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Abstract

Product Line Engineering (PLE) is a crucial practice in many software development environ-
ments where systems are complex and developed for multiple customers with varying needs. At
the same time, many business contexts are use case-driven where use cases are the main artifacts
driving requirements elicitation and many other development activities. This is also the case for
IEE S.A., a leading supplier of embedded systems in the automotive domain. This dissertation
is motivated by the discussions with IEE which aims to adopt PLE in its software development
practice. The current development practice at IEE is use case-driven and based on clone-and-
own reuse. IEE starts a new product with an initial customer. IEE analysts elicit requirements
as use case and domain models. Then, they derive system test cases from the use case models
for the initial customer. For each new customer of the product, IEE analysts need to clone the
current models, and negotiate variabilities with the customer to produce new use case and domain
models, and to derive and select new system test cases from the updated use cases (i.e., change
management for use cases and regression test selection for system test cases). With such practice,
IEE analysts lose track of commonalities and variabilities across products. They, together with
the customer, need to evaluate the entire use cases, domain model and system test cases.

The clone-and-own reuse practice is fully manual, error-prone and time-consuming in indus-
trial settings, which leads to ad-hoc change management for use cases, domain models and test
cases in the context of product lines since the variability information is not explicitly represented.

The need for supporting PLE in the context of use case-driven development and testing has
been already acknowledged in the literature. Most of the existing approaches rely on feature mod-
eling, including establishing and maintaining traces between feature models and use case models
and between feature models and system test cases. Due to limited resources, many software devel-
opment companies find such additional traceability and maintainability effort to be impractical. In
addition, most of the approaches do not provide automated support for requirements evolution in
a product family in terms of change impact analysis and regression testing. In this dissertation we
address the following problems which arise in managing changes in use case models and system
test cases in a product family.

Modeling Variability in Requirements with Additional Traceability to Feature Models. The
analysts need to explicitly document variability information (e.g., variant use cases, variation
points, and optional steps) for use cases and a domain model, which is the basis on which to
configure products with customers. Relating feature models to use cases and domain model is the
most straightforward option but has shortcomings in terms of additional modeling and traceability
effort. For example, it is not easy for analysts and customers to comprehend and visualize all
variability information traced to use case diagrams, use case specifications and domain models.
In our industrial case study, we identified 15 mandatory and 14 variant use cases which contain 8
variation points, and 7 variant dependencies. The use cases include 244 use case flows (29 basic
flows, 202 alternative flows, and 13 optional alternative flows) with 27 optional steps while the



domain model contains 11 variant domain entities. The variability information scattered across
all these use case flows with trace links from feature models would need to be communicated to
customers and used to configure a product.

Manual, Expensive and Error Prone Configuration of Product Specific Requirements. In or-
der to facilitate use case-driven configuration in industrial practice, a high degree of automation
is a must while the analysts are interactively guided for their configuration decisions. Before the
configuration, it should be automatically confirmed that all artifacts with variability information,
including use case diagram, specifications, and domain model, are consistent. Any inconsistency
in these artifacts may cause invalid configuration outputs. Adding to the complexity affecting the
decision-making process during configuration, there may be contradicting decisions and hierar-
chies among decisions. Changes on configuration decisions may have impact on prior decisions
as well as on subsequent decisions. During the configuration process, the analysts need to be in-
teractively informed about contradicting decisions, the order of possible decisions, and the impact
of decision changes on other decisions. Without interactive guidance and proper tool support,
the analysts have to manually identify and fix inconsistent product line artifacts, resolve decision
contradictions, and change subsequent decisions, which leads to the time-consuming, expensive
and error prone configuration of use case and domain models for a product.

Manual and Expensive Regression Testing in Product Families. The current use case-driven
testing practice in many software development environments follows the testing strategy referred
to as opportunistic reuse of test assets for product families. When there is an initial customer
for a product in the product family, the product requirements are elicited from the initial cus-
tomer and documented as a use case diagram and use case specifications. System test cases are
then generated from the use cases for the initial customer. For each new customer in the product
family, test engineers manually choose and prioritize, from the existing test suite(s) for the ini-
tial/previous product(s), test cases that can and need to be rerun to ensure existing, unmodified
functionalities are still working correctly in the new product. This form of test reuse is not per-
formed systematically, which means that there is no structured, automated method that supports
the activity of selecting and prioritizing test cases. The current practice is fully manual, error-
prone and time-consuming, which leads to ad-hoc change management for system test cases in
product lines. Therefore, product line modeling and testing techniques are needed to automate the
reuse of system test cases in the context of use case-driven development of a product family.

In this dissertation we provide a configuration framework for use case models and system
test cases in product families. We choose PLE as a solution platform for our approach. PLE
provides a way to engineer a set of related products as a product family in an efficient manner,
taking advantage of the products’ similarities (commonalities) while managing their differences
(variabilities). It enables the analysts to configure products in a product family by making con-
figuration decisions about the product variabilities. To give an explicit structure of use cases and
their trace links to system test cases, we use metamodels and models within the context of Model
Driven Engineering (MDE). The dissertation provides the following contributions:
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A modeling method for capturing variability information in Product Line (PL) use case and
domain models. The modeling method enables analysts to capture and document variability in
PL use case diagrams, use case specifications, and domain model, without further requiring any
feature model. For PL use case diagrams, it uses some extensions in the literature which over-
come the shortcomings of textual representations of variability, such as implicit variants and vari-
ation points. Further, for PL use case specifications, we employ Restricted Use Case Modeling
(RUCM), which includes a template and restriction rules to reduce imprecision and incomplete-
ness in use cases. RUCM was a clear choice since it reduces ambiguity and facilitates automated
analysis of use cases. However, since it was not originally meant to model variability, we intro-
duce some PL extensions to capture variability in use case specifications. To be able to capture
variability in PL domain models, we rely on the stereotypes (i.e., variation, variant and optional),
already proposed in the literature.

An approach for automated configuration of Product Specific (PS) use case and domain mod-
els. The use case-driven configuration approach is built on top of PUM. It provides a degree of
configuration automation that enables effective product-line management in use case-driven de-
velopment, without requiring additional modeling artifacts and traceability effort. Our approach
supports four activities. First, the analysts model the variability information explicitly in a PL
use case diagram, its use case specifications, and its corresponding domain model. Second, the
consistency of the PL use case diagram and specifications are checked and inconsistencies are
reported if there are any. For instance, a variation point in the use case diagram might be missing
in the corresponding use case specification or a use case specification may not conform to the
extended RUCM template. Third, the analyst is guided to make configuration decisions based on
variability information in the PL models. The partial order of decisions to be made is automati-
cally identified from the dependencies among variation points and variant use cases. In the case
of contradicting configuration decisions, such as two decisions resulting in selecting variant use
cases violating some dependency constraints, we automatically detect and report them. The ana-
lyst must then backtrack and revise the decisions to resolve these inconsistencies. Fourth, based
on configuration decisions, the PS use case and domain models are generated from the PL use
case and domain models. To support these activities, we developed a tool, PUMConf (Product
line Use case Model Configurator). The tool automatically checks the consistency of the PL mod-
els, identifies the partial order of decisions to be made, determines contradicting decisions, and
generates PS use case and domain models.

A change impact analysis approach for evolving configuration decisions in PL use case mod-
els. The change impact analysis approach, based on our use case-driven modeling and config-
uration techniques, supports the evolution of configuration decisions. We do not address here
evolving PL use case models, which need to be treated in a separate approach. Change impact
analysis provides a sound basis to decide whether a change is worth the effort and which deci-
sions should be changed as a consequence. In our context, we aim to automate the identification
of decisions impacted by changes in configuration decisions on PL use case models. Our ap-
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proach supports three activities. First, the analyst proposes a change but does not apply it to the
corresponding configuration decision. Second, the impact of the proposed change on other con-
figuration decisions for the PL use case diagram are automatically identified. In the PL use case
diagram, variant use cases and variation points are connected to each other with some dependen-
cies, i.e., require, conflict and include. In the case of a changed diagram decision contradicting
prior and/or subsequent diagram decisions, such as a subsequent decision resulting in selecting
variant use cases violating some dependency constraints because of the new/changed decision, we
automatically detect and report them. To this end, we developed an algorithm, which enables rea-
soning on subsequent decisions as part of our impact analysis approach. The analyst is informed
about the change impact on decisions for the PL use case diagram. Based on this, the analyst
should decide whether the proposed change is to be applied to the corresponding decision. Third,
the PS use case models are incrementally regenerated only for the impacted decisions after the
analyst actually makes all the required changes. To do so, we implemented a model differencing
pipeline which identifies decision changes to be used in the reconfiguration of PS models. There
are two sets of decisions: (i) the set of previously made decisions used to initially generate the PS
use case models and (ii) the set of decisions including decisions changed after the initial genera-
tion of the PS models. Our approach compares the two sets to determine for which decisions we
need to incrementally regenerate the PS models. To support these three activities, we extended
our configurator, PUMConf.

An approach for automated classification and prioritization of system test cases in a family of
products. The automated classification and prioritization approach is based on our use case-driven
modeling and configuration techniques. It supports product line testing for evolving products of a
product family in terms of evolving configuration decisions in PL use case models. In our context,
we aim to automate the identification of system test cases impacted by changes in configuration
decisions in PL use case models when a new product is configured in the product family. The
initial product is tested individually and the following products are tested using regression testing
techniques, i.e., test case selection and prioritization based on configuration decision changes
between the previous product(s) and the new product to be tested. Our approach supports two
activities. First, the system test cases of the previous product(s) are automatically classified as
obsolete, retestable, and reusable. An obsolete test case cannot be executed on the new product as
the corresponding use case scenarios are not selected for the new product. A retestable test case is
still valid but needs to be rerun to determine the possible impact of changes whereas a reusable test
case is also valid but does not need to be rerun for the new product. We also identify the use cases
of the new product that have not been tested so far in the product family. To do so, we reused our
model differencing pipeline which identifies decision changes to be used in the reconfiguration of
PS models. Our approach classifies the configuration decisions as new, deleted and updated to
identify the impacted parts of the use case models of the previous product(s). By using the traces
from the impacted parts of the use case models to system test cases, we automatically classify the
system test cases for test case selection. Second, the system test cases are automatically prioritized
based on multiple risk factors such as fault proneness of requirements and requirements volatility
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in the product line. To this end, we developed a prediction model that computes a prioritization
score for each system test case based on these factors. To support these activities, we extended
our tool, PUMConf.
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Chapter 1

Introduction

In this chapter, we describe the problem addressed in this thesis, together with our contributions and
an outline of the thesis.

1.1 Context
In various domains such as automotive and avionics, software systems are quickly getting larger and
more complex. These systems often consist of various interacting subsystems, e.g., lighting systems,
engine controller, and sensing systems. Further, many suppliers are typically involved in system
development. Each supplier is mostly specialized in developing one or two of these subsystems. For
example, in the automotive domain, while one supplier provides a sensing system monitoring the
driver seat for occupancy by means of a pressure sensitive sensor, another supplier may develop an
engine controller using the output of the sensing system to prevent unintentional vehicle starts and
unnecessary fuel consumption. These suppliers develop multiple versions of the same product since
they work with many manufacturers (customers). Therefore, given the complexity arising from the
context described above, systematic and supported Product Line Engineering (PLE) is crucial in their
software development practice, from requirements analysis to implementation and testing.

This thesis was motivated by discussions with IEE S.A. (in the following “IEE”) [IEE, 2018], a
leading supplier in automotive sensing systems enhancing safety and comfort in vehicles produced
by major car manufacturers worldwide. Such systems monitor the physical environment by means
of physical components (e.g., electrical field sensors, pressure sensitive sensors, and force sensing
resistors), detect events or changes regarding objects and humans (e.g., seat occupant classification,
gesture recognition, and driver presence detection), and provide the corresponding output to other
subsystems (e.g., airbag control unit, trunk controller, and engine controller). At IEE, similar to many
other development environments, use cases (including use case diagrams and use case specifications)
are the main artifacts employed to elicit requirements and communicate with customers. In order to
clarify the terminology used in the requirements and to provide a common understanding of the ap-
plication domain concepts, use cases are often accompanied by a domain model formalizing concepts
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and their relationships, often under the form of a class diagram with constraints. The system test cases
are derived from the use case models to validate the system developed for the customer.

We use Smart Trunk Opener (STO) as a case study, to motivate and assess the techniques and
tools developed in this thesis. STO is a real-time automotive embedded system developed by IEE.
It provides automatic, hands-free access to a vehicle’s trunk, in combination with a keyless entry
system. In possession of the vehicle’s electronic remote control, the user moves her leg in a forward
and backward direction at the vehicle’s rear bumper. STO recognizes the movement and transmits a
signal to the keyless entry system, which confirms that the user has the remote. This allows the trunk
controller to open the trunk automatically.

In the remainder of the present chapter, we introduce change management in product lines for
use case-driven development and testing. In the next section, the problems this thesis addresses are
explained. Research objective and research questions related to the problem statement are given in
Section 1.3. Section 1.4 presents the research methodology that we follow in this thesis. Our solution
approach is described and the contributions of this thesis are introduced in Section 1.5 and Section 1.6.
Finally, we provide the outline of the thesis in Section 1.7.

1.2 Problem Statement
The work presented in this dissertation took place in the context of embedded software systems,
interacting with multiple other external systems, and developed according a use case-driven process,
by a supplier for multiple manufacturers (customers). In such a context, requirements variability is
communicated to customers and an interactive configuration process is followed for which guidance
and automated support are needed. For instance, for each product in a product family, IEE negotiates
with customers how to resolve variation points in requirements, in other words how to configure the
product line.

STO Requirements from 
Customer A

(Use Case Diagram, 
Use Case Specifications,  

Domain Model, and 
System Test Cases)

Customer A
for STO

evolves to

(clone-and-own)

modify

evolves to

(clone-and-own)

Customer B
for STO

Customer C
for STO

STO Requirements from 
Customer B

(Use Case Diagram, 
Use Case Specifications,  

Domain Model, and 
System Test Cases)

modify

STO Requirements from 
Customer C

(Use Case Diagram, 
Use Case Specifications,  

Domain Model, and 
System Test Cases)

modify

Figure 1.1. Clone-and-Own Reuse at IEE for the STO Product Family

The current use case-driven development and testing practice at IEE, like in many other environ-
ments, is based on clone-and-own reuse [Clements and Northrop, 2001] (see Fig. 1.1). IEE starts a
project with an initial customer. The product requirements are elicited from the initial customer and
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documented as a use case diagram, use case specifications, and a domain model. For each new cus-
tomer in the product family, IEE analysts need to clone the current models, and negotiate variabilities
with the customer to produce a new use case diagram, set of specifications, and domain model (see
clone-and-own in Fig. 1.1). As a result of the negotiations, IEE analysts make changes in the cloned
models (see modify). They derive and select new system test cases from the modified use cases (i.e.,
regression test selection for system test cases). With such practice, variants and variation points (i.e.,
where potential changes are made) are not documented and IEE analysts, together with the customer,
need to evaluate the entire use cases, domain model and system test cases.

The benefits of automated use case-driven configuration have been acknowledged and there are
proposed approaches in the literature [Alves et al., 2010, Rabiser et al., 2010, Alférez et al., 2014].
Many studies [Eriksson et al., 2009, Czarnecki and Antkiewicz, 2005, Alférez et al., 2009] provide
configuration approaches which require that feature models be traced as an orthogonal model to ar-
tifacts such as UML use case, activity and class diagrams, and system test cases. In order to employ
these approaches in industrial practice, the analysts need to provide feature models with their traces
to use cases and related artifacts. The evolution of feature models also requires these traces to be
maintained manually by the analysts. In addition, none of these approaches support the evolution of
requirements in the context of product configuration. For instance, Eriksson et al. [Eriksson et al.,
2009] provide an approach to manage natural-language requirements specifications in the software
product line context. Variability is captured and managed using a feature model while requirements
in various forms, e.g., use cases, textual requirements specifications and domain model, are traced to
the feature model. Moon et al. [Moon et al., 2005, Moon and Yeom, 2004] propose a method that
generates Product Specific (PS) use cases from Product Line (PL) use cases without using any feature
model. However, the proposed method requires Primitive Requirements (PR) (i.e., building blocks of
complex requirements) to be specified by the analysts and traced to the use case diagram and specifi-
cations via PR - Context and PR - Use Case matrices. The configuration takes place by selecting the
PRs in the matrices without any automated guidance. Wang et al. [Wang et al., 2017] [Wang et al.,
2016] [Wang et al., 2013] propose a methodology for the selection of test cases for products belonging
to product families. The methodology adapts the formalisms commonly used to model product lines,
i.e., feature models and component family models, to support test case selection. Feature models are
used to capture all the choices that affect test case selection while test cases are manually traced to
these feature models. Due to deadline pressure and limited resources, many software development
companies find such additional traceability and maintainability effort to be impractical.

Below we present an overview of the problems addressed by this thesis:

• Modeling Variability in Requirements with Additional Traceability to Feature Models.
Analysts need to explicitly document variability information (e.g., variant use cases, variation
points, and optional steps) for use cases and a domain model to be communicated to customers
during product configuration. Relating feature models to use cases and domain model is the
most straightforward option but has shortcomings in terms of additional modeling and trace-
ability effort. For example, it would not be easy for analysts and customers to comprehend
and visualize all variability information traced to use case diagram, use case specifications and
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domain model. In STO, we identified 15 mandatory and 14 variant use cases which contain
8 variation points and 7 variant dependencies. The STO use cases include 244 use case flows
(29 basic flows, 202 alternative flows, and 13 optional alternative flows) with 27 optional steps
while the STO domain model contains 11 variant domain entities. The variability informa-
tion scattered across all these use case flows with trace links from feature models would be
communicated to customers and used to configure a product.

• Manual, Expensive and Error Prone Configuration of Product Specific Requirements. In
order to facilitate use case-driven configuration in industrial practice, a high degree of automa-
tion is required to interactively guide analysts in their decisions. Before configuration, it should
be automatically confirmed that all artifacts with variability information, including use case
diagram, specifications, and domain model, are consistent. Any inconsistency in these arti-
facts may cause invalid configuration outputs. Adding to the complexity affecting the decision-
making process during configuration, there may be contradicting decisions and dependencies
among decisions. Changes on configuration decisions may impact prior decisions as well as
subsequent decisions. During the configuration process, the analysts need to be interactively
informed about contradicting decisions, the order of possible decisions, and the impact of de-
cision changes on other decisions. Without interactive guidance and proper tool support, the
analysts have to manually identify and fix inconsistent PL artifacts, resolve decision contradic-
tions, and change further decisions, which leads to time-consuming, expensive and error prone
configuration of PS use case and domain models.

• Manual and Expensive Regression Testing in Product Families. The current use case-driven
testing practice in many software development environments follows the testing strategy re-
ferred to as opportunistic reuse of test assets [de Mota Silveira Neto et al., 2011] for product
families. When there is an initial customer for a product in the product family, the product
requirements are elicited from the initial customer and documented as a use case diagram and
use case specifications. System test cases are then generated from the use cases for the initial
customer. For each new customer in the product family, test engineers manually choose and
prioritize, from the existing test suite(s) for the initial/previous product(s), test cases that can
and need to be rerun to ensure existing, unmodified functionalities are still working correctly
in the new product. This form of test reuse is not performed systematically, which means that
there is no structured, automated method that supports the activity of selecting and prioritizing
test cases. The current practice is fully manual, error-prone and time-consuming, which leads
to ad-hoc change management for system test cases in product lines. Therefore, product line
modeling and testing techniques are needed to automate the reuse of system test cases in the
context of use case-driven development of a product family.

1.3 Research Questions
The objective of this thesis is to investigate to what extent and how product line engineering tech-
niques can be used to support change management for use case models and system test cases in
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product families by enhancing automation in use case-driven configuration and regression testing.
Within the context of this objective, we provide a configuration framework for use case models and
system test cases in product families. A number of research questions need to be answered. Answer-
ing these questions will give us a better insight about the problem domain and the deficiencies of the
current solutions.

• Research Question 1: What are the key concepts for managing requirements? What are the
core concepts and techniques for managing variability in product families?

• Research Question 2: How to model variability in use case and domain models without addi-
tional traceability to feature models? Are there any existing techniques for use case and domain
models to model variability? Which techniques can be used?

• Research Question 3: To what extent and how can we automate the interactive configuration
of use case and domain models? How can we support the analysts for making configuration
decisions and for generating PS use case and domain models?

• Research Question 4: What are the change scenarios for use case models and system test cases
in a product family? What is necessary for these change scenarios to be handled in the config-
uration process? Which solutions can be used?

• Research Question 5: How can a change in a configuration decision be propagated to other
decisions in PL use case models and to system test cases? How can we support the analysts
in performing changes? How can we reconfigure PS use case and domain models for decision
changes? How can we select and prioritize system test cases for such changes?

These questions guide our research in this thesis. In Section 1.7, we give the outline of the thesis
and a table that relates the research questions to the chapters in which we provide answers to the
questions (see Table 1.1).

1.4 Research Methodology
In this thesis, we try to solve two kinds of problems: design problems, i.e., the difference between
the current and desired states of the world, and knowledge problems, i.e., the difference between the
current and desired knowledge states [Wieringa et al., 2006] [Wieringa, 2009] [Wieringa, 2010].

1. Problem
    Analysis

Chapters 1, 2, 3, 4, 5 and 6

2. Solution
  Design

3. Solution
    Validation

Chapters 3, 4, 5 and 6 Chapters 3, 4, 5 and 6

feedback

Figure 1.2. Research Methodology
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Our research methodology has three steps: problem analysis, solution design and solution valida-
tion (see Fig. 1.2).

In the first step, we identify our design problem, i.e., the difference between the current and desired
states of software development practice in the context of change management for use case-driven
development and testing in product families. Then, we solve a knowledge problem, for instance,
we want to understand what the published change management approaches for product line use case
models are and what the current deficiencies of those current approaches are. For that purpose, we
analyze the literature from different research areas (i.e., requirements engineering and product line
engineering) to discover possible change management problems in current product line approaches
for use case-driven development and testing.

In the second step, the results of the first phase are employed to design a new solution. We provide
a change management framework for product lines within the context of use case-driven development
and testing. Our goal is to improve change management for use case models and system test cases
in a product family by providing a use-case driven configuration approach supporting change impact
analysis and regression testing.

Finally, in the third step, we validate our solution by investigating its availability in real industrial
settings for the problems discovered in the problems analysis phase. This is a knowledge problem
since we want to gain knowledge about the properties of our solution, and the relation between the
solution and the problems. The output of the third step is fed back to the second step to improve the
solution.

1.5 Approach
We choose Product Line Engineering (PLE) as a solution platform for our approach. PLE provides
a way to engineer a set of related products as a product family in an efficient manner, taking advan-
tage of the products’ similarities (commonalities) while managing their differences (variabilities). It
enables engineers to configure products in a product family by making configuration decisions about
the product variabilities. We employ Natural Language Processing (NLP) techniques to process and
analyze use cases. To manage changes in use case models, domain models and system test cases in
product families, we provide a use case-driven configuration framework within the context of PLE.
Fig. 1.3 presents an overview of our proposed framework.

To capture variability and commonality information in use case and domain models, we propose to
use some existing product line extensions of use case and domain models with some further extensions
we design. Using these extensions, the analyst produces three artifacts: a Product Line (PL) use case
diagram, PL use case specifications, and a PL domain model (see Elicit Product Line Use Case
Models in Fig. 1.3). It may not always be possible to model PL use cases without starting from
product use cases; the analyst elicits use cases of a specific product, and then identifies variabilities
and commonalities for the product family. We observe that most of the projects in industry start with
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an initial customer for which the product is designed and produced. Other potential customers are
typically engaged after the release of the initial product. At this phase of product development, the
analyst starts identifying commonalities and variabilities of the product family based on the use cases
of the initial product.
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Figure 1.3. Overview of Our Solution

In order to facilitate use case-driven configuration in industrial practice, we develop a use case-
driven configurator providing a high degree of automation while the analysts are interactively guided
in their configuration decisions. With interactive guidance and proper tool support, the analysts make
decisions and resolve contradictory decisions, which leads to the automatic generation of Product
Specific (PS) use case and domain models. With new customers (see ‘evolves to’ in b and d in
Fig. 1.3), the analyst is asked to input configuration decisions regarding variation points captured in
PL use case and domain models to automatically configure the product line into a product (see ‘con-
figure’ in b, and d in Fig. 1.3). The configuration of PS use case and domain models is an automated,
iterative, and interactive decision-making activity. When a decision is made, the consistency of the
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decision with prior decisions is checked by our configurator. There might be contradicting decisions
in the PL use case diagram such as two decisions resulting in selecting variant use cases violating
some dependency constraints. These are automatically determined and reported a posteriori and the
analysts can backtrack and revise their decisions.

Configuration decisions may frequently change, resulting in the reconfiguration of PS use case
models (see ‘evolves to’ in a, c and e in Fig. 1.3). Impacted decisions, i.e., subsequent decisions to be
made and prior decisions cancelled or contradicting when a decision changes, need to be identified to
incrementally reconfigure the generated use case models (see ‘reconfigure’ in a, c and e in Fig. 1.3).
To this end, we develop a change impact analysis approach to identify impacted configuration deci-
sions and parts of PS models that need to be reconfigured when the PL models and the configuration
decisions evolve.

When configuration decisions evolve in a product family (see ‘evolves to’ in a, c, and e in Fig. 1.3),
the change impact on the execution of system test cases derived from these requirements (see ‘regen-
erate’ in a, c, and e in Fig. 1.3) need to be assessed. We develop a regression testing approach that
automatically chooses and prioritizes, from an existing test set, test cases that can and need to be rerun
to ensure existing, unmodified functionalities are still working correctly.

Reconfiguration is needed not only for changes in configuration decisions (see ‘evolves to’ in a,
c, and e in Fig. 1.3) but also for changes in PL use case models (see ‘evolves to’ in f ). The former
requires reconfiguration only for the product concerned with the decisions, while the latter needs an
impact assessment method to analyze change impact on PL use cases before the reconfiguration of
use case models for all products in the product family (see ‘reconfigure’ in f in Fig. 1.3). When the PL
use case and domain models evolve, the change impact on the execution of system test cases derived
from the configured use case and domain models (see ‘regenerate’ in f in Fig. 1.3) also need to be
assessed. Currently, our framework does not support it. As future work, we plan to provide a change
impact analysis and automated regression testing approach for changes in PL use case and domain
models (see Chapter 7).

1.6 Contributions
This thesis provides the following contributions:

• A modeling method for capturing variability information in Product Line (PL) use case and
domain models.

Chapter 3 presents the Product line Use case modeling Method (PUM), which enables the ana-
lysts to capture and document variability in PL use case diagrams, use case specifications, and do-
main model. For PL use case diagrams, we employ the diagram extensions proposed by Halmans
and Pohl [Halmans and Pohl, 2003]. These extensions overcome the shortcomings of textual rep-
resentations of variability, such as implicit variants and variation points. Further, for PL use case
specifications, we employ Restricted Use Case Modeling (RUCM) [Yue et al., 2013], which includes
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a template and restriction rules to reduce imprecision and incompleteness in use cases. RUCM was
a clear choice since it reduces ambiguity and facilitates automated analysis of use cases [Yue et al.,
2011] [Yue et al., 2015b] [Wang et al., 2015a]. However, since it was not originally meant to model
variability, we introduced some PL extensions to capture variability in use case specifications. To be
able to capture variability in PL domain models, we rely on the stereotypes (i.e., variation, variant
and optional), proposed by Ziadi and Jezequel [Ziadi and Jezequel, 2006] for UML class diagrams.

• An approach for automated configuration of Product Specific (PS) use case and domain models.

Chapter 4 presents a use case-driven configuration approach based on PUM. Our goal is to pro-
vide a degree of configuration automation that enables effective product-line management in use
case-driven development, without requiring additional modeling artifacts and traceability effort. Our
approach supports four activities. First, the analysts model the variability information explicitly in
a PL use case diagram, its use case specifications, and its corresponding domain model. Second,
the consistency of the PL use case diagram and specifications are checked and inconsistencies are
reported if there are any. For instance, a variation point in the use case diagram might be missing in
the corresponding use case specification or a use case specification may not conform to the extended
RUCM template. Third, the analyst is guided to make configuration decisions based on variability
information in the PL models. The partial order of decisions to be made is automatically identified
from the dependencies among variation points and variant use cases. In the case of contradicting
configuration decisions, such as two decisions resulting in selecting variant use cases violating some
dependency constraints, we automatically detect and report them. The analyst must then backtrack
and revise the decisions to resolve these inconsistencies. Fourth, based on configuration decisions, the
PS use case and domain models are generated from the PL use case and domain models. To support
these activities, we developed a tool, PUMConf (Product line Use case Model Configurator). The
tool automatically checks the consistency of the PL models, identifies the partial order of decisions to
be made, determines contradicting decisions, and generates PS use case and domain models.

• A change impact analysis approach for evolving configuration decisions in PL use case models.

Chapter 5 presents a change impact analysis approach, based on our use case-driven modeling
and configuration techniques, to support the evolution of configuration decisions. We do not address
here evolving PL use case models, which need to be treated in a separate approach. Change impact
analysis provides a sound basis to decide whether a change is worth the effort and which decisions
should be changed as a consequence [Passos et al., 2013]. In our context, we aim to automate the
identification of decisions impacted by changes in configuration decisions on PL use case models.
Our approach supports three activities. First, the analyst proposes a change but does not apply it
to the corresponding configuration decision. Second, the impact of the proposed change on other
configuration decisions for the PL use case diagram is automatically identified. In the PL use case
diagram, variant use cases and variation points are connected to each other with some dependencies,
i.e., require, conflict and include. In the case of a changed diagram decision contradicting prior and/or
subsequent diagram decisions, such as a subsequent decision resulting in selecting variant use cases
violating some dependency constraints because of the new/changed decision, we automatically detect
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and report them. To this end, we improved our consistency checking algorithm given in Chapter 4,
which enables reasoning on subsequent decisions as part of our impact analysis approach. The analyst
is informed about the change impact on decisions for the PL use case diagram. Based on this, the
analyst should decide whether the proposed change is to be applied to the corresponding decision.
Third, the PS use case models are incrementally regenerated only for the impacted decisions after
the analyst actually makes all the required changes. To do so, we implemented a model differencing
pipeline which identifies decision changes to be used in the reconfiguration of PS models. There are
two sets of decisions: (i) the set of previously made decisions used to initially generate the PS use
case models and (ii) the set of decisions including decisions changed after the initial generation of the
PS models. Our approach compares the two sets to determine for which decisions we need to incre-
mentally regenerate the PS models. To support these three activities, we extended our configurator,
PUMConf.

• An approach for automated classification and prioritization of system test cases in a family of
products.

Chapter 6 presents an automated classification and prioritization approach, based on our use case-
driven modeling and configuration techniques, to support product line testing for evolving products of
a product family in terms of evolving configuration decisions in PL use case model. In our context, we
aim to automate the identification of system test cases impacted by changes in configuration decisions
in PL use case models when a new product is configured in the product family. The initial product
is tested individually and the following products are tested using regression testing techniques, i.e.,
test case selection and prioritization based on configuration decision changes between the previous
product(s) and the new product to be tested. Our approach supports two activities. First, the system
test cases of the previous product(s) are automatically classified as obsolete, retestable, and reusable.
An obsolete test case cannot be executed on the new product as the corresponding use case scenarios
are not selected for the new product. A retestable test case is still valid but needs to be rerun to
determine the possible impact of changes whereas a reusable test case is also valid but does not need
to be rerun for the new product. We also identify the use cases of the new product that have not been
tested so far in the product family. To do so, we reused our model differencing pipeline in Chapter
5 which identifies decision changes to be used in the reconfiguration of PS models. Our approach
classifies the configuration decisions as new, deleted and updated to identify the impacted parts of
the use case models of the previous product(s). By using the traces from the impacted parts of the
use case models to system test cases, we automatically classify the system test cases for test case
selection. Second, the system test cases are automatically prioritized based on multiple risk factors
such as fault proneness of requirements and requirements volatility in the product line. To this end,
we developed a prediction model that computes a prioritization score for each system test case based
on these factors. To support these activities, we extended our configurator, PUMConf.

1.7 Outline of the Thesis
Fig. 1.4 shows the map of the thesis with chapters and relations among them.
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1.7. Outline of the Thesis

The thesis consists of the following chapters:

• Chapter 2 Backround and Definitions. This chapter describes the concepts used in the thesis.
It introduces concepts and techniques from the areas of Requirements Engineering and Product
Line Engineering as they are described in the literature.
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Figure 1.4. Thesis Map

• Chapter 3 Product Line Use Case and Domain Models. This chapter proposes, applies, and
assesses the Product line Use case modeling Method (PUM) to support variability modeling
in PL use case diagrams, specifications, and domain models, without making use of feature
models, thus avoiding unnecessary modeling overhead. We present the tool support for PUM
relying on Natural Language Processing (NLP) to check the consistency of PL use case and
domain models. We illustrate PUM in an industrial automotive embedded system, i.e., STO,
and report lessons learned and results from structured interviews with experienced engineers.
This chapter is an enhancement of the results published in [Hajri et al., 2015].

• Chapter 4 Configuration of Product Specific Use Case and Domain Models. This chapter
proposes, applies, and assesses our use case-driven configuration approach based on PUM. For
given PL use case and domain models, the configuration approach checks the consistency of
the models, interactively receives configuration decisions from analysts, automatically checks
decision consistency, and generates PS use case and domain models from the PL models and
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decisions. The algorithm for consistency checking of configuration decisions is presented in this
chapter. We also present the features of PUMConf for consistency checking of decisions and for
generation of PS use case and domain models. We evaluate our approach in an industrial case
study, i.e., STO, which shows evidence that it is practical and beneficial to capture variability
at the appropriate level of granularity and to configure PS use case and domain models in
industrial settings. This chapter is an enhancement of the results published in [Hajri et al.,
2018b] and [Hajri et al., 2016].

• Chapter 5 Change Impact Analysis for Evolving Configuration Decisions. This chapter
proposes, applies, and assesses a change impact analysis approach for evolving configuration
decisions in PL use case models. We present the algorithm for identifying the impact of de-
cision changes on prior and subsequent decisions. The model differencing and regeneration
pipeline for incremental reconfiguration of PS use case models is also presented in this chapter.
We evaluate our approach in an industrial case study, i.e., STO, which provides evidence that it
is practical and beneficial to analyze the impact of decision changes and to incrementally regen-
erate PS models in industrial settings. This chapter is an enhancement of the results published
in [Hajri et al., 2017] and [Hajri et al., 2018a].

• Chapter 6 Automated Test Case Classification and Prioritization in Product Lines. This
chapter proposes, applies and assesses a test selection and prioritization approach to support
product line testing for evolving products of a product family in terms of evolving configuration
decisions in PL use case models. We evaluate our approach in an industrial case study, which
provides evidence that it is practical and beneficial to select and prioritize system test cases
for a new product in industrial settings. Our algorithm for classifying system test cases for
product-to-product testing in a product family is presented in this chapter. We also present
our prediction model that computes a prioritization score for each system test case based on
multiple risk factors.

• Chapter 7 Conclusions. This chapter provides conclusions and an evaluation of the contribu-
tions in this thesis, and describes directions for future work.
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Table 1.1 relates the research questions to the chapters in which we provide answers to these
questions.

Table 1.1. Mapping the Research Questions to the Chapters of the Thesis

Chapter
1 2 3 4 5 6 7

Research
Question 1 +

Research
Question 2 +

Research
Question 3 + +

Research
Question 4 + +

Research
Question 5 + +
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Chapter 2

Background and Definitions

In our work, we utilize concepts and techniques from the areas of requirements engineering and
product line engineering. In this chapter, we provide background information on these areas and
introduce a set of definitions throughout the thesis.

2.1 Introduction
This chapter gives an overview of the concepts and terms used in this thesis. Since various definitions
of these concepts are found in the literature, we try to select a consistent set of definitions that support
the understanding of the thesis.

In this chapter, we answer Research Question 1 (What are the key concepts for managing require-
ments? What are the core concepts and techniques for managing variability in product families?)
as formulated in Chapter 1. Using the definitions in this chapter, we address software product line
engineering within the context of requirements engineering and software testing.

This chapter is structured as follows. Section 2.2 describes the fundamentals of requirements
engineering such as requirements elicitation and documentation. Section 2.3 focuses on software
product line engineering and its application to use case driven development and testing.

2.2 Requirements Engineering
Requirements engineering refers to the process of specifying, analyzing, documenting and main-
taining requirements in the engineering design process [Nuseibeh and Easterbrook, 2000]. Som-
merville [Sommerville, 2009] describes requirements engineering as “the process of finding out, ana-
lyzing, documenting and checking the services and constraints for the system to be built”. According
to Van Lamsweerde [van Lamsweerde, 2009], requirements engineering is “a coordinated set of ac-
tivities for exploring, evaluating, documenting, consolidating, revising and adapting the objectives,

14



2.2. Requirements Engineering

capabilities, qualities, constraints and assumptions that the system-to-be should meet based on prob-
lems raised by the system-as-is and opportunities provided by new technologies”.

In this section, we start with the presentation of the key terminology and concepts in require-
ments engineering. We introduce a requirements engineering framework which represents the build-
ing blocks of requirements engineering. We then present the approaches for software requirements
specification and documentation.

2.2.1 Software Requirements

There are various definitions and classifications of the term “requirement”. It is defined in the IEEE
610.12-1990 standard [IEE, 1990] as: (a) a system capability needed by a system user to solve a prob-
lem or achieve an objective, (b) a capability that must be met by a system to satisfy a contract, standard
or specification, and (c) a documented representation of a capability as in (a) or (b). “The description
of the services and constraints for the system” is called a requirement by Sommerville [Sommerville,
2009], while the term “requirement” is defined as “ a property which must be exhibited by a system”
in SWEBook [SWE, 2014]. We use the definition in the IEEE 610.12-1990 standard [IEE, 1990] as
our working definition for requirements in the thesis.

There is a terminology to distinguish different types of requirements such as user requirements,
system requirements, software requirements, and functional / non-functional requirements. For in-
stance, the term “user requirement” is used for high-level abstract requirements, while the term “sys-
tem requirement” is used for the detailed descriptions of what the system should do [Sommerville,
2009]. We consider software requirements and software system requirements as synonyms and as
a specialization of system requirements for software systems in this thesis. Software requirements
are often classified as functional, non-functional and constraints (see [Pohl, 2010] [Sommerville,
2009] [Lauesen, 2002] [Robertson and Robertson, 2006] [Wiegers and Beatty, 2013]).

• Functional Requirements. Functional requirements describe services the system should pro-
vide. They may also state what the system should not do.

• Non-Functional Requirements. They are often called “quality attributes” of a system such as
security, reliability, performance, maintainability, scalability, and usability.

• Constraints. They are organizational or technological requirements that restrict the way in
which the system is developed [Robertson and Robertson, 2006] [Pohl, 2010].

2.2.2 Requirements Engineering Framework

The requirements engineering framework introduced by Pohl [Pohl, 2010] represents the key elements
of a requirements engineering process. The framework consists of the following building blocks (see
Fig. 2.2):

• System context: Software system requirements are heavily influenced by the context of the
system under development. The system context consists of various aspects that are related to
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Figure 2.1. The Requirements Engineering Framework [Pohl, 2010]

the system to be developed, such as business processes, hardware and software components,
third-party systems, standards and stakeholders [Pohl, 2010]. It is structured into four facets:
subject facet, i.e., all objects and events in the system context, usage facet, i.e., all aspects
that are related to the system usage, IT system facet, i.e., all aspects of the operational and
technical environment including policies, strategies and guidelines, and development facet, i.e.,
all aspects of the context that are related to the development processes of the system.

