay the bills. As a measure, the electric utility can limit the losses by
denying further delivery of electrical energy. However, [158] notes that this option is not
legally available in some countries or can be dangerous for the employees involved. Addi-
tionally, if the customer is in an area where NTL are prevalent, this approach bears the
risk that the customer mitigates the power cut-off through bypassing it. Furthermore, the
cancellation of power supply comes with additional costs for disconnecting the customer.
Electric utilities therefore typically attempt to reach an agreement with the customer on
a payment plan.

2. Enhanced Infrastructure Components and Streamlined Methods of Pay-
ment

The literature also proposes improvements to the infrastructure in order to reduce NTL.
For example, meters that are less prone to tampering may be installed. However, [43]
explains that these do not allow to prevent all types of theft as customers may still rig
wires before the actual meter from the power source. The literature also suggests further
improvements such as addition of central observer meters that allow to calculate energy
balances and thus to delimitate customers that cause NTL. Alternatively, prepaid meters
should be installed for these customers. Prepaid meters are discussed controversially and
have been banned in some countries as discussed in [24]. However, it has been shown that
over longer periods - taking the high costs for implementation into consideration - prepaid
meters have an aggregate positive welfare effect. It is reported in [119] that in Rwanda,
where a prepaid meter system rollout was done alongside harsher penalties, NTL was re-
duced from 40% in 1998 to 2% in 2008. Additionally, [158] suggests the use of factoring, a
process in which a business sells its bills receivable to a third party at a discount. Factoring
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allows electric utilities to increase effectiveness in payment collection. Furthermore, they
should offer additional methods and places for bill payment.

3. Improvement of Data Quality
During the research carried out for this thesis and discussions with the partner company
and as argued in Chapter 3.4.3, we noticed that the inspection result labels in the training
may not always be correct and that some fraudsters may be labelled as non-fraudulent.
The reasons for this may include bribing, blackmailing or threatening of the technicians
performing the inspection. Also, the fraud may be done too well and is therefore not
observable by technicians. Contrary, discussions with the partner company have revealed
that inspectors may also have to satisfy a certain number of NTL found through inspec-
tions in a given time frame. Therefore, after careful review of some of the data, it has
been assumed that some inspectors may manipulate or break infrastructure on purpose
in order to incorrectly report NTL and thus satisfy the quota required. It must be noted
that another reason for causing both false positive and false negatives may be incorrect
processing of the data. The latter reason may, therefore, also label non-fraudulent behavior
as fraudulent.

As a consequence, the utilities need to improve their data collection, both the inspection
results, but also the meter readings, which may be incorrect, too. Furthermore, the utilities
need to improve their extract, transform, load (ETL) processes in order to reduce erroneous
data processing to a minimum.
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