• Core requirements engineering activities: The core activities concern the understanding of
the requirements, the documentation and specification of the elicited requirements, and the
identification and resolution of conflicts between various stakeholders.

• Cross-sectional activities: These activities support the core activities and secure the results of
requirements engineering. The validation activity aims at detecting defects in the requirements,
checking the compliance between the core activities, and validating whether the core activities
have been properly followed. The management activity comprises the management of the re-
quirements artifacts, the planning and control of the core requirements engineering activities,
and the identification of changes in the system context.

• Requirement artifacts: The requirements engineering framework distinguishes three main
artifacts: goal, scenarios, and solution-oriented requirements. We describe the details of those
artifacts in Section 2.2.3.
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2.2.3 Requirements Artifacts

The term “requirement artifact” refers to a documented requirement [Pohl, 2010]. As mentioned in
Section 2.2.2, there are three main types of requirements artifacts: goals, scenarios and solution-
oriented requirements.

2.2.3.1 Goals

Goals are used to document stakeholders’ intentions and refine the overall system objective into
smaller objectives to be fulfilled by the subsystems. According to Pohl [Pohl, 2010], a goal is “an
intention with regard to the objectives, properties, or use of the system”. van Lamsweerde [van
Lamsweerde, 2001] defines a goal as “a high-level objective the system under consideration should
achieve”.

There might be different goals at different levels of abstraction. High-level goals provide the high-
level strategy for the product of the company, and the requirements engineer refines these high-level
goals into sub-goals which define the stakeholders’ intention in terms of the use of the system and
its specific properties [Pohl, 2010]. The refinement of a goal is called “goal-decomposition”. There
are AND-decomposition of a goal, i.e., all sub-goals must be satisfied to satisfy the super goal, and
OR-decomposition of a goal, i.e., satisfying one of the sub-goals is sufficient to satisfy the super
goal. In addition to the AND-decomposition and OR-decomposition, there are dependencies between
goals [Pohl, 2010]: requires, support, obstruction, conflict and goal equivalence.

Goals and goal dependencies can be documented using unstructured, natural language. For an
easy-to-understand and precise documentation of goals, several goal modelling languages, methods
and tools are proposed in literature (e.g., GRL [GRL, 2009], i* [Yu, 1997], NFR [Chung et al., 1996],
GDC [Kavakli, 2002], GBRAM [Anton, 1996] and KAOS [van Lamsweerde, 2009]).

2.2.3.2 Scenarios

A scenario describes a concrete example of how the system to be developed interacts with its users
and third-party systems. Pohl [Pohl, 2010] defines a scenario as “a concrete example of satisfying
or failing to satisfy a goal (or set of goals)”. Scenarios describe sequences of actions related to the
intended application. Scenarios can be documented using various formats, such as natural language,
tabular notation, or sequence diagrams. According to Pohl and Haumer [Pohl and Haumer, 1997],
there are three types of scenarios:

• System Internal Scenarios: They are used to represent interactions between components of the
system and subsystems. They do not consider the context in which the system to be developed
is expected to run.

• Interaction Scenarios: They are used to represent interactions between the system and stake-
holders and/or other third-party systems.
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• Contextual Scenarios: They extend interaction scenarios by additionally representing the sys-
tem context information such as business goals related to the system services, relationships
between stakeholders, and organisational policies.

Use case modeling is a technique to document interaction scenarios, and first introduced in OOSE
(Object-Oriented Software Engineering) [Jacobson et al., 1992]. Pohl et al. [Pohl et al., 2005] define
a use case as “a description of system behaviour in terms of scenarios illustrating different ways to
succeed or fail in attaining one or more goals”.

A use case represents interactions between the actors and the system to be developed. These inter-
actions are described in terms of scenarios, the so-called use case scenarios. There are usually various
use case scenarios representing alternatives of failure and success for the same goal. Therefore, a use
case consists of multiple positive and negative use case scenarios. Besides, use cases contain pre- and
post-conditions providing information about the system state before and after the execution of the use
case scenarios.

Use cases of a system are documented as a use case model in which three components are nec-
essary [Larman, 2002]: the template-based specification of the use cases, the proper documentation
of the use case scenarios, and at least one use case diagram representing with a graphical notation an
overview of the use cases. A use case template is a tabular structure that guides the textual documenta-
tion of use cases [Pohl et al., 2005]. There are several use case templates in literature (e.g., [Cockburn,
2001] [Armour and Miller, 2001] [Kulak and Guiney, 2003]).

2.2.3.3 Solution-Oriented Requirements

Solution-oriented requirements specify, at the required level of detail, system properties and fea-
tures [Pohl, 2010]. They describe the data, functional and behavioral perspectives on a software
system. Different than goals and scenarios, they imply a conceptual solution for the system to be
developed.

Conceptual or formal models are often used to document solution-oriented requirements. The re-
quirements engineer can employ a data modelling language (e.g., the entity-relationship model [Chen,
1976], the enhanced entity relationship model [Elmasri and Navathe, 2015] and UML class diagrams)
to document the solution-oriented requirements from the data perspective, while she employs a be-
havioral modelling language (e.g., data flow diagrams [DeMarco, 1978]) and a functional modelling
language (e.g., finite automata, statecharts [Harel, 1987] and UML state machine diagrams) for the
behavioral and functional perspectives, respectively. We consider the use of domain models in our
Product line Use case modeling Method (PUM) (see Chapter 3) as the documentation of solution-
oriented requirements in UML class diagrams from the data perspective.
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2.3 Software Product Line Engineering
Software Product Line Engineering (SPLE) is described as "a reuse development paradigm that aims
to develop a set of similar high-quality products at reasonable cost and within a short time to mar-
ket" [Pohl et al., 2005]. It covers the development of pure software systems as well as the development
of software that is embedded into a system integrating hardware and software [Pohl et al., 2005]. The
goal of SPLE is to maximize reuse by creating a software product line from a shared set of software
assets in a planned or predictive way. SPLE is currently becoming a common practice in industry to
reduce cost and development cycle time and to improve software quality and productivity.

A software product line is defined as "a set of software-intensive systems sharing a common man-
aged set of features that satisfy the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way" [Clements and Northrop, 2001].
Software product line development refers to software engineering methods, tools and approaches for
creating a set of similar software systems from a mutual set of software assets using a common means
of production [CMU, 2018].

In this section, we present the core concepts of SPLE such as domain and application engineering
activities and variability in product lines.

2.3.1 Software Product Line Framework

The principles of SPLE are represented in an SPLE framework (see Fig. 2.2). SPLE includes two
processes: domain engineering and application engineering, where variability of the product line is
defined and exploited, respectively (see e.g. [Pohl et al., 2005] [Weiss and Lai, 1999] [van der Linden,
2002]):

• Domain engineering: It is defined as "the process of software product line engineering in
which the commonality and the variability of the product line are defined and realised" [Pohl
et al., 2005]. All types of software artifacts are covered in this process (e.g., requirements
specifications, design models, source code and test cases).

• Application engineering: It is defined as "the process of software product line engineering in
which the applications of the product line are built by reusing domain artifacts and exploiting
the product line variability" [Pohl et al., 2005].

The advantage of having these two processes is the reduction of manual effort and time required
to build customer-specific applications. To be efficient, these processes need to interact in a manner
that is beneficial to both [Pohl et al., 2005]. We describe the details of the domain and application
engineering processes in Sections 2.3.1.1 and 2.3.1.2, respectively.
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Figure 2.2. Software Product Line Engineering Framework [Pohl et al., 2005]

2.3.1.1 Domain Engineering

The objective of the domain engineering process is to develop reusable domain artifacts that define
the commonality and the variability of the software product line and that can be reused for the devel-
opment of the set of applications the software product line is planned for [Pohl et al., 2005].

The domain engineering process is composed of five key sub-processes: product management,
domain requirements engineering, domain design, domain realisation, and domain testing. Below we
briefly describe them.

• Product management. This concerns the economic aspects of the software product line such
as the market strategy [Pohl et al., 2005]. The goal of this sub-process is to define the scope
of the product line and to manage the products in the product line. Based on the objectives
of the company owning the product line, in the product management sub-process, the engineer
determines the schedule of the products and their planned release dates.

• Domain requirements engineering. This concerns the activities of eliciting and documenting
common and variable requirements of the product line [Pohl et al., 2005]. The requirements
of all the planned products in the software product line are defined in this sub-process. The
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domain requirements engineering sub-process aims to reach an agreement among all the stake-
holders on the requirements of the product line and to produce a precise documentation of the
requirements.

• Domain design. This concerns the activities of the generation of the reference architecture of
the product line [Pohl et al., 2005]. The reference architecture is a high-level structure for all
the planned products in the software product line. In this sub-process, the engineer maps the
product line requirements, including variability, to the reference architecture of the product line.

• Domain realisation. This concerns the detailed design and implementation of the reusable
components and interfaces of the product line [Pohl et al., 2005]. In this sub-process, using
the reference architecture, each component is planned, designed, and implemented to enable its
reuse in application engineering.

• Domain testing. This concerns the validation and verification of the reusable components in
the product line [Pohl et al., 2005]. In this sub-process, the components are tested against
their requirements, architecture, and design. The objective of the domain testing sub-process
is to validate the output of the previous domain engineering sub-processes and to improve the
efficiency of testing by starting the testing process early in the domain engineering process.

2.3.1.2 Application Engineering

The objective of the application engineering process is to develop individual systems of the product
line by reusing domain artifacts in the domain engineering process [Pohl et al., 2005]. The common-
ality and the variability of the software product line are exploited to achieve as high as possible reuse
of the domain artifacts during the development of a product line application.

The application engineering process is composed of four key sub-processes: application require-
ments engineering, application design, application realisation, and application testing. Each sub-
process uses domain artifacts to produce application artifacts (see Fig. 2.2). Below we briefly explain
the application engineering sub-processes.

• Application requirements engineering. This concerns the activities of the definition and the
documentation of application-specific requirements [Pohl et al., 2005]. The objective of this
sub-process is to elicit and document requirements for a specific application and at the same
time reuse, as much as possible, the domain requirements artifacts of the product line.

• Application design. This concerns the activities of the generation of the application archi-
tecture [Pohl et al., 2005]. This sub-process uses the reference architecture, generated in the
domain design sub-process, to instantiate the application architecture. The resulting applica-
tion architecture has to fulfill the application’s requirements elicited and documented in the
application engineering sub-process.

• Application realisation. This concerns the activities of the generation of the application-
specific components and interfaces [Pohl et al., 2005]. This sub-process takes the application
architecture as input and produces the executable application as an output.
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• Application testing. This concerns the activities of the validation and verification of an ap-
plication against its requirements [Pohl et al., 2005]. It focuses on the quality of the created
application and aims to detect faults as early as possible.

2.3.2 Product Line Variability

The modeling of product line variability enables the development of applications by reusing prede-
fined, adjustable artifacts [Pohl et al., 2005]. We refer to all the domain engineering activities con-
cerned with the identification and documentation of variability as modelling variability. Variability
modeling supports the development and reuse of variable development artifacts.

Variability is an essential property of domain artifacts in software product line engineering. The
engineer introduces variability during the product management sub-process of domain engineering
(see Fig. 2.2) when he identifies common and variable features of the applications in the software
product line. Domain requirements engineering, domain design, domain realisation and domain test-
ing deal with system artifacts at different levels of abstraction. At each level of abstraction in domain
engineering, the engineer refines variability from the previous level and introduces more variabil-
ity [Pohl et al., 2005].

Pohl et al. [Pohl et al., 2005] provide a variability metamodel which represents all the key concepts
for variability (see Fig. 2.3). In the following, we give the definitions of these concepts.

Pohl et al. [Pohl et al., 2005] define a variation point as “a representation of a variable item of
the real world or a variable property of such an item within domain artifacts enriched by contextual
information”, and a variant as “a representation of a particular instance of a variable item or property
within domain artifacts”. There are two types of variation points: internal variation points hidden
from customers and external variation points visible to customers.

A variability dependency is a dependency between a variation point and its variant(s), which
states that the variation point offers certain variant(s) [Pohl et al., 2005]. It may be one of two types:
mandatory or optional. With an optional variability dependency, a variant can but does not have to
be part of an application in the product line, whereas, with a mandatory variability dependency, a
variant must be selected for an application when its variation point is part of the application [Pohl
et al., 2005]. It is possible to define the minimum and the maximum number of optional variants to
be selected from a set of variants of the variation point having an optional variability dependency.

There are also constraint dependencies between variants (i.e., variant constraint dependency),
between variation points (i.e., variation point constraint dependency) and between variation points and
variants (i.e., variation point to variant constraint dependency). A constraint dependency represents a
restriction which is either of the type “requires” or “excludes”.

A variant constraint dependency is a relationship between two variants, which may be variant
requires variant (i.e., requires_V_V) or variant excludes variant (i.e., excludes_V_V) [Pohl et al.,
2005]. A variant to variation point constraint dependency is a relationship between a variant and
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Figure 2.3. Variability Metamodel [Pohl et al., 2005]

a variation point, which may be variant requires variation point (i.e., requires_V_VP) or variant
excludes variation point (i.e., excludes_V_VP) [Pohl et al., 2005]. A variation point constraint de-
pendency describes a relationship between two variation points, which may be variation point re-
quires variation point (i.e., requires_VP_VP) or variation point excludes variation point (i.e., ex-
cludes_VP_VP) [Pohl et al., 2005].

There are several languages and techniques to model variability in a product line. Feature mod-
eling [Kang et al., 1990] has been the most popular technique to model variability in a product line.
Commonalities and variabilities are modeled in terms of optional and mandatory product features,
i.e., optional and mandatory characteristics of products in a product line visible to stakeholders [Kang
and Lee, 2013]. The original feature model [Kang et al., 1990] is a simple model having features with
“consists of” and “generalization/specialization” relationships in an AND/OR graph. Features can
be mandatory, alternative, or optional. Many extensions have been proposed to add new concepts to
the originally proposed feature model (e.g., [Czarnecki et al., 2004] [Czarnecki et al., 2002] [Eriks-
son et al., 2005a] [Kang et al., 1998] [Riebisch et al., 2002] [Gurp et al., 2001] [Benavides et al.,
2005b] [Hein et al., 2000]). Orthogonal variability modeling is a more recent approach to document
the variability of an SPL without taking into account common features [Pohl et al., 2005]. In an Or-
thogonal Variability Model (OVM), the variability of the product line is documented, while the OVM
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is externally traced to other software development artifacts such as textual requirements specifications,
use case models, design models, source code, and test models.

2.4 Conclusion
In this chapter, we answered Research Question 1 (What are the key concepts for managing require-
ments? What are the core concepts and techniques for managing variability in product families?).

We introduced the basic concepts in requirements engineering and product line engineering. Our
approach for supporting change in product lines within the context of use case-driven development
and testing is based on some of the concepts described above, as pertaining to the objectives of this
thesis.
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Chapter 3

Product Line Use Case and Domain Models

In this chapter, we propose, apply, and assess Product line Use case modeling Method (PUM), an
approach that supports modeling variability at different levels of granularity in use case and domain
models. Our motivation is that, in many software development environments, use case modeling drives
interactions among stakeholders and, therefore, use cases and domain models are common practice
for requirements elicitation and analysis. In PUM, we integrate and adapt existing product line ex-
tensions for use case diagrams and introduce some template extensions for use case specifications.
Variability is captured in use case diagrams while it is reflected at a greater level of detail in use
case specifications. Variability in domain concepts is captured in domain models. PUM is supported
by a tool relying on Natural Language Processing (NLP). We successfully applied PUM to an in-
dustrial automotive embedded system and report results from structured interviews with experienced
engineers.

3.1 Introduction
In Chapter 1, we discussed in details that considerable research has been devoted to documenting
variability in use cases, but many approaches [Eriksson et al., 2005a] [Eriksson et al., 2004] [Alferez
et al., 2008] require that feature models be connected to use case specifications and diagrams. In such
cases, feature modeling needs to be introduced into practice, including establishing and maintaining
traces between feature models and use case specifications and diagrams, as well as other artifacts.
In many development environments, such additional modeling and traceability is often perceived as
an unnecessary overhead. In this chapter, we propose, apply, and assess a Product line Use case
modeling Method (PUM), which aims at enabling the analysts to document variability at different
levels of granularity, both in use case diagrams and specifications, without requiring any feature
model. In PUM, we adopt the product line extensions of use case diagrams proposed by Halmans and
Pohl [Halmans and Pohl, 2003] to overcome the shortcomings associated with textual representation
of variability. Further, we augment a more structured and analysable form of use case specifications,
i.e., Restricted Use Case Modeling (RUCM) [Yue et al., 2013]. RUCM is based on a template and
restriction rules, reducing the imprecision and incompleteness in use cases. We chose RUCM in PUM

25



Chapter 3. Product Line Use Case and Domain Models

because it reduces ambiguity and facilitates automated analysis of use cases. RUCM was previously
evaluated through controlled experiments and has shown to be usable and beneficial with respect to
making use cases less ambigious and more amenable to precise analysis and design. Since RUCM was
not originally designed for modeling variability in embedded systems, we introduce some extensions
to represent the types of variability that cannot be captured in a use case diagram.

In addition to use case modeling, common practice in many environments also includes domain
modeling, which aims at capturing domain concepts shared among stakeholders, with associated vari-
ability where needed. Such domain modeling is also part of PUM as it enables the use of consistent
terminology and concepts, as well as precise definitions of conditions in use case specifications and,
therefore, of related variation points. PUM expects these conditions, referring to the domain model,
to be defined with the Object Constraint Language (OCL) [OCL, 2018] since OCL is the natural
choice when defining high-level constraints on class diagrams. To summarize, the contributions of
this chapter are:

• PUM, a use case modeling method, which integrates and builds on existing work and captures
variability in product lines at a level of granularity enabling both precise communication and
guided product configuration;

• a practical, industry-strength tool, relying on Natural Language Processing (NLP) to report in-
consistencies between use case diagrams and use case specifications complying with the RUCM
template;

• an industrial case study demonstrating the applicability of PUM, including structured interviews
with experienced engineers.

In this chapter we answer Research Question 2 raised in Chapter 1: How to model variability in
use case and domain models without additional traceability to feature models? Are there any existing
techniques for use case and domain models to model variability? Which techniques can be used?
With the product line extensions employed in PUM, we address the need of modeling variability in
Product Line (PL) use case and domain models without further requiring feature models.

In order to configure Product Specific (PS) use case and domain models, the configuration ap-
proach requires the analyst to make configuration decisions using the variability information in PL
use case and domain models. The results in this chapter are used in Chapter 4 to automatically
generate PS use case and domain models from PL use case and domain models, and configuration
decisions.

This chapter is structured as follows. Section 3.2 introduces the industrial context of our case
study to provide the motivations behind PUM. Section 3.3 discusses the related work. In Section 3.4,
we provide an overview of PUM. Section 3.5 focuses on use case diagrams and RUCM with their
extensions while Section 3.6 presents the tool support for PUM. In Section 3.7, we present our case
study, i.e., Smart Trunk Opener (STO), along with interview results. We conclude the chapter in
Section 3.8.
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3.2 Motivation and Context
The context for which we developed PUM is that of automotive embedded systems, interacting with
multiple external systems, and developed by a supplier for multiple automotive manufacturers. These
systems are representative examples in which variability in requirements needs to be communicated
among stakeholders, including customers. For instance, IEE negotiates, with each customer, how to
resolve variation points, that is, the configuration of the product line.
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Figure 3.1. Part of the UML Use Case Diagram for STO

The current use case driven development practice at IEE involves UML use case diagrams and
use case specifications. Fig. 3.1 depicts part of the UML use case diagram for STO. Sensors, STO
Controller and Tester are the actors of the system. The use cases describe four main functions:
recognize gesture, provide system operating status, provide system user data, and clear errors stored
in the system.

UML provides the extend and include relations in use case diagrams to extend the behaviour of
use cases and to factor out common parts of the behaviors of two or more use cases, respectively.
However, it is not possible to explicitly document variability, e.g., which use cases are mandatory and
which use cases are variant. There is no way to represent variation points, i.e., location at which a
variation occurs. We know from our discussions with IEE that, in Fig. 3.1, there are three variation
points: Store Error Status, Clear Error Status and Provide System User Data. Store Error Status
and Clear Error Status are optional while Provide System User Data is mandatory. Cardinality in
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a variation point, i.e., number of variants to be chosen, cannot be represented in a UML use case
diagram [Halmans and Pohl, 2003]. For instance, there must be at least two ways to realize Provide
System User Data (i.e., at least two use cases that extend the ‘Provide System User Data’ use case) in
any STO product. Variant dependencies play a key role in the selection of variants. For example, if
an STO product provides Store Error Status, then it must also provide Clear Error Status.

A use case specification contains detailed description of a use case given in a use case diagram
and usually conforms to a use case template [Cockburn, 2001] [Armour and Miller, 2001] [Kulak
and Guiney, 2003]. IEE has so far been following the Cockburn’s template [Cockburn, 2001] (see
Table 3.1 for some simplified STO use cases).

Standard use case templates, such as Cockburn’s, are insufficient to document variability in use
case specifications. For example, variation points and variants are not visible in the STO use case
specifications. Variant use cases, e.g., Provide System User Data via Standard Mode in Lines 21-
28, are not distinguishable from any other use case. In Lines 18-19 and 25-28 there are two variation
points modelled as extensions of the basic flow, i.e., executing the variant use cases Store Error Status,
Provide System User Data via Standard Mode, IEE QC Mode, and Diagnostic Mode. However, these
steps are no different from any other step describing the execution of a mandatory use case, e.g., the
execution of the Identify System Operating Status use case in Line 2. Some use case steps might be
optional or their order may vary in the product line. For instance, all steps given in Lines 32-36 are
optional with a variant order. The analyst first needs to properly document the optional steps. Then,
she can negotiate with the customer to decide which steps to select, according to which order, in the
product.

Within the context of developing industrial automotive embedded systems for multiple manufac-
turers, we identify three challenges that need to be considered in capturing requirements’ variability
in use cases:

Challenge 1: Modeling Variability with Constraints and Dependencies. It is crucial to have
variability information explicitly documented (i.e., variants, variation points, their constraints and de-
pendencies) in order to decide with the customers which variants to include for the product and to
guide product configuration. Textual representation of use cases has shortcomings in explicitly repre-
senting variability information. Furthermore, it is not easy for analysts and customers to comprehend
and visualize all variability information encoded in a textual representation. For instance, in STO,
we identified 15 mandatory and 14 variant use cases which contain 8 variation points, and 7 variant
dependencies. The STO use cases include 244 use case flows (29 basic flows, 202 alternative flows,
and 13 optional alternative flows). The variability information scattered across all these use case flows
in the textual description needs to be communicated to customers and used to configure a product.

Challenge 2: Reflecting Variability in Use Case Specifications. There are approaches that ex-
tend only use case diagrams with the notion of variation point and variant to express variability and
associated constraints. IEE, as well as many similar companies, rely on detailed use case specifi-
cations to communicate with their customers. Variability should therefore be reflected in use case
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Table 3.1. Some Use Cases for STO
1 USE CASE Recognize Gesture
2 1. The system ‘identifies system operating status’.
3 2. The system receives the move capacitance from the sensors.
4 3. The system confirms the movement is a valid kick.
5 4. The system informs the trunk controller about the valid kick.
6 Extensions
7 3a. The movement is not a valid kick.
8 3a1. The system sets the overuse counter.
9
10 USE CASE Identify System Operating Status
11 Main Success Scenario
12 1. The system checks Watchdog reset and RAM.
13 2. The system checks the upper and lower sensors.
14 3. The system checks if there is any error detected.
15 Extensions
16 2a. Sensors are not working properly.
17 2a1. The system identifies a sensor error.
18 3a. There is an error in the system.
19 3a1. The system stores error status.
20
21 USE CASE Provide System User Data
22 1. The tester requests receiving system user data via standard mode.
23 2. The system ‘provides system user data via Standard Mode’.
24 Extensions
25 1a. The tester requests receiving user data via diagnostic mode.
26 1a1. The system ‘provides system user data via Diagnostic Mode’.
27 1b. The tester requests receiving system user data via IEE QC mode.
28 1b1. The system ‘provides system user data via IEE QC Mode’.
29
30 USE CASE Provide System User Data via Standard Mode
31 Main Success Scenario
32 1. The system sends the calibration data to the tester.
33 2. The system sends the trace data to the tester.
34 3. The system sends the error data to the tester.
35 4. The system sends the sensor data to the tester.
36 5. The system sends the error trace data to the tester.

specifications to provide diagram-specification consistency. In addition, there are types of variability
(e.g., optional steps) which cannot be expressed in use case diagrams, at the required level of granu-
larity, to precisely guide product configuration. However, it is nevertheless crucial to also model some
variability information in use case diagrams, for example to improve visualization of key variability
information and to provide a road map to look up the details in use case specifications.

Challenge 3: Capturing Variability with Precise Conditions. Use cases are not meant to clar-
ify terminology and domain concepts shared among all stakeholders. In order to document domain
concepts and their variability, any product line requirements modeling method would need models
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where the analyst can specify mandatory and optional domain entities. In addition, ‘flows of events’
in use cases feature associated conditions determining their occurrence, which need to be precisely
specified to help communication among stakeholders. For instance, the precise definition of a valid
kick (see Lines 4 and 7 in Table 3.1) is crucial for the IEE engineers to identify the correct execution
of the product in terms of ‘flows of events’ in the STO use cases.

In the remainder of this chapter, we focus on how to best address these three challenges in a prac-
tical manner, in the context of use case driven development, while minimising the modeling overhead.
Automated configuration, change impact analysis and regression testing are three potential applica-
tions of product line use case modeling, which we provide in Chapters 4, 5 and 6. In collaboration
with customers, analysts need to discuss variability documented in use cases to configure the required
parts of the system design, implementation, and test cases. Customers may change their decisions
during or after configuration as the product evolves. Therefore, in addition to configuration, analysts
need to perform change impact analysis to identify what other decisions may be impacted and thus
what artifacts must be updated.

3.3 Related Work
In this section, we cover related work across four categories.

Relating Feature Models and Use Cases. Some approaches propose using feature models for
modeling variability information within the context of use case driven development (Challenges 1 and
2). Griss et al. [Griss et al., 1998] describe a manual process for constructing a feature model from a
use case diagram. The main idea is to extract the structure of feature models from use case dependen-
cies (i.e., include and extend) in use case diagrams. Braganca et al. [Braganca and Machado, 2007]
investigate the use of model transformation to automate the same idea but their approach requires
that each feature be mapped to only one use case. Eriksson et al. [Eriksson et al., 2005a] [Eriksson
et al., 2005b] [Eriksson et al., 2009] propose another approach relating use cases and features at a
lower level of granularity, i.e., sequences of use case steps. Buhne et al. [Buhne et al., 2006] use
Orthogonal Variability Models (OVMs) traced to use case diagrams and specifications. An OVM
documents the variable aspects of a product line by using variation points, variants and their depen-
dencies. Following traces, analysts can identify how a given variant in the OVM is implemented in
use case diagrams and specifications. Alferez et al. [Alferez et al., 2008] provide a trace metamodel
to capture traces between feature models and use cases. XTraQue [Jirapanthong and Zisman, 2009] is
a tool which supports semi-automatic trace generation for use cases and feature models. Despite ad-
vances in traceability research, all approaches given above bring additional modeling and traceability
effort into practice. Furthermore, their correctness highly depends on the correctness and precision of
traces. To use these approaches, in most cases, traces between variability models and other modeling
artifacts, e.g., use cases, need to be manually established at a very low level of granularity, e.g., con-
ditions in use case steps. Traces should be maintained for every single change in any traced artifact.
Our objective is to achieve the same result by solely relying on use case and domain modeling, which
are common practice.
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Extending Use Case Templates. Some works propose use case templates with product line exten-
sions to model variability in use case specifications (Challenges 1 and 2). Gallina and Guelfi [Gallina
and Guelfi, 2007] provide a product line use case template in which variants and variation points can
be expressed. The template requires that variability information be encoded in use case specifications
containing the fields ‘selection category’ and ‘variation point’. These two fields do not follow any
structured format to precisely define variability, in order, for example, to support product configura-
tion. The representation of variation point cardinalities is not addressed in the template. Biddle et
al. [Biddle et al., 2002] provide support for customizing use cases through parametrization. Nebut et
al. [Nebut et al., 2006] enhance a use case template with parameters and contracts for product line
system testing. These two approaches using parameters do not allow analysts to explicitly document
variants and variation points. Fantechi et al. [Fantechi et al., 2004b] [Fantechi et al., 2004a] propose
Product Line Use Cases (PLUCs), an extension of the Cockburn’s use case template with three kinds
of tags (i.e., alternative, parametric, and optional). It is not possible with these tags to explicitly
represent mandatory and optional variants. Variants and variation points are hidden in use case spec-
ifications conforming to PLUC. In most of the approaches given above, either variants and variation
points cannot be documented or it is not possible to express all required types of variability con-
straints. It is crucial to explicitly document variability information containing variants and variation
points with all their constraints and dependencies (Challenge 1) since analysts and customers need
them to make decisions during configuration.

Extending Use Case Diagrams. Variability modeling in use cases are also addressed by ap-
proaches extending use case diagrams with new relations and stereotypes (Challenge 1). Maßen and
Lichter [von der Maßen and Lichter, 2002] propose two new relations to represent alternative and
optional use cases in UML use case diagrams, without any support for expressing variation points.
Azevedo et al. [Azevedo et al., 2012] [Azevedo et al., 2010] explore the use of the UML ‘extend’
relation with the new stereotypes ‘alternative’, ‘specialization’ and ‘option’ to distinguish variability
types. The ‘alternative’ and ‘specialization’ are applied to the ‘extend’ relation while the ‘option’
is applied to use cases that represent options. The use of the ‘extend’ with the stereotypes does not
address variation points and their cardinalities. John and Muthig [John and Muthig, 2004] introduce
the stereotype ‘variant’ to use case diagrams. They also use the tag ‘variant’ for variant text fragments
in use case specifications. They propose a new artifact, called decision model, to represent variation
points textually but such a decision model can quickly become too complex for the analyst to com-
prehend. Halmans and Pohl [Halmans and Pohl, 2003] propose extensions to use case diagrams to
explicitly represent variants, variation points, and associated constraints. Buhne et al. [Buhne et al.,
2003] enhance the extensions with some common dependency types from feature modeling. Based
on our observations in practice, Halmans et al.’s extensions support a subset of our needs (Challenge
1) and we therefore include them in our methodology. The approaches above do not reflect variability
in use case specifications (Challenge 2) since they do not use any template extensions. Therefore, in
PUM, we introduce extensions into RUCM to reflect variability in use case specifications and also
to represent the types of variability, e.g., optional use case steps, that cannot be captured in use case
diagrams (Challenge 2).
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Capturing Variability in Domain Models. Variability in domain models is mostly addressed
by introducing new stereotypes into UML class diagrams. Ziadi and Jezequel [Ziadi and Jezequel,
2006] suggest three stereotypes (i.e., variant, variation, and optional) to specify variability in domain
models. These stereotypes are very similar to the ‘kernel’ and ‘optional’ stereotypes proposed by
Gomaa [Gomaa, 2000]. In addition, Ziadi and Jezequel suggest using OCL to specify dependencies
between variants in domain models, e.g., the presence of a variant requires the presence of another
variant. In contrast, in PUM, we specify these dependencies in use case diagrams. We employ
OCL and domain models to precisely specify conditions associated with flows of events in use case
specifications (Challenge 3).

3.4 Overview of Our Modeling Method
As depicted in Fig. 3.2, PUM is designed to address the challenges stated above in the use case driven
development context we described, and builds upon and integrates existing work. The PUM output
is a product line use case diagram, product line use case specifications, a domain model, and OCL
constraints. Variability, and its constraints and dependencies, are captured in the use case diagram
(Challenge 1) while it is further detailed in the use case specifications (Challenge 2). Variability in
domain concepts is captured in the domain model (Challenge 3). Use case conditions are reformulated
as OCL constraints referring to the domain model (Challenge 3).
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Figure 3.2. Overview of PUM
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The analyst elicits product line use cases with the use case diagram, the RUCM template, and their
product line extensions (Step 1). PUM-C (Product line Use case Modeling - Checker), the tool we
developed for PUM, automatically checks for use case diagram and specification consistency (RUCM
template) and reports inconsistencies (Step 2). The tool relies on Natural Language Processing (NLP).
If there is any inconsistency, the analyst updates the diagram and/or specifications (Step 3). Steps 2
and 3 are iterative: the specifications and diagram are updated until the specifications conform to the
RUCM template and they are consistent with the diagram.

The domain model is manually created as a UML class diagram by the analyst (Step 4). It is
important for the analyst to clarify domain concepts shared among stakeholders. Variability in these
concepts is expressed in the domain model by tagging domain entities as variation, variant, and op-
tional. After the model is completed, textual descriptions of conditions in the use case specifications
are automatically extracted (Step 5) to be reformulated from English to OCL by the analyst (Step 6).

The rest of the chapter provides a detailed description of each step in PUM, along with detailed
illustrations from STO.

3.5 Capturing Variability in Requirements
In this section, we provide a detailed description of the artifacts produced by PUM. We also highlight
how they were extended, compared to what was proposed in existing work, to address our needs.

3.5.1 Use Case Diagram with Product Line Extensions

PUM uses the product line extensions of use case diagrams proposed by Halmans and Pohl [Halmans
and Pohl, 2003]. We do not introduce any further additions into the extensions. We chose these
extensions for PUM because they support explicit representation of variants, variation points, and
their depedencies (Challenge 1). In this section, we briefly define the extensions and the reader is
referred to [Halmans and Pohl, 2003] [Buhne et al., 2003] for further details. Fig. 3.3 depicts the
graphical notation of the extensions.

Variant use cases are distinguished from essential use cases, i.e., mandatory for all products in a
product family, by using the ‘Variant’ stereotype (Fig. 3.3(a)). A variation point given as a triangle
is associated to one, or more than one use case using the ‘include’ relation. A ‘tree-like’ relation,
containing a cardinality constraint, is used to express relations between variants and variation points,
which are called variability relations. The relation uses a [min..max] notation in which min and max
define the minimum and maximum numbers of variants that can be selected for the variation point. A
variability relation is optional where (min = 0) or (min > 0 and max < n); n is the number of variants
for a variation point. A relation is mandatory where (min = max = n). The customer has no choice
when a mandatory relation relates mandatory variants to a variation point [Halmans and Pohl, 2003].
Optional and mandatory relations are depicted with light-grey and black filled circles, respectively
(Fig. 3.3(b)).

33



Chapter 3. Product Line Use Case and Domain Models

variation 
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn

variation 
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn… …

variation 
point X

<<Variant>>
UCA1

<<include>>

min1..max1

<<Variant>>
UCAn

…
<<Variant>>

UCB1

min2..max2

<<Variant>>
UCBj

…

variation 
point X

<<Variant>>
UCA1

<<include>>

min1..max1

<<Variant>>
UCAu

…

<<Variant>>
UCB1

min2..max2

<<Variant>>
UCBt

…

variation 
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn…

UC1 <<Variant>>
UC2

(a) Variant Use Case and Variability Relation 

(b) Mandatory and Optional Variability Relations

(c) Mandatory and Optional Variation Points with Mandatory and Optional Variability Relations

{max > = min }

{ min = max = n }

{ min > 0 or  
(min = 0 and  
max < n) }  

Figure 3.3. Graphical Notation of Product Line Extensions for Use Case Diagrams

Multiple variability relations can be combined to specify the desired cardinality in a variation
point [Halmans and Pohl, 2003]. A variation point is optional or mandatory based on its variability
relations. A variation point is mandatory if (min > 0) in at least one variability relation for that
variation point. It is optional if (min = 0) in all its variability relations. Optional and mandatory
variation points are rendered as grey and black-filled triangles, respectively (Fig. 3.3(c)). Besides
the ‘include’ relation, two more variant relations for variants and variation points (i.e., ‘require’ and
‘exclusive’ [Buhne et al., 2003]) are used in PUM since these two relations model the consequences
of decisions in product configuration. For instance, a variant might require or exclude the choice of
another variant. Halmans and Pohl do not provide any metamodel or UML profile for the extensions
in their paper [Halmans and Pohl, 2003]. In Fig. 3.4, to facilitate the tailoring of use case modeling
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tools, such a metamodel is depicted.
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Figure 3.4. Extended UML Use Case Metamodel

A use case is extended as Essential and Variant. The notation for variation points, in Fig. 3.3, can
also be applied to specify variation points for actors [Halmans and Pohl, 2003]. Therefore, a variabil-
ity relation relates a variation point either to a variant use case or to an actor (see VariabilityRelation
in Fig. 3.4).

Fig. 3.5 gives part of the product line use case diagram for STO. We document two optional and
two mandatory variation points. The mandatory variation points indicate where the customer has to
make a selection for an STO product. For instance, the ‘Provide System User Data’ essential use
case has to support multiple methods of providing data where the methods of providing data via IEE
QC mode and Standard mode are mandatory (the mandatory variability relation in the ‘Method of
Providing Data’ variation point with a cardinality of ‘2 ..2’). In addition, the customer can select
the method of sending data via diagnostic mode, i.e., the ‘Provide System User Data via Diagnostic
Mode’ variant use case with an optional variability relation. In STO, the customer may decide that
the system does not store the errors determined while the system identifies its operating status (the
‘Identify System Operating Status’ essential use case and the ‘Storing Error Status’ optional variation
point). The ‘require’ relation relates the two optional variation points such that if the customer selects
the variant use case in the ‘Storing Error Status’ variation point, he has to select the variant use case
in the ‘Clearing Error Status’ variation point.

In use case diagrams, we capture variants, variation points, their cardinalities and dependencies.
However, some detailed information of variability cannot be captured in these diagrams. For instance,
the diagram in Fig. 3.5 indicates that the ‘Identify System Operating Status’ use case includes the
‘Storing Error Status’ optional variation point. To find out in which flows of events the variation point
is included, the analyst has to check the corresponding use case specification.
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Figure 3.5. Part of the Product Line Use Case Diagram for STO

3.5.2 Restricted Use Case Modeling (RUCM) and its Extensions

This section briefly introduces the RUCM template and our extensions for variability modeling in
embedded systems. RUCM provides restriction rules and specific keywords constraining the use of
natural language in use case specifications [Yue et al., 2013]. We chose RUCM for PUM since it
was designed to make use case specifications more precise and analyzable, while preserving their
readability. But since it was not originally designed for product line modeling of embedded systems,
we had to introduce extensions (Challenge 2).

Table 3.2 provides some STO use cases written according to the extended RUCM rules. In RUCM,
use cases have basic and alternative flows (Lines 2, 8, 13, 16, 22, 27, 33 and 38). In Table 3.2, we
omit some alternative flows and some basic information such as actors and pre/post conditions.

A basic flow describes a main successful path that satisfies stakeholder interests. It contains use
case steps and a postcondition (Lines 3-7, 23-26 and 39-43). A step can be one of the following
interactions: an actor sends a request and/or data to the system (Lines 34); the system validates a
request and/or data (Line 4); the system replies to an actor with a result (Line 7). A step can also
capture the system altering its internal state (Line 18). In addition, the inclusion of another use case
is specified as a step. This is the case of Line 4, as denoted by the keyword ‘INCLUDE USE CASE’.
All keywords are written in capital letters for readability.
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Table 3.2. Some STO Use Cases in the extended RUCM
1 USE CASE Recognize Gesture
2 1.1 Basic Flow
3 1. The system REQUESTS the move capacitance FROM the sensors.
4 2. INCLUDE USE CASE Identify System Operating Status.
5 3. The system VALIDATES THAT the operating status is valid.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 <OPTIONAL>Bounded Alternative Flow
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. RESUME STEP 1.
12 3. ENDIF
13 1.3 Specific Alternative Flow
14 RFS 3
15 1. ABORT.
16 1.4 Specific Alternative Flow
17 RFS 4
18 1. The system increments the OveruseCounter by the increment step.
19 2. ABORT.
20
21 USE CASE Identify System Operating Status
22 1.1 Basic Flow
23 1. The system VALIDATES THAT the watchdog reset is valid.
24 2. The system VALIDATES THAT the RAM is valid.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.4 Specific Alternative Flow
28 RFS 4
29 1. INCLUDE <VARIATION POINT: Storing Error Status>.
30 2. ABORT.
31
32 USE CASE Provide System User Data
33 1.1 Basic Flow
34 1. The tester SENDS the system user data request TO the system.
35 2. INCLUDE <VARIATION POINT : Method of Providing Data>.
36
37 <VARIANT>USE CASE Provide System User Data via Standard Mode
38 1.1 Basic Flow
39 V1. <OPTIONAL>The system SENDS calibration TO the tester.
40 V2. <OPTIONAL>The system SENDS sensor data TO the tester.
41 V3. <OPTIONAL>The system SENDS trace data TO the tester.
42 V4. <OPTIONAL>The system SENDS error data TO the tester.
43 V5. <OPTIONAL>The system SENDS error trace data TO the tester.

The keyword ‘VALIDATES THAT’ (Line 5) indicates a condition that must be true to take the next
step, otherwise an alternative flow is taken. In Table 3.2, the system proceeds to Step 4 (Line 6) if the
operating status is valid (Line 5).
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Alternative flows describe other scenarios, both success and failure. An alternative flow always
depends on a condition in a specific step of the basic flow. In RUCM, there are three types of alter-
native flows: specific, bounded and global. A specific alternative flow refers to a step in the basic
flow (Lines 13, 16 and 27). A bounded alternative flow refers to more than one step in the basic flow
(Line 8) while a global alternative flow refers to any step in the basic flow. For specific and bounded
alternative flows, the keyword ‘RFS’ is used to refer to one or more reference flow steps (Lines 9, 14,
17, and 28).

Bounded and global alternative flows begin with the keyword ‘IF .. THEN’ for the condition
under which the alternative flow is taken (Line 10). Specific alternative flows do not necessarily begin
with ‘IF .. THEN’ since a guard condition is already indicated in its reference flow step (Line 5).

Our RUCM extensions are twofold: (i) new keywords and restriction rules for modeling inter-
actions in embedded systems and restricting the use of existing keywords; (ii) new keywords for
modeling variability in use case specifications.

PUM introduces extensions into RUCM regarding the usage of ‘IF’ conditions and the way in-
put/output messages are expressed. PUM follows the guidelines that suggest not to use multiple
branches within the same use case path [Larman, 2002], thus enforcing the usage of ‘IF’ conditions
only as a means to specify guard conditions for alternative flows. PUM introduces the keywords
‘SENDS .. TO’ and ‘REQUESTS .. FROM’ to distinguish system-actor interactions. According to
our experience, in embedded systems, system-actor interactions are always specified in terms of mes-
sages. For instance, Step 1 in Table 3.2 (Line 3) indicates an input message from the sensors to the
system while Step 5 (Line 7) contains an output message from the system to the STO Controller.
Additional keywords can be defined for other types of systems.

To reflect variability in use case specifications in a restricted form, we introduce the notion of
variation point and variant, complementary to the diagram extensions in Section 3.5.1, into the RUCM
template. Variation points can be included in basic or alternative flows of use cases. We employ the
‘INCLUDE <VARIATION POINT : ... >’ keyword to specify the inclusion of variation points in use
case specifications (Lines 29 and 35). Variant use cases are given with the ‘<VARIANT >’ keyword
(Line 37). The same keyword is also used for variant actors related to a variation point given in the
use case diagram.

There are types of variability (e.g, optional steps and optional alternative flows) which cannot
be captured in use case diagrams due to the required level of granularity for product configuration.
To model such variability, as part of the RUCM template extensions, we introduce optional steps,
optional alternative flows and variant order of steps. Optional steps and optional alternative flows
begin with the ‘<OPTIONAL>’ keyword (Lines 8 and 39-43). In addition, the order of use case steps
may also vary. We use the ‘V’ keyword before the step number to express the variant step order
(Lines 39-43). Variant order occurs with optional and/or mandatory steps. It is important because
variability in the system behavior can be introduced by multiple execution orders of the same steps.
For instance, the steps of the basic flow of the ‘Provide System User Data via Standard Mode’ use
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case are optional. Based on the testing procedure followed in the STO product, the order of sending
data to the tester also varies. In the product configuration, the customer has to decide which optional
step to include in which order in the use case specification.

3.5.3 Domain Model and OCL Constraints

PUM uses the stereotypes (i.e., variation, variant, and optional) provided by Ziadi and Jezequel [Ziadi
and Jezequel, 2006] to model variability with domain models (Challenge 3) since they support two
common mechanisms to specify variability in UML class diagrams, i.e., optionality and variation (see
Fig. 3.6).
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Figure 3.6. Simplified Portion of the Domain Model for STO

The stereotypes ‘Variant’ and ‘Variation’ are used to explicitly specify variability associated with
inheritance hierarchies in domain models. The idea is to define a variation point as an abstract
class and variants as concrete subclasses [Ziadi and Jezequel, 2006]. Since the subclasses Clear-
ErrorStatusRequest and DiagnosticModeProvideDataReq in Fig. 3.6 are not mandatory, they are
stereotyped ‘Variant’. The subclasses StandardModelProvideDataReq and QCModeProvideDateReq
are not stereotyped, thus implying these classes are mandatory for all STO products. We do not use
the stereotypes for Error and its subclasses since all error types are mandatory in STO. The stereotype
‘Optional’ is for optional entities which are not part of any inheritance hierarchy (VoltageDiagnostic
in Fig. 3.6).

39



Chapter 3. Product Line Use Case and Domain Models

Table 3.3 presents some of the use case conditions in Table 3.2 with their corresponding OCL
constraints referring to the domain model. Having precise definition of use case conditions is crucial
to determine the correct execution of the product in terms of flows of events.

Table 3.3. Some OCL Constraints for STO Use Cases

# Condition in the Use Case Corresponding OCL Constraint

1 The operating status is valid
SmartTrunkOpener . a l l I n s t a n c e s ( )−>forA l l
( s t o | s t o . c o n f i g u r a t i o n D a t a S t a t u s = t r u e
and s t o . i tsECU . i s V a l i d = t r u e
and s t o . i t sSTOSenso r s−>forA l l
( s n s r | s n s r . i s V a l i d = t r u e ) )

2 Movement is a valid kick Kick . a l l I n s t a n c e s ( )−>forA l l
( k | k . moveAmplitude > k . minKickAmpli tude

and k . moveAmplitude < k . maxKickAmpli tude
and k . moveDura t ion < 2
and ( k . backwardMovement − k . forwardMovement )
. abs ( ) ) <= 0 . 2
and k . stopMovement = f a l s e
and ( k . t i meD i s p l a cem en tUp pe rAn ten na >
k . t imeDisp l acemen tLowerAntenna )
and ( k . t i meD i s p l a cem en tUp pe rAn ten na −
k . t imeDisp l acemen tLowerAntenna ) <= 50)

3 There is no error detected E r r o r . a l l I n s t a n c e s ( )−>forA l l
( e | e . i s D e t e c t e d = f a l s e )

4 Watchdog reset is valid SmartTrunkOpener . a l l I n s t a n c e s ( )−>forA l l
( s t o | s t o . r e s e t C o u n t e r < 3
and s t o . i t s W a t c h d o g . i s E n a b l e d = t r u e )

3.6 Tool Support
We implemented a tool, PUM-C (Product line Use case Modeling - Checker), for checking diagram-
specification and specification-template consistency in PUM. PUM-C automatically does the consis-
tency checking and reports inconsistencies such as the diagram missing an include statement in the
specification. In addition, it automatically identifies use case conditions (i.e., pre/post conditions and
conditions with the keyword ‘VALIDATES THAT’) and asks the analyst to reformulate them as OCL
constraints. To minimize the manual effort, PUM-C first locates conditions in use cases and then
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identifies repeating and negated ones. If use cases both feature a condition and its negation, the an-
alyst is asked to reformulate only the condition as an OCL constraint. The OCL constraint for the
negated condition is automatically derived.

PUM-C relies on NLP and is composed of three layers: User Interface (UI) Layer, Application
Layer, and Data Layer (Fig. 3.7). The UI Layer supports creating and updating the PUM artifacts. We
employ IBM Doors (www.ibm.com/software/products/ca/en/ratidoor/) for use case spec-
ifications, Papyrus (https://www.eclipse.org/papyrus/) for use case diagrams, IBM Rhap-
sody (www.ibm.com/software/products/en/ratirhapfami) for domain models, and Eclipse
OCL (http://www.eclipse.org/modeling/mdt/ocl/) for writing OCL constraints. To access
the Application Layer components through the UI Layer, we implemented an IBM DOORS plugin.
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Figure 3.7. Layered Architecture of PUM-C

The Application Layer contains the components (i.e., Condition Extractor and Consistency Checker)
which we implemented as Java applications for consistency checking and condition extraction. To
perform NLP in use case specifications, these two components use a regular expression engine, called
JAPE [H. Cunningham et al, 2018], in the GATE workbench (http://gate.ac.uk/), an open-
source Natural Language Processing (NLP) framework. JAPE enables to recognise regular expres-
sions in annotations on documents. We implemented the extended RUCM restriction rules in JAPE.
In NLP, use cases are first split into tokens. Second, Part-Of-Speech (POS) tags (i.e., verb, noun, and
pronoun) are assigned to each token. By using the RUCM restriction rules implemented in JAPE,
blocks of tokens are tagged to distinguish RUCM steps (i.e., output, input, include, and internal op-
erations) and types of alternative flows (i.e., specific, alternative, and global). The output of the
NLP is the annotated use case steps. The Condition Extractor and Consistency Checker process the
annotations and the use case diagram to generate the list of inconsistencies and conditions.
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3.7 Industrial Case Study

We applied PUM to the functional requirements of STO. Our goal was to assess, in an industrial
context, how PUM can improve variability modeling practice and how well PUM addresses the chal-
lenges that we identified in capturing requirements variability in use cases. STO was proposed for
the assessment by IEE since it was a relatively new project at IEE with multiple potential customers
requiring different features. IEE provided their initial STO documentation, which contained a use
case diagram, use case specifications, and supplementary requirements specifications describing non-
functional requirements. To model the STO requirements according to PUM, we first examined the
initial STO documentation and then worked with IEE engineers to build and iteratively refine our
models. Tables 3.4 and 3.5 present the size of the resulting use cases and domain model.

Table 3.4. Product Line Use Cases in the Case Study

! #!of!use!
cases!

#!of!
variation!
points!

#!of!
basic!
flows!

#!of!
alternative!

flows!

#!of!
steps!

#!of!
condition!
steps!!

Essential!
Use!Cases!

15# 5# 15# 70# 269# 75#

Variant!
Use!Cases!

14# 3# 14# 132# 479# 140#

#
To evaluate the output of PUM in light of the challenges we identified earlier, we had a semi-

structured interview with five participants holding various roles at IEE (i.e., process manager, software
development manager, software lead engineer, system engineer, and software engineer). They all
had substantial software development experience, ranging from 8 to 17 years. All participants had
experience with use case driven development and modeling. The interview included a presentation
illustrating the PUM steps, a tool demo, and detailed examples from STO. The presentation was
interactive and included questions posed to the participants about the models for them to take a more
active role and give us feedback.

Table 3.5. Size of the Domain Model

To capture the perception of engineers participating in the interviews, regarding the potential
benefits of PUM, and assess how it addresses the targeted challenges, we handed out a questionnaire
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including questions to be answered according to a Likert scale [Oppenheim, 2005] (i.e., strongly
agree, agree, disagree, and strongly disagree). The questionnaire was structured for the participants
to assess PUM in terms of adoption effort, expressiveness, comparison with current practice, and tool
support. The participants were also encouraged to provide open, written comments.

Results from the interviews showed that all participants agreed on the following positive aspects
of PUM:

• The participants considered the extensions to be simple enough to enable communication be-
tween analysts and customers. They also stated that the extensions can also be used for internal
communication, e.g., for test engineers to perform regression test selection.

• The participants considered the extensions to provide enough expressiveness to conveniently
capture variability in their projects. In STO, we were able to capture 8 variation points, 14
variant use cases, and 7 variant dependencies.

• The participants considered the effort required, to learn how to apply PUM and its tool, to be
reasonable. They also stated they expect most of the effort to relate to OCL.

• The participants considered PUM to provide better assistance for capturing and analyzing vari-
ability information compared to the current, more informal practice in their projects. With
PUM, we could unveil variability information not covered in the initial STO documentation.
For instance, the use case diagram extensions helped us identify and model that the method of
Clear Error Status via IEE QC Mode is mandatory while the method of Clear Error Status via
Diagnostic Mode is optional (see Fig. 3.5), which was not previously documented.

• The participants considered PUM-C to provide useful assistance for minimising inconsistencies
in artifacts.

The participants also expressed a number of challenges regarding the application of PUM:

• Modeling variability in non-functional requirements. There are numerous types of non-functional
requirements (e.g., security, timing, and reliability) which may play a key role in variability as-
sociated with functional requirements. It is crucial to capture such aspects as well.

• Training customers for PUM. Though the participants considered the effort required to learn
PUM to be reasonable, training customers may be more of a challenge. The company may
need customers’ consent to initiate the modeling effort. Thus, the costs and benefits of PUM
should be made clear to customers.

• Imperfect variability information. When a new project starts, requirements and their variations
might be very difficult to identify. As a result, in the beginning, analysts are expected to redefine

43



Chapter 3. Product Line Use Case and Domain Models

variation points and variants in requirements specifications through frequent iterations. Such
changes on variability need to be managed and supported to enable analysts to converge towards
consistent and complete requirements and variability information.

• Adaptations in the tool chain. PUM-C is currently implemented as a plugin in IBM DOORS
in combination with a leading commercial modeling tool used at IEE, i.e., IBM Rhapsody, and
Papyrus. PUM-C highly depends on the outputs of these tools. In time, these tools might be
replaced with other tools or the newer versions of the same tools. PUM-C needs to be easily
adapted for such changes in the tool chain.

Our discussion with participants resulted in the following extensions being required for PUM and
PUM-C:

• Checking consistency between use cases and domain model. Domain entities identified in a use
case may be missing in the domain model. PUM-C can be extended to automatically evaluate
the domain model completeness and correctness by checking the mapping between domain
entities identified by our NLP application and entities in the domain model (see Chapter 4).

• Automatic configuration. A configurator can guide analysts and customers to make decisions
regarding variation points, and generate product specific use cases (see Chapter 4).

• Integrating non-functional requirements with use cases. Additional extensions can be intro-
duced into PUM to model non-functional requirements, e.g., response time and synchronization
requirements.

Threats to validity. The main threat to the validity of our case study regards the generalizability
of the conclusions. To mitigate the threat, we applied PUM to an industrial case study that includes
nontrivial use cases in an application domain with multiple potential customers and numerous sources
of variability. We selected the respondents to our questionnaire and interviews to hold various, rep-
resentative roles and with substantial industry experience. To limit threats to the internal validity
of the case study, we had many interviews with the IEE engineers in the STO project to verify the
correctness and completeness of our models.

3.8 Conclusion

This chapter presented a product line methodology centred around use case modeling, called PUM,
for documenting variability in use case diagrams and specifications, and associated domain models.
Our main motivation was to enable variability modeling by relying exclusively on commonly used
artifacts in use-case driven development, thus avoiding unnecessary modeling overhead. We aimed
at capturing variability in product lines at a level of granularity enabling both precise communication
with various stakeholders, at different levels of details, and guided product configuration. We inte-
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grated and adapted existing product line extensions for use case diagrams and domain models, and
introduced some template extensions for use case specifications. Initial results from structured inter-
views with experienced engineers suggested that PUM is accurate and practical to capture variability
in industrial settings.

In this chapter, we answered Research Question 2 : How to model variability in use case and
domain models without additional traceability to feature models? Are there any existing techniques
for use case and domain models to model variability? Which techniques can be used? The product
line extensions we employed and proposed in PUM enable the analysts to model variability without
requiring feature models and their traces to use cases.

PUM is the first step to achieve our long term objective in this thesis, i.e., automated configuration
and change impact analysis in use case driven development and testing within the context of prod-
uct lines. Chapter 4 presents an automated configuration approach that guides customers in making
configuration decisions to automatically generate PS use case and domain models from PL use case
and domain models. To address contexts where products are constantly evolving, Chapter 5 presents
a change impact analysis approach that helps analysts properly manage changes in configuration de-
cisions.
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Chapter 4

Configuration of Product Specific Use Case
and Domain Models

In this chapter, we propose, apply, and assess a use case-driven configuration approach which inter-
actively receives configuration decisions from the analysts to automatically generate Product Specific
(PS) use case and domain models. Our approach provides the following: (1) a use case-centric prod-
uct line modeling method (PUM), (2) automated, interactive configuration support based on PUM,
and (3) an automatic generation of PS use case and domain models from Product Line (PL) mod-
els and configuration decisions. The approach is supported by a tool relying on Natural Language
Processing (NLP), and integrated with an industrial requirements management tool, i.e., IBM Doors.
We successfully applied and evaluated our approach to an industrial case study in the automotive
domain, thus showing evidence that the approach is practical and beneficial to capture variability at
the appropriate level of granularity and to configure PS use case and domain models in industrial
settings.

4.1 Introduction

Chapter 3 proposed and assessed the Product line Use case modeling Method (PUM), which enables
the analysts to capture and document variability in Product Line (PL) use case diagrams, use case
specifications, and domain models.

In this chapter, we propose, apply, and assess a use case-driven configuration approach based on
PUM. Our goal is to provide a degree of configuration automation that enables effective product-
line management in use case-driven development, without requiring additional modeling artifacts and
traceability effort. Our approach supports four activities. First, the analysts model the variability
information explicitly in a PL use case diagram, its use case specifications, and its corresponding
domain model. Second, the consistency of the PL use case diagram and specifications are checked
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and inconsistencies are reported if there are any. For instance, a variation point in the use case diagram
might be missing in the corresponding use case specification or a use case specification may not
conform to the extended RUCM template. Third, the analyst is guided to make configuration decisions
based on variability information in the PL models. The partial order of decisions to be made is
automatically identified from the dependencies among variation points and variant use cases. In the
case of contradicting configuration decisions, such as two decisions resulting in selecting variant use
cases violating some dependency constraints, we automatically detect and report them. The analyst
must then backtrack and revise the decisions to resolve these inconsistencies. Alternatively, we could
employ constraint solvers (i.e., SAT solver, BDD solver and Prolog solver) to identify a priori possible
contradicting decisions so as to avoid them. However, according to our observation at IEE, customers
are also involved in the decision-making process in which they frequently re-evaluate, backtrack and
revise their decisions. Therefore, it is important for them to have the possibility to make contradicting
decisions and revise prior ones as a result. Fourth, based on configuration decisions, the Product
Specific (PS) use case and domain models are automatically generated from the PL use case and
domain models. To support these activities, we developed a tool, PUMConf (Product line Use case
Model Configurator). The tool automatically checks the consistency of the PL models, identifies the
partial order of decisions to be made, determines contradicting decisions, and generates PS use case
and domain models. To summarize, the contributions of this chapter are:

• a configuration approach that is specifically tailored to use case-driven development, and that
guides the analysts and customers in making configuration decisions in product lines to auto-
matically generate PS use case and domain models;

• tool support integrated with an industrial requirements management tool (i.e., IBM Doors) as
a plug-in, which relies on Natural Language Processing (NLP) to report inconsistencies in PL
use case models and contradicting configuration decisions, and to automatically generate PS
use case and domain models;

• an industrial case study demonstrating the applicability and benefits of our configuration ap-
proach.

In this chapter, we answer Research Question 3 raised in Chapter 1: To what extent and how can
we automate the interactive configuration of use case and domain models? How can we support
the analysts for making configuration decisions and for generating PS use case and domain models?
With the configuration approach and its contradiction identification feature, we address the issues
about interactive decision making and generation of PS use case and domain models.

This chapter is structured as follows. Section 4.2 introduces the industrial context of our case study
to illustrate the practical motivations for our configuration approach. Section 4.3 discusses the related
work in light of our needs. In Section 4.4, we provide an overview of the approach. In Section 4.5, we
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illustrate our approach through example models. In Sections 4.6 and 4.7, we provide the details of the
core technical parts of our approach: consistency checking of configuration decisions and generation
of PS use case and domain models. Section 4.8 presents our (publicly available) tool support for
configuration, while Section 4.9 presents our industrial case study, i.e., Smart Trunk Opener (STO),
along with results. We conclude the chapter in Section 4.10.

4.2 Motivation and Context

Our configuration approach is developed in the context of embedded software systems interacting
with multiple external systems, configured for multiple customers, and developed according a use
case-driven process. In such a context, requirements variability is communicated to customers and an
interactive configuration process is followed for which guidance and automated support are needed.
For instance, for each product in a product family, IEE negotiates with customers how to resolve
variation points in requirements, in other words how to configure the product line.

Within our context, we identify two challenges that should also apply to other environments and
that need to be considered in reusing use cases and a domain model for a product family:

Challenge 1: Modeling Variability Information with Least Possible Modeling Overhead. The
analysts need to explicitly document variability information (e.g., variant use cases, variation points,
and optional steps) for use cases and a domain model to be communicated to the customers during
product configuration. Relating feature models to use cases and domain model is the most straight-
forward option but has shortcomings in terms of additional modeling and traceability effort. For
example, it would not be easy for analysts and customers to comprehend and visualize all variabil-
ity information traced to use case diagram, use case specifications and domain model. In STO, we
identified 15 mandatory and 14 variant use cases which contain 8 variation points and 7 variant de-
pendencies. The STO use cases include 244 use case flows (29 basic flows, 202 alternative flows, and
13 optional alternative flows) with 27 optional steps while the STO domain model contains 11 variant
domain entities. The variability information scattered across all these use case flows with trace links
from feature models would be communicated to customers and used to configure a product.

Challenge 2: High Degree of Automation in Use Case-Driven Configuration. In order to
facilitate use case-driven configuration in industrial practice, a high degree of automation is a must
while the analysts are interactively guided for their decisions. Before the configuration, it should be
automatically confirmed that all artifacts with variability information, including use case diagram,
specifications, and domain model, are consistent. Any inconsistency in these artifacts may cause
invalid configuration outputs. Adding to the complexity affecting the decision-making process during
configuration, there may be contradicting decisions and hierarchies among decisions. During the
configuration process, the analysts need to be interactively informed about contradicting decisions and

48



4.3. Related Work

about the order of possible decisions. With interactive guidance and proper tool support, the analysts
can fix inconsistent PL artifacts and resolve decision contradictions, which leads to the automatic
generation of PS use cases and their domain model.

We already addressed the first challenge in Chapter 3 with the Product line Use case modeling
Method (PUM). In the remainder of this chapter, we focus on how to best address the second chal-
lenge in a practical manner, in the context of use case-driven development, while relying on PUM to
minimize the modeling overhead.

4.3 Related Work

In this section, we cover the related work across three categories.

Configuration Techniques for Requirements Variability. Eriksson et al. [Eriksson et al., 2009]
provide an approach to manage natural-language requirements specifications in the software product
line context. Variability is captured and managed using a feature model while requirements in various
forms, e.g., use cases, textual requirements specifications and domain model, are traced to the feature
model. The analyst selects the features in the feature model to be included in the product. By follow-
ing traces from the selected features to the requirements, the approach filters those requirements that
are relevant for a specific product in the product line. These filtered requirements are then exported as
product requirements specifications. The approach does not support any automated decision-making
solution (e.g., decision ordering, decision consistency checking, and inferring decisions) for select-
ing features (Challenge 2). In addition, the analyst has to manually assign traces between features
and requirements at a very low level of granularity, i.e., sequences of use case steps (Challenge 1).
pure::variants [Pur, 2018b] is a tool to manage all parts of software products with their components,
restrictions and terms of usage. Its extension, pure::variants for IBM DOORS [Pur, 2018a], enables
the analyst to capture variability as features in a feature model, and trace them to requirements spec-
ifications in IBM DOORS. It transforms the requirements specifications into product requirements
based on the selected features in the feature model. Compared to the approach proposed by Eriksson
et al. [Eriksson et al., 2009], pure::variants for IBM DOORS provides a better automated support, i.e.,
an automated contradiction detection for feature models. However, the analyst still suffers from the
same modeling overhead, when pure::variants is employed. The analyst needs to manually establish
traces at a very low level granularity and maintain these traces when the feature model or requirements
specifications evolve. There are similar approaches, eg., [Gomaa, 2000, seok Choi et al., 2008, Buhne
et al., 2006, Alferez et al., 2008, Braganca and Machado, 2007], which require modeling and mainte-
nance overhead with poor automated configuration support. Our approach attempts to minimize this
overhead by capturing variability information in use case and domain models (Challenge 1).

Moon et al. [Moon et al., 2005, Moon and Yeom, 2004] propose a method that generates PS use

49



Chapter 4. Configuration of Product Specific Use Case and Domain Models

cases from PL use cases without using any feature model. However, the proposed method requires
that Primitive Requirements (PR) (i.e., building blocks of complex requirements) be specified by the
analyst and traced to the use case diagram and specifications via the PR - Context and PR - Use Case
matrices. The analyst has to manually encode traceability information in these matrices (Challenge
1). The configuration takes place by selecting the PRs in the matrices without any automated decision-
making support (Challenge 2).

John and Muthig [John and Muthig, 2004] introduce some product line extensions to use case
diagrams and specifications to be able to capture variant use cases without a feature model. They
propose a new artifact, called decision model, to represent variation points textually in a tabular form.
Each variation point has multiple facts which represent decisions. For each decision, there are actions
which describe configuration operations for use cases, e.g., removing parts of a use case. The analyst
is expected to configure, with the help of the decision model, the product specific use case diagram
and specifications but such a decision model can quickly become too complex for the analyst to com-
prehend. There is no automated tool support reported for the approach (Challenge 2). Faulk [Faulk,
2001] proposes the use of a similar decision model to generate PS requirements specifications from
PL requirements specifications. Biddle et al. [Biddle et al., 2002] provide support for configuring
use case specifications through parametrization. Parameters can be specified anywhere in the name
or body of a parameterized use case. The manual assignment of values to parameters is considered
as configuring product specific use case specifications (Challenge 2). Fantechi et al. [Fantechi et al.,
2004b, Fantechi et al., 2004a] propose Product Line Use Cases (PLUC), an extension of the Cockburn
use case template with three kinds of tags (i.e., alternative, parametric, and optional). It is not pos-
sible with these tags to explicitly represent mandatory and optional variants. Variants and variation
points are hidden in use case specifications conforming to PLUC. These two approaches [Biddle et al.,
2002, Fantechi et al., 2004b] do not support variability in the use case diagram and domain model.
They also lack automated support for the decision-making process including decision ordering and
detection of contradicting decisions (Challenge 2).

Annotation- and Composition-based Configuration for Scenario-based Requirements. Some
approaches specialize in configuring scenario-based requirements using annotation- and composition-
based techniques [Alférez et al., 2014]. The Product Line Use case modeling for Systems and Soft-
ware engineering approach (PLUSS) proposed by Eriksson et al. [Eriksson et al., 2009, Eriksson
et al., 2004, Eriksson et al., 2005a] uses feature models to configure requirements in multiple forms
including scenario-based requirements models (e.g., use cases and activity diagrams). PLUSS em-
ploys annotations throughout requirements to represent how they are related to features. Czarnecki
and Antkiewicz [Czarnecki and Antkiewicz, 2005] propose another configuration approach based on
annotation of scenarios using feature models. Activity diagrams are used to specify scenarios. Traces
between feature models and activity diagrams are given as special annotations on activity diagrams.
To annotate activity diagrams, the approach employs model templates, which contain the union of the

50



4.3. Related Work

model elements, e.g., presence conditions and meta-expressions, in all valid template instances, i.e.,
annotated activity diagrams. A product is specified by creating a feature configuration based on the
feature model. The model template is instantiated automatically by using the feature configuration.
The generated template instance is an activity diagram of the specified product. Although the tem-
plate instantiation is automated, feature configuration is manual (Challenge 2). The analyst also has
to manually create a feature model and a model template for annotations.

Bonifácio et al. [Bonifácio et al., 2008, Bonifácio and Borba, 2009] propose a framework for mod-
eling the composition process of scenario variability mechanisms (MSVCM). They provide a weaver
(configurator) that takes a PL use case model, a feature model, a product configuration, and config-
uration knowledge as input. The product configuration artifact identifies a specific product, which is
characterized by a configuration of features in the feature model, while the configuration knowledge
relates features to transformations used for automatically generating the PS use case model. These
two artifacts are manually created by the analyst (Challenge 2). The Variability Modeling Language
for Requirements (VML4RE) [Alférez et al., 2009, Zschaler et al., 2009] presents a similar solution
for the composition of use case diagrams and their selected scenarios represented by activity diagrams.
It supports the definition of traces between feature models and requirements (e.g., use case diagram
and activity diagram). VML4RE provides a simple set of operators to specify the composition of
requirements models for generating PS requirements models. There are more composition-based ap-
proaches [Varela et al., 2011, Mussbacher et al., 2012, Blanes et al., 2014] to configure scenario-based
requirements using feature models.

All these configuration approaches given above require additional modeling and traceability effort
for feature models (Challenge 1) while most of them do not provide a high degree of automation for
the decision-making process (Challenge 2). There are approaches [Stoiber et al., 2010, Wang et al.,
2009, Weston et al., 2009] that support the identification and extraction of variable features from given
requirements but these approaches still require a considerable manual intervention in the identification
of features. In addition, the detailed functionality of a feature is still shown in the traced requirements
documents, and this requires frequent context switching, which is not practical in industrial projects.
Stoiber and Glinz [Stoiber and Glinz, 2010] propose the modularization of variability information in
decision tables to avoid context switching, but the analyst still needs to manually encode all decision
constraints and traces in such tables, which can easily get too complex to comprehend (Challenge
1). Bonifácio et al. [Bonifácio et al., 2015] argue that annotation-based approaches entangle the
representation of common and variant behavior, whereas the composition-based approaches provide a
better separation of variant behavior. They compared an annotation-based approach, i.e., PLUSS, with
a composition-based approach, i.e., MSVCM, to investigate whether the composition-based approach
causes extra costs for modularizing scenario specifications. They concluded that although MSVCM
improves modularity, it requires more time to derive PL specifications, and more investments on
training.
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Configuration Tools. Nie et al. [Nie et al., 2013] describe the key automation functionalities that
configuration tools should support: inferring decisions, consistency checking, decision ordering, col-
laborative configuration, and reverting decisions (Challenge 2). Our tool, PUMConf, automatically
infers new configuration decisions based on prior decisions and variation point-variant dependen-
cies. The consistency of all inferred and prior decisions are automatically checked. The analyst can
also revert configuration decisions in order to maintain the consistency. PUMConf provides decision
ordering to guide the analyst in which sequence a set of decisions should be made, by taking into
account the hierarchies among variation points. Currently, PUMConf does not support collaborative
configuration in terms of PS use case models. Collaborative configuration is defined as coordinating
the configuration of multiple systems where the configuration of one system depends on the configu-
ration of other systems [Nie et al., 2013]. We need to extend our PL use case modeling method in such
a way that the analyst is able to model dependencies among PL use case models of multiple systems.
Our tool can then be extended to support collaborative configuration using such dependencies.

Configuration tools in the literature partially support the key automation functionalities within a
context not specific to use case-driven configuration (Challenge 2). Le Rosa et al. [Rosa et al., 2009]
provide a questionnaire-based system configuration tool to capture system variability based on ques-
tionnaire models composed of questions that refer to a set of facts to be set to true or false. When
the questionnaire is answered by the analyst, the tool assigns values to facts, and derives an indi-
vidualized system by using the resulting valuation. The tool supports the key functionalities, except
collaborative configuration. Another configuration tool is C2O, presented by Nohrer et al. [Nöhrer
and Egyed, 2013, Nöhrer et al., 2012, Nöhrer and Egyed, 2010]. The tool enables the analysts to
make configuration decisions in an arbitrary order while it guides them by rearranging the order of
decisions (decision ordering), inferring decisions to avoid follow-on conflicts (inferring decisions),
and provides support in fixing conflicts at a later time (consistency checking and reverting decisions).
No support for collaborative configuration is reported for C2O. Myllarniemi et al. [Myllärniemi et al.,
2005] present Kumbang, a prototype configurator for product individuals from configurable software
product families. The tool focuses on the configuration of architecture models. It supports the key
functionalities except inferring decisions and collaborative configuration. SPLOT [Mendonca et al.,
2009a] is a web-based configurator benefiting from SAT solvers and binary decision diagrams to
support reasoning and interactive configuration on feature models. COVAMOF [Sinnema and Deel-
stra, 2008, Sinnema et al., 2004] supports only architecture configuration, while DOPLER [Dop,
2018, Dhungana et al., 2011] is a more general configurator which can be customized for multiple
artifacts such as components, test cases, or documentation fragments.

The tools given above are either general configurators (e.g., [Dop, 2018, Dhungana et al., 2011,
Rosa et al., 2009]) or custom configurators for artifacts such as architecture and feature models
(e.g., [Myllärniemi et al., 2005, Sinnema and Deelstra, 2008, Sinnema et al., 2004]), which are quite
different than our target artifacts. General configurators could be employed to configure PS use case
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and domain models. For instance, DOPLER [Dop, 2018, Dhungana et al., 2011] supports capturing
the variability information using decision models and modeling any type of artifact as asset models.
Decision and assets are linked by using traceability relations. The analyst has to model variability
information in a decision model by using DOPLERVML, a modeling language for defining product
lines. Even if use cases and domain models can automatically be translated into an asset model, the
analyst still has to manually encode the decisions in the decision model and assign the traceability
relations between decision and asset models, which are some inclusion links. Having all these deci-
sion and asset models with their explicit traces is exactly the type of modeling practice that we try to
avoid in our configuration approach (Challenge 1). In addition, DOPLER requires considerable effort
and tool-specific internal knowledge to be customized for the consistency checking of configuration
decisions and generation of PS use case and domain models.

4.4 Overview of Our Approach

The process in Fig. 4.1 presents an overview of our configuration approach. In Step 1, Elicit product
line use case and domain models, the analyst elicits PL use cases and a domain model with the use
case diagram, the RUCM template, and their product line extensions.

Step 1 is manual. Its output includes (1) a PL use case diagram, which captures variability, and
its constraints and dependencies, (2) PL use case specifications, which detail the variability infor-
mation captured in the diagram, and (3) a PL domain model, which captures variability in domain
entities (Challenge 1). In Step 2, Check consistency of product line use case and domain models,
our approach automatically checks the consistency of use case diagram, use case specifications (also
with the RUCM template), and domain model to report inconsistencies (Challenge 2). Steps 1 and 2
are iterative: the PL diagram, specifications, and domain model are updated until full consistency is
achieved. We already discussed these two steps in Chapter 3.

In Step 3, Configure product specific use case and domain models, the user is asked to input
configuration decisions regarding variation points captured in PL use case and domain models to
automatically configure the product line into a product. The configuration step is the main focus of
this chapter. It is described in Section 4.5.

Step 3 includes an automated, iterative, and interactive decision-making activity (Challenge 2).
The partial order of configuration decisions to be made is automatically identified from the depen-
dencies among variation points and variant use cases. The analyst is asked to input the configuration
decisions in the given partial order. When a decision is made, the consistency of the decision with
prior decisions is checked. There might be contradicting decisions in the PL use case diagram such as
two decisions resulting in selecting variant use cases violating some dependency constraints. These
are automatically determined and reported a posteriori and the analyst can backtrack and revise his
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Figure 4.1. Overview of the Approach

decisions. Alternatively, the analyst could be guided through the configuration space in such a way
that decisions that may lead to contradictions are avoided a priori [Rosa et al., 2009]. SAT solvers
can be employed to incrementally prune the configuration space in an interactive configuration [Ba-
tory, 2005] while CSP solvers are used to handle additional modeling elements in terms of variables
(e.g., sets and finite integer domains) and constraints (not only propositional formulas) [Benavides
et al., 2005b, Benavides et al., 2010]. However, the use of the SAT and CSP solvers in an iterative
and interactive product configuration can be challenging since (a) it can quickly become infeasible
to compute inferences, which dynamically prune the configuration space, when the number of vari-
ables to be computed is large and (b) it may require considerable implementation effort and internal
tool knowledge to use these solvers for computing inferences and detecting and reporting contradic-
tions [Batory, 2005, Forbus and Kleer, 1993]. According to our observation in industry, customers
are also involved in the decision-making process. They need to account for the entire configuration
space, including contradicting decisions, because they frequently re-evaluate decisions and possibly
update them. Therefore, we decided to have an a posteriori approach for the consistency checking of
configuration decisions, and implemented our own algorithm fitting our context.

Our motivation is to rely, to the largest extent possible, on a solution that can be easily customized
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for further extensions addressing automated reconfiguration, including change impact analysis for
evolving configuration decisions on PL use case and domain models (see Chapter 5). One may argue
that existing configuration tools [Rosa et al., 2009, Sinnema et al., 2004, Nöhrer and Egyed, 2013,
Czarnecki et al., 2005] could be reused within the context of use case-driven configuration but these
tools either need feature models [Czarnecki et al., 2005] or require the variability information to
be depicted independently of specific notations or languages, by means of a set of facts [Rosa et al.,
2009, Nöhrer and Egyed, 2013]. As discussed earlier, not only does this not match our practical needs
but, furthermore, we also need a custom solution to generate PS use case and domain models based
on the decisions. The entire configuration approach is illustrated by an example in Section 4.5. We
provide the details of our decision consistency checking algorithm in Section 4.6, whereas Section 4.7
presents the generation of PS use case and domain models from PL models.

4.5 Configuration of Product Specific Use Case and Domain
Models

The product configuration is a decision-making process, where the variability information is exam-
ined to select the desired features for the product. A product in a product family is defined as a unique
combination of features selected during configuration. In this chapter, we rely on variability infor-
mation given in the PL use case diagram, specifications and domain model. The user selects (1) the
desired use cases in the PL use case diagram, (2) the use case elements in the PL use case specifi-
cations, and (3) the domain entities in the PL domain model, to generate the PS use case diagram,
specifications, and domain model.

Our configuration mechanism relies on a use case configuration function. The configuration func-
tion takes a PL use case diagram, a set of PL use case specifications, and a PL domain model as input,
and produces a PS use case diagram, a set of PS use case specifications, a PS domain model, and a
decision model which captures configuration decisions. Such a decision model is important since the
analyst/customer may need to update decisions to reconfigure the PS models for the same product.

The decision model conforms to a decision metamodel, which is described in Fig. 4.2. We will
shortly describe its elements.

There are four main use case elements for which the user has to make decisions (i.e., Variation
Point, Optional Step, Optional Alternative Flow, and Variant Order). In a variation point, the user
selects variant use cases to be included for the product. For PL use case specifications, the user selects
optional steps and alternative flows to be included and determines the order of steps (variant order).
In the PL domain model, the user makes decisions for the Variant and Optional entities. All these
decisions are saved in the decision model, whose structure is formalized by the decision metamodel.
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Figure 4.2. Decision Metamodel

The reader is referred to Appendix A for the algorithm of the configuration function. At a high
level, the algorithm first traverses the use case diagram for variation points, and then processes use
case specifications for optional alternative flows, optional steps, and variant orders. Then the domain
model is traversed for Variant and Optional domain entities. In the following, we explain the steps of
the algorithm with an illustrative example. The example is a slight adaptation of part of our industrial
case study since we needed some additional modeling elements to illustrate the complete set of fea-
tures of the algorithm. Fig. 4.3 depicts an example PL use case diagram with four variation points,
eight variant use cases, and one essential use case.

The main steps of the configuration algorithm for use case diagrams are:

• Identifying variation points in the diagram to start the configuration. In Fig. 4.3, there are four
variation points and two of them are included by variant use cases in another variation point
(i.e., UC2 in VP1 includes VP2, and UC3 includes VP3). The algorithm automatically filters
out the variation points included by variant use cases because the analyst can make a decision
for these variation points only if the including variant use case is selected for the product. For
instance, VP2 will not be considered if UC2 is not selected in VP1. The user can start making
decisions with either VP1 or VP4.

• Getting a decision for each variation point and resolving contradicting decisions. This is an
iterative step. For each variation point identified, the analyst is asked to make a decision. A
decision is about selecting, for the product, variant use cases in the variation point. After
the analyst makes the decision, the algorithm first checks the associated cardinality constraints.
The use case diagram is then traversed to determine previous decisions contradicting the current
decision. If there is any contradiction, the analyst is expected to update one or more decisions
to resolve the contradiction.

56



4.5. Configuration of Product Specific Use Case and Domain Models
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Figure 4.3. Example Product Line Use Case Diagram

– The analyst makes a decision in VP4, which is selecting UC9 for the product. The decision
complies with the cardinality constraint. No contradiction is identified since there is no
previous decision. Therefore, the decision is saved in the decision model.

– The analyst proceeds with VP1. UC2 and UC4 are selected while UC3 is not selected for
the product. The decision complies with the cardinality constraint in VP1. The algorithm
identifies a contradiction with the decision in VP4. Since the user does not select UC3,
UC7 and UC8 in VP3 included by UC3 are also automatically not selected. However,
UC9 requires UC8 in the product. The analyst is asked to resolve the contradiction by
updating either the decision for VP4 or the decision for VP1.

– The analyst updates the decision in VP1 to resolve the contradiction. Only UC2 and UC3
are selected in the updated decision, which complies with the cardinality constraint. At
this point, there is no contradiction identified. UC3 is already selected but the analyst has
not yet made the decision for VP3. Therefore, the decision is saved in the decision model.

– The analyst is asked to make further decisions for the variation points included by the
selected variant use cases. UC2 and UC3 include VP2 and VP3, respectively. In the
decisions for VP2 and VP3, the analyst selects UC6 and UC8. The decisions comply
with the associated cardinality constraints, and there is no contradiction identified with
the previous decisions. While UC6 is selected, the user decides not to have UC7 (UC6
conflicts with UC7 in Fig. 4.3). UC9 and UC8 are selected in VP4 and VP3, respectively
(UC9 requires UC8). The decisions are saved in the decision model. All variation points
are addressed after the analyst selects UC2, UC3, UC6, UC8, and UC9.
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• Generating the PS use case diagram from the PL diagram. By using the decisions stored in
the decision model, the algorithm automatically generates the PS use case diagram from the PL
diagram (see Fig. 4.4 for the PS diagram generated from Fig. 4.3). The transformation is based
on a set of transformation rules further described in Section 4.7. For instance, for UC1, VP1
and the selected UC2 in Fig. 4.3, the algorithm creates UC1 and UC2 with an include relation
in Fig. 4.4.

System

Actor1

UC1 UC9
<<include>>

UC6

UC2 Actor2
UC3

UC8

<<include>>
<<include>>

Figure 4.4. Generated Product Specific Use Case Diagram

One may argue that the include relations with the single, including use cases in Fig. 4.4 are redun-
dant because an include relation is used to show that the behavior of an included use case is inserted
into the behavior of multiple including use cases. Alternatively, we could choose an approach which
directly inserts (copy-and-paste) the behavior of the included use cases into the including use case
specifications. However, to ease the traceability between PL and PS use case diagrams, we prefer to
employ include relations in the PS use case diagram even if they are for single, including use cases.
For instance, UC2, UC3, UC6 and UC8 in Fig. 4.4 can be directly traced to the variant use cases UC2,
UC3, UC6 and UC8 in Fig. 4.3, respectively.

After the PL use case diagram, the algorithm handles the PL use case specifications. Table 4.1
provides the PL specifications of some use cases in Fig. 4.3. The algorithm has two steps for use case
specifications:

• Getting decisions for each optional step, optional alternative flow, and variant order group.
In Table 4.1, there are two variation points (Lines 5 and 36), one variant use case (Lines 21-
37), two optional steps (Lines 24 and 32), one optional alternative flow (Lines 8-12), and one
variant order group (Lines 23-25). The decisions for variant use cases have already been made
in the PL diagram (selecting UC2 and UC3 in VP1 and UC6 in VP2). Therefore, in this step,
the analyst is only asked to make decisions for optional steps, optional alternative flows, and
variant order groups. For example, the user selects only one of the optional steps (Line 24) with
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Table 4.1. Some Example Specifications of the PL Use Cases in Fig. 4.3
1 USE CASE UC1
2 1.1 Basic Flow
3 1. The system VALIDATES THAT the operating status is valid.
4 2. The system REQUESTS the measurements FROM the sensors.
5 3. INCLUDE <VARIATION POINT: VP1>.
6 4. The system VALIDATES THAT the computed value is valid.
7 5. The system SENDS the computed value TO the STO Controller.
8 1.2 <OPTIONAL>Bounded Alternative Flow
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. RESUME STEP 1.
12 3. ENDIF
13 1.3 Specific Alternative Flow
14 RFS 1
15 1. ABORT.
16 1.4 Specific Alternative Flow
17 RFS 4
18 1. The system increments the counter by the increment step.
19 2. ABORT.
20
21 <VARIANT>USE CASE UC2
22 1.1 Basic Flow
23 V1. The system SENDS measurement errors TO the STO Controller.
24 V2. <OPTIONAL>The system VALIDATES THAT RAM is valid.
25 V3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.2 Specific Alternative Flow
28 RFS V2
29 1. ABORT.
30 1.3 Specific Alternative Flow
31 RFS V3
32 1. <OPTIONAL>The system SENDS diagnosis TO the STO Controller.
33 2. ABORT.
34 1.4 Specific Alternative Flow
35 RFS 4
36 1. INCLUDE <VARIATION POINT: VP2>.
37 2. ABORT.

the order V2, V1, and V3 (Lines 23-25). The optional bounded alternative flow is not selected.
These decisions are saved in the decision model.

• Generating PS use case specifications from PL use case specifications. The PL use case spec-
ifications are automatically transformed into the PS specifications based on configuration de-
cisions and a set of transformation rules (see Section 4.7). Table 4.2 provides some of the PS
use case specifications generated from Table 4.1. First, some of the variation points in the PL
specifications (Lines 5 and 36 in Table 4.1) are transformed based on the decisions for the PL
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Table 4.2. Some of the Generated PS Use Case Specifications
1 USE CASE UC1
2 1.1 Basic Flow
3 1. The system VALIDATES THAT the operating status is valid.
4 2. The system REQUESTS the measurements FROM the sensors.
5 3. The system VALIDATES THAT ‘Precondition of UC2’.
6 4. INCLUDE UC2.
7 5. The system VALIDATES THAT the computed value is valid.
8 6. The system SENDS the computed value TO the STO Controller.
9 1.2 Specific Alternative Flow
10 RFS 1
11 1. ABORT.
12 1.3 Specific Alternative Flow
13 RFS 3
14 1. INCLUDE UC3.
15 2. RESUME STEP 5.
16 1.4 Specific Alternative Flow
17 RFS 5
18 1. The system increments the counter by the increment step.
19 2. ABORT.
20
21 USE CASE UC2
22 1.1 Basic Flow
23 1. The system VALIDATES THAT RAM is valid.
24 2. The system SENDS measurement errors TO the STO Controller.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.2 Specific Alternative Flow
28 RFS 1
29 2. ABORT.
30 1.3 Specific Alternative Flow
31 RFS 3
32 1. ABORT.
33 1.4 Specific Alternative Flow
34 RFS 4
35 1. INCLUDE UC6.
36 2. ABORT.

diagram. For instance, for VP1, the configurator creates two include statements for UC2 and
UC3 (Lines 6 and 14 in Table 4.2) with a validation step (Line 5 in Table 4.2) and a corre-
sponding specific alternative flow where UC3 is included (Lines 12-15). The created validation
step checks if the precondition of UC2 is met. If the condition holds, UC2 is executed in the
basic flow (Line 6). If not, the newly created alternative flow is taken and UC3 is executed
(Line 14). For VP2, only UC6 is included in the PS specification of UC2 since the user se-
lects only UC6. After handling variation points, selected optional steps and optional alternative
flows are included in the PS specifications (Line 23). Variant order groups are ordered in the
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PS specifications according to the given decision (Lines 23-26).

Lastly, the configuration algorithm collects decisions for each optional and variant domain enti-
ties in order to generate the PS domain model from the PL domain model. The algorithm does not
currently take into account the variant dependencies in PL domain models. It would need further ex-
tensions for detecting configuration decisions violating constraints imposed by variant dependencies.
The detection of such decisions in PL domain models is very similar to the consistency checking of
configuration decisions in PL use case diagrams (see Section 4.6.3). Therefore, we would only need
to adapt the current consistency checking algorithm for PL domain models. The PS domain model
generation is straightforward. In addition to mandatory entities, each selected optional and variant
entity is copied into the PS domain model without product line stereotype. The generated model is
pruned for the cases where a is-a relation has only a single subclass. Fig. 4.5 provides the PS domain
model generated from the PL domain model in Fig. 3.6.

Request
- code: integer
- name: String
- response: ResponseType

Sensor

Tester

1

Error
- errorStatus:Boolean
- isStored: Boolean
- isDetected: Boolean

itserrors*

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

1

Kick
- isValid: Boolean
- moveAmplitude: integer
- moveDuration: integer
- moveVelocity: integer

1

input

connect

itsKick

12

1 1

1
*
ask

SensorError

RAMError

StandardMode
ProvideDataReq

QCMode
ProvideDataReq

VoltageDiagnostic
- guardACVoltage: integer
- guardCurrent: integer

Figure 4.5. Generated Product Specific Domain Model

The PL domain model contains two variant entities (ClearErrorStatusRequest and Diagnostic-
ModeProvideDataReq) and one optional entity (VoltageDiagnostic). The analyst selects only Volt-
ageDiagnostic for the PS domain model. Therefore, only VoltageDiagnostic among variant and op-
tional entities is copied into the PS domain model in Fig. 4.5. In the PL model, there are two main
request types, i.e., ClearErrorStatusRequest and ProvideSystemDataRequest, with sub request types.
Since ClearErrorStatusRequest is not selected by the analyst, ProvideSystemDataRequest is the only
remaining subclass of Request in the inheritance hierarchy. During pruning of the PS model, it is
removed and the subclasses StandardModeProvideDataReq and QCModeProvideDataReq become
direct specializations of Request.

Another output of our configuration approach is a decision model which conforms to the decision
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metamodel in Fig. 4.2. The decision model stores all the configuration decisions for the use case
diagram, the use case specifications, and the domain model. Fig. 4.6 depicts the decision model
resulting from the example configuration using the PL use case diagram in Fig. 4.3, the PL use case
specifications in Table 4.1, and the PL domain model in Fig. 3.6.

:DecisionModel
- name = “UC1”
:EssentialUseCase

- name = “VP1”
:MandatoryVariationPoint- name = “VP4”

:OptionalVariationPoint

- name = “UC2”
- isSelected = True

:VariantUseCase
- name = “UC3”
- isSelected = True

:VariantUseCase
- name = “UC4”
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- name = “UC9”
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:VariantUseCase

- name = “VP2”
:MandatoryVariationPoint

- name = “VP3”
:MandatoryVariationPoint

- name = “UC5”
- isSelected = False

:VariantUseCase
- name = “UC6”
- isSelected = True

:VariantUseCase
- name = “UC7”
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- name = “UC8”
- isSelected = True
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variants
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- name: “ClearErrorStatusRequest”
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:DomainEntity

- name: “DiagnosticModeProvideDataReq”
- isSelected: False
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- number = 2
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:OptionalAlternativeFlow

- number = 1
:BasicFlow

- name = “V”
:VariantOrder

- orderNumber = 2
- variantOrderNumber = 1

:MandatoryStep

- orderNumber = 3
- variantOrderNumber = 3
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- orderNumber = 1
- variantOrderNumber = 2
- isSelected = True

:OptionalStep

- number = 3

:Mandatory
AlternativeFlow

- orderNumber = 1
- variantOrderNumber = 0
- isSelected = False

:OptionalStep

usecases

variationpoint

Figure 4.6. Example Decision Model Resulting from the Example Configuration

The decision model in Fig. 4.6 contains several instances of DomainEntity, VariationPoint, Use-
Case for which the analyst made the decisions described above. For instance, the VP1 instance of
MandatoryVariationPoint is associated with three instances UC2, UC3 and UC4 of VariantUseCase,
while the decision for the variation point is encoded as True or False using the isSelected attribute.
The decision models can be employed for further use such as representing decisions for reconfigu-
ration of the same product and comparison of the decisions in multiple products for regression test
selection within the context of product line testing, as further described in Chapters 5 and 6.

4.6 Consistency Checking of Configuration Decisions

In this section, we present the details of the consistency checking of configuration decisions in the PL
use case diagram. The objective of consistency checking (Section 4.6.1) is to identify contradicting
decisions for variation points in a configurable PL use case diagram (Section 4.6.4). The consistency
checking algorithm (Section 4.6.3) is based on mapping from the PL use case diagram to propositional
logic (Section 4.6.2).

4.6.1 Objective and Assumptions

Consistency checking of configuration decisions is vital at collecting decisions from the analyst. PS
models cannot be generated from inconsistent decisions. In our configuration approach, consistency
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checking aims at determining contradicting decisions for the variation points in the PL use case dia-
gram. Two or more configuration decisions may contradict each other if they result in violating some
variation point and variant dependency constraints (i.e., require and conflict). Assume there are two
conflicting, variant use cases Ua and Ub (i.e., Ua conflicts with Ub). Ua and Ub are selected in deci-
sions Da and Db, respectively. Da and Db are contradicting because Ua and Ub cannot exist for the
same product.

The analyst needs to update decisions in order to resolve contradictions. Our approach follows
the Fix right away with selective (multiple) undo strategy [Nöhrer and Egyed, 2010] in which only
involved decisions are updated to return the configuration to a consistent state immediately when
the analyst introduces a contradicting decision. To do that, we automatically identify the decisions
involved in the contradiction. We chose this strategy based on our discussions with IEE analysts
because each time a decision is made during configuration with customers, analysts would like to keep
decisions in the PL diagram consistent and not to have multiple contradictions at a time. Tolerating
contradictions during decision-making makes it hard to communicate with untrained customers for
reasoning on decisions and resolving contradictions. For the resolution of decision contradictions in
the PL use case diagram, our underlying assumption is that the diagram is configurable. A PL use
case diagram is configurable if at least one valid PS use case diagram can be generated from the PL
diagram. It may not be configurable because of an incorrect combination of variant and variation
point dependencies (see Section 4.6.4).

4.6.2 Propositional Logic Mappings

Our consistency checking algorithm is based on mapping variation points, use cases and variant
dependencies to propositional logic formulas. We assume that a PL use case diagram PLD is de-
fined as a set, where each use case is a member of the set. The PL diagram consists of n use cases
PLD = {u1, ...,un}; each use case ui in PLD is represented by a boolean variable with the same name.
Boolean variable ui evaluates to true if use case ui is selected and false otherwise. If there is no de-
cision made yet for use case ui, variable ui is not valued (unknown). Please note that all essential use
cases are automatically selected. Figure 4.7 gives the corresponding propositional formulas for each
pattern involving dependencies, variation points, and variant use cases, where propositions capture
logical relationships among variant use cases. For instance, according to the corresponding proposi-
tional formula in Fig. 4.7(a), if use case UCAm is selected for a product then the selection logically
implies that use case UCBn is also selected. Fig. 4.7(c) depicts the mapping when there is a require
dependency between two variation points A and B. In such a case, if at least one of the variant use
cases in variation point A (UCA1∨ ... ∨UCAm) is selected, then at least one of the variant use cases
in variation point B (→ UCB1∨ ... ∨UCBn) should also be selected.

In a SAT solver based approach, for the entire PL use case diagram, one propositional formula can
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Figure 4.7. Mapping from PL Use Case Diagram to Propositional Logic
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be formed as a conjunction of formulas derived from each dependency in the diagram using the map-
ping. Given such propositional formula and a set of variable assignments (decisions), a SAT solver
can determine whether there is a value assignment to the remaining variables (undecided variation
points) that will satisfy the predicate [Batory, 2005]. This approach may not be feasible for complex
industrial projects when the number of variables to be computed is large. Therefore, to determine con-
tradicting decisions, we follow an approach different than determining if there exists an interpretation
that satisfies a propositional formula derived from the entire PL use case diagram (Section 4.6.3).

4.6.3 Consistency Checking Algorithm

For a given decision regarding a variation point in the PL diagram, our approach only checks the
satisfaction of the propositional formulas derived from its dependencies. The number of variables
taken into account in such approach is much smaller than the number of variables derived from the
entire diagram to be computed by an approach using SAT solvers. Assume that we have two variant
use cases Ua and Ub where Ua requires Ub and Ua is selected. The corresponding propositional
formula in Fig. 4.7(a) is not satisfied only if Ub is unselected in prior decisions and there is no other
further decision to be made for Ub. Therefore, we only check if Ub is unselected and cannot be
selected in further decisions. If there is no decision made for Ub yet, we do not need to check if
the corresponding formula is satisfied. The satisfaction of the formula is checked only if there is a
valuation of the variable in the formula for Ub based on configuration decisions. However, decisions
for other variant use cases might imply a decision for Ub. Our approach automatically infers those
implicit decisions to be taken into account in the valuation of formulas.

Alg. 1 describes the part of our configuration algorithm related to consistency checking. For
each new decision made by the analyst, the algorithm checks if the formulas derived for the decided
use case elements are satisfied. If the formulas are not satisfied, the algorithm returns contradicting
decisions to the analyst. The analyst updates the decisions to resolve the contradiction. In order to
illustrate the algorithm, we rely on the example contradicting decisions in Fig. 4.3.

The analyst makes a decision d for each variation point vp, which is either included by an essential
use case uc or not included by any use case (Lines 2, 4 and 5 in Alg. 1). For each new decision d, the
algorithm checks if there is any contradicting, prior decision. Decision d is a quadruple of variation
point vp, essential use case uc including vp, set of selected variant use cases SUC in vp, and set of
unselected variant use cases NSUC in vp (Line 8). For the decisions in VP1 and VP4 in Fig. 4.3, d is
(V P1,UC1, {UC2,UC4}, {UC3}) and (V P4, null, {UC9}, /0), respectively. The algorithm first de-
termines if d complies with the cardinality constraint in vp (Line 9). If the cardinality constraint is sat-
isfied, the algorithm checks if d contradicts any prior decision (Lines 10-27); otherwise, the analyst is
asked to update decision d for the cardinality constraint (Line 29). We call some check functions (i.e.,
checkConflictingVP, checkRequiringVP, checkRequiredVP, checkConflictingUC, checkRequiringUC,
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Alg. 1: Part of config
Inputs : PL use case diagram, PLD, Set of PL use case specifications, PLS,

PL domain model, PLDM
Output: Set of PS use case models

1 Let DC be the empty set for completed decisions;
2 Let L be the set of pairs of variation points vp and use cases uc such that use cases are essential

and they include the variation points, or the variation points are not included by any use case;
3 T ← L;
4 while L 6= /0 do
5 d p ∈ L;
6 Let SUC be the set of variant use cases selected in d p.vp;
7 Let NSUC be the set of variant use cases unselected in d p.vp;
8 Let d be the quadruple (d p.vp,d p.uc,SUC,NSUC);
9 if (d satisfies cardinality constraints in d p.vp) then

10 Let C be the empty set for contradicting decisions;
11 C← checkConflictingVP(d p.vp, DC, d, PLD);
12 C←C∪checkRequiringVP(d p.vp,DC,d,PLD);
13 C←C∪checkRequiredVP(d p.vp,DC,d,PLD);
14 foreach (u ∈ SUC) do
15 C← C∪checkConflictingUC(u,DC,d,PLD);
16 C← C∪checkRequiringUC(u,DC,d,PLD);
17 end foreach
18 foreach (u ∈ NSUC) do
19 C←C∪checkRequiredUC(u, DC, d, PLD);
20 end foreach
21 if (C = /0) then
22 DC← DC∪{d}; L← L\{d p};
23 Let newp = {(vp,uc) |uc includes vp ∧ uc ∈ SUC ∧ (vp,uc) /∈ T};
24 L← L∪newp; T ← T ∪newp;
25 else
26 updateDecisions(C ∪ {d});
27 end if
28 else
29 updateDecisions({d});
30 end if
31 end while
32 ...

and checkRequiredUC) to determine whether the propositional logic formulas, derived from the de-
pendencies to/from the diagram elements decided in d, are satisfied by d and set of prior decisions DC
(Lines 10-20). If there is a formula not satisfied, there is at least one prior decision that is contradicting
d. The algorithm reports contradicting decisions to be updated by the analyst in the updateDecisions
function (Line 26). If there is no contradicting decision, d is approved and considered completed
(Lines 21-22). The selected variant use cases may include variation points. The pairs of those vari-
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ation points and their including use cases are considered for further decisions (Lines 23-24). Each
check function in Alg. 1 checks the propositional formulas in one or more mappings in Fig. 4.7.

• checkConflictingVP checks the formulas for selected variation point vp conflicting with a vari-
ation point or a variant use case (Fig. 4.7(d) and (g)),

• checkConflictingUC checks the formulas for selected variant use case u conflicting with a
variation point or a variant use case (Fig. 4.7(b) and (g)),

• checkRequiringVP checks the formulas for selected variation point vp requiring a variation
point or a variant use case (Fig. 4.7(c) and (f)),

• checkRequiredVP checks the formulas for unselected variation point vp required by a variation
point or a variant use case (Fig. 4.7(c) and (e)),

• checkRequiringUC checks the formulas for selected variant use case u requiring a variation
point or a variant use case (Fig. 4.7(a) and (e)),

• checkRequiredUC checks the formulas for unselected variant use case u required by a variation
point or a variant use case (Fig. 4.7(a) and (f)).

In Fig. 4.3, the decision in V P1 contradicts the prior decision in V P4 because of the require
dependency. This is determined by the function checkRequiredUC, whose algorithm is presented in
Alg. 2. For the rest of the check functions, the reader is referred to Supplementary Material.

Alg. 2 checks the formulas in Fig. 4.7(a) and (f) for an unselected variant use case required by a
variation point or a variant use case. For instance, in Fig. 4.7(a), when UCBn is unselected and there
is no further decision made for UCBn, it checks if UCAm is selected in any prior decision. If UCAm
is already selected, it reports a contradiction.

Alg. 2 takes as input use case uc unselected in decision d, set of prior decisions DC, decision d,
and PL use case diagram PLD, while it returns the set of decisions contradicting d. The inputs of
checkRequiredUC for the example in Fig. 4.3 are UC3, {D1}, D2, and the PL diagram in Fig. 4.3
where D1 = (V P4, null, {UC9}, /0) and D2 = (V P1,UC1, {UC2,UC4}, {UC3}). The functions
used in Alg. 2 are the following:

• inferUnselectedElements infers unselected elements for use case uc unselected in decision d
(Line 4),

• inferSelectedElements infers selected elements for use case u selected in decision dm (Line
13),

• getRequiredElements returns use cases and variation points required by other variation points
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Alg. 2: checkRequiredUC
Input : Use case, uc, Set of decisions, DC,

Decision, d, PL use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions;
2 if ((uc is not selected in the completed decisions) and (there is no further decision to be made

for uc)) then
3 Let EX be the empty set for inferred, unselected elements;
4 EX ←{uc} ∪ inferUnselectedElements(uc, d, DC, /0, PLD);
5 foreach (dm ∈ DC) do
6 Let SUC be the set of selected use cases in dm;
7 Let vp be the variation point in dm;
8 if (SUC 6= /0) and ((EX ∩ getRequiredElements(vp, PLD))6= /0) then
9 RES← RES ∪ {dm};

10 end if
11 foreach (u ∈ SUC) do
12 Let I be the empty set for inferred, selected elements;
13 I← {u} ∪ inferSelectedElements(u, dm, DC ∪ {d}, /0, PLD);
14 foreach (e ∈ I) do
15 if (EX ∩ getRequiredElements(e, PLD) 6= /0) then
16 RES← RES ∪ getInvolvedDecisions(e, dm, d, DC);
17 end if
18 end foreach
19 end foreach
20 end foreach
21 return RES;
22 else
23 return RES;
24 end if

or variant use cases (vp in Line 8 and e in Line 15),

• getInvolvedDecisions returns all decisions contradicting decision d for element e in decision
dm (Line 16).

Alg. 2 starts with checking whether uc, unselected in decision d, is also unselected in the set of
prior decisions DC, while it is also not possible to make any further decision for uc (Line 2). If uc
is already selected in another decision or if there is still yet another decision to be made for uc, the
function returns an empty set of contradicting decisions (Line 23); otherwise, the function checks
whether there is any selected use case which requires uc (Lines 3-21). For UC3, the decision can be
made only via the pair (V P1, UC1) since UC1 is the only use case including V P1. D2 is the decision
made via the pair (V P1, UC1) where UC3 is unselected.

When uc is unselected in d, there might be other variant use cases automatically unselected. These
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use cases are in the variation points included by uc (Line 4). The function in f erUnselectedElements
returns the inferred, unselected use cases and variation points for use case uc unselected in decision
d. For D2, it infers UC7, UC8, and V P3 (EX = {UC3,UC7,UC8,V P3}). V P3 is included only by
UC3. UC7 and UC8 in V P3 cannot be selected after UC3 is unselected in D2. Since all variant use
cases in V P3 are automatically unselected, V P3 is also considered unselected. If any of these elements
in the set of unselected elements EX is required by a variation point selected in prior decision dm in
DC, the current decision d contradicts dm (Lines 6-10). The variant use cases selected in dm (SUC
in Line 6) might cause other variant use cases automatically to be selected. These are the use cases
with a mandatory variability relation in the variation points included by the use cases selected in dm
(Line 13). The function inferSelectedElements infers those variant use cases to check whether they
require any unselected element in EX (Lines 11-19). For D1, there is no inferred variant use case.
There is only UC9 which is selected for V P4 in D1 (I = {UC9} for u = UC9). Only UC9, selected in
D1, requires UC8 in EX (Line 15). There might be other prior decisions contributing to the selection
of UC9. The function getInvolvedDecisions returns all these decisions (Line 16). There is only D1
in which UC9 is selected. Therefore, the function checkRequiredUC returns only D1 in the set of
contradicting decisions (RES = {D1} in Lines 16 and 21).

4.6.4 Non-configurable PL Use Case Diagrams

As stated in Section 4.6.1, our assumption for consistency checking is that the PL diagram is config-
urable. Fig. 4.8 provides an example of a non-configurable PL diagram.

System
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VP3

<<Variant>>
UC8

<<include>>

0..1

<<Variant>>
UC2

<<Variant>>
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0..1
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2..2
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<<Variant>>

UC4

VP2

<<Variant>>
UC7

<<Variant>>
UC6
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<<require>>

<<Variant>>
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0..1

Figure 4.8. An Example of a Non-Configurable PL Use Case Diagram

Essential use case UC1 includes mandatory variation point VP1 which has three variant use cases
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through optional and mandatory variability relations. Variant use cases UC3 and UC4 in VP1 are
always selected because of the mandatory variability relation (cardinality constraint ‘2..2’ in VP1).
UC3 includes another mandatory variation point, VP2, which has three variant use cases UC5, UC6
and UC7. UC6 and UC7 are always selected because of the mandatory variability relation (cardinality
constraint ‘2..2’ in VP2). Therefore, variant use cases UC3, UC4, UC6, and UC7 are automatically
selected for every product. UC7 requires another variant use case, UC8, while UC8 conflicts with
UC4. The require dependency implies that if UC7 is selected for a product, UC8 should also be
selected for the same product. Since UC7 is automatically selected for every product, UC8 should
always be selected for every product. On the other hand, UC8 cannot be selected for any product
because it conflicts with UC4, which is also automatically selected for every product. Therefore,
it is not possible to generate a valid PS use case diagram from the PL diagram in Fig. 4.8. The
combination of the dependencies require between UC8 and UC7, conflict between UC8 and UC4,
and include between UC3 and VP2 and the cardinality constraints (2..2) in VP1 and VP2 is the reason
of non-configurability in Fig. 4.8. Such combination of dependencies and cardinality constraints in
a non-configurable PL use case diagram needs to be resolved before making configuration decisions.
Otherwise, in the non-configurable PL diagram, there will always be contradicting decisions which
are impossible to resolve.

The detection of non-configurable models has been addressed in the context of feature model-
ing and product line requirements specifications [Benavides et al., 2010, Trinidad and Ruiz-Cortés,
2009, Trinidad et al., 2008]. There are also techniques [Goknil et al., 2011, Goknil et al., 2008a,
Goknil et al., 2013] to identify incorrect combinations of requirements dependencies in a broader
context. Existing techniques (e.g., [Rosa et al., 2009, Goknil et al., 2011, Sun et al., 2005, Wang
et al., 2005, Lauenroth and Pohl, 2007, Lauenroth and Pohl, 2008, Stoiber, 2012, Durán et al., 2016])
could be adapted for PL use case diagrams in our configuration approach as part of Step 1, Elicit
Product Line Use Case and Domain Models, in Fig. 4.1. Before making decisions, the analyst could
automatically check if the PL use case diagram is configurable and, if necessary, could resolve the
incorrect combination of dependencies and cardinality constraints.

4.7 Generation of Product Specific Use Case Models

After the decisions are made, the PS use case and domain models are generated from the PL models.
The generation of PS models are implemented in the PL-PS Transformer component in PUMConf
(Fig. 4.9). The details of the component architecture of PUMConf are given in Section 4.8.

The PL-PS Transformer contains three subcomponents: Diagram Transformer, Specification Trans-
former and Domain Model Transformer. The subcomponents are update-in-place transformations [Czar-
necki and Helsen, 2006] in which a model is both an input and output. Each subcomponent takes one
of the PL models and relevant decisions in the decision model as input, and produces the correspond-
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Figure 4.9. Overview of the PS Use Case and Domain Model Generation

ing PS model as output.

All PL and PS use case specifications are stored as plain text in the native IBM DOORS for-
mat. During the consistency checking of use case and domain models (see Step 2 in Fig. 4.1), for
the RUCM keywords and types of steps, use case specifications in IBM DOORS are annotated using
NLP provided by the GATE workbench (see Section 4.8). The Specification Transformer uses the an-
notations to distinguish RUCM steps and types of alternative flows in matching transformation rules
(Section 4.8). It processes the plain text instead of instances of the RUCM metamodel [Zhang et al.,
2013]. Compared to model transformation languages, Java provides much more flexibility for han-
dling annotated plain text in terms of loading, matching and editing the text. Therefore, we used Java
to implement the Specification Transformer. To provide the uniformity in the PL-PS Transformer,
other subcomponents are also implemented in Java.

The Diagram Transformer takes the PL use case diagram and diagram decisions as input, and
generates the PS use case diagram as output. The PS diagram generation is based on mappings
between patterns in PL and PS diagrams driven by decisions. For instance, for a variant use case in
the PL diagram, there is a corresponding use case in the PS diagram only if the variant use case is
selected during decision-making. Fig. 4.10 gives example source and target patterns with decisions
for use case diagrams.

Fig. 4.10 has three columns, i.e., source pattern, decision, and target pattern, to represent example
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Figure 4.10. Example Source and Target Patterns with Decisions for Use Case Diagrams

mappings between PL and PS diagrams. Decisions for the diagrams are represented as quadruples
(see Section 4.6). In Fig. 4.10(a), the analyst selects all variant use cases in mandatory variation point
X included by essential use case UC. The variation point, include relation and unselected variant use
cases are removed while each selected variant use case is transformed into a use case included by UC
in the PS diagram. In Fig. 4.10(b), optional variation point X is included by essential use case UC
while all variant use cases are unselected. Only essential use case X is kept in the PS diagram. The
source pattern in Fig. 4.10(c) represents optional variation point X which has one variant use case
(i.e., UC1). X is not included by any other essential or variant use case. When UC1 is selected, only
variation point X is removed from the PS diagram.

The Specification Transformer takes both diagram and specification decisions to generate PS use
case specifications (see Fig. 4.11 for example mappings between PL and PS specifications). Diagram
decisions are used to transform use case steps where variation points are included. In Fig. 4.11(a),
the source pattern represents an example specification where the variation point X in Fig. 4.10(a)
is included in between other use case steps. For the same decision, represented as a quadruple, in
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Figure 4.11. Example Source and Target Patterns with Decisions for Use Case Specifications

Fig. 4.10(a) where all variant use cases are selected, the VALIDATES THAT and INCLUDE steps in
the basic flow and a set of alternative flows are generated for the PS specification. One of the variant
use cases (UC1) is executed in the basic flow (the step where UC1 is included) if its precondition
holds (the VALIDATES THAT step). The rest of the selected use cases are executed in the generated
alternative flows. One of the alternative flows is taken if the VALIDATES THAT statement in the basic
flow fails. In Fig. 4.11(b), the source PL specification for Fig. 4.10(b) is transformed into the PS
specification based on the diagram decision where no variant use case is selected. The step where the
variation point X is included is removed for the PS specification.

Fig. 4.11(c) represents an example source pattern which contains multiple optional steps in a
variant order. The analyst has to decide which optional steps are retained and in which order in the
PS specification. The specification decision for each optional step is represented as a triple of the step
name, a boolean variable which is true when the step is selected, and the decided order number. In
the example, each optional step is selected in a reverse order for the PS specification (see the decision
column in Fig. 4.11(c)). Based on the decisions, the selected optional steps (OPTIONAL STEP A1,
..., OPTIONAL STEP An−1, OPTIONAL STEP An) are preserved in the reverse order (STEP An, STEP
An−1, ... , STEP A1) in the target pattern while there might be common steps in between the selected
optional steps.

The Domain Model Transformer takes the PL domain model and domain model decisions as input
to generate a PS domain model. As we discussed in Section 4.5, the generation of a PS domain model
is straightforward: in addition to mandatory entities, all selected optional and variant domain entities
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are kept, while their PL stereotypes are removed. The is-a relations having only a single subclass
are also removed to prune the generated model. In the next section, we present the tool support and
architecture, which provide more detailed information about the interaction of the PL-PS Transformer
with other components of the tool.

4.8 Tool Support

We have implemented our configuration approach in a prototype tool, PUMConf (Product line Use
case Model Configurator). Section 4.8.1 provides the layered architecture of the tool while we de-
scribe the tool features with some screenshots in Section 4.8.2. For accessing the tool executables,
see: https://sites.google.com/site/pumconf/.

4.8.1 Tool Architecture

The tool architecture is composed of three layers (see Fig. 4.12): (i) the User Interface (UI) layer, (ii)
the Application layer, and (iii) the Data layer.
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Figure 4.12. Layered Architecture of PUMConf

User Interface (UI) Layer. This layer supports the activity of eliciting product line use cases
and domain models to create or update the PL artifacts (see Fig. 4.1). It also enables the viewing of
the generated PS artifacts. We employ IBM Doors (www.ibm.com/software/products/ca/en/
ratidoor/) for use case specifications, Papyrus (https://www.eclipse.org/papyrus/) for
use case diagrams, and IBM Rhapsody (www.ibm.com/software/products/en/ratirhapfami)
for domain models. IBM Doors does not put any restriction on the structure of use cases and thus
allows the adoption of the RUCM template. Halmans and Pohl [Halmans and Pohl, 2003] do not
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provide any metamodel or UML profile for the PL use case diagram extensions. Therefore, we im-
plemented our own UML profile in Papyrus to enable the use of the Papyrus model editor for creating
and editing PL use case diagrams. Our choice of IBM Rhapsody for domain models is based on the
modeling practice at IEE, which has been based on Rhapsody. For domain modeling, we could also
employ the Papyrus model editor which we use to present the decision model.

Application Layer. This layer supports the main activities of our approach in Fig. 4.1: checking
consistency of PL use case and domain models and configuring PS use case and domain models. It
contains four main components implemented in Java: Configurator, Artifact Consistency Checker,
Decision Consistency Checker, and PL-PS Transformer. To access these Application Layer compo-
nents through the UI Layer, we implemented an IBM DOORS plugin (see Fig. 4.13).

Figure 4.13. Menu to Activate IBM DOORS Plug-ins for PUMConf

The Configurator component is a coordinator that manages two other components, i.e., Decision
Consistency Checker and PL-PS Transformer. In addition to the Configurator, the user has direct
access, via the DOORS plug-in, to the Artifact Consistency Checker which employs NLP to check
the consistency of the PL use case diagram, the use case specifications complying with the RUCM
template, and the domain model. The Decision Consistency Checker implements the parts of the
configuration algorithm where a decision for the PL use case diagram is received from the analyst
and its consistency with previous decisions is checked. The algorithm does not attempt to find a
valid configuration but simply traverses the diagram for decisions to recursively check whether the
implications of any variation point - variant use case dependency (i.e., include, require, and conflict)
are violated by the configuration decisions (see Section 4.6).

The PL-PS Transformer component is the Java implementation of the transformation rules for
the use case diagram, specifications and domain model. Before the application of the transformation
rules, use case specifications need to be annotated by using NLP (see Section 4.7).

To perform NLP in use case specifications, the Configurator and Artifact Consistency Checker
components use a regular expression engine, called JAPE [H. Cunningham et al, 2018], in the GATE
workbench (http://gate.ac.uk/), an open-source Natural Language Processing (NLP) frame-
work. We implemented the extended RUCM restriction rules in JAPE. With NLP, use cases are first
split into tokens. Second, Part-Of-Speech (POS) tags (i.e., verb, noun, and pronoun) are assigned to
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each token. By using the RUCM restriction rules implemented in JAPE, blocks of tokens are tagged
to distinguish RUCM steps (i.e., output, input, include, and internal operations) and types of alter-
native flows (i.e., specific, alternative, and global). The output of the NLP contains the annotated
use case steps. The Configurator passes the annotations to the PL-PS Transformer in order to match
the transformation rules while the Artifact Consistency Checker processes these annotations with the
use case diagram and domain model to generate the list of inconsistencies among the artifacts. For
instance, the consistency of use case specifications and domain model is checked by comparing the
use case specification entities identified by the NLP application with the entities in the domain model.
For each domain entity identified through NLP, the Artifact Consistency Checker generates an entity
name by removing all white spaces and putting all first letters following white spaces in capital. If the
entity name does not appear either as class name or as an attribute name in the domain model, or if
the entity name is only mentioned in the optional parts of use case specifications while it appears as a
mandatory entity in the domain model, an inconsistency is reported. The consistency checking could
be extended with syntactic and semantic similarity checking techniques [Arora et al., 2015a, Arora
et al., 2015b] to tackle inconsistent naming conventions in the comparison.

Data Layer. All the use case specifications are stored in the native IBM DOORS format while the
domain model is exported into the XMI format by the Rhapsody XMI toolkit. The PL use case dia-
gram and the generated PS diagram are stored using the UML profile mechanism, while the decision
model is saved in Ecore [Ecl, 2018].

4.8.2 Tool Features

We describe the most important features of our tool: managing PL use case and domain models,
checking consistency of PL use case and domain models, getting configuration decisions from the
analyst, checking consistency of decisions, and displaying decisions. These features support the steps
of the modeling process given in Fig. 4.1.

Managing PL use case and domain models. This feature supports Step 1, Elicit Product Line
Use Case and Domain Models, in Fig. 4.1. The analyst can create, update, and delete the PL use case
diagram, specifications, and domain model by using the selected modeling tools (i.e., IBM Doors,
Papyrus, and Rhapsody) adopted in PUMConf.

Checking consistency of PL use case and domain models. The consistency of the PL use case
and domain models needs to be ensured in Step 2, Check Consistency of Product Line Use Case
and Domain Models, in Fig. 4.1 before the analyst makes decisions about the variability information.
Our tool automatically checks (1) if the PL use case specifications conform to the RUCM template
and its product line extensions, (2) if the PL use case diagram is consistent with the PL use case
specifications, and (3) if the PL domain model is consistent with the PL use case specifications (see
Fig. 4.13). Fig. 4.14 presents an example output of the consistency checking of the PL use case
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diagram and specifications in Section 4.5.

Figure 4.14. PUMConf User Interface for Reporting Inconsistencies

Three types of inconsistencies are reported in Fig. 4.14: missing variation points in the speci-
fications, variant use cases given as essential ones in the corresponding specifications, and missing
variation points in the diagram.

Getting configuration decisions from the analyst. During Step 3, Configure Product Specific
Use Case and Domain Models, in Fig. 4.1, the tool first determines the list of variation points to be
decided, based on the dependency structure of variation points, i.e., include. The analyst makes a
decision for each variation point in the list, while the tool checks the consistency of the decision with
prior decisions. A decision may cause further decisions to be made for some other variation points,
i.e., included by the variant use cases selected in the decision. In such cases, after each decision
the tool automatically updates the list of variation points to be decided. Fig. 4.15 presents the user
interface for getting the decision for the variation point VP4 in Fig. 4.3.

In Fig. 4.15(a), the tool lists the variation points VP1 and VP4 but not VP2 and VP3 since the
analyst can make a decision for VP2 and VP3 only after UC2 and UC3 are selected in VP1 (see
Fig. 4.3). The analyst makes a decision in VP4 by selecting UC9 in Fig 4.15(b). After the decision
is confirmed to be consistent with prior decisions, VP4 is highlighted in green, indicating that the
decision has been validated and recorded (see Fig. 4.15(c)).

After the decisions for the PL diagram are made, the analyst proceeds with the PL use case spec-
ifications and domain model. Fig. 4.16 presents the PUMConf’s user interface for selecting optional
steps in the PL specification of use case UC2 in Table 4.1.

In Fig. 4.16, the tool lists the entire use case specification including the optional tags on optional
steps. The analyst makes a decision for each optional step and each optional alternative flow in the
specification (none in UC2). After these decisions are made, the tool asks the order of the variant
order steps if there are any in the specification.

Checking consistency of decisions. After each decision is made in the diagram, the tool checks
its consistency with prior decisions. If there is any contradicting decision, the analyst is asked to
update the current and/or previous decisions causing the contradiction.
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Figure 4.15. PUMConf’s User Interface for (a) listing variation points driving decisions, (b) selecting variant
use cases for the selected variation point, and (c) showing the updated list of variation points after the decision.

After the decision regarding VP4 in Fig. 4.15(b), the analyst proceeds with VP1 in Fig. 4.15(c)
and then selects UC2 and UC4 (Fig. 4.17(a)). Please note that UC2 is automatically selected since
it is a mandatory variant use case implied by the cardinality constraint in VP1. When the analyst
submits the decision, the tool automatically checks if it contradicts prior decisions. A contradiction
for the decisions in VP1 and VP4 is reported (Fig 4.17(b)). The upper part of the user interface in
Fig. 4.17(b) provides an explanation for the contradiction while the bottom part lists the decisions
involved in the contradiction, with an Edit button to update the corresponding decision. To resolve
the contradiction in Fig. 4.17(b), the analyst updates the decision in VP1 by selecting UC2 and UC3
but not UC4 (Fig. 4.17(c)). After the decision is updated, the tool checks again for contradictions. It
confirms that there is no more contradiction and all decisions are consistent. UC2 and UC3 include
VP2 and VP3, respectively. Therefore, after UC2 and UC3 are selected, the pairs (UC2,V P2) and
(UC3,V P3) are automatically given to the analyst to make further decisions (Fig. 4.17(d)).

Displaying decisions. After the configuration is completed with the generation of the PS use case
and domain models, the analyst may need to reconfigure. The tool presents the entire set of decisions
for the product with a user interface similar to Fig. 4.15(a) and (b).
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Figure 4.16. PUMConf’s User Interface for Selecting Optional Steps in Use Cases.

4.9 Evaluation

In this section, we evaluate our configuration approach via reporting (i) an industrial case study, i.e.,
STO, to demonstrate its feasibility (Section 4.9.1), (ii) the results of a questionnaire based survey at
IEE aiming at investigating how PUMConf is perceived to address the challenges listed in Section 4.2
(Section 4.9.2), and (iii) discussions with the IEE analysts to gather more insights into the benefits
and challenges of applying it in an industrial setting (Section 4.9.3).

4.9.1 Industrial Case Study

We report our findings about the feasibility of our approach and its tool support in an industrial
context. In order to experiment with PUMConf in an industrial project, we applied it to the functional
requirements of STO.

4.9.1.1 Goal

Our goal was to assess, in an industrial context, the feasibility of using PUMConf to improve vari-
ability modeling and reuse in the context of use case and domain models. STO was selected for this
assessment since it was a relatively new project at IEE with multiple potential customers requiring
different features.
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Figure 4.17. PUMConf’s User Interface for (a) selecting variant use cases for the corresponding variation
point, (b) explaining the contradicting decisions, (c) updating the contradicting decision, and (d) showing the
updated list of variation points after the updated decision.

4.9.1.2 Study Context

IEE is a typical supplier in the automotive domain, producing sensing systems (e.g., Vehicle Occupant
Classification, Smart Trunk Opener, and Driver Presence Detection) for multiple automotive manu-
facturers. In IEE’s business context, like in many others, use cases are central development artifacts
which are used for communicating requirements among stakeholders, such as customers. In other
words, in the context of product lines, IEE’s software development practices are strongly use case-
driven and analysts elicit requirements and produce a new version of use cases for each new customer
and product. As a result, IEE needs to adopt PLE concepts (e.g., variation points and variants) to
identify commonalities and variabilities early in requirements analysis. These concepts are essential
for communicating variability to customers, documenting it for software engineers, and supporting
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decision making during the elicitation of customer specific requirements [Halmans and Pohl, 2003].

Like in many other environments, the current practice at IEE is based on clone-and-own reuse [Clements
and Northrop, 2001]. IEE starts a new product family with an initial customer providing require-
ments of a single product in the product family. The initial product requirements are elicited and
documented as use cases and a domain model which are copied and then maintained for each new
customer. Changes are then made manually in the copied models.

IEE provided their initial STO documentation, which contained a use case diagram, use case
specifications, and supplementary requirements specifications describing non-functional requirements
and domain concepts. The initial documentation was the output of their current clone-and-own reuse
practice. That documentation contains variability information only in the form of some brief textual
notes attached to the relevant use case specifications.

To model the STO requirements according to our product line use case modeling method, PUM,
we first examined the initial STO documentation. Since the initial documentation contains almost no
structured variability information, we had to work together with IEE engineers to build and iteratively
refine our models (see Chapter 3). When we started to study the STO documentation, the STO project
was in its initial phase and there was only one prototype implementation to discuss with some potential
customers. One may argue that it is not always easy to identify variations in requirements when a new
project starts. However, the IEE analysts stated that, most of the time in their domain of applications,
requirements and their variability can be identified with the first customer.

4.9.1.3 Results

After studying the initial STO documentation and meeting with the IEE analysts, we built the PL use
cases and domain model for STO. The diagram in Fig. 3.5, the use case specifications in Table 3.2,
and the domain model in Fig. 3.6 are part of the PL models we derived as a result of our modeling
effort. Tables 3.4 and 3.5 report on the size of the entire PL use cases and domain model for STO.

As we discussed in Chapter 3 in detail, our modeling method, as part of our configuration ap-
proach, provided better assistance for capturing and analyzing variability information compared to
the current, more informal practice at IEE. With the PL extensions, for example, we could unveil
variability information not covered in the initial STO documentation. For instance, the use case dia-
gram extensions helped us identify and model that Clear Error Status via IEE QC Mode is mandatory
while Clear Error Status via Diagnostic Mode is optional (see Fig. 3.5), which was not previously
documented.

When discussions start with a customer regarding a specific product, the IEE analysts need to
make decisions on variability aspects documented in PL use case models. At a later stage, when
we met again with the IEE analysts for discussing configuration needs, IEE had already developed
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various STO products for different car manufacturers. By using PUMConf, we, together with the
IEE analysts, configured the PS use case and domain models for four products selected among the
STO products IEE had already developed. The IEE analysts made the configuration decisions on
the PL models using the guidance provided by PUMConf. Table 4.3 summarizes the results of the
configuration for the STO products using our approach.

Table 4.3. Results Summary for the Configuration of STO Use Case and Domain Models for Various Car
Manufacturers

Product(
#(of(Selected(
Variant(Use(

Cases(

#(of(Selected(
Optional(Steps(

#(of(Decided(
Variant(Orders(

#(of(Selected(
Variant(Entities((

P1( 7" 7" 5" 7"
P2( 4" 5" 5" 4"
P3( 7" 5" 5" 7"
P4( 5" 5" 5" 5"
(

The first column is the number of variant use cases selected by the analysts for each product. In
the PL use case diagram, there are six variant use cases with a mandatory variability relation, which
are automatically selected. Table 4.3 does not include the automatically selected variant use cases
and the essential use cases. The PL specifications have twenty-seven optional steps. Among them,
five optional steps have a variant order to be decided (see the variant use case Provide System User
Data via Standard Mode in Table 3.2). The fourth column in Table 4.3 presents the number of entities
selected among twelve variant entities (see Table 3.5).

All the generated PS use case and domain models were confirmed by the IEE analysts to be correct
and complete. The PL models that we derived from the initial STO documentation were sufficient
to make all the configuration decisions needed in PUMConf to generate the correct and complete PS
models for the STO products.

4.9.2 Questionnaire Study

We conducted a questionnaire study to evaluate, based on the viewpoints of IEE engineers, how
well our configuration approach addresses the challenges that we identified in capturing requirements
variability and configuring PS use cases. The study is described and reported according to the template
provided by Wohlin et al. [Wohlin et al., 2012].

4.9.2.1 Planning and Design

To evaluate the output of PUMConf in light of the challenges we identified earlier, we had a semi-
structured interview with seven participants holding various roles at IEE: software development man-
ager, software team group leader, software lead engineer, system engineer, and embedded software
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engineer. All participants had experience with use case-driven development and modeling. The in-
terview was preceded by presentations illustrating the PL extensions of use case and domain models,
PUMConf steps, a tool demo, and detailed examples from STO. Interactive sessions included ques-
tions posed to the participants about the models. In the sessions, the participants took a more active
role and gave us feedback. We also organized three hands-on sessions in which the participants could
apply the proposed modeling method and the PUMConf tool. In the first hands-on session, the partic-
ipants were asked to find inconsistencies in the faulty PL use case diagram and specifications. In the
second session, they were using PUMConf to identify and resolve contradicting configuration deci-
sions in the STO PL use case and domain models. In the third session, the participants used PUMConf
to configure PS use case and domain models from the STO PL models.

To capture the perception of engineers participating in the interviews, regarding the potential ben-
efits of PUMConf and how it addresses the targeted challenges, we handed out two questionnaires
including questions to be answered according to two Likert scales [Oppenheim, 2005] (i.e., agree-
ment and probability). The questionnaires were structured for the participants to assess our modeling
method and our configurator, PUMConf, in terms of adoption effort, expressiveness, comparison with
current practice, and tool support. The participants were also encouraged to provide open, written
comments.

4.9.2.2 Results and Analysis

We solicited the opinions of the participants using questionnaires (see Fig. 4.18 and Fig. 4.19).
The objective of the first questionnaire was to assess our product line use case modeling method.
Fig. 4.18(a) and (b) depict the questions and answers from the participants for the first questionnaire.

All participants agreed that the PL extensions for use case diagrams are simple enough to en-
able communication between engineers and customers (QA1) and thus they would probably use such
extensions in their projects (QA2). Except for one case, all participants agreed that the extensions pro-
vide enough expressiveness to capture variability information in their projects (QA3). The participant
who disagreed on QA3 commented that a few customers do not employ use cases in their develop-
ment practice and, in these cases, the IEE analysts opt for informal discussions about the product.
However, in all cases, use cases are nevertheless employed at IEE as part of their internal practice.
All participants stated that the PL specification extensions are simple enough (QA4) and variability
captured in the diagram is adequately reflected in the specifications (QA6). They also all agreed that
they would use the specification extensions to capture variability information (QA5). There was also
a strong consensus among the participants about expressiveness and simplicity of the PL domain
model extensions (QA7 and QA8). The last part of the questionnaire focuses on the overall modeling
method in terms of expressiveness, usefulness and adoption effort (QA9 - QA14). The participants
provided a very positive feedback for the method in general but they also stated that (i) additional
practice and training was still needed to become familiar with the method and tool support, (ii) cus-
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%Figure 4.18. Responses to the Questions Related to the Product Line Use Case Modeling Method
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Figure 4.19. Responses to the Questions Related to the Configuration Approach
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tomers also needed to be trained regarding the extensions, RUCM and the tool support, and (iii) the
software development of a few customers is not use case-driven. These were the reasons stated for
the disagreement of two participants on QA10 and QA12.

The objective of the second questionnaire was to assess our use case-driven configuration ap-
proach and its tool support. Fig. 4.19(a) and (b) depict the corresponding answers. The second ques-
tionnaire was structured in four different parts: configuring the PS use case diagram (QB1 - QB3),
configuring the PS use case specifications (QB4 and QB5), configuring the PS domain model (QB6
and QB7), and the overall configuration approach and tool support (QB8 - QB13). All participants
agreed that the configurator was adequate to capture configuration decisions for PS use cases and
domain models, and they would use the configurator to configure PS models in their projects (QB1 -
QB7). For the overall configuration approach and tool support (QB8 - QB13), two participants raised
issues similar to those of the first questionnaire. Customers also need training to get familiar with the
configuration approach and tool support (QB8 and QB9). Since a few customers do not rely on use
case modeling, IEE analysts would in these cases use the configurator only for internal communica-
tion and documentation during product development (QB11). On the other hand, all participants saw
value in adopting the configuration approach (QB10), and they agreed that the configurator provides
useful assistance for configuring PS use case and domain models, compared to the current practice in
their projects (QB12).

4.9.2.3 Threats to Validity

The main threat to validity in our case study concerns the generalizability of conclusions. To mitigate
this threat, we applied PUMConf to an industrial case study that includes nontrivial use cases in
an application domain with multiple customers and numerous sources of variability. Though their
number is small, we selected the respondents to our questionnaire and interviews to hold various,
representative roles and with substantial industry experience. We can also confidently say that the
software development practice at IEE is typical of embedded system development in the automotive
domain. To limit threats to internal validity, we had many meetings with the IEE analysts in the STO
project to verify the correctness and completeness of our models.

4.9.3 Discussions with the Analysts and Engineers

The questionnaire study had open, written comments under each section, in which the participants
could state their opinions in a few sentences about how PUMConf addresses the challenges reported
in Section 4.2. As reported in Section 4.9.2, the participants’ answers to the questions through Lik-
ert scales and their open comments indicate that they see high value in adopting the configuration
approach and its tool support in an industrial setting in terms of increasing reusability, minimizing
modeling effort, and providing effective automation. In order to elaborate over the open comments in
the two questionnaires, we organized further discussions with the participants. Based on the feedback
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in the comments, we identified three aspects to discuss with the participants: modeling effort, degree
of automation, and limitations of the configuration approach.

4.9.3.1 Modeling Effort

In the current practice at IEE, like in many other environments, there is no systematic way to model
variability information in use case and domain models. As mentioned before, the IEE analysts take
only brief notes attached to use case specifications to indicate what may vary in the specification.
They are reluctant to use feature models traced to use case specifications because of two main issues:
(i) having feature models requires considerable additional modeling effort with manual assignment
of traces at a very low level of granularity, e.g., sequences of use case steps; and (ii) they find it hard
and distracting to switch from feature models to use cases and vice versa during the decision-making
process. The PL extensions in Chapter 3 enable the analysts to model variability information directly
in use case and domain models without any feature modeling. The IEE analysts stated that the effort
required to apply the extensions for modeling variability information was reasonable. By having
variability information in use case and domain models, the analysts could focus on one artifact at a
time to make configuration decisions. They considered the extensions to be simple enough to enable
communication between analysts and customers, but they also mentioned that training customers may
be more of a challenge since the company may need customers’ consent to adopt PUMConf. Thus,
its costs and benefits should be made clear to customers.

4.9.3.2 Degree of Automation

In our discussions with the analysts at IEE, we noticed that: (i) the current clone-and-own reuse prac-
tice has no systematic way and automated support to decide what to include in PS use case and domain
models; (ii) typically, multiple analysts and engineers from both the customer and supplier sides are
involved in the decision-making process; (iii) the analysts and engineers have to spend several days to
manually review the entire set of requirements cloned from the previous product; and (iv) the intended
updates on the cloned use case and domain models are manually carried out by the IEE analysts. On
the other hand, PUMConf consists of various automated use case modeling and configuration activ-
ities in the context of product lines. The decision making process is automated in the sense that the
IEE analysts are guided through the PL artifacts for collecting and verifying configuration decisions,
while the generation of PS artifacts does not require any human intervention. Using PUMConf, the
IEE analysts only select a set of relevant variant use cases, optional steps, and variant entities for a
product. Corresponding PS use case and domain models are obtained from the PL models automat-
ically, which greatly reduces the complexity of the entire configuration process. Though modeling
variability in PL models is mostly manual, PUMConf provides automatic consistency checking for
these models and feedback to the analyst to help them refine and correct the models. The IEE analysts
considered the automated consistency checking of decisions and the generation of PS artifacts to be
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highly valuable.

4.9.3.3 Limitations of the Configuration Approach

Our configuration approach and tool support have some limitations at this current stage. First, our
modeling method supports only functional requirements. As stated by IEE analysts, there are nu-
merous types of non-functional requirements (e.g., security, timing, and reliability) which may play
a key role in variability associated with functional requirements. It is crucial to capture and config-
ure such aspects as well. Second, we do not address and support the evolution of PL use case and
domain models (see Chapter 7). When a new project starts, requirements and their variations might
not be fully known. As a result, in early stages, analysts are expected to redefine variation points
and variants in requirements specifications through frequent iterations. We were told such changes
need to be managed and supported to enable analysts to converge towards consistent and complete
requirements and variability information. Third, PUMConf is currently implemented as a plugin in
IBM DOORS, in combination with commercial modeling tools used at IEE, i.e., IBM Rhapsody, and
Papyrus. PUMConf highly depends on the outputs of these tools. The analysts mentioned that these
tools might be replaced with other tools or the newer versions of the same tools in the future. Future
changes in the tool chain will need to fulfill the following constraints: (i) a new modeling tool for PL
diagrams should be extensible in such a way that we can implement the PL diagram extensions in its
use case metamodel, (ii) a new requirements management tool should not enforce its own template
and restriction rules that conflict with the RUCM and PL specification extensions, and (iii) a new tool
for domain modeling should support the profiling mechanism which enables analysts to model the
domain with the PL stereotypes.

4.10 Conclusion

This chapter presented a configuration approach that is dedicated to environments relying on use
case-driven development. It guides customers in making configuration decisions and automatically
generates use case diagrams, use case specifications, and domain models for configured products.
Our main motivations are to provide a high degree of automation during configuration and to rely
exclusively on variability modeling for commonly used artifacts in use case-driven development, thus
avoiding unnecessary modeling overhead and complexity. Our configuration approach builds on our
previous work (i.e., Product line Use case Modeling method) and is supported by a tool relying on
natural language processing and integrated into IBM DOORS, that aims at (1) checking artifact con-
sistency, (2) identifying partial order of decisions to be made, (3) detecting contradicting decisions,
and (4) generating product-specific use case and domain models. The key characteristic of our ap-
proach is that variability is directly captured in product line use case and domain models, at a level
of granularity enabling both precise communication with various stakeholders, at different levels of
details, and automated product configuration. We performed a case study in the context of automotive
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embedded system development. The results from structured interviews and a questionnaire study with
experienced engineers suggest that our approach is practical and beneficial to configure product use
case and domain models in industrial settings.

In our current tool support, we assume that product-line use case diagrams are configurable, i.e.,
there is at least one valid product use case diagram that can be generated from a product-line diagram.
We further plan to improve the proposed approach and configurator (PUMConf) to identify non-
configurable product-line diagrams before making configuration decisions.

Apart from the product line extensions, which are independent from any application domain, our
approach does not make use of any further extensions specific to the embedded, automotive domain.
Therefore, PUMConf should be applicable to other domains and should not require any significant
adaptation as long as software development is use case-driven.

PUMConf does not currently support the detection of decisions violating constraints imposed
by the variant dependencies in PL domain models. We plan to improve the tool for detecting such
decisions, which is very similar to the detection of contradicting decisions in PL use case diagrams.

For resolving contradicting decisions in PL use case diagrams, our approach follows the strategy
in which the detected contradiction is fixed right away and the configuration is returned to a consistent
state. Our motivation stemmed from the observation that, in the considered business context, tolerat-
ing contradictions in decision-making significantly increases the complexity of communication with
customers. On the other hand, from a general standpoint, fixing a contradiction immediately may
not always be the optimal solution. Therefore, we plan to extend our approach to support multiple
contradiction resolution strategies.

We assume that complete product specific models are generated from product line models in a
single (albeit complex and iterative) stage, which is performed jointly by a team that combines the
activities of all the different parties involved in the configuration process. This is a valid assumption
in the observed business context, as well as in many other similar contexts. Given this assumption,
our tool provides the possibility of backtracking to change configuration decisions made in preced-
ing steps of the same stage. However, other organizations may require a multi-stage configuration
process, involving multiple physically dispersed configuration teams, which have to perform their
configuration steps in a pre-defined order. Each step may need to be performed by different experts at
different times in physically different locations, possibly using different configuration tools. In such
multi-stage configuration, supporting backtracking to earlier stages for resolving contradictions may
not be an option.

Our evaluation does not address the usability of PUMConf, especially in terms of resolving con-
tradicting decisions. As future work, we plan to conduct an extensive user study with engineers to
evaluate the effort that needs to be made in resolving contradicting decisions in PUMConf.
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In this chapter, we answered Research Question 3: To what extent and how can we automate the
interactive configuration of use case and domain models? How can we support the analysts for mak-
ing configuration decisions and for generating PS use case and domain models? Our configuration
algorithm, supporting the identification of decisions contradicting prior decisions, supports interactive
decision making and generation of PS use case and domain models.

PUMConf is only a first step to achieve our long term objective, i.e., change impact analysis
and regression test selection in the context of use case-driven development and testing. Change can
occur both in configuration decisions and variability aspects of product-line models. For decision
changes in a product, the impact on other decisions needs to be assessed and re-configuration should
be considered in the product-specific model. Further, the impact on the execution of test cases should
be assessed. In contrast, changes on product-line use case models require impact assessment on
decisions for each individual product and may entail reconfiguration and regression test selection in
several products.

The results in this chapter are the input for change impact analysis and regression testing ap-
proaches for evolving configuration decisions. Chapter 5 presents a change impact analysis approach
for evolving configuration decisions. PUMConf is extended with features in order to identify the
impact of decision changes on other decisions and to incrementally reconfigure the PS use case and
domain models.
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Change Impact Analysis for Evolving
Configuration Decisions

In this chapter, we propose, apply, and assess a change impact analysis approach for evolving con-
figuration decisions in Product Line (PL) use case models. In Chapter 3, we developed Product line
Use case modeling Method (PUM) to support variability modeling in PL use case diagrams and
specifications. We also developed a use case configurator, PUMConf, which interactively receives
configuration decisions from users to generate Product Specific (PS) use case models from PL models
(Chapter 4). Our approach is built upon PUM and PUMConf. It provides: (1) automated support to
identify the impact of decision changes on prior and subsequent decisions in PL use case diagrams
and (2) automated incremental regeneration of PS use case models from PL models and evolving de-
cisions. Our tool support is an extension of PUMConf integrated with IBM Doors. Our approach has
been evaluated in an industrial case study, which provides evidence that it is practical and beneficial
to analyze the impact of decision changes and to incrementally regenerate PS models in industrial
settings.

5.1 Introduction

Chapter 4 proposed and assessed a use case configurator, PUMConf, which interactively receives
configuration decisions from users to generate Product Specific (PS) use case models from Product
Line (PL) use case models. Requirements evolution results in changes in configuration decisions,
e.g., a selected variant use case being unselected for a product. It is critical for the analysts to identify
in advance the impact of such evolution for better decision-making during the configuration process.
For instance, impacted decisions, i.e., subsequent decisions to be made and prior decisions cancelled
or contradicting when a decision changes, need to be identified to reconfigure the generated use case
models.
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In this chapter, we propose, apply and assess a change impact analysis approach, based on our
use case-driven modeling and configuration techniques, to support the evolution of configuration
decisions. We do not address here evolving PL use case models, which need to be treated in a separate
approach. Change impact analysis provides a sound basis to decide whether a change is worth the
effort and which decisions should be changed as a consequence [Passos et al., 2013]. In our context,
we aim to automate the identification of decisions impacted by changes in configuration decisions on
PL use case models.

Our approach supports three activities. First, the analyst proposes a change but does not apply
it to the corresponding configuration decision. Second, the impact of the proposed change on other
configuration decisions for the PL use case diagram are automatically identified. In the PL use case
diagram, variant use cases and variation points are connected to each other with some dependencies,
i.e., require, conflict and include. In the case of a changed diagram decision contradicting prior and/or
subsequent diagram decisions, such as a subsequent decision resulting in selecting variant use cases
violating some dependency constraints because of the new/changed decision, we automatically detect
and report them. To this end, we improved our consistency checking algorithm in Chapter 4, which
enables reasoning on subsequent decisions as part of our impact analysis approach. The analyst is
informed about the change impact on decisions for the PL use case diagram. Based on this, the analyst
should decide whether the proposed change is to be applied to the corresponding decision. Third, the
PS use case models are incrementally regenerated only for the impacted decisions after the analyst
actually makes all the required changes. To do so, we implemented a model differencing pipeline
which identifies decision changes to be used in the reconfiguration of PS models. There are two sets
of decisions: (i) the set of previously made decisions used to initially generate the PS use case models
and (ii) the set of decisions including decisions changed after the initial generation of the PS models.
Our approach compares the two sets to determine for which decisions we need to incrementally
regenerate the PS models. To support these three activities, we extended our configurator, PUMConf.
To summarize, the contributions of this chapter are:

• A change impact analysis approach that informs the analysts about the impact of changes in
configuration decisions on PL use case models in order to improve the decision-making process,
and that incrementally reconfigures the generated PS use case models only for the impacted
decisions;

• Publicly available tool support integrated with IBM DOORS as a plug-in, which automatically
identifies the impact of configuration decision changes and incrementally regenerates the PS
use case models;

• An industrial case study demonstrating the applicability and benefits of our change impact
analysis approach.
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In this chapter, we answer Research Question 3 (To what extent and how can we automate the in-
teractive configuration of use case and domain models? How can we support the analysts for making
configuration decisions and for generating PS use case and domain models?), Research Question 4
(What are the change scenarios for use case models and system test cases in a product family? What is
necessary for these change scenarios to be handled in the configuration process? Which solutions can
be used?), and Research Question 5 (How can a change in a configuration decision be propagated
to other decisions in PL use case models and to system test cases? How can we support the ana-
lysts in performing changes? How can we reconfigure PS use case and domain models for decision
changes? How can we select and prioritize system test cases for such changes?). With the change
impact analysis approach, we address the issues about automated configuration, change scenarios for
configuration decisions, change propagation in configuration decisions, and the reconfiguration of PS
use case models.

This chapter is structured as follows. Section 5.2 introduces the industrial context of our case
study to illustrate the practical motivations for our approach. Section 5.3 discusses the related work
in light of the industrial needs identified in Section 5.2. In Section 5.4, we provide an overview of
the approach. Sections 5.5 and 5.6 provide the details of its core technical parts. In Section 5.7, we
present our tool while Section 5.8 reports on an industrial case study, i.e., STO, along with results and
lessons learned. In Section 5.9, we conclude the chapter.

5.2 Motivation and Context

Our change impact analysis approach is developed as an extension of our configurator, PUMConf, in
the context of embedded software systems interacting with multiple external systems, configured for
multiple customers, and developed according a use case-driven process. In such a context, configura-
tion decisions frequently change due to technological developments and evolving business needs. A
change impact analysis approach is therefore needed for identifying other impacted decisions for the
reconfiguration of PS models.

Changes on configuration decisions may have impact on other decisions in various ways. For
instance, in the PL diagram in Fig. 3.5, the analyst changes the decision for the variation point Clear
Error Status in order to resolve the contradiction with the prior decision for the variation point Store
Error Status (see Chapter 3). This is done by selecting the variant use case Clear Error Status,
which was previously unselected. This change has the following consequences: (i) the variation point
Method of Clearing Error Status should now be considered in subsequent decisions; (ii) the variant
use case Clear Error Status via IEE QC Mode is automatically selected because of the mandatory
variability relation; (iii) the newly selected use cases should be added to the the PS use case diagram
while the corresponding use case specifications should be added to the PS specifications; and (iv)
new optional steps and alternative flows are introduced for consideration if there is any in the added
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specifications. In some cases, subsequent decisions are also impacted because of decision restrictions.
Assume that the variant use case Store Error Status in the variation point Storing Error Status is
unselected, and no decision has been made yet for the variation point Clearing Error Status. When
the analyst changes the decision by selecting Store Error Status, the subsequent decision for the
variation point Clearing Error Status is restricted because Clear Error Status should be selected in
the subsequent decision to avoid further decision contradictions.

In practice, from a more general standpoint, the analysts should be aware of the impacts of deci-
sion changes to possibly reconsider some of them. After changing a decision, impact analysis support
is needed to guide subsequent decisions or to change prior decisions. Within our context, we identify
two challenges that need to be considered in identifying the impact of decision changes and supporting
the reconfiguration of PS use case models:

Challenge 1: Identifying Change Impact on Prior and Subsequent Decisions for PL Use Case
Diagrams. Changes on configuration decisions for the PL use case diagram have an impact on prior
decisions as well as on subsequent decisions to be made. Therefore, the impact analysis should check
(i) if the change causes any contradiction with prior decisions, (ii) if there is any prior decision which
becomes invalid, (iii) if any additional variation point should be considered for decision-making, and
(iv) if any subsequent decision should be restricted to ensure the consistency of decisions.

Challenge 2: Incremental Regeneration of PS Use Case Models. In practice, for a variety of
reasons, the analysts manually assign traces from the PS use case models to other software and hard-
ware specifications as well as to the customers’ requirements documents for external systems [Ramesh
and Jarke, 2001]. For instance, in order to verify the interaction between the system and the external
systems, IEE’s customers require that traces be assigned from the PS use case specifications to the re-
lated, external system requirements. Fig. 5.1 gives part of the basic flow of a PS use case specification
in IBM DOORS with a trace to a customer’s requirements specification.

Let us consider the trace in Fig. 5.1, which is from the first step of the basic flow to an external
system requirement in the customer’s software requirements specification. This use case step de-
scribes the operating status request sent by the STO controller, i.e., an external system implemented
by the customer, while the traced external system requirement describes the condition in which the
STO controller sends this request to the system. When the PS use case models are reconfigured for all
the decisions, including unimpacted decisions, manually assigned traces such as the one in Fig. 5.1
are lost. The analysts need to reassign all the traces after each reconfiguration. It is therefore vital
to enable the incremental regeneration of PS models by focusing only on impacted decisions. As a
result, the analysts would reassign traces only for the parts of the PS use case models impacted by
decision changes.

In the remainder of this chapter, we focus on how to best address these challenges in a practical
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Figure 5.1. Part of an STO Use Case Specification with Trace Links

manner, in the context of use case-driven development, while relying on PUM for modeling PL use
case models, and on PUMConf for the configuration of PS use case models.

5.3 Related Work

We cover the related work across four categories.

Reasoning Approaches for Product Lines. PL use case diagrams and feature models have similar
modeling constructs to represent system variability in terms of variation points, variant cardinalities
and dependencies. In a literature review on automated analysis of feature models [Benavides et al.,
2010], three types of analysis operations on feature models are addressed: corrective explanations,
dependency analysis and valid partial configuration. Our change impact analysis approach relies on
a form of dependency analysis to identify the impact of changing configuration decisions in PL use
case diagrams (Challenge 1). The dependency analysis operation takes a variability model (i.e., a
feature model) and a partial configuration as input and returns a new configuration with the variants
(i.e., features) that should be selected and/or unselected as a result of the dependency constraints [Be-
navides et al., 2010]. The FaMa formaL frAMEwork (FLAME) proposed by Durán et al. [Durán
et al., 2016] specifies the semantics of the analysis operations, e.g., validity of a product, the set of all
valid products and validity of a configuration, which can be employed not only for feature models, but
also for other variability modeling languages. However, in FLAME, change impact analysis has not
been considered as an analysis operation with its semantics in the presence of evolving configuration
decisions. By using dependency constraints, in the context of PL use case modeling, our approach
identifies variant use cases that should be selected or unselected as a result of a configuration decision
change.

Trinidad et al. [Trinidad et al., 2008] and White et al. [White et al., 2010] [White et al., 2008]
provide techniques to automatically propose decision changes when a dependency constraint is vio-
lated by some configuration decisions in a partial configuration. In contrast, our approach identifies
(potential) violations of dependency constraints when the analyst proposes a configuration decision
change. We can classify the automated support for the analysis operations according to the logic
paradigm it relies on: propositional logic [Mannion, 2002] [Mannion and Camara, 2003] [Batory,
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2005], constraint programming [Benavides et al., 2005b] [Benavides et al., 2005a] [Karatas et al.,
2010] and description logic [Wang et al., 2005] [Wang et al., 2007] [Fan and Zhang, 2006]. Re-
garding propositional, a variability model is first mapped into a propositional formula in conjunctive
normal form (CNF). A SAT solver takes the derived propositional formula and assumptions (config-
uration decisions) as input and determines if the formula is either satisfiable (SAT) or unsatisfiable
(UNSAT). Techniques such as HUMUS (High-level Union of Minimal Unsatisfiable Sets) [Nöhrer
et al., 2012] [Nöhrer and Egyed, 2013] are used to identify the contradicting configuration decisions
in the presence of UNSAT. Although we map the PL use case diagram into propositional logic formu-
las, we do not employ any SAT solving technique. Instead, for reasons explained below, we develop
our own impact analysis algorithm in our use case-driven product line context (see Section 5.5). When
a change is introduced to a diagram decision, our algorithm checks the consistency of decisions to
identify the impact on prior and subsequent decisions. A decision change can violate dependency
constraints with prior decisions or restrict subsequent decisions. One important point is that our al-
gorithm identifies not only the impacted decisions but also the reason of the impact, e.g., violation
of dependency constraints, changing decision restrictions, and contradicting decision restrictions. In
practice, the reason of the impact is important for the analysts to decide whether the proposed change
is worth the effort and what further changes to make on impacted decisions. In contrast, when using
SAT solvers, we only obtain as output, without any further explanation, decisions contradicting each
other after the decision change [Nöhrer et al., 2012] [White et al., 2010]. For instance, assume that the
analyst unselects the selected variant use case Store Error Status while there is no decision made yet
for the variation point Clearing Error Status in Fig. 3.5. Our approach identifies that the subsequent
decision for Clearing Error Status is impacted because the decision restriction previously introduced
through the require dependency becomes invalid after the change.

Impact Analysis Approaches for Product Lines. In the context of product line engineering, most
of the approaches in the literature focus on the evolution of variability models instead of the evolution
of configuration decisions [Botterweck and Pleuss, 2014]. They predict the potential further changes
in a PL model, e.g., a feature model, when deciding about a change in the same model. For instance,
Thüm et al. [Thüm et al., 2009] present an algorithm to reason about feature model changes. The evo-
lution of a feature model is classified as refactoring (i.e., no new products are added), specialization
(i.e., no new products are added and some existing products removed), generalization (i.e., new prod-
ucts are added and no existing products removed), and arbitrary edits. The presented algorithm takes
two versions of the same feature model as input and automatically computes the change classifica-
tion. Alves et al. [Alves et al., 2006] provide a catalog of change operations (e.g., add new alternative
feature and replace mandatory feature) for refactoring feature models. Paskevicius et al. [Paskevicius
et al., 2012] employ a similar catalog of change operations to propagate a feature model change to
other feature model elements through feature dependencies such as parent and child. Because the ap-
proach proposed by Thüm et al. [Thüm et al., 2009] does not identify the change operations applied
between two versions, Acher et al. [Acher et al., 2012] build on it to identify the differences between
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feature models in terms of propositional formulas. It does so by comparing configuration spaces of the
feature models. Bürdek et al. [Bürdek et al., 2015] propose a model differencing approach, which is
similar to our model differencing pipeline in Section 5.6, to determine and document complex change
operations between the feature model versions (i.e., feature models before and after changes). Our
model differencing pipeline identifies configuration decision changes, while their approach is used to
determine changes between two feature models, not between two configurations.

Seidl et al. [Seidl et al., 2012] assume that there are mappings, provided by the analyst, from
feature models to artifacts such as UML class diagrams and source code. They propose a classification
of feature model changes that captures the impact of these changes on the feature model mappings
and the mapped artifacts. Quinton et al. [Quinton et al., 2015] propose yet another approach to ensure
consistency of feature models and their mapped artifacts when feature models evolve. Dintzer et
al. [Dintzner et al., 2014] compute the impact of a feature model change on the existing configurations
of a product line by using partial dependency information in feature models. Similar to Dintzer et
al. [Dintzner et al., 2014], Heider et al. [Heider et al., 2012b] [Heider et al., 2012a] propose another
approach using regression testing to identify the impact of variability model changes on products.
For a change in a variability model of a product line, the approach identifies whether configuration
decisions for the existing products need to be changed as well. Then, it reconfigures all the products
in the product line for the impacted decisions. The approach also compares the reconfigured products
with the previous version to inform the analysts about the changed parts of the products.

One of the main differences between our approach and all the other approaches given above is that
the latter mainly focus on changes on feature models, not changes on configuration decisions, while
our approach deals with configuration decision changes and their impact on other decisions in PL use
case models (Challenge 1). We incrementally reconfigure PS use case models as a result of evolving
configuration decisions (Challenge 2) and do not address evolving PL models. White et al. [White
et al., 2014] propose an automated approach for deriving a set of configurations on a feature model
that meet a series of requirements in a multi-step configuration process. It is assumed that an initial
configuration evolves to a desired configuration where the analysts do not know the intermediate con-
figuration steps which involve configuration decision changes requiring multiple steps. The approach
derives potential configuration paths between the initial and desired configurations by mapping them
to a Constraint Satisfaction Problem (CSP). In contrast, our approach does not calculate potential
configuration paths for the desired configuration but guides the analyst in addressing the impact of
decision changes and ensure that a legal configuration is reached.

Another main difference is that our working context is specific to use case models with a specific
product line modeling method, i.e., PUM, which explicitly models variability information in use
case models, without any additional artifact such as feature models. The benefits of use case-driven
configuration have been acknowledged and there are approaches proposed in the literature [Alves
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et al., 2010] [Alférez et al., 2014] [Rabiser et al., 2010]. However, to the best of our knowledge,
there is no work addressing the impact analysis of evolving configuration decisions in the context of
use case-driven configuration. Many configuration approaches [Alférez et al., 2009] [Zschaler et al.,
2009] [Czarnecki and Antkiewicz, 2005] [Eriksson et al., 2009] [Eriksson et al., 2004] require that
feature models be traced as an orthogonal model to artifacts such as UML use case, activity and class
diagrams. Alternatively, we could have developed our impact analysis approach using feature models
traced to use case models. In such a case, feature modeling needs to be introduced into practice,
including establishing and maintaining traces between feature models and use case specifications
and diagrams, as well as other artifacts. At IEE and in many other development environments, such
additional modeling notations and the associated traceability are often perceived as an unnecessary
overhead (see Chapter 3).

Impact Analysis Approaches for Requirements Models. There are impact analysis approaches
that address change propagation in requirements, but not specifically in a product line context. Goknil
et al. [Goknil et al., 2014] [Goknil et al., 2008a] [ten Hove et al., 2009] propose a change impact anal-
ysis approach which propagates changes in natural language requirements to other requirements by
using the formal semantics of requirements relations, e.g., ‘requires’, ‘refines’ and ‘conflicts’ [Goknil
et al., 2011] [Goknil et al., 2008b]. When requirements are expressed in models such as goal models,
more specialized dependency types can be used for impact analysis. For instance, Cleland-Huang et
al. [Cleland-Huang et al., 2005] use soft goal dependencies to analyze how changes in functional re-
quirements impact non-functional requirements, while Amyot [Amyot, 2003] uses operationalization
dependencies between use cases and goals to propagate change between intentional and behavioral
requirements. Arora et al. [Arora et al., 2015a] [Arora et al., 2015b] propose another approach for
impact analysis over Natural Language (NL) requirements by employing Natural Language Process-
ing (NLP) techniques including the use of syntactic and semantic similarity measures. The approach
uses similarity measures to compute the change impact in terms of relatedness between the changed
requirement and other requirements in the requirements document. Nejati et al. [Nejati et al., 2016]
extend the approach to propagate requirements changes to design models in SysML. Our work was
inspired from the above techniques in terms of using requirements relations to propagate changes
among diagram decisions (Challenge 1). Our approach does not address changes in natural language
requirements, but deals with propagating decision changes to other decisions through variation point-
variant use case dependencies in the context of use case-driven configuration.

Incremental Model Generation Approaches. Use case-driven configuration approaches in the
literature (e.g., [Eriksson et al., 2005a] [Fantechi et al., 2004b] [Czarnecki and Antkiewicz, 2005]
[Alférez et al., 2009]) do not support incremental reconfiguration of use cases for evolving configura-
tion decisions (Challenge 2). There are also more general configuration approaches (e.g., [Dhungana
et al., 2011] [Rosa et al., 2009]) that can be customized to configure PS use case models. For instance,
DOPLER [Dhungana et al., 2011] supports capturing variability information as a variability model,

98



5.4. Overview of the Approach

and modeling any type of artifact as asset models. Variability and asset models are linked by using
trace relations. The approach proposed by Heider et al. [Heider et al., 2012a] [Heider et al., 2012b]
is an extension of DOPLER to identify the impact of changes of variability information on products.
It reconfigures all the products in the product line for the impacted decisions. However, it focuses on
changes in variability information, not changes in configuration decisions. It is also not incremental,
limiting its applicability, as the reconfiguration encompasses all the decisions, not only the affected
ones.

Considerable attention in the model-driven engineering research community has been given to in-
cremental model generation/transformation for model changes (e.g., [Hearnden et al., 2006] [Kurtev
et al., 2007] [Jahann and Egyed, 2004] [Giese and Wagner, 2009] [Xiong et al., 2007]), and this line of
work has inspired initiatives in many software engineering domains. For instance, Vogel et al. [Vogel
et al., 2009] use incremental model transformation techniques for synchronizing runtime models by
integrating a general-purpose model transformation engine into their runtime modeling environment.
Bidirectional model transformations are employed by Eramo et al. [Eramo et al., 2012] to support
the synchronization and interoperability of architecture models for architecture model changes. Al-
ternatively, we could also have employed a generic model transformation engine and language to
implement the incremental generation of PS use case models. Compared to model transformation
languages, in terms of loading, matching and editing text in natural language, Java provides much
more flexibility for handling plain text use case specifications. As a result, we used Java to implement
the generation of PS use case models in Chapter 4 but also for implementing the incremental recon-
figuration of PS models as a model differencing and reconfiguration pipeline (see Section 5.6). To the
best of our knowledge, our approach is the first to support incremental reconfiguration of PS use case
models for evolving decisions in a product family.

5.4 Overview of the Approach

The process in Fig. 5.2 presents an overview of our approach. In Step 1, Propose a change for a
decision, the analyst is asked to propose a change for a configuration decision made previously for
the PL use case diagram.

The configuration decision change proposed by the analyst is not actually applied to the cor-
responding decision yet. In Step 2, Identify the change impact on other decisions, our approach
automatically identifies the impact of the proposed change on other configuration decisions for the
PL use case diagram. The analyst is informed about the impact of the decision change on prior and
subsequent decisions, e.g., contradicting decisions and restricted subsequent decisions (Challenge 1).

The analyst evaluates the impacted decisions to decide whether the proposed change is to be
applied. In Step 3, Apply the proposed change, the analyst applies the proposed change to the corre-
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Figure 5.2. Overview of the Approach

sponding decision. Steps 1, 2, and 3 are iterative: the analyst proposes and applies changes until all
the required changes are considered. We discuss these three steps in Section 5.5.

After the analyst applies all the required changes to the configuration decisions, in Step 4, Regen-
erate product specific use case models, the PS use case diagram and specifications are incrementally
and automatically regenerated for only the changed decisions (Challenge 2). The details of the step
are described in Section 5.6.

5.5 Identification of Change Impact on Decisions for PL Use
Case Diagrams

Decision-making during product configuration is iterative. The analyst may update or delete some of
the prior decisions while new decisions are being made for undecided variants. A diagram decision
is about selecting, for the product, variant use cases in the variation point. Table 5.1 lists the change
types for diagram decisions.
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Table 5.1. Change Types for Diagram Decisions

Change Types
. Add a decision
. Delete a decision
. Update a decision
- Select some unselected variant use case(s)
- Unselect some selected variant use case(s)
- Unselect some selected variant use case(s) and
select some unselected variant use case(s)

The first two change types in Table 5.1 are obvious manipulations over the diagram decisions.
The subtypes of ‘Update a Decision’ match the (un)selection of variant use cases in a variation point.

When a change is introduced to a diagram decision, the analyst needs to identify not only the
impacted decisions but also the reason of the impact, e.g., violation of dependency constraints, new
restrictions for subsequent decisions, and contradicting decision restrictions (Challenge 1).
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Figure 5.3. An Example Product Line Use Case Diagram

Automated analysis for configuration support often relies on translating models to propositional
logic and using satisfiability (SAT) solvers [Benavides et al., 2010] [Mendonca et al., 2009b]. As we
discussed in Section 5.3, employing of SAT solvers can help identify impacted decisions but does
not provide further explanations regarding the reason of the impact. However, this is critical for the
analysts to make further decisions based on the change impact. To this end, we devised a custom
change impact analysis algorithm that identifies the impact of diagram decision changes on other
diagram decisions and provide an explanation regarding the cause of the impact. In the following, we
explain the steps of the algorithm with an illustrative example. The example is a slight adaptation of a
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piece of our industrial case study since we needed some additional modeling elements to illustrate the
complete set of features of the algorithm. Fig. 5.3 depicts an example PL use case diagram including
seven variation points, fourteen variant use cases, and one essential use case.

Table 5.2. Example Decisions for the PL Use Case Diagram in Fig. 5.3

Decision ID Explanation
d1 Selecting UC1 and UC2 in VP1
d2 Selecting UC9 and unselecting UC10 in VP4
d3 Unselecting UC15 in VP6
d2’ Selecting UC9 and UC10 in VP4

As an example, let us assume the analyst makes the decision d1 for VP1, which is selecting UC1
and UC2 for the product. Further, the decisions d2 and d3 are made for VP4 and VP6, which are
selecting UC9 and unselecting UC10 in VP4 and unselecting UC15 in VP6, respectively. Further, let
us assume that the analyst proposes to change d2 with d2′ by selecting unselected UC10 in VP4 (see
Table 5.2).

Alg. 3 describes the change impact analysis algorithm for diagram decisions. The algorithm takes
a set of prior decisions, a PL use case diagram, and a decision change as input. It reports added and
deleted contradicting prior decisions, added and deleted restrictions for subsequent decisions, and sets
of added and deleted contradicting restrictions as output.

The decision d, which precedes the decision change c, is a quadruple of the variation point vp, the
use case uc including vp, the set of selected variant use cases SUC in vp, and the set of unselected
variant use cases NSUC in vp (Line 6). The decision d′, which results from the change c, is given as a
similar quadruple (Line 7). For instance, in our example, d2 and d2′ are (V P4, null, {UC9}, {UC10})
and (V P4, null, {UC9,UC10}, /0), respectively.

We call check and infer functions with d and d′ to identify the impact of c (Lines 11-16).

• checkPriorDecisionConsistency determines contradicting prior decisions for variation points. Two
or more diagram decisions may contradict each other if they result in violating some variation point
and variant dependency constraints (i.e., require and conflict).

• inferDecisionRestrictions determines restrictions on the selection of variant use cases in undecided
variation points. The existing decisions may entail (un)selection of some variant use cases in sub-
sequent decisions through the variation point and variant dependencies.

• checkDecisionRestrictions determines contradicting restrictions for subsequent decisions. Two or
more decision restrictions may contradict each other if they result in violating some cardinality
constraints or result in selecting and unselecting the same variant use case.
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Alg. 3: impact
Inputs : Set of prior decisions (DC), PL use case diagram (PLD), Decision change (c)
Output: Sets of added and deleted contradicting prior decisions, added and deleted restrictions

for subsequent decisions, and added and deleted sets of contradicting restrictions

1 Let p be a pair (vp,uc) such that vp is a variation point either included by a use case uc, or vp
is not included by any use case

2 Let SUC be the set of variant use cases selected in p.vp before the change c
3 Let NSUC be the set of variant use cases unselected in p.vp before the change c
4 Let SUC′ be the set of variant use cases selected in p.vp after the change c
5 Let NSUC′ be the set of variant use cases unselected in p.vp after the change c
6 Let d be the quadruple (d p.vp,d p.uc,SUC,NSUC)
7 Let d′ be the quadruple (d p.vp,d p.uc,SUC′,NSUC′)
8 Let CD and CD′ be the empty sets for contradicting decisions
9 Let R and R′ be the empty sets for restrictions on further decisions

10 Let CR and CR′ be the empty sets for sets of contradicting restrictions
11 CD← checkPriorDecisionConsistency(DC, d, PLD)
12 CD′← checkPriorDecisionConsistency(DC, d′, PLD)
13 R← inferDecisionRestrictions(DC∪{d}, PLD)
14 R′← inferDecisionRestrictions(DC∪{d′}, PLD)
15 CR← checkDecisionRestrictions(R, PLD)
16 CR′← checkDecisionRestrictions(R′, PLD)
17 return (CD′\CD, CD\CD′, R′\R, R\R′, CR′\CR, CR\CR′)

The algorithm of checkPriorDecisionConsistency was developed as part of our configurator, PUM-
Conf, described as part of the configuration algorithm (Alg. 1) in Chapter 4. The algorithm is based
on mapping variation points, use cases and variant dependencies to propositional logic formulas. For
a given decision regarding a variation point, it only checks the satisfaction of the propositional formu-
las derived from the dependencies of the variation point (see Chapter 4). For example, assume there
are two conflicting variant use cases Ua and Ub (i.e., Ua conflicts with Ub). Ua and Ub are selected
in decisions Da and Db, respectively. Da and Db are contradicting because Ua and Ub cannot exist
for the same product (i.e., ¬(Ua∧Ub)).

For changing d2 with d2′ in Fig. 5.3, we call checkPriorDecisionConsistency first with d2 (DC =

{d1, d3} and d = d2 in Line 11), and then with d2′ (DC = {d1, d3} and d = d2′ in Line 12). For d2,
the function returns no contradicting prior decision. When UC10 is unselected in d2, UC11, UC12 and
UC13 in VP5 are automatically unselected because there is no other use case including VP5. UC13
which is unselected in d2 requires UC15 which is unselected in d3 (i.e., U13→ U15). Therefore, d2
and d3 are not contradicting. UC12 and UC13 are automatically selected in d2′ because of selected
UC10 and the mandatory variability relation in VP5. UC13 which is selected in d2′ requires UC15
which is unselected in d3. Therefore, for d2′, checkPriorDecisionConsistency returns d3 contradicting
d2′. The decision change introduces a new contradiction with d3 (CD′\CD = {d3} in Line 17). No
existing contradiction is removed by the change (CD\CD′ = /0 in Line 17). d3 is impacted since it
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contradicts d2′ after the change.

As part of our impact analysis approach, the algorithm of inferDecisionRestrictions also relies
on propositional logic mappings for variation points, use cases and variant dependencies (see Sec-
tion 5.5.1 for the details of the algorithm). For a given decision regarding a variation point, infer-
DecisionRestrictions infers restrictions for subsequent decisions by only checking the satisfaction of
the propositional logic formulas derived from the dependencies of the variation point. Assume two
variant use cases Ua and Ub in variation points Va and Vb with a requires relation (i.e., Ua requires
Ub). Ua is selected in decision Da for Va while there is no decision yet for Vb. The subsequent
decision for Vb is restricted as Ub needs to be selected to avoid a contradiction with Da because of
the requires relation (i.e., Ua→ Ub).

For the input decisions d1, d2 and d3, inferDecisionRestrictions returns restriction r1 for UC6 in
VP3 (Line 13). When UC1 is selected in d1, UC4 is automatically selected because of the mandatory
variability relation in VP2. UC4 conflicts with UC6, and there is no decision made for UC6. The
selection of UC4 restricts the subsequent decision for VP3 so that UC6 should not be selected to avoid
the contradiction with d1 (i.e., r1 in Table 5.3). For d1, d2′ and d3, the function returns restrictions r1
for UC6 in VP3, r2 for UC8 in VP3, and r3 for UC14 in VP7 (Line 14). UC12 in VP5 is automatically
selected in d2′, and it conflicts with UC8 in VP3 for which there is no decision made yet. The selection
of UC12 restricts the subsequent decision for VP3 through the conflicts relation that UC8 should not
be selected (i.e., r2). The restriction for the subsequent decision for UC8 restricts the subsequent
decision for VP7 through the requires relation (i.e., r3). If UC8 should not be selected, UC14 should
also not be selected since it requires UC8. The subsequent decisions for VP3 and VP7 are impacted
by the change because of the new restrictions (R′\R = {r2,r3} and R\R′ = /0 in Line 17).

Table 5.3. Restrictions Inferred from the Example Decisions in Table 5.2

Restriction ID Explanation of the Restriction
r1 UC6 in VP3 should not be selected
r2 UC8 in VP3 should not be selected
r3 UC14 in VP7 should not be selected

We devise the algorithm of checkDecisionRestrictions as part of our change impact analysis ap-
proach (see Section 5.5.2 for the details of the algorithm). For a given set of decision restrictions,
checkDecisionRestrictions identifies contradicting restrictions for subsequent decisions in terms of
violating cardinality constraints and restricting the same variant use cases for being selected and un-
selected. For example, assume there are two restrictions r1 and r2 which state the variant use cases
Ua and Ub in the variation point V need to be selected, respectively. V has the [0..1] cardinality
constraint. r1 and r2 do not comply with this cardinality constraint.

For the restrictions before the decision change in our example (i.e., r1), checkDecisionRestrictions
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does not return any contradicting restriction (Line 15). r1 restricts the subsequent decision for VP3
so that UC6 should not be selected. There is no other restriction, and r1 complies with the cardinality
constraint of VP3 (i.e., [2..3]). For the restrictions after the change (i.e., r1, r2 and r3), the function
returns {{r1, r2}}, i.e., the set of sets of contradicting restrictions. UC6 and UC8 in VP3 should
not be selected according to r1 and r2, respectively. The cardinality constraint in VP3 requires at
least two of three variant use cases in VP3 to be selected. Therefore, r1 and r2 cannot exist together
because of the cardinality constraint. A new contradiction is introduced after the decision change
(CR′\CR = {{r1,r2}} and CR\CR′ = /0 in Line 17). To resolve it, the decisions causing it need to be
updated. r2 is inferred from d2′ through UC12, while d1 results in r1 through UC4. Therefore, d1 is
identified as impacted.

Changing d2 with d2′ impacts d1 for VP1, d3 for VP6 and the subsequent decisions for VP3 and
VP7.

5.5.1 Identification of Subsequent Decision Restrictions

Decision restrictions are inferred by mapping variation points, use cases and variant dependencies to
propositional logic formulas. We assume that a PL use case diagram PLD is defined as a set, where
each use case is a member of the set. The PL diagram consists of n use cases PLD = {u1, ...,un};
each use case ui in PLD is represented by a boolean variable with the same name. Boolean variable ui

evaluates to true if use case ui is selected and false otherwise. If there is no decision made yet for use
case ui, variable ui is not valued (unknown). Please note that all essential use cases are automatically
selected.

In Chapter 4, Fig. 4.7 provides the corresponding propositional formulas for each pattern in-
volving dependencies, variation points, and variant use cases, where propositions capture logical
relationships among variant use cases. For instance, according to the corresponding propositional
formula in Fig. 4.7(a), if use case UCAm is selected for a product then this logically implies that
use case UCBn is also selected. Fig. 4.7(c) depicts the mapping when there is a require dependency
between two variation points A and B. In such a case, if one of the variant use cases in variation
point A (UCA1∨ ... ∨UCAm) is selected, then at least one of the variant use cases in variation point
B (→ UCB1∨ ... ∨UCBn) should also be selected.

Alg. 4 describes the algorithm for inferDecisionRestrictions. To illustrate the algorithm, we rely
on the example with the input decisions d1, d2′ and d3 in Fig. 5.3. For each decision d in the set of
decisions D, the algorithm calls some infer functions to identify the decision restrictions for subse-
quent decisions in which the propositional logic formulas, derived from the dependencies to/from the
diagram elements decided in d, are satisfied (Lines 11, 12, 15, 18, 19 and 21). Each infer function
in Alg. 4 infers restrictions for subsequent decisions using the propositional formulas in one or more
mappings in Fig. 4.7.
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Alg. 4: inferDecisionRestrictions
Inputs : Set of diagram decisions (D), PL use case diagram (PLD)
Output: Set of inferred decision restrictions (IR)

1 DC← D
2 Let IR be the empty set for inferred decision restrictions
3 while (DC 6= /0) do
4 Let d be a decision in DC
5 Let vp be the variation point in decision d
6 Let SUC be the set of selected variant use cases in decision d
7 Let NSUC be the set of unselected variant use cases in decision d
8 Let SE be the set of variant use cases automatically selected when the variant use cases in

SUC are selected in decision d
9 Let NSE be the set of variant use cases automatically unselected when the variant use cases

in NSUC are unselected in decision d
10 foreach (u ∈ (SUC∪ SE)) do
11 IR← IR ∪ inferRequiredByUC (u,D,PLD)
12 IR← IR ∪ inferConflictingUC (u,D,PLD)
13 end foreach
14 foreach (u ∈ (NSUC∪ NSE)) do
15 IR← IR ∪ inferRequiringUC (u,D,PLD)
16 end foreach
17 if (SUC 6= /0) then
18 IR← IR ∪ inferRequiredByVP (SUC,vp,D,PLD)
19 IR← IR ∪ inferConflictingVP (SUC,vp,D,PLD)
20 else
21 IR← IR ∪ inferRequiringVP (NSUC,vp,D,PLD)
22 end if
23 DC← DC\{d}
24 end while
25 return IR

• inferConflictingVP uses the formulas in Fig. 4.7(d) and (g) to infer decision restrictions for varia-
tion points and use cases conflicting with selected variation point vp in decision d,

• inferConflictingUC uses the formulas in Fig. 4.7(b) and (g) to infer decision restrictions for varia-
tion points and variant use cases conflicting with selected variant use case u in decision d,

• inferRequiringVP uses the formulas in Fig. 4.7(c) and (e) to infer decision restrictions for variation
points and variant use cases requiring unselected variation point vp in decision d,

• inferRequiredByVP uses the formulas in Fig. 4.7(c) and (f) to infer decision restrictions for varia-
tion points and variant use cases required by selected variation point vp in decision d,

• inferRequiringUC uses the formulas in Fig. 4.7(a) and (f) to infer decision restrictions for variation
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points and variant use cases requiring unselected variant use case u in decision d,

• inferRequiredByUC uses the formulas in Fig. 4.7(a) and (e) to infer decision restrictions for varia-
tion points and variant use cases required by selected variant use case u in decision d.

Alg. 5: inferConflictingUC
Inputs : Use case (u), Set of decisions (D), PL use case diagram (PLD)
Output: Set of inferred decision restrictions (IR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a
boolean variable

2 Let IR be the empty set for inferred decision restrictions
3 Let CVP be the set of variation points conflicting with u
4 Let CUC be the set of variant use cases conflicting with u
5 foreach (c ∈ CUC) do
6 if ((there is a subsequent decision to be made for c) and (c has not been selected in prior decisions in D)) then
7 Let vp be the variation point of c
8 IR← IR ∪ {(c, vp, f alse)}
9 IR← IR ∪ inferRequiringUC(c, D, PLD)

10 IR← IR ∪ inferRequiringVP({c}, vp, D, PLD)
11 Let AUC be the set of variant use cases automatically unselected when c is unselected
12 foreach (a ∈ AUC) do
13 Let p be the variation point of a
14 IR← IR ∪ {(a, p, false)}
15 IR← IR ∪ inferRequiringUC(a, D, PLD)
16 IR← IR ∪ inferRequiringVP({a}, p, D, PLD)
17 end foreach
18 end if
19 end foreach
20 foreach (p ∈ CVP) do
21 if ((there is a subsequent decision to be made for p) and (none of the variant use cases in p has been selected in prior

decisions in D)) then
22 Let UC be the set of variant use cases in p
23 IR← IR ∪ {(null, p, false)}
24 IR← IR ∪ inferRequiringVP(UC, p, D, PLD)
25 foreach (vc ∈ UC) do
26 IR← IR ∪ inferRequiringUC(vc, D, PLD)
27 end foreach
28 Let AU be the set of variant use cases automatically unselected when the variant use cases in p are unselected
29 foreach (vuc ∈ AU) do
30 Let vp be the variation point of vuc
31 IR← IR ∪ {(vuc, vp, false)}
32 IR← IR ∪ inferRequiringUC(vuc, D, PLD)
33 IR← IR ∪ inferRequiringVP({vuc}, vp, D, PLD)
34 end foreach
35 end if
36 end foreach
37 return IR

In Fig. 5.3, inferConflictingUC infers r1 and r2 from UC4, automatically selected in d1, and from
UC12, automatically selected in d2′, respectively. The algorithm of inferConflictingUC is given in
Alg. 5. For the rest of the infer functions, the reader is referred to Appendix B.
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The algorithm of inferConflictingUC in Alg. 5 uses the formulas in Fig. 4.7(b) and (g) to restrict
the subsequent decisions for variant use cases and variation points that conflict with selected use case
u. For instance, in Fig. 4.7(b), when UCAm is selected, it checks if there is any decision made for
UCBn. If there is no decision for UCBn, the subsequent decision is restricted that UCBn should not
be selected.

inferConflictingUC takes as input selected variant use case u, set of decisions D, and PL use case
diagram PLD, while it returns the set of decision restrictions IR. A decision restriction is given as a
triple (uc,vpo,b) where uc is a variant use case, vpo is the variation point of uc and b is a boolean
variable (Line 1 in Alg. 5). If the restriction is about the entire variation point, not about a single
variant use case in the variation point, uc becomes null. b indicates whether the variant use case(s)
should be selected or not. For instance, (null,Va, false) states that none of the variant use cases in
variation point Va should be selected, while (UCA1,Va, true) states variant use case UCA1 in Va
should be selected.

The algorithm starts with identifying the variant use cases conflicting with the input selected
variant use case u (see Fig. 4.7(b)). The conflicting variant use cases which have not been decided
yet should be unselected in subsequent decisions (Line 8). The subsequent decisions should also be
restricted for other undecided variant use cases and variation points which require those conflicting
use cases (Lines 9 and 10). When the conflicting variant use cases are unselected because of the
restriction, some variant use cases in the variation points included by those conflicting use cases
might also be automatically unselected, and therefore the corresponding subsequent decisions need
to be restricted (Lines 11-17). In our example, UC4 is selected in d1 (i.e., u = UC4), and only UC6
conflicts with UC4 (i.e., CUC = {UC6} in Line 3). There is no decision made for UC6 which should
not be selected (i.e., r1 = (UC6,VP3, false) in Line 8). UC4 does not include any variation point
where variant use cases might be automatically unselected (i.e., AUC = /0 in Line 12). As another
input use case, UC12 is selected in d2′ (i.e., u = UC12), and only UC8 conflicts with UC12 (i.e.,
CUC = {UC8} in Line 3). There is no decision made for UC8. Therefore, it should not be selected in
subsequent decisions (i.e., r2 = (UC8,VP3, false) in Line 8). UC8 is required by UC14 in VP7 which
has not been decided yet (see inferRequiringUC in Line 9). Another decision restriction r3 is inferred
for VP7 (i.e., (UC14,VP7, false)).

The algorithm also identifies the variation points conflicting with the input selected variant use
case u (see Fig. 4.7(g)). The variant use cases in the undecided conflicting variation points should be
unselected in the subsequent decisions (Line 23). The variant use cases and variation points requiring
those conflicting variation points or their variant use cases should also be unselected in the subsequent
decisions (Lines 24-27). The subsequent decisions are restricted for variant use cases which are
automatically unselected when the variant use cases in the undecided conflicting variation points are
unselected (Line 28-34). For the example in Fig. 5.3, there is no variation point conflicting with the
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input use cases. The algorithm returns all the inferred restrictions (Line 37).

5.5.2 Identification of Contradicting Decision Restrictions

For a given set of decision restrictions, our approach identifies (i) restrictions violating cardinality con-
straints in variation points and (ii) contradicting restrictions regarding the selection and unselection
of the same variant use case. Assume we have two restrictions rt1 and rt2 where rt1 = (null,Va, false)
and rt2 = (Ua,Va, true). rt1 and rt2 contradict each other because Ua in Va should be selected ac-
cording to rt2 while rt1 states all the variant use cases in Va should be unselected.

Alg. 6: checkDecisionRestrictions
Inputs : Set of decision restrictions (R), PL use case diagram (PLD)
Output: Set of sets of contradicting decisions (CR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc, and b is a
boolean variable

2 Let CR be the empty set for sets of contradicting restrictions
3 Let VP be the set of variation points in PLD
4 foreach (p ∈ VP) do
5 Let DR be the set of decisions restrictions in R for p
6 IR← DR
7 foreach (r ∈ DR) do
8 IR← IR\{r}
9 foreach (e ∈ IR) do

10 if (e.uc = r.uc and e.b 6= r.b) then
11 CR←CR ∪{{e,r}}
12 end if
13 if (r.uc = null) then
14 if (r.b = f alse) then
15 if (e.b = true) then
16 CR←CR ∪{{e,r}}
17 end if
18 end if
19 end if
20 end foreach
21 if (r.uc = null and r.b = true ) then
22 CR←CR ∪ checkSeveralRestrictions(p, DR, PLD)
23 end if
24 end foreach
25 CR←CR ∪ checkCardinality(p, DR, PLD)
26 end foreach
27 return CR

Alg. 6 describes the algorithm of checkDecisionRestrictions that identifies contradicting restric-
tions. A contradiction is described as a set of contradicting decisions. For each variation point p in
the PL diagram (Lines 3 and 4), the algorithm first checks if there are multiple restrictions (Lines
10-12). A contradiction is identified for two restrictions requiring the selection and unselection of the
same variant use case (Lines 11 and 16). More than two restrictions result in a contradiction where a
restriction requires at least one variant use case in a variation point to be selected while each variant
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use case in the same variation point is required to be unselected by yet another restriction (Line 22).
Restrictions which do not comply with cardinality constraints also contradict each other (Line 25).
We call two functions in Alg. 6 (Lines 22 and 25).

• checkSeveralRestrictions returns a set of contradictions for restrictions in DR in which more than
two restrictions for variation point p contradict each other,

• checkCardinality returns a set of contradictions for restrictions in DR which do not comply with
the cardinality constraints in variation point p.

For example, checkDecisionRestrictions checks the example restrictions for each variation point
in Fig. 5.3 where R = {r1,r2,r3} and PLD is Fig. 5.3. Restrictions r1 and r2 apply to the subsequent
decision in VP3 while r3 restricts another subsequent decision in VP7. r1 and r2 restrict the decision
for different variant use cases in VP3 (i.e., r1.uc 6= r2.uc in Line 10, r1.uc 6= null in Line 13, and
r2.uc 6= null in Line 13). UC6 and UC8 in VP3 should be unselected according to r1 and r2 while
the cardinality constraint requires at least two of three variant use cases in VP3 to be selected (i.e.,
checkCardinality returns {{r1,r2}} in Line 25). r3 complies with the cardinality constraint in VP7.
checkDecisionRestrictions returns {{r1,r2}} for the contradicting restrictions in Fig. 5.3 (Line 27).

5.6 Incremental Reconfiguration of PS Use Case Models

After all the decision changes are made, the PS use case models need to be incrementally reconfig-
ured (Challenge 2). The reconfiguration of PS models is implemented as a pipeline (see Fig. 5.4).
Configuration decisions are captured in a decision model during the decision-making process. The
decision model conforms to a decision metamodel, described in Chapter 4. PUMConf keeps two de-
cision models, i.e., the decision model before changes (M1 in Fig. 5.4) and the decision model after
changes (M2 in Fig. 5.4). Fig. 5.5 provides the decision metamodel and the two input decision models
for the PL use case models in Fig. 3.5 and Table 3.2.

The pipeline takes the decision models, and the PS diagram and specifications as input. The PS
models are reconfigured, as output, together with an impact report, i.e., list of reconfigured parts of
the PS models. The pipeline has three steps (Fig. 5.4).

In Step 1, Matching decision model elements, the structural differencing of M1 and M2 is done
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by looking for the correspondences in M1 and M2. To that end, we devise an algorithm that identifies
the matching model elements in M1 and M2. The output of Step 1 is the corresponding elements,
representing decisions for the same variations, in M1 and M2 (Section 5.6.1).

The decision metamodel in Fig. 5.5(a) includes the main use case elements for which the user
makes decisions (i.e., variation point, optional step, optional alternative flow, and variant order). In
a variation point, the user selects variant use cases to be included for the product. For PL use case
specifications, the user selects optional steps and alternative flows to be included and determines the
order of steps (variant order). Therefore, the matching elements in Step 1 are the pairs of variation
points and use cases including the variation points, the pairs of use cases and optional alternative
flows in the use cases, and the triples of use cases, flows in the use cases, and optional steps in the
flows.

In Step 2, Change calculation, decision-level changes are identified from the corresponding model
elements (see Section 5.6.1). A set of elements in M1 which does not have a corresponding set of
elements in M2 is considered to be a deleted decision, which we refer to as DeleteDecision in the
decision-level changes. Analogously, a set of model elements in M2 which does not have a corre-
sponding set of elements in M1 is considered to be added (AddDecision). Each set of corresponding
model elements with non-identical attribute values (see the red-colored attributes in Fig. 5.5(c)) is
considered to be a decision-level change of the type UpdateDecision. Alternatively, we could record
changes during the decision-making process. However, the user might make changes cancelling pre-
vious changes or implying some further changes. In such a case, we would have to compute cancelled
changes and infer new changes.

In Step 3, Regeneration of PS models, the PS use case diagram and specifications are regenerated
only for the added, deleted and updated decisions (see Section 5.6.2). For instance, use cases selected
in the deleted decisions are removed from the PS use case models, while use cases selected in the
added decisions are added in the PS models.

5.6.1 Model Matching and Change Calculation

We devise an algorithm (see Alg. 7) for the first two pipeline steps, Matching decision model elements
and Change calculation, in Fig. 5.4. The algorithm calls some match functions (Lines 7-9 in Alg. 7)
to identify the corresponding model elements, which represent decisions for the same variations, in
the input decision models. The match functions implement Step 1 in Fig. 5.4.

• matchDiagramDecisions returns the set of pairs (variation point, use case) matching in the
decision models (M1 and M2), which are capturing which variation points are included in the
use cases involved in diagram decisions,

• matchFlowDecisions returns the set of pairs (use case, optional alternative flow) matching in
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the input decision models (M1 and M2), which are capturing which optional alternative flows
are in the use cases involved in flow decisions,

• matchStepDecisions returns the set of triples (use case, flow, step) matching in the input de-
cision models (M1 and M2), which are capturing which steps are in the flows of the use cases
involved in step decisions.

Alg. 7: Algorithm for Steps 1 and 2 in Fig. 5.4
Inputs : Initial decision model, M1, New decision model, M2
Output: Triple of sets of decision-level changes (ADD, DELETE, UPDATE)

1 Let a pair (vp,uc) denote cases where vp is a variation point and uc is a use case including vp
2 Let a pair (uc, f l) denote cases where uc is a use case and f l is an optional alternative flow in uc
3 Let a triple (uc, f l,st) denote cases where uc is a use case, f l is a flow in uc, and st is a step in f l
4 Let U1 and U2 be the sets of (vp,uc) in M1 and M2
5 Let F1 and F2 be the sets of (uc, f l) in M1 and M2
6 Let S1 and S2 be the sets of (uc, f l,st) in M1 and M2
7 U3← matchDiagramDecisions(U1, U2)
8 F3← matchFlowDecisions(F1, F2)
9 S3← matchStepDecisions(S1, S2)

10 DELETE← (U1\U3) ∪ (F1\F3) ∪ (S1\S3)
11 ADD← (U2\U3) ∪ (F2\F3) ∪ (S2\S3)
12 foreach (k ∈ (D3 ∩D1)) do
13 z← getMatchingDecision(k, U3)
14 SUC1← getSelectedUseCases(k, M1)
15 SUC2← getSelectedUseCases(z, M2)
16 if (SUC1 6= SUC2) then
17 UPDATE← UPDATE ∪ {k}
18 end if
19 end foreach
20 foreach (t ∈ (F3 ∩F1)) do
21 y← getMatchingDecision(t, F3)
22 if (t. f l.isSelected 6= y. f l.isSelected) then
23 UPDATE← UPDATE ∪ {t}
24 end if
25 end foreach
26 foreach (u ∈ (S3 ∩S1)) do
27 m← getMatchingDecision(u, S3)
28 if (u.st isOptionalStep) and (u.st.isSelected 6= m.st.isSelected) then
29 UPDATE← UPDATE ∪ {u}
30 else
31 if (u.st.orderNumber 6= m.st.orderNumber) then
32 UPDATE← UPDATE ∪ {u}
33 end if
34 end if
35 end foreach
36 return(ADD, DELETE, UPDATE)

The corresponding model elements in the decision models in Fig. 5.5(b) and (c) are as follows
(Lines 7-9 in Alg. 7):

• For decisions in the variation points, U3 = {(B6, B7), (C6,C7)},

• For decisions in the optional alternative flows, F3 = /0,
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• For decisions in the use case steps, S3 = {(B11, B12, B13),(B11, B12, B14),(B11, B12, B15),
(B11, B12, B16),(B11, B12, B17),(C11,C12,C13),(C11,C12,C14),(C11,C12,C15),
(C11,C12,C16),(C11,C12,C17)}.

A variant use case in a variation point (vp) may include another variation point (vp′). Changing
the decision for vp may imply another decision to be added or deleted for vp′. As part of Step 2,
Change Calculation, the algorithm first identifies deleted and added diagram decisions by checking
the pairs of variation points and use cases which exist only in one of the input decision models
((U1\U3) and (U2\U3) in Lines 10-11). Similar checks are done for flow and step decisions in the
specifications (Lines 10-11). For the decision models in Fig. 5.5, there is no deleted or added decision
((U1\U3 = /0), (U2\U3 = /0), (F1\F3 = /0), (F2\F3 = /0), (S1\S3 = /0), and (S2\S3 = /0)).

The matching pairs of variation points and their including use cases represent decisions for the
same variation point ((B6, B7) and (C6,C7) in Fig. 5.5(b) and (c)). If the selected variant use cases
for the same variation point are not the same in M1 and M2, the corresponding decision in M1 is
considered as updated in M2 (Lines 12-19). The variant use case Provide System User Data via
Diagnostic Mode of the variation point Method of Providing Data is unselected in M1 (B6, B7 and
B9 in Fig. 5.5(b)), but selected in M2 (C6, C7 and C9 in Fig. 5.5(c)). The diagram decision for the
pair (B6, B7) in M1 is identified as updated (Line 17). To identify updated specification decisions,
the algorithm compares decisions across M1 and M2 that involve optional alternative flows, optional
steps and steps with a variant order (Lines 22-24, 28-30 and 31-33). In our example, the triples
(B11,B12,B14),(B11,B12,B15), (B11,B12,B16), and (B11,B12,B17) in Fig. 5.5 represent updated
decisions.

5.6.2 Regeneration of PS Use Case Models

After all the changes are calculated by matching the corresponding model elements in the input de-
cision models, the parts of PS use case models affected by the changed decisions are automatically
regenerated (Step 3 in Fig. 5.4).

Our approach first handles the diagram decision changes to reconfigure the PS use case diagram.
For selected variant use cases in the added diagram decisions (i.e., in the pairs (vp, uc) in ADD in Line
36 in Alg. 7), we generate the corresponding use cases and include relations in the PS diagram. For
selected variant use cases in deleted diagram decisions (i.e., in the pairs (vp, uc) in DELETE in Line
36), we remove the corresponding use cases and include relations from the PS diagram. If a selected
variant use case is unselected in an updated diagram decision (i.e., in the pairs (vp, uc) in UPDATE
in Line 36), we remove the corresponding use case from the PS diagram. For unselected variant use
cases which are selected in the updated diagram decisions, the corresponding use cases and include
relations are added to the PS diagram. Fig. 5.6 gives the regenerated parts of the PS use case diagram
in Fig. 4.4 for M1 and M2 in Fig. 5.5.
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There is no added or deleted diagram decision in M1 and M2 in Fig. 5.5. The decision for the
variation point Method of Providing Data (i.e., (B6,B7) in UPDATE in Line 36) is updated by select-
ing the variant use case Provide System User Data via Diagnostic Mode. Only the corresponding use
case and its include relation are added to the PS use case diagram (red-colored in Fig. 5.6).

Changes for diagram and specification decisions are used to regenerate the PS specifications. For
diagram decision changes, we add or delete the corresponding use case specifications. Table 5.4
provides the regenerated parts of the PS specifications in Table 4.2, for M1 and M2 in Fig. 5.5.

For the variation point Method of Providing Data included by the use case Provide System User
Data (i.e., (B6, B7)), we have one updated diagram decision in which the unselected use case Provide
System User Data via Diagnostic Mode is selected. The corresponding use case specification is added
(Lines 24-29 in Table 5.4). A new specific alternative flow is also generated for the inclusion of the
newly selected use case in the specification of the use case Provide System User Data (Lines 12-15,
red-colored).

The specification decision changes are about selecting optional alternative flows, optional steps
and steps with a variant order (e.g., the triples (B11,B12,B14),(B11,B12,B15), (B11,B12,B16),
and (B11,B12,B17) in Fig. 5.5(b)). The use case Provide System User Data via Standard Mode
has two new steps in Lines 19 and 21 in Table 5.4 (i.e., (B11,B12,B14), and (B11,B12,B16) in
Fig. 5.5(b)), while one of the steps (red-colored, strikethrough step) is removed (i.e., (B11,B12,B15)
in Fig. 5.5(b)). The step number of one of the steps is changed (Line 22, blue-colored) due to the
change in the order of the steps with a variant order (i.e., (B11,B12,B17) in Fig. 5.5(b)).
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Table 5.4. Reconfigured Product Specific Specifications
1 USE CASE Provide System User Data
2 1.1 Basic Flow
3 1. The tester SENDS the user data request TO the system.
4 2. The system VALIDATES THAT ‘Precondition of Provide System User Data

via Standard Mode’.
5 3. INCLUDE USE CASE Provide System User Data via Standard Mode.
6 1.2 Specific Alternative Flow
7 RFS 2
8 1. IF ‘Precondition of Provide System User Data via IEE QC Mode’ holds THEN
9 2. INCLUDE Provide System User Data via IEE QC Mode.
10 3. ABORT.
11 4. ENDIF
12 1.3 Specific Alternative Flow
13 RFS 2
14 1. INCLUDE USE CASE Provide System User Data via Diagnostic Mode.
15 2. ABORT.
16
17 USE CASE Provide System User Data via Standard Mode
18 1.1 Basic Flow

1. The system SENDS trace data TO the tester.
19 1. The system SENDS sensor data TO the tester.
20 2. The system SENDS calibration TO the tester.
21 3. The system SENDS error data TO the tester.
22 4. The system SENDS error trace data TO the tester.
23
24 USE CASE Provide System User Data via Diagnostic Mode
25 1.1 Basic Flow
26 1. The system SENDS the RAM data TO the tester.
27 2. The system SENDS the NVM data TO the tester.
28 3. The system SENDS the session response TO the tester.
29 4. The system SENDS the message length TO the tester.

5.7 Tool Support

We have implemented our change impact analysis approach as an extension of PUMConf (Product
line Use case Model Configurator). In Chapter 4, we already the tool architecture including the
components for automated configuration of PS use case and domain models. Section 5.7.1 provides
the extensions in the layered architecture of the tool for change impact analysis while we describe
the tool features with some screenshots in Section 5.7.2. For more details and accessing the tool,
see: https://sites.google.com/site/pumconf/.

5.7.1 Tool Architecture

Fig. 5.7 shows the tool architecture. It is composed of three layers: (i) the User Interface (UI) layer,
(ii) the Application layer, and (iii) the Data layer.

116

https://sites.google.com/site/pumconf/


5.7. Tool Support

A
pp

lic
at

io
n 

L
ay

er
U

I 
L

ay
er

D
at

a 
L

ay
er

Reconfigured 
PS Use Case 

Specifications 

Reconfigured 
PS Use Case 

Diagram 

Decision 
Model 

Impact
Reports

Papyrus DOORS

 
Configurator

PL-PS 
Transformer

Gate NLP
Workbench

Change Proposing 
and Propagation 

Engine

usesuses

uses

Artefact 
Consistency 

Checker

Decision 
Consistency 

Checker

uses uses

uses

Impact Report
Generator

uses

(Re) Configuration 
Scripts in DXL

uses
uses

Figure 5.7. Layered Architecture of PUMConf

We briefly introduce each layer and explain the new and extended components, i.e., the gray boxes
in Fig. 5.7.

User Interface (UI) Layer. This layer supports creating and viewing PL and PS artifacts, i.e., use
case diagrams and specifications. We employ IBM Doors (www.ibm.com/software/products/
ca/en/ratidoor/) for use case specifications and Papyrus (https://www.eclipse.org/papyrus/)
for use case diagrams.

Application Layer. With the new and extended components, this layer supports the main activities
of our impact analysis approach in Fig. 5.2: proposing a change, identifying the change impact on
other decisions, applying the proposed change, and regenerating PS use case models.

The Configurator component coordinates the other components in the application layer. The Ar-
tifact Consistency Checker and Decision Consistency Checker components were introduced in Chap-
ter 4. The Artifact Consistency Checker employs Natural Language Processing (NLP) to check the
consistency of the PL use case diagram and the PL use case specifications complying with the RUCM
template. To perform NLP, our tool employs the GATE workbench (http://gate.ac.uk/), an
open source NLP framework. The Decision Consistency Checker is extended to support inferring de-
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Figure 5.8. PUMConf’s User Interface for Proposing a Diagram Decision Change

cision restrictions and checking their consistency as part of our impact analysis approach. The PL-PS
Transformer component annotates the use case specifications using NLP to automatically generate
PS use case specifications. It is extended with the pipeline in Fig. 5.4 to incrementally regenerate PS
models. It uses scripts written in the Doors eXtension Language (DXL) to automatically (re)configure
PS use case specifications. The DXL scripts are also used to load the (re)configured use case specifi-
cations into Doors.

We further implemented some new components: Change Proposing and Propagation Engine and
Impact Report Generator. The Change Proposing and Propagation Engine supports proposing a
decision change and applying the proposed change while the Impact Report Generator generates the
impact analysis reports.

Data Layer. The PL and PS use case specifications are stored in the native IBM DOORS format
while the PL and PS use case diagrams are stored as UML models. The decision models are saved in
Ecore [Ecl, 2018]. We generate the impact reports as html pages.

5.7.2 Tool Features

We describe the main features of our tool: proposing a decision change, identifying the change im-
pact on other decisions, applying the proposed change, and incrementally reconfiguring PS use case
models.

Proposing a change. This feature supports Step 1, Propose a Change for a Decision, in Fig. 5.2.
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Figure 5.9. PUMConf’s User Interface for Displaying the Change Impact of Diagram Decision Changes on
Other Diagram Decisions

Before applying the change, the analyst proposes the decision change to determine the change
impact on other diagram decisions. In Fig. 5.8, the analyst decides to change the decision for the
variation point VP4 (Fig. 5.8(a)) and proposes selecting the unselected UC10 (Fig. 5.8(b)).

Identifying the change impact on other decisions. For Step 2, Identify the Change Impact on
Other Decisions, in Fig. 5.2, the tool automatically identifies the impact of the diagram decision
changes on prior and subsequent diagram decisions. Once the analyst proposes the change, the tool
provides an impact report documenting the impacted decisions along with an explanation for such
impact.

Fig. 5.9 shows the impact report for the example change in Fig. 5.3, i.e., selecting the unselected
UC10 in VP4. We use various colors, with a legend, on variant use cases and variation points to
explain the impacted decisions with the reason of the impact. When the analyst selects the unselected
UC10, UC12 and UC13 are automatically selected (i.e., the orange variant use cases in Fig. 5.9(b)).
The prior decision for VP6 is impacted because UC15 that is unselected is required by UC13 which
was selected after the change (i.e., the green yellow variant use case in Fig. 5.9(b)). The subsequent
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decisions for VP3 and VP7 are impacted because UC8 in VP3 and UC14 in VP7 are restricted by
the changed decision (i.e., the red variant use cases in Fig. 5.9(b)). The prior decision for VP1 is
yet another impacted decision because of the cardinality constraint in VP3 (i.e., the violet cardinality
constraint in Fig. 5.9(b)). The cardinality constraint can no longer be satisfied with the restriction for
UC8 derived from the changed decision (i.e., the red UC8 in Fig. 5.9(b)) and with the restriction for
UC6 derived from the prior decision for VP1 (i.e., the cyan UC6 in Fig. 5.9(b)).

Applying the proposed change. This feature supports Step 3, Apply the Proposed Change, in
Fig. 5.2. After evaluating the impact of the proposed change, the analyst decides whether to apply the
proposed change on the corresponding decision.

Incrementally reconfiguring PS use case models. This feature supports Step 4, Regenerate
Product Specific Use Case Models, in Fig. 5.2. Once all the required changes are made, the tool
automatically and incrementally regenerates the PS models corresponding to the changed decisions.

5.8 Evaluation

In this section, we evaluate our change impact analysis approach via reporting on (i) the results of
a questionnaire survey at IEE aiming at investigating how the approach is perceived to address the
challenges listed in Section 5.2 (Section 5.8.1), (ii) discussions with the IEE engineers to gather
qualitative insights into the benefits and challenges of applying the approach in an industrial setting
(Section 5.8.2), and (iii) an industrial case study, i.e., STO, to demonstrate the feasibility of the
incremental reconfiguration of PS use case models (Section 5.8.3) for a representative system.

5.8.1 Questionnaire Study

We conducted a questionnaire study to evaluate, based on the viewpoints of experienced IEE engi-
neers, how well our change impact analysis approach addresses the challenges that we reported in
Section 5.2. The study is described and reported according to the template provided by Wohlin et
al. [Wohlin et al., 2012].

5.8.1.1 Planning and Design

To evaluate the output of our impact analysis approach in light of the challenges we identified ear-
lier, we had semi-structured interviews with seven participants holding various roles at IEE: software
development manager, software team leader, software engineer, system engineer, hardware devel-
opment engineer, and embedded software engineer. They all had substantial industry experience,
ranging from seven to thirty years. All participants, except the hardware development engineer, had
previous experience with use case-driven development and modeling. The interview was preceded
by presentations illustrating the background approaches (i.e., the PL use case modeling method in
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Chapter 3 and the use case-driven configuration approach in Chapter 4), our change impact analy-
sis approach, a tool demo, and some detailed examples from STO. Interactive training sessions also
took place which included questions posed to the participants about the example models and ensured
that participants had reached a minimal level of understanding. We then organized three hands-on
sessions in which the participants could apply the configuration and the change impact analysis ap-
proaches in a realistic setting, followed by the structured interviews and data collection. In the first
hands-on session, the participants were asked to make configuration decisions and resolve conflicting
decisions using the guidance provided by PUMConf to generate PS use case models from the sample
PL use case diagram and specifications. In the second hands-on session, they used the impact analysis
results provided by PUMConf to identify the impact of the proposed decision changes on prior and
subsequent decisions in PL use case diagrams. In the third session, the participants used PUMConf
to incrementally reconfigure PS use case models based on the changed decisions.

To capture the perception of the IEE engineers participating in the interviews, regarding the poten-
tial benefits of our impact analysis approach and how it addresses the targeted challenges, we handed
out two questionnaires including questions to be answered according to two Likert scales [Oppen-
heim, 2005] (i.e., agreement and probability). The questionnaires were structured for the participants
to assess both our configurator and our change impact analysis approach in terms of adoption effort,
correctness, comparison with current practice, and tool support. The participants were also encour-
aged to provide open, written comments.

5.8.1.2 Results and Analysis

We solicited the opinions of the participants using two questionnaires named QA and QB (see Fig. 5.10
and Fig. 5.11). The objective of the questionnaire QA was to evaluate our use case-driven configu-
ration approach and its tool support. We needed to know how well the participants understood and
assessed the configuration approach before receiving their feedback about our impact analysis ap-
proach, which builds on it. Fig. 5.10(a) and (b) depict the questions in QA and the participants’
answers. The questions of QA were divided into three parts: (1) configuration of PS use case dia-
grams (QA1, QA2 and QA3), (2) configuration of PS use case specifications (QA4 and QA5), and (3)
the overall configuration approach and its tool support (from QA6 to QA11).

All participants, except two, agreed that our configurator is adequate and practical to capture
configuration decisions for PS use case models (QA1 and QA4). Further, these participants expressed
their willingness to use our tool for automatically configuring PS models in their projects (QA2 and
QA5). The two participants who did not agree on QA4 stated that they need to gather more experience
on various product line projects to be able to provide a precise judgment about the configurator. We
note that one of those participants disagreed whereas the second one left the questions (from QA1 to
QA6) unanswered. The former was the HW engineer, with no initial use case modeling experience,
and the latter was the system engineer. In short, these two participants were the ones with the least
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Figure 5.10. Responses to the Questions Related to the Configuration Approach
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Figure 5.11. Responses to the Questions Related to the Change Impact Analysis Approach
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software background.

Regarding the questions that target the overall approach and its tool support (from QA6 to QA11),
the participants agreed that the effort required to learn and apply our configurator is reasonable (QA7).
Nevertheless, one participant stated that more training is required to be able to easily follow the
configuration steps (QA6). All participants except one were interested in using our configurator for
managing product lines. The remaining participant, who is a software project manager and was the
most experienced, thought that our configurator brings added value only for projects which include
significant variability information, e.g., projects with more than 50 variation points (QA8). Moreover,
the participants agreed that our configurator provides useful assistance for configuring PS use case
models, when compared to the current practice in their projects (QA10), and ease communication
between analysts and stakeholders during configuration (QA9).

The objective of the second questionnaire QB was to evaluate our change impact analysis ap-
proach. Fig. 5.11(a) and (b) depicts the questions and answers for QB. QB is structured in four parts:
(1) identifying the impact of decision changes on other diagram decisions (from QB1 to QB3), (2)
incrementally reconfiguring PS use case diagrams (QB4 and QB5), (3) incrementally reconfiguring
PS use case specifications (QB6 and QB7), and (4) the overall impact analysis approach and its tool
support (from QB8 to QB14).

All participants, except one, agreed that (1) our approach is sufficient to determine and explain the
impact of decision changes for PL use case diagrams (QB1) and (2) the impact report generated after
the incremental reconfiguration is sufficient to capture the changed parts of the PS use case diagram
(QB4). The participant who disagreed on QB1 and QB4 mentioned in his comments that he lacks
experience in use case-driven development and modeling and that he is not sufficiently familiar with
the tool to provide a precise answer. There was a strong consensus among participants about the value
of adopting our change impact analysis approach (QB10 and QB11) and about the benefits of using
it to identify the impact of decision changes and to reconfigure PS models in their projects (QB5 and
QB7). The participants were very positive about the approach in general and were enthusiastic about
its capabilities, and most particularly the impact analysis reports provided by the tool. Nevertheless,
they mentioned that the user interface needed to be more professional and ergonomic, which was not
surprising for a research prototype. This was the main reason for one of the participants to disagree
on QB3, QB12, and QB14.

5.8.2 Discussions with the Analysts and Engineers

The questionnaire study had open, written comments under each section, in which the participants
could state their opinions in a few sentences about how our impact analysis approach addresses the
challenges reported in Section 5.2. As reported in Section 5.8.1, the participants’ answers to the ques-
tions through Likert scales and their open comments indicate that they see high value in adopting the
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change impact analysis approach and its tool support in an industrial setting in terms of (1) improving
decision making process, (2) increasing reuse, and (3) reducing manual effort during reconfiguration.
In order to elaborate over the open comments in the two questionnaires, we organized further discus-
sions with the participants. Based on the initial comments, we identified two aspects to further discuss
with the participants: industrial adoption of the approach and its limitations.

5.8.2.1 Industrial Adoption of the Approach

Our impact analysis approach is devised to support the decision-making process in the context of use
case-driven configuration. Therefore, it needs to be adopted as part of our configuration approach. In
the current practice at IEE, like many other environments, there is no systematic way to (re)configure
product-specific use case models and to identify the change impact for evolving decisions for use case
models. Although IEE engineers consider that the effort required to learn and apply our configuration
and change impact analysis approach is reasonable, they also stated that the costs and benefits of
adopting it should be further evaluated. This is, however, a common and general challenge when
introducing new practices in software development.

5.8.2.2 Limitations of the Approach

Our change impact analysis approach and its tool support currently have some limitations. First,
our approach supports only evolving configuration decisions. However, changes may also occur on
variability aspects of PL use case models. For instance, we may introduce a new variation point in
the PL use case diagram or we can remove a variant use case for a given variation point. As stated by
IEE engineers, it is important to evaluate the impact of PL use case model changes on configuration
decisions and on PS use case models. Therefore, our approach needs to be extended for evolving PL
use case models. Second, we implemented our approach as part of a prototype tool, PUMConf. The
tool has already received positive feedback from IEE engineers but they stated that it needs further
improvements in terms of usability. To identify potential usability improvements, we decided to
conduct empirical and heuristic evaluations [Nielsen and Molich, 1990] [Nielsen, 1994]. With regards
to the empirical evaluation, we plan to perform a user study with IEE engineers, where we will record
the end user interaction with the configurator. We plan to perform the heuristic evaluation of the
user interfaces according to certain rules, such as those listed in typical guideline documents [Smith
and N.Mosier, 1986], by asking users’ opinions about possible improvements of PUMConf’s user
interfaces.

5.8.3 Industrial Case Study

We report our findings about the feasibility of part of our impact analysis approach, i.e., incremental
reconfiguration of PS use case models, and its tool support in an industrial context. In order to
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experiment with our incremental reconfiguration approach in an industrial project, we applied it to
the functional requirements of STO.

5.8.3.1 Goal

Our goal was to assess, in an industrial context, the feasibility of using our approach. We assessed
whether we could improve reuse and significantly reduce manual effort by preserving unimpacted
parts of PS use case models, when possible, and their manually assigned traces.

5.8.3.2 Study Context

STO was selected for the assessment of our approach since it was a relatively new project at IEE with
multiple potential customers requiring different features. IEE provided their initial STO documenta-
tion, which contained a use case diagram, use case specifications, and supplementary requirements
specifications describing non-functional requirements. To model the STO requirements according to
our modeling method, PUM, we first examined the initial STO documentation and then worked with
IEE engineers to build and iteratively refine our models (see Table 3.4 in Chapter 3).

5.8.3.3 Results and Analysis

By using PUMConf, we, together with the IEE engineers, configured the PS use case models for
four products selected among the STO products IEE had already developed (see Chapter 4). The IEE
engineers made decisions on the PL models using the guidance provided by PUMConf. Among the
four products, we chose one product to be used for reconfiguration of PS models (see Table 4.3 in
Chapter 4) because it was the most recent one in the STO product family with a properly documented
change history. The IEE engineers identified 36 traces from the PS use case diagram and 278 traces
from the PS use case specifications that were directed to other software and hardware specifications as
well as to the customers’ requirements documents for external systems (see Fig. 5.1 for an example
trace). We considered eight change scenarios derived from the change history of the initial STO
documentation for the selected product (see Table 5.5).

Some change scenarios contain individual decision changes such as selecting unselected use cases
in a variation point, while some others contain a series of individual changes to be applied sequen-
tially (see S2 and S4). For instance, S2 starts with unselecting Clear Error Status in Fig. 3.5, which
automatically deletes the decision for the variation point Method of Clearing Error Status and implies
another decision change, i.e., unselecting Store Error Status.

Table 5.6 provides a summary of the reconfiguration of the PS use case models for the change sce-
narios. After each change scenario, we ran PUMConf and checked the preserved and deleted traces.
As discussed, our approach preserves all the traces for the unchanged parts of the PS models, while re-
moving the traces for the deleted parts of the PS models, which must be manually updated. To assess
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Table 5.5. Decision Change Scenarios

ID Change Scenario Explanation
S1 Update a diagram decision Unselecting selected use cases
S2 Update and delete diagram decisions Unselecting selected use cases, removing

other decisions
S3 Update a diagram decision Selecting unselected use cases
S4 Update and add diagram decisions Selecting unselected use cases, implying

other decisions
S5 Update a specification decision Selecting unselected optional steps
S6 Update a diagram decision Selecting unselected use cases
S7 Update a diagram decision Unselecting selected use cases
S8 Update a specification decision Updating the order of optional steps

the savings in traceability effort while reconfiguring, we looked at the percentages of traces from the
use case diagram and the use case specifications that were preserved over all change scenarios. From
Table 5.6, we can see that between 73% and 100% (average ≈ 96%) of the use case diagram traces
were preserved. Similarly, for the use case specifications, trace reuse was between 82% and 100%
(average ≈ 96%). We can therefore conclude that the proposed incremental reconfiguration of PS
use case models leads to significant savings in traceability effort in the context of actual configuration
decision changes.

5.8.4 Threats to Validity

The main threat to validity in our evaluation concerns the generalizability of the conclusions we de-
rived from our industrial case study and from the participants’ answers in our questionnaire study.
To mitigate this threat, we applied our approach to an industrial case study, i.e., STO, that includes
nontrivial use cases in an application domain with many potential customers and sources of variabil-
ity. STO is a relatively simple but typical automotive embedded system. It can be reasonably argued
that more complex systems would require more configuration support, not less. Further case studies
are nevertheless necessary for improving external validity. The fact that the respondents to our ques-
tionnaire were selected to have diverse backgrounds and the consistency observed across the answers
we received provide confidence about the generalizability of our conclusions among different project
participants. A potential threat to internal validity is that the we have limited domain knowledge and
were involved in the modeling and (re)configuration of the use case models we used in our evaluation.
To minimize the risks of mistakes, we had many meetings and interviews with domain experts at IEE
to verify the correctness and completeness of (1) our PL use case models, (2) the STO configurations,
and (3) the output of our change impact analysis approach.
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Table 5.6. Summary of the Reconfiguration of the PS Use Case Models for STO 
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0 0 2 9 0 2 0 0 
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 # of Initial Traces 278 265 218 231 278 287 298 278 

# of Deleted Traces 
During Reconfiguration 13 47 0 0 0 0 20 0 

# of Manually Added 
Traces After 
Reconfiguration 

0 0 13 47 9 11 0 0 

# of Preserved Traces 265 218 218 231 278 287 278 278 
% of Preserved Traces 95.3 82.2 100 100 100 100 93.2 100 

5.9 Conclusion

This chapter presented a change impact analysis approach that supports evolving configuration de-
cisions in product-line (PL) use case models. The approach automatically identifies the impact of
decision changes on other decisions in PL use case models, and incrementally reconfigures PS use
case diagrams and specifications for evolving decisions.

We aimed to improve the decision making process by informing the analyst about the impact
of decision changes and to minimize manual traceability effort by automatically but incrementally
reconfiguring the PS use case models, that is to only modify the affected model parts given a decision
change and thus preserve as many traceability links as possible to other artifacts.

Our change impact analysis approach is built on the top of the Product line Use case Modeling
method in Chapter 3 and the Product line Use case Model Configurator in Chapter 4, and supported
by a tool integrated into IBM DOORS. The key characteristics of our tool are (1) the automated iden-
tification of the impact of decision changes on prior and subsequent decisions in PL use case models,
and (2) the automated incremental reconfiguration of PS models from PL models and evolving config-
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uration decisions. We performed a case study in the context of automotive domain. The results from
structured interviews and a questionnaire study with experienced engineers suggest that our approach
is practical and beneficial to analyze the impact of decision changes and to incrementally reconfigure
PS models in industrial settings.

In this chapter, we answered Research Question 3 (To what extent and how can we automate
the interactive configuration of use case and domain models? How can we support the analysts
for making configuration decisions and for generating PS use case and domain models?), Research
Question 4 (What are the change scenarios for use case models and system test cases in a product
family? What is necessary for these change scenarios to be handled in the configuration process?
Which solutions can be used?), and Research Question 5 (How can a change in a configuration
decision be propagated to other decisions in PL use case models and to system test cases? How can
we support the analysts in performing changes? How can we reconfigure PS use case and domain
models for decision changes? How can we select and prioritize system test cases for such changes?).

Our approach does not support the evolution of PL use case models. We still need to address and
manage changes in variability aspects of PL models such as adding a new variation point in the PL
use case diagram. Our plan for the future work is to support change impact analysis for evolving PL
use case models to help analysts properly manage changes in such models (see the future research
directions in Chapter 7). This work is an intermediate step to achieve our long term objective in
this thesis, i.e., change impact analysis and regression test selection in the context of use case-driven
development and testing. Chapter 6 provides an automated regression testing approach for system
test cases derived from use case models in product families.
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Chapter 6

Automated Test Case Classification and
Prioritization in Product Lines

In this chapter, we propose, apply, and assess an automated system test case classification and prior-
itization approach specifically targeting regression testing in the context of the use case development
of product families. Our approach is built upon PUM and PUMConf, which we introduced in Chap-
ters 3 and 4, respectively. Our approach provides: (i) automated support to classify, for a new product
in a product family, relevant and valid system test cases associated with previous products, and (ii)
automated prioritization of system test cases using multiple risk factors such as the fault proneness
of requirements and requirements volatility in a product family. Our evaluation was performed in
the context of an industrial product family in the automotive domain. Results provide empirical evi-
dence that we propose a practical and beneficial way to classify and prioritize system test cases for
industrial product lines.

6.1 Introduction

Chapter 5 proposed and assessed a change impact analysis approach that supports evolving configu-
ration decisions in product line (PL) use case models. The approach automates the identification of
decisions impacted by changes in configuration decisions on PL use case models, and incrementally
reconfigures PS use case diagrams and specifications for evolving decisions.

In this chapter, we propose, apply and assess a test case classification and prioritization approach,
based on our use case-driven modeling and configuration techniques, to support the incremental test-
ing of new products of a product family where requirements are captured as use case specifications.
We do not tackle here the problem of automatically generating system test cases for products in a
product family. Some existing test case generation approaches [Wang et al., 2015a] [Wang et al.,
2015b] [Yue et al., 2015a] can be adapted to the product line context to generate system test cases and
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their trace links in the presence of PL requirements. In our context, we aim to automate the identi-
fication of system test cases from existing products which are impacted by changes in configuration
decisions when a new product is configured. Our approach follows the product line testing strategy
incremental testing of product lines [de Mota Silveira Neto et al., 2011]. After the initial product is
tested individually, new test cases might be needed and some of the existing test cases may need to be
modified for new products, while some existing test cases are reused as they are. We aim to test new
products using test case classification and prioritization based on configuration changes between the
previous product(s) and the new product to be tested.

Our approach supports the classification and prioritization of system test cases for new products
in a product line. System test cases for a new product are derived by reusing system test cases for
previous product(s), and by identifying use case scenarios of the new product that have not been
tested so far in the product family. To reuse the existing system test cases, our approach automatically
classifies them as obsolete, retestable, and reusable. An obsolete test case cannot be executed on the
new product as the corresponding use case scenarios are not selected for the new product. A retestable
test case is still valid but needs to be rerun to determine the possible impact of changes whereas a
reusable test case is also valid but does not need to be rerun for the new product. We implemented
a model differencing pipeline which identifies changes in the decisions made to configure a product
(e.g., selecting a variant use case). There are two sets of decisions: (i) decisions made to generate the
PS use case specifications for the previous product(s) and (ii) decisions made to generate the PS use
case specifications for the new product. Our approach compares the two sets to classify the decisions
as new, deleted and updated, and to identify the impacted parts of the use case models of the previous
product(s). By using the trace links from the impacted parts of the use case models to the system test
cases, we automatically classify the existing system test cases to be reused for testing the new product.
In addition, we automatically identify the use case scenarios of the new product that have not been
tested before, and provide information on how to modify existing system test cases to cover these
new, untested use case scenarios. System test cases are automatically prioritized based on multiple
risk factors such as fault-proneness of requirements and requirements volatility in the product line.
To this end, we compute a prioritization score for each system test case based on these factors. To
support these activities, we extended our tool, PUMConf. We have evaluated the effectiveness of
the proposed approach by applying it to select and prioritize the test cases of five software products
belonging to a product line in the automotive domain. To summarize, the contributions of this chapter
are:

• A test case selection and prioritization approach that is specifically tailored to the use case-
driven development of product families and that guides engineers in testing new products in a
product family;

• A publicly available tool integrated with IBM DOORS as a plug-in, which automatically selects
and prioritizes system test cases when a new product is configured in a product family;
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• An industrial case study demonstrating the applicability and benefits of our test selection and
prioritization approach.

In this chapter, we answer Research Question 5 (How can a change in a configuration decision be
propagated to other decisions in PL use case models and to system test cases? How can we support the
analysts in performing changes? How can we reconfigure PS use case and domain models for decision
changes? How can we select and prioritize system test cases for such changes?). With the test
case classification and prioritization approach, we address the issues about automated identification
of change impact on system test cases, automated test case classification, and automated test case
prioritization in product lines.

This chapter is structured as follows. Section 6.2 introduces the industrial context of our case
study to illustrate the practical motivations for our approach. Section 6.3 discusses the related work
in light of the industrial needs identified in Section 6.2. In Section 6.4, we provide an overview of
the approach. Sections 6.5 and 6.6 provide the details of its core technical parts. In Section 6.7,
we present our tool while Section 6.8 reports on our evaluation in an industrial setting, involving an
industrial case study, i.e., STO. In Section 6.9, we conclude the chapter.

6.2 Motivation and Context

Our test case classification and prioritization approach is developed as an extension of our configura-
tor, PUMConf, in the context of software systems configured for multiple customers, and developed
according to a use case-driven development process. In such a context, requirements variability is
communicated to customers using an interactive configuration process and an incremental testing
strategy is followed for which guidance and automated support are needed. For instance, for each
new product in a product family, IEE negotiates with customers how to resolve variation points in
requirements or, in other words, how to configure the product line, and then selects and prioritizes,
from the existing test suite(s) of the initial/previous product(s), the system test cases to be executed
for the new product. In addition, IEE engineers identify new requirements that have not been tested
before and existing test cases that need to be modified for the new product.

The current system testing practice at IEE, like in many other environments, is based on oppor-
tunistic reuse of test assets [de Mota Silveira Neto et al., 2011] (see Fig. 6.1). Product requirements are
elicited from an initial customer and documented as a use case diagram and use case specifications.
IEE engineers generate system test cases from the use case specifications. For each new customer
in the product family, they copy the current models, and negotiate variabilities with the customer to
produce a new use case diagram and new use case specifications (see copy and modify in Fig. 6.1).
As a result of the negotiations, they make changes in the copied use case models (see modify). They
manually choose and prioritize, from the existing test suite(s) of the previous product(s), test cases
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Figure 6.1. Opportunistic Reuse of System Test Cases

that can and need to be rerun to ensure existing, unmodified functionalities are still working correctly
in the new product (see select, prioritize and modify).

In practice, from a more general standpoint, engineers need more efficient and automated tech-
niques to manage the reuse of common and variable requirements, given as use cases, together with
system test cases derived from use cases across products in a product line. This is particularly impor-
tant in contexts where functional safety standards [RTCA and EUROCAE, 2018] [ISO, 2018] require
traceability between requirements and system test cases. In such contexts, traceability [Ramesh and
Jarke, 2001] [SWE, 2014] helps guarantee that test cases properly cover all requirements, a very
important objective in the standards systems need to comply with. In Chapters 3 and 4, we pre-
sented PUM which addresses the reuse of common and variable requirements across products, and
PUMConf which supports the automated generation of product specific use case diagrams and spec-
ifications. In this chapter, we address the problem of providing automated support for the selection
and prioritization of system test cases derived from use cases in a product family.

We identify two challenges that need to be carefully considered when deciding about which sys-
tem test cases to run on a new product in a product family:

Challenge 1: Identifying the Impact of Use Case Changes on System Test Cases. When there
is a new customer requiring a new product in a product family, changes are made in the use case
specifications for the new product and act as a contract. Since the generated use case models of the
products differ, the test suites used to verify the compliance of the products with their specifications
also differ. Therefore, for each new product in the product family, the engineer needs to identify (i)
changes on the use case models for the new product, (ii) existing system test cases impacted by those
changes, and (iii) the part of the updated use case models which has not been tested yet in the product
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family.

Figure 6.2. Test Cases derived from (a) the Basic Flow of the Use Case Recognize Gesture in Table 6.1 and (b)
the First Specific Alternative Flow of the Same Use Case

Let us consider the two system test cases in Fig. 6.2(a) and (b), which are derived from the use
case Recognize Gesture in Table 6.1. Fig. 6.2(a) covers the happy path scenario (the basic flow);
Fig. 6.2(b) covers the scenario including the alternative flow SAF1 (Lines 8-10 in Table 6.1) in which
the system aborts because of the invalid operating status. For a new STO product, the engineer
decides to cover the scenario in which the voltage fluctuation is checked and detected (see the optional
bounded alternative flow in Lines 8-12 in Table 3.2). When she changes the configuration for that
scenario, the bounded alternative flow is added in the PS use case specification of Recognize Gesture.
She needs to check (1) if the two test cases verifying Recognize Gesture are invalid because they
exercise execution scenarios that are impossible due to the new bounded alternative flow, (2) if they
need to be re-executed because they still exercise scenarios in the new product which have been
impacted by the new alternative flow, or (3) if it is not necessary to re-execute them because the new
bounded alternative flow does not have any impact on the scenarios they cover. Further, she needs to
derive new test cases to cover the voltage fluctuation scenario that is not covered by the existing test
cases.

Challenge 2: Requirements-based Prioritization of System Test Cases based on Multiple
Risk Factors. Multiple risk factors (such as requirements volatility in the product line, implemen-
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Table 6.1. Some of the Generated Product Specific Use Case Specifications for STO

1 USE CASE Recognize Gesture
2 1.1 Basic Flow (BF)
3 1. The system REQUESTS the move capacitance FROM the sensors.
4 2. INCLUDE USE CASE Identify System Operating Status.
5 3. The system VALIDATES THAT the operating status is valid.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 Specific Alternative Flow (SAF1)
9 RFS 3
10 1. ABORT.
11 1.3 Specific Alternative Flow (SAF2)
12 RFS 4
13 1. The system increments the OveruseCounter by the increment step.
14 2. ABORT.
15
16 USE CASE Identify System Operating Status
17 1.1 Basic Flow (BF)
18 1. The system VALIDATES THAT the watchdog reset is valid.
19 2. The system VALIDATES THAT the RAM is valid.
20 3. The system VALIDATES THAT the sensors are valid.
21 4. The system VALIDATES THAT there is no error detected.
22 1.5 Specific Alternative Flow (SAF4)
23 RFS 4
24 1. INCLUDE USE CASE Store Error Status.
25 2. ABORT.
26
27 USE CASE Provide System User Data
28 1.1 Basic Flow (BF)
29 1. The tester SENDS the system user data request TO the system.
30 2. The system VALIDATES THAT ‘Precondition of Provide System User Data

via Standard Mode’.
31 3. INCLUDE USE CASE Provide System User Data via Standard Mode.
32 1.2 Specific Alternative Flow (SAF1)
33 RFS 2
34 1. INCLUDE USE CASE Provide System User Data via IEE QC Mode.
35 2. ABORT.
36
37 USE CASE Provide System User Data via Standard Mode
38 1.1 Basic Flow (BF)
39 1. The system SENDS the trace data TO the tester.
40 2. The system SENDS the calibration data TO the tester.
41 3. The system SENDS the error trace data TO the tester.

tation complexity of requirements, and fault-proneness of requirements) may have to be considered
while system test cases are prioritized for each new product in a product line. For instance, chang-
ing requirements, i.e., evolving configuration decisions in the context of automated configuration,
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cause changes in the design and implementation of the product, and thus increases the likelihood of
introducing faults. It may also be desirable to rank higher system test cases for more complex require-
ments in case the system testing process should be stopped due to deadlines or budget restrictions.
These factors may have varying importance for test case prioritization in different product lines due to
technical and organizational factors. Therefore, the changing importance of risk factors on test case
prioritization should be accounted for in each product line.

In the remainder of this chapter, we focus on how to best address these challenges in a practical
manner, in the context of use case-driven development, while relying on PUM for modeling PL use
cases, and on PUMConf for the configuration of PS use case models.

6.3 Related Work

We cover the related work across three categories.

Testing of Product Lines. Various product line testing approaches have been proposed in the
literature [do Carmo Machado et al., 2014] [de Mota Silveira Neto et al., 2011] [Lee et al., 2012]
[Engstrom and Runeson, 2011] [Runeson and Engström, 2012] [Oster et al., 2011] [Tevanlinna et al.,
2004] [Johansen et al., 2011]. Neto et al. [de Mota Silveira Neto et al., 2011] present a comprehensive
survey of product line testing strategies, i.e., testing product by product, opportunistic reuse of test
assets, design test assets for reuse, division of responsibilities, and incremental testing of product
lines. The strategy testing product by product ignores the benefits of reusing test cases developed
for previous products, while the strategy opportunistic reuse of test assets focusses on the reuse of
test assets across products without considering any systematic reuse method. The strategy design
test assets for reuse enforces the creation of test assets early in product line development, under the
assumption that product lines and configuration choices are exhaustively modeled before the release
of any product. This assumption does not hold when product lines and configuration choices are
refined during product configuration, which is a common industry practice. The strategy division of
responsibilities is about defining testing phases that facilitate test reuse. Our approach follows the
strategy incremental testing of product lines employing regression testing techniques, i.e., test case
selection and prioritization. It is the first to support incremental testing of product lines through test
case selection and prioritization for use case-driven development.

Product line testing covers two separate but closely related test engineering activities: domain test-
ing and application testing. Domain testing validates and verifies reusable components in a product
line while application testing validates and verifies a product in the product line against its specifi-
cation. Our approach currently supports application testing, but can be employed in the context of
domain testing. For each new product, our approach can be used to classify and prioritize domain test
cases derived from PL use case models.
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There are various product line testing approaches that support test case generation and execution
in product lines (e.g., [Nebut et al., 2006] [Reuys et al., 2006] [Bertolino et al., 2006] [Kamsties et al.,
2004] [Geppert et al., 2014] [McGregor, 2001] [Uzuncaova et al., 2010] [Uzuncaova et al., 2008] [Ar-
rieta et al., 2017]). Some of them generate system test cases from use case models in a product family.
However, they require detailed behavioural models (e.g., sequence or activity diagrams) which engi-
neers tend to avoid because of the costs related to their development and maintenance. Among these
approaches, the main work is that of Reuys et al. [Reuys et al., 2005] [Reuys et al., 2006] [Pohl and
Metzger, 2006] [Kamsties et al., 2004], i.e., ScenTED, which is based on the systematic refinement
of PL use case scenarios to PL system and integration test scenarios. ScenTED requires activity dia-
grams capturing activities described in use case specifications together variants of the product family.
Extensions of ScenTED include the ScenTED-DF approach [Stricker et al., 2010] which relies on
data-flow analysis to avoid redundant execution of test cases derived with ScenTED. A methodology
that does not rely on detailed behavioural models is PLUTO (Product Lines Use Case Test Optimiza-
tion) [Bertolino et al., 2006] [Bertolino and Gnesi, 2003]. PLUTO automatically derives test scenarios
from PL use cases with some special tags for variability, but executable system test cases need to be
manually derived from test scenarios.

Our approach complements the test generation approaches mentioned above. Not all generated
system test cases need to be executed for new products since some of them have already been success-
fully tested for previous products. UMTG [Wang et al., 2015a] [Wang et al., 2015b] is a promising
test generation approach that can be integrated into our approach. It generates system test cases from
PS use case specifications in RUCM and from a domain model (class diagram). For a new product
in the product family, PUMConf can be used to automatically generate PS use case specifications,
which are later taken as input by UMTG to generate system test cases. Our approach can classify and
prioritize these test cases for the new product.

Test Case Classification and Selection. When defining a product in a product family for a new
customer, there is a need not only for testing the changed parts of the product but also for testing
other parts for regression. As the product grows, not all test cases can be rerun for regression due
to limited resources. Test case selection is a strategy commonly adopted by regression testing tech-
niques to reduce testing costs [Engstrom, 2010] [Yoo and Harman, 2012] [Do, 2016]. Regression test
selection techniques aim to reduce testing costs by selecting a subset of test cases from an existing test
suite [Rothermel and Harrold, 1996]. Most of them are code-based and use code changes and code
coverage information to guide the test selection (e.g., [Kung et al., 1995] [Binkley, 1997] [Rother-
mel and Harrold, 1997] [Rothermel et al., 2000] [Harrold et al., 2001] [Qu et al., 2011] [Nardo
et al., 2015]). Other techniques use different artifacts such as requirements specifications (e.g., [Vays-
burg et al., 2002] [Mirarab et al., 2008] [Dukaczewski et al., 2013]), architecture models (e.g., [von
Mayrhauser and Zhang, 1999] [Muccini et al., 2006] [Muccini and van der Hoek, 0382] [Muccini,
2007]), or UML diagrams (e.g., [Briand et al., 2009] [Chen et al., 2002] [Hemmati et al., 2010] [Zech
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et al., 2017]). For instance, Briand et al. [Briand et al., 2009] present an approach for automating
regression test selection based on UML diagrams and traceability information linking UML models
to test cases. They propose a formal mapping between changes on UML diagrams (i.e., class and
sequence diagrams) and a classification of regression test cases into three categories (i.e., reusable,
retestable, and obsolete).

The approaches mentioned above require detailed system design artifacts (e.g., finite state ma-
chines and UML sequence diagrams), rather than requirements in natural language, such as use cases.
Further, they compare a system artifact with its modified version to select test cases from a single test
suite in the context of a single system, not in the context of a product line.

There are several product line test case selection approaches [Runeson and Engström, 2012] [En-
gström, 2013]. Wang et al. [Wang et al., 2016] [Wang et al., 2017] propose a product line test case
selection method using feature models. The method works in three steps: (i) software engineers in-
dicate features that need to be tested; (ii) a toolset is used to check the consistency between features
included in a program; and (iii) test cases are automatically selected so that all the test cases asso-
ciated with a feature to be tested will be executed. The main limitation is that all the test cases of
the product family need to be derived upfront even if some of them may never be executed. There
are other similar approaches suffering from the same limitation [Cabral et al., 2010] [Knapp et al.,
2014] [Shurr et al., 2010] [Kahsai et al., 2008]. In contrast, our approach requires that only test cases
of the initial product be available in advance.

A test case selection approach that does not require early generation of test cases for the product
family is that of Lity et al. [Lity et al., 2016] [Lochau et al., 2014] [Lity et al., 2012], which is based
on model slicing for incremental product line testing. Lity et al. apply incremental model slicing to
determine the impact of changes on a test model, e.g., finite state machines, and to reason about their
potential retest. The approach needs detailed test models, e.g., finite state machines, which rarely
exist in contexts where requirements are mostly captured in NL. In addition, Lity et al. do not support
the definition of test cases for new requirements while our approach identifies use case scenarios
that have not been tested before, and provides information of how to modify existing test cases to
cover those new, untested scenarios (Challenge 1). Dukaczewski et al. [Dukaczewski et al., 2013]
briefly discuss how to apply incremental product line testing strategies to NL requirements. They do
not provide any method to model variability in requirements; it is only suggested that a requirement
is split into several requirements, one for each possible product variant. Also, there is no reported
systematic approach supported by a tool.

Test Case Prioritization. Test case prioritization techniques schedule test cases in an order that
increases their effectiveness in meeting some performance goals (e.g., rate of fault detection and
number of test cases required to discover all the faults) [Rothermel et al., 2001] [Khatibsyarbini et al.,
2018] [Yoo and Harman, 2012]. They mostly use information about previous executions of test cases
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(e.g., [Wong et al., 1997] [Rothermel et al., 2001] [Li et al., 2007] [Engström et al., 2011] [Gonzales-
Sanchez et al., 2011] [Hemmati et al., 2017]), human knowledge (e.g., [Srikanth et al., 2014] [Srikanth
and Williams, 2005] [Srikanth et al., 2016] [Srikanth and Banerjee, 2012] [Arafeen and Do, 2013] [Kr-
ishnamoorthi and Mary, 2009] [Basanieri et al., 2002]), or a model of the system under test (e.g.,
[e Zehra Haidry and Miller, 2013] [Kundu et al., 2009] [Tahat et al., 2012] [Korel et al., 2005] [Korel
et al., 2008]). For instance, Shrikanth et al. [Srikanth et al., 2005] propose a test case prioritiza-
tion approach that takes into consideration customer-assigned priorities of requirements, developer-
perceived implementation complexity, requirements volatility, and fault proneness of requirements.
Tonella et al. [Tonella et al., 2006] propose a test case prioritization technique using user knowledge
through a machine learning algorithm (i.e., Case-Based Ranking). Lachmann et al. [Lachmann et al.,
2016b] propose another test case prioritization technique for system-level regression testing based on
supervised machine learning. In contrast to the aforementioned approaches, we do aim at prioritizing
test cases for a new product in a product family, not for the next version of a single system. Our
approach considers multiple risk factors in a product line, identifies their impact on the test case pri-
oritization for the previous products in the product line, and prioritizes test cases for a new product
accordingly (Challenge 2).

There are some other approaches that address product lines (e.g., [Runeson and Engström, 2012]
[Engström, 2013] [Al-Hajjaji et al., 2014] [Baller et al., 2014] [Henard et al., 2014] [Ensan et al.,
2011] [Devroey et al., 2017] [Devroey et al., 2014] [Al-Hajjaji et al., 2017a] [Al-Hajjaji et al.,
2017b] [Lity et al., 2017]). For instance, to increase feature interaction coverage during product-by-
product testing, Al-Hajiaji et al. [Al-Hajjaji et al., 2014] [Al-Hajjaji et al., 2016] propose a similarity-
based prioritization approach that incrementally selects the most diverse product in terms of features
to be tested. Baller et al. [Baller et al., 2014] propose an approach to prioritize products in a product
family based on the selection of test suites with regard to cost/profit objectives. The aforementioned
techniques prioritize the products to be tested, which is not useful in our context since products are
seldom developed in parallel. In contrast, our approach prioritizes the test cases of a new product to
support early detection of software faults based on multiple risk factors (Challenge 2).

There are search-based approaches for multi-objective test case prioritization in product lines
(e.g., [Wang et al., 2014] [Parejo et al., 2016] [Arrieta et al., 2016] [Pradhan et al., 2018] [Arrieta
et al., 2019]). For instance, Parejo et al. [Parejo et al., 2016] model test case prioritization as a
multi-objective optimization problem and implement a search-based algorithm to solve it based on
the NSGA-II evolutionary algorithm. Arrieta et al. [Arrieta et al., 2019] propose another approach
that cost-effectively optimizes the test process of product lines. None of these works consider test
case classification and NL requirements as a factor to prioritize test cases.

Lachmann et al. [Lachmann et al., 2015] introduce a test case prioritization technique for incre-
mental testing of product lines using delta-oriented architecture models. The differences between
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products are captured in the form of deltas [Clarke et al., 2010], which are modifications between
architecture models of products used for integration testing. The proposed approach ranks test cases
based on the number of changed elements in the architecture. It is later extended using risk fac-
tors [Lachmann et al., 2017] and behavioral knowledge of architecture components [Lachmann et al.,
2016a]. The approach proposed by Lachmann et al. requires access to product architecture descrip-
tions and information about component behavior. In contrast, we do not require any design informa-
tion but relies on natural language requirements specifications, more precisely use case specifications
(Challenge 2).

6.4 Overview of the Approach

The process in Fig. 6.3 presents an overview of our approach. In Step 1, Classify system test cases
for the new product, our approach takes as input (i) system test cases, PS use case models, their trace
links, and configuration decisions for previous products in the product family, and (ii) PS use case
models and configuration decisions for the new product, to classify the system test cases for the new
product as obsolete, retestable, and reusable, and to provide information on how to modify obsolete
system test cases to cover new, untested use case scenarios (Challenge 1).

Step 1 is fully-automated. The classification and modification information in output of this step is
for the test engineer to decide which test cases to execute for the new product and which modifications
to make on the obsolete test cases to cover untested, new use case scenarios. We give the details of
this step in Section 6.5.

In Step 2, Select and modify system test cases for the new product, by using the classification in-
formation and modification guidelines automatically provided by our approach, the engineer decides
which test cases to run for the new product and modifies obsolete test cases to cover untested, new
use case scenarios. The activity is not automated because, for the selection of system test cases, the
engineer may also need to consider some implementation and hardware changes (e.g., code refac-
toring and replacing some hardware with less expensive technology) in addition to the classification
information provided in Step 2, which is purely based on changes in functional requirements. For
instance, a reusable test case might need to be rerun because part of the source code verified by the
test case is refactored.

In Step 3, Prioritize system test cases for the new product, selected test cases are automatically
prioritized based on risk factors including fault proneness of requirements, and requirements volatility
(Challenge 2). We discuss this step in Section 6.6.

140



6.5. Classification of System Test Cases in a Product Family

Select and Modify 
System Test Cases for 

the New Product

start

PS Use Case Diagram 
and Specifications, 

and Decision Model 
for the New Product 

1

Selected and 
Modified System 

Test Cases

Prioritize System 
Test Cases for the 

New Product

3

Prioritized 
System Test 

Cases

•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• ••

Test Cases, PS Use 
Cases, their Traces and 
Decision Models for 
Previous Product(s)

Test Execution 
History

Classify System Test 
Cases for the New 

Product

Classified System Test 
Cases and Guidance 

for Updating Test Cases

•• •• •• •• •• •• •• ••

2

Figure 6.3. Overview of the Approach

6.5 Classification of System Test Cases in a Product Family

The test case classification is implemented as a pipeline (see Fig. 6.4), which takes as input the
configuration decisions made for the previous products, the configuration decisions made for the new
product, and the previous product’s system test cases, trace links, and PS use case models. The
pipeline produces an impact report with the list of existing test cases classified.

Configuration decisions are captured in a decision model that is automatically generated by PUM-
Conf during the configuration process. The decision model conforms to the decision metamodel in
Fig. 5.5(a). The metamodel includes the main use case elements for which the user makes decisions
(i.e., variation points, optional steps, optional alternative flows, and variant orders). PUMConf keeps
a decision model for each configuration in the product line. Fig. 6.5 provides two decision models for
the PL use case models in Fig. 3.5 and Table 3.2.

The pipeline has four steps (see Fig. 6.4). The first three steps are run for each of the n previous
products in the product line, where each one has a decision model Mi with i = 1..n. Note that we also
employ the first two steps of the pipeline in Fig. 5.4 in Chapter 5. In Step 1, Matching decision model
elements, our approach automatically runs the structural differencing of Mi and Mnew by looking for
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Figure 6.4. Overview of the Model Differencing and Test Case Classification Pipeline

corresponding model elements representing decisions for the same variations (see Section 6.5.1).

In Step 2, Change calculation, the approach determines how configuration decisions of the two
products differ. Table 5.1 lists the types of decision changes. A decision is represented by means
of a n-tuple of model elements in a decision model. A change is of type “Add a decision” when a
tuple representing a decision in Mnew has no matching tuple in Mi. A change is of type “Delete a
decision” when a tuple representing a decision in Mi has no matching tuple in Mnew. A change is of
type “Update a Decision” when a tuple representing a decision in Mi has a matching tuple in Mnew

with non-identical attribute values (see the red-colored attributes in Fig. 6.5(c)).

In Step 3, Test case classification, the system test cases of the previous products are classified
for the new product by using the decision changes obtained from Step 2 and the trace links between
the system test cases and the PS use case specifications (see Section 6.5.2). A use case can describe
multiple use case scenarios (i.e., sequences of use case steps from the start to the termination of the
use case) because of the presence of conditional steps. Each system test case is expected to exercise
one use case scenario. For instance, there are three use case scenarios in the use case Provide System
User Data in Table 6.1. For each use case of the new product, we identify the impact of the decision
change(s) on the use case scenarios, i.e., any change in the execution sequence of the use case steps
in the scenario.

A system test case is classified in one of three categories: obsolete, retestable and reusable. A
test case is obsolete if it exercises an invalid execution sequence of use case steps in the new product.
A test case is retestable if it exercises an execution sequence of use case steps that has remained
valid in the new product, except for internal steps representing internal system operations (e.g., reset
of counters). A test case is reusable if it exercises an execution sequence of use case steps that has
remained valid in the new product. The test case categories are mutually exclusive. Use case scenarios
of the new product that have not been tested for the previous product are reported as new use case
scenarios.

In Step 4, Impact report generation, we automatically generate an impact report from the classified
test cases of each previous product to enable engineers to select test cases from more than one test
suite (see Section 6.5.3). Steps 1, 2 and 3 are the pairwise comparison of each previous product with
the new product. If there are multiple previous products (n > 1 in Fig. 6.4), test cases of each product
are classified separately in n reports in Step 3. We generate an overall impact report that compares
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Figure 6.5. (a) Decision Metamodel, (b) Part of the Example Decision Model of the Previous Product (Mi),
and (c) Part of the Example Decision Model of the New Product (Mnew)

these n separate reports and lists sets of new scenarios and reusable and retestable test cases for the n
previous products.
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6.5.1 Steps 1 and 2: Model Matching and Change Calculation

For the first two pipeline steps in Fig. 6.4, we rely on a model matching and change calculation
algorithm we devised in Chapter 5. In this section, we provide a brief overview of the two steps and
their output for the example decision models in Fig. 6.5(b) and (c).

In Step 1, we identify pairs of decisions in Mi and Mnew that are made for the same variants. The
decision metamodel in Fig. 6.5(a) includes the main use case elements for which the user makes de-
cisions (i.e., variation point, optional step, optional alternative flow, and variant order). In a variation
point included by a use case, the user selects variant use cases to be included for the product. For
PL use case specifications, the user selects optional steps and alternative flows to be included and
determines the order of steps (variant order). Therefore, the matching decisions in Step 1 are the pairs
of variation points and use cases including the variation points, the pairs of use cases and optional
alternative flows in the use cases, and the triples of use cases, flows in the use cases, and optional
steps in the flows. Table 6.2 shows some pairs of decisions in Fig. 6.5(b) and (c). For example, the
pairs 〈B6, B7〉 and 〈C6,C7〉 represent two decisions for the variation point Method of Providing Data
included in the use case Provide System User Data. The triples 〈B11, B12, B13〉 and 〈C11,C12,C13〉
represent two decisions for an optional use case step in the basic flow of the use case Provide System
User Data via Standard Mode.

Table 6.2. Matching Decisions in Mi and Mnew in Fig. 6.5

Decisions in Mi Decisions in Mnew
<B6, B7 > <C6, C7 >
<B18, B19 > <C18, C19 >
<B11, B12, B13 > <C11, C12, C13 >
<B11, B12, B14 > <C11, C12, C14 >
<B11, B12, B15 > <C11, C12, C15 >
<B11, B12, B16 > <C11, C12, C16 >
<B11, B12, B17 > <C11, C12, C17 >

In Step 2, Change Calculation, we first identify deleted and added configuration decisions by
checking tuples of model elements in one input decision model which do not have any matching tuples
of model elements in another input decision model (Mi and Mnew). For the decision models in Fig. 6.5,
there are no deleted or added decisions. To identify updated decisions, we check tuples of model
elements in Mi that have matching tuples of model elements in Mnew with non-identical attribute
values. The matching pairs of variation points and their including use cases represent decisions for
the same variation point (e.g., 〈B6, B7〉 and 〈C6,C7〉 in Table 6.2). If the selected variant use cases for
the same variation point are not the same in Mi and Mnew, the decision in Mi is considered as updated in
Mnew. We have similar checks for optional steps, optional alternative flows and variant order of steps.
For instance, an optional step is selected in the decision represented by the triple 〈B11, B12, B15〉
in Mi, while the same optional step is unselected in the decision represented by the matching triple
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〈C11,C12,C15〉 in Mnew. For the decision models in Fig. 6.5, the decisions represented by 〈B6, B7〉,
〈B18, B19〉, 〈B11, B12, B14〉, 〈B11, B12B15〉, 〈B11, B12, B16〉, and 〈B11, B12, B17〉 are identified
as updated.

6.5.2 Step 3: Test Case Classification

System test cases of the previous product are automatically classified based on the identified changes
(Step 3 in Fig. 6.4). To this end, we devise an algorithm (see Alg. 8) which takes as input a set of use
cases (UC), the test suite of the previous product (ts), and a triple of the sets of configuration changes
(dc) produced in Step 2. It classifies the test cases and reports use case scenarios of the new product
that are not present in the previous product.

Alg. 8: Test Case Classification Algorithm
Inputs : Set of use case specifications of the previous product UC,

Test suite of the previous product ts,
Triple of sets of decision-level changes dc
(ADD,DELETE,UPDATE)

Output: Quadruple of sets of classified test cases classified

1 Let OBSOLETE be the empty set for obsolete test cases
2 Let REUSE be the empty set for reusable test cases
3 Let RETEST be the empty set for retestable test cases
4 Let NEW be the empty set for new use case scenarios
5 Let classified be the quadruple (OBSOLETE, REUSE, RETEST, NEW)
6 foreach (u ∈ UC) do
7 if (there is a change in dc for u) then
8 model← generateUseCaseModel(u)
9 Let unew be a new version of u after the changes in dc

10 Scenarios←identifyTestedScenarios(model, ts)
11 foreach (s ∈ Scenarios) do
12 T← retrieveTestCases(s, ts, Scenarios)
13 classified← classified ∪ analyzeImpact(s, T , unew, dc)

14 end foreach
15 else
16 REUSE← REUSE ∪ retrieveTestCases(u, ts)
17 end if
18 end foreach
19 NEW← filterNewScenarios(NEW)
20 returnclassified

For each use case in the previous product, we check whether it is impacted by some configuration
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changes (Lines 6-7 in Alg. 8). If there is no impact, all the system test cases of the use case are
classified as reusable (Lines 15-17); otherwise, we rely on the function generateUseCaseModel (Line
8) to generate a use case model, i.e., a model that captures the control flow in the use case. This model
is used to identify scenarios that have been tested by one or more test cases (identifyTestedScenarios
in Line 10). For each scenario verified by a test case (retrieveTestCases in Line 12), we rely on
the function analyzeImpact (Line 13) to determine how decision changes affect the behaviour of the
scenario.

In Sections 6.5.2.1, 6.5.2.2, 6.5.2.3 and 6.5.2.4, we give the details of the functions generateUse-
CaseModel, identifyTestedScenarios, retrieveTestCases and analyzeImpact, respectively.

6.5.2.1 Use Case Model Generation

To generate a use case model from a PS use case specification, we rely on a Natural Language Process-
ing (NLP) solution proposed by Wang et al. [Wang et al., 2015a]. It relies on the RUCM keywords
and part-of-speech tagging to extract information required to build a use case scenario model. In
this section, we briefly describe the metamodel for use case scenario models, shown in Fig. 6.6, and
provide an overview of the model generation process.

- usecase: String
UseCaseStart

- usecase: String
- flow: String
- line: Integer

Stepnext1..1 1..1

1..1
Condition     Sequence

Abort Exit Internal Interaction

1..1

1..1

1..1
false

true
next

1..1

0..1

Include

Figure 6.6. Metamodel for Use Case Scenario Models

UseCaseStart represents the beginning of a use case with a precondition and is linked to the first
Step (i.e., next in Fig. 6.6). There are two Step subtypes, i.e., Sequence and Condition. Sequence has
a single successor, while Condition has two successors (i.e., true and false in Fig. 6.6).

Interaction indicates the invocation of an input/output operation between the system and an actor.
Internal indicates that the system alters its internal state. Exit represents the end of a use case flow,
while Abort represents the termination of an anomalous execution flow. Fig. 6.7 shows the models
generated from the use cases in Table 6.1. For each step identified as Interaction, Include, Internal,
Condition or Exit, a Step instance is generated and linked to the previous Step instance.
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Figure 6.7. Use Case Scenario Models Generated from the Use Case Specifications in Table 6.1

For each alternative flow, a Condition instance is created and linked to the Step instance of the first
step of the alternative flow (e.g., a4 and a5 in Fig. 6.7(a)). For multiple alternative flows on the same
condition, Condition instances are linked to each other in the order they follow in the specification.
For alternative flows that return back to the reference flow, an Exit instance is linked to the Step
instance that represents the reference flow step (e.g., next between b8 and b3 in Fig. 6.7(b)).

For alternative flows that abort, an Abort instance is created and linked to the Step instance of the
previous step (e.g., a8, a10, b15 and c7 in Fig. 6.7). For the end of the basic flow, there is always an
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Exit instance (e.g., a7, b6, c5 and d5 in Fig. 6.7).

6.5.2.2 Identification of Tested Use Case Scenarios

We automatically identify tested use case scenarios in a use case specification. A scenario is a se-
quence of steps that begins with a UseCaseStart instance and ends with an Exit instance in the use
case model. Each use case scenario captures a set of interactions that should be exercised during the
execution of a test case.

The function identifyTestedScenarios (see Line 12 in Fig. 8) implements a depth-first traversal of
use case models to identify tested scenarios. It visits alternative flows which are tested together with
previously visited alternative flows by the same test case.

Fig. 6.8 shows three tested scenarios extracted from the scenario models in Fig. 6.7(a) and (c).
The scenario in Fig. 6.8(a) executes the true branch of the Condition instance a5 in Fig. 6.7(a), while
the scenario in Fig. 6.8(b) executes the false branch of the same Condition instance. The scenario in
Fig. 6.8(c) executes the basic flows in Fig. 6.7(c) and Fig. 6.7(d).

6.5.2.3 Identification of Test Cases for Use Case Scenarios

We use trace links between test cases and use case specifications to retrieve test cases for a given
scenario. The accuracy of test case retrieval depends on the granularity of trace links. Companies
may follow various traceability strategies [Ramesh and Jarke, 2001], and generate links in a broad
range of granularity (e.g., to use cases, to use case flows or to use case steps). We implement a
traceability metamodel which enables the user to generate trace links at different levels of granularity
(see Fig. 6.9(a)).

Fig. 6.9 (b) gives part of the traceability model for trace links, assigned by engineers, between
two test cases and the use cases Recognize Gesture and Identify System Operating Status in Table 6.1.
Test case t1 is traced to the basic flows of Recognize Gesture and Identify System Operating Status
(i.e., (t1 tl1−→ f1) and (t1 tl3−→ f3)), while test case t2 is traced to the specific alternative flow SAF2 of
Recognize Gesture (i.e., (t2 tl2−→ f2)).

We retrieve, using the trace links in Fig. 6.9(b), t1 for the scenario in Fig. 6.8(a) since it is the
only scenario executing the basic flows of Recognize Gesture and Identify System Operating Status.
The scenario in Fig. 6.8(b) executes the alternative flow SAF2 of Recognize Gesture (see a9 and a10
in Fig. 6.8(b)). Therefore, we retrieve t2 for the scenario in Fig. 6.8(b).

In the context of our case study, as it is often the case, trace links are assigned from test cases to
only basic and alternative flows without indicating the execution order of the flows. There are cases
where we need finer-grained trace links to retrieve test cases.
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Figure 6.8. Some Tested Use Case Scenarios

First, we need finer-grained trace links when multiple scenarios take the same alternative flows
with different orders. In such a case, our approach needs the execution order of alternative flows to
match test cases and scenarios (see the attribute order in Fig. 6.9(a)).

Second, we need finer-grained trace links when there are more than one scenario taking the same
bounded or global alternative flow. Those alternative flows refer to more than one step in a reference
flow. Hence, a scenario can take a bounded/global alternative flow from different reference flow steps;
we need trace links indicating the reference flow step in which the flow is taken (see the “to” from
TraceLink to Step in Fig. 6.9(a)). If we do not have trace links at the right level of granularity, we ask
the user to match scenarios and test cases.
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Figure 6.9. (a)Traceability Metamodel and (b) Example Model

6.5.2.4 Impact Identification

We analyze the impact of configuration changes on use case scenarios to classify retrieved test cases
as obsolete, retestable and reusable. To this end, we devise an algorithm (see Alg. 9) which takes as
input a use case scenario to be analyzed (sold), a set of test cases verifying the scenario (T ), a use case
specification for the new product (u), and a triple of the sets of configuration changes (dc) produced
in Step 2. If there is no change impacting the scenario, test cases verifying the scenario are classified
as reusable (Line 8 in Alg. 9). For any change in the scenario (e.g., removing a use case step), the test
cases are classified as either retestable or obsolete (Line 5) as shown in Table 6.3, which describes
how test cases are classified based on the types of changes affecting the variant elements covered by
a scenario. For instance, if a configuration change adds a condition step to a scenario in which the
condition refers to an input entity, the test case verifying the scenario is classified as obsolete because
the new condition requires a change in the inputs of the test case (see rule R4 in Table 6.3).

For the example configuration changes identified in Section 6.5.1, the scenarios in Fig. 6.8(a)
and (b) are classified as retestable while the scenario in Fig. 6.8(c) is classified as obsolete. The tuple
〈B18,B19〉 represents an updated decision; the unselected optional bounded alternative flow of the use
case Recognize Gesture is selected in the new product (see Section 6.5.1). The selected optional flow
contains a condition, i.e., “voltage fluctuation is detected” in Line 10 in Table 3.2, which does not
refer to any entity in the input steps. Since the condition step is added in the scenarios in Fig. 6.8(a)
and (b), these two scenarios are classified as retestable. The triples 〈B11,B12,B14〉,〈B11,B12,B15〉,
〈B11,B12,B16〉, and 〈B11,B12,B17〉 in Fig. 6.5 represent updated decisions for the use case Provide

150



6.5. Classification of System Test Cases in a Product Family

System User Data (see Section 6.5.1). Some of the unselected output steps are selected while one
selected output step is unselected and the order of the output steps are updated in the basic flow of
Provide System User Data (see Fig. 6.5). Therefore, the test case verifying the scenario in Fig. 6.8(c)
for the basic flow of Provide System User Data is classified as obsolete (see rules R6, R7 and R9 in
Table 6.3).

Alg. 9: Algorithm for analyzeImpact
Inputs : Old use case scenario sold,

Set of test cases T ,
New use case specification u,
Decision changes dc

Output: Quadruple of sets of classified test cases classified
(OBSOLETE, REUSE, RETEST, NEW)

1 model← generateScenarioModel(u)
2 Let inst be the UseCaseStart instance in model
3 Let snew be an empty scenario
4 if (there is at least one change in dc for sold) then
5 classified← analyzeChangesOnScenario(sold, dc, T)
6 NEW← identifyNewScenarios(model, sold, snew, inst)

7 else
8 REUSE← T
9 end if

10 returnclassified

We process scenarios impacted by the configuration changes to identify new scenarios for the new
product (Line 6 in Alg. 9). Furthermore, for each new scenario, we provide guidance to support the
engineers in the implementation of test case(s). To this end, we devise an algorithm (Alg. 10) which
takes as input a use case model of the new product (sm), a use case step in the model (inst), a use case
scenario of the previous product (sold) that has been exercised by either an obsolete or retestable test
case, and a new scenario (snew) which is initially empty. The algorithm generates a set of triples 〈 snew,
sold, G 〉, where snew is the new scenario identified, sold is the old scenario of the previous product,
and G is the guidance, i.e., a list of suggestions indicating how to modify test cases covering sold to
generate test cases covering snew.

In Fig. 10, the algorithm follows a depth-first traversal of sm by following use case steps in sm
that have corresponding steps in sold. To this end, when traversing condition steps, the algorithm
follows alternative flows taken in sold (Lines 8-11). More precisely, whenever a Condition instance
is encountered, the algorithm checks if the Condition instance exists also in sold (Line 8). If so, the
algorithm proceeds with the condition branch taken in sold, i.e., the step following the Condition
instance in sold (Line 11); otherwise, it takes the condition branch(es) which have not yet been taken
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Table 6.3. Changes in Use Case Scenarios and Classification of System Test Cases
Rule
ID

Change in the Use
Case Scenario

Test Case Clas-
sification

Rationale

R1 Add or remove an in-
ternal step

Retestable Internal use case steps represent internal system operations (e.g., reset of counters) and
do not directly affect system-actor interactions. Therefore, a test case does not need
to be modified to exercise a scenario including added or deleted internal steps (e.g., a
new internal step does not imply an additional test input or an update in the test oracle).
The test case can be executed against the new product without any change; however, the
system may not behave as expected (e.g., because of a faulty implementation of a new
internal use case step) and thus the test case is classified as retestable.

R2 Update the order of an
internal step

Retestable Since internal use case steps do not directly affect system-actor interactions, a test case
does not need to be modified in the presence of a change in the order of internal steps
(i.e., a different sequence of internal steps does not imply an update in test inputs or
oracles). However, the system may not behave as expected (e.g., because of a faulty
implementation of the new order of an internal step) and thus the test case is classified
as retestable.

R3 Add or remove a con-
dition step where the
condition refers exclu-
sively to state variables

Retestable Condition steps are used to verify properties of input entities and/or state variables. A
condition step, in practice, restricts the execution of a use case scenario to a subset of
the values assigned to the input entities and/or state variables verified by the condition.
State variables are used to model the system state, while input entities describe system
inputs provided by actors. The addition and removal of condition steps that verify the
properties of state variables reflect changes in the internal behaviour of the system but
not in the system-actor interactions. Therefore, a test case is not modified in the presence
of added/removed condition steps that only verify the properties of state variables (e.g.,
such a new condition step does not imply an update in test inputs and oracle). However,
the system may not behave as expected (e.g., because of a faulty implementation of the
changed state variables) and thus the test case is classified as retestable.

R4 Add or remove a con-
dition step where the
condition refers to an
input entity

Obsolete Adding or removing a condition step referring to input entities may imply an update in
the test inputs if the test input values do not satisfy the changed condition. Since we
do not inspect executable test cases in our analysis, it is not possible to determine if
the test cases of the previous product already provide the values that fulfill the changed
condition. To be conservative, we consider test cases of scenarios impacted by such
changes as obsolete thus forcing engineers to verify if the test input values exercise the
scenario.

R5 Update the order of a
condition step

Obsolete When old and new scenarios differ regarding the order in which condition steps appear,
then the behaviour triggered by the test case of the previous product might not be the
same in the new product (e.g., if the steps that define the variables verified by the con-
dition are between the condition steps that have been changed). Therefore, we consider
a test case that exercises an old scenario affected by such changes as obsolete.

R6 Add or remove an in-
put/output step

Obsolete Input and output use case steps represent system-actor interactions. Therefore, the im-
plementation of the test case needs to be modified to exercise the targeted scenario when
input and output steps are added or removed (e.g., a new input step implies an additional
test input in the test case).

R7 Update the order of an
input/output step

Obsolete Since input and output use case steps represent system-actor interactions, the imple-
mentation of the test case needs to be modified to exercise the targeted scenario when
the order of input and output steps is updated (e.g., a new order of input steps implies
an update in the sequence of test inputs).

R8 Remove an alternative
flow

Obsolete Alternative flows capture sequences of interactions taking place under certain execution
conditions. If a use case scenario of the previous product covers an alternative flow that
does not exist in the new product, the corresponding test case should be considered as
obsolete because the interactions verified by the test case cannot take place with the new
product.

R9 Multiple changes in the
use case scenario

Obsolete or
Retestable

A test case is classified as obsolete if there is at least one change in the scenario that
makes the test case obsolete. A test case is classified as retestable if there are no changes
in the scenario that make the test case obsolete and if there is at least one change in the
scenario that makes the test case retestable.

in snew (Lines 12-30).

Alternative flows may lead to execution loops; this happens when alternative flows resume the
execution of steps belonging to the originating flows. In our current implementation we generate
scenarios that cover each loop body once. To this end, when processing condition steps, the algorithm
checks if the branches that may lead to cycles have already been traversed (i.e., Lines 14 and 22). If
it is the case, the traversal of the scenario is directed towards the branch that brings the scenario out
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of the cycles (i.e, the true branch for specific alternative flows and the false branch for bounded or
global alternative flows as shown in Lines 15 and 23, respectively).

The generation of snew terminates when an Exit or Abort step is reached (Line 32). The only
exception is that of Exit steps of included use cases, which lead to another step that follows the
Include step (Line 33). Before adding snew to the result tuple, we automatically compare sold and snew,
and determine their differences to generate guidance for new test cases (G in Line 37). We provide a
set of suggestions for adding, removing and updating test case steps corresponding to added, removed
and updated use case steps in sold and snew.
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Figure 6.10. Two New Scenarios Derived from the Scenarios in Fig. 6.8

Fig. 6.10 gives two new scenarios derived from the scenarios in Fig. 6.8. Fig. 6.10(a) is derived
from Fig. 6.8(a) and (b); Fig. 6.10(b) is derived from Fig. 6.8(c). The new scenario in Fig. 6.10(a)
executes the new selected optional bounded alternative flow in which the use case Recognize Gesture
aborts due to the voltage fluctuation (see Lines 8-12 in Table 3.2). While traversing sm for sold in
Fig. 6.8(a), the new Condition instance anew1 and the new Abort instance anew2 (green-colored in
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Fig. 6.10(a)) are added in snew to execute the bounded alternative flow. snew in Fig. 6.10(b) executes
the basic flow of the use case Provide System User Data of the new product where the order of one
step is updated (blue-colored in Fig. 6.10(b)) and some new steps are introduced (green-colored)
while some others are removed.

Alg. 10: Algorithm for identifyNewScenarios
Inputs : New scenario model sm, model instance inst, old scenario sold , new scenario snew

Output: Set of triples of new scenario, old scenario and guidance S

1 Let S be the empty set for triples of old scenario, new scenario and guidance
2 if (inst is a UseCaseStart, Interaction or Internal instance) then
3 addToScenario(inst, snew)
4 S← S∪ identifyNewScenarios(sm, sold , snew, inst.next)

5 end if
6 if (inst is a Condition instance) then
7 addToScenario(inst, snew)
8 if (inst exist in sold) then
9 Let t be the instance after inst in the branch taken in sold

10 Let tnew be the instance corresponding to t in sm
11 S← S∪ identifyNewScenarios(sm, sold , snew, tnew)

12 else
13 if (inst represents a condition in a specific alternative flow) then
14 if (inst and inst.false exist together in snew) then
15 S← S∪ identifyNewScenarios(sm, sold , snew, inst.true)
16 else
17 scpy← clone(snew)

18 S← S∪ identifyNewScenarios(sm, sold , snew, inst.true)
19 S← S∪ identifyNewScenarios(sm, sold , scpy, inst.false)

20 end if
21 else
22 if (inst and inst.true exist together in snew) then
23 S← S∪ identifyNewScenarios(sm, sold , snew, inst.false)
24 else
25 scpy← clone(snew)

26 S← S∪ identifyNewScenarios(sm, sold , snew, inst.false)
27 S← S∪ identifyNewScenarios(sm, sold , scpy, inst.true)

28 end if
29 end if
30 end if
31 end if
32 if (inst is an Exit or Abort instance) then
33 if (inst is an Exit instance for the included use case) then
34 S← S∪ identifyNewScenarios(sm, sold , snew, inst.next)
35 else
36 addToScenario(inst, snew)
37 G← generateGuidance(sold , snew)
38 S← S ∪ {< snew,sold ,G >}
39 end if
40 end if
41 return S

Fig. 6.11 shows the generated guideline to modify the test case verifying the retestable scenario
in Fig. 6.8(a) for the new scenario in Fig. 6.10(a). We use red and green colors, with a legend, on the
scenario to explain the impacted parts of the corresponding test case. The red steps are deleted while
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the green ones are added to the scenario. Using this information, the engineer adds and deletes test
case steps to cover the new scenario.

Use Case: Recognize Gesture
Guidance for building a test case covering 
“BAF1” of the new product from scenario
 "TCS57” of the previous product

Please	update	the	exis.ng	test	case	"TCS57”	to	
account	for	the	fact	that:	(1)	the	steps	in	green	were	
added,	and	(2)	the	steps	in	red	were	deleted	from	
the	use	case	specifica.ons	of	the	previous	product.

Start	Instruc+on	[Precondi+on:	the	system	is	
in	opera+on]

1.	The	System	REQUESTS	the	move	
capacitance	FROM	the	sensors

2.	The	system	VALIDATES	THAT	the	watchdog	reset	is	valid

3.	The	system	VALIDATES	THAT	the	RAM	is	valid

4.	The	system	VALIDATES	THAT	the	sensors	are	valid

5.	The	system	VALIDATES	THAT	there	is	no	error	detected

6.	The	System	VALIDATES	THAT	the	opera+ng	status	is	valid

7.	The	system	VALIDATES	THAT	the	voltage	fluctua+on	is	
detected

8.	Abort

 Sequence Instruction

Legend

Condition Instruction

7.	The	System	VALIDATES	THAT	the	movement	is	a	valid	
kick

8.	The	System	SENDS	the	valid	kick	status	TO	
the	STO	Controller

Figure 6.11. PUMConf’s User Interface for Guidance

Fig. 6.12 shows the header of the test case verifying the new scenario in Fig. 6.10(a) with the
description of the functions under test. For simplification, we omit the implementations of the exe-
cutable test case. We use the guidance to derive the new test case from the test case in Fig. 6.2(a)
verifying the scenario in Fig. 6.8(a). The bold lines in Fig. 6.12 are the new objectives and methods
of the test case that correspond to the new use case steps in Fig. 6.10(a) (i.e., anew1 and anew2).

A new scenario might be derived separately from multiple old scenarios. After all the new sce-
narios are identified for the new product, we automatically detect such new scenarios and provide
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Figure 6.12. System Test Case derived from the System Test Case in Fig. 6.2(a) of the Scenario in Fig. 6.8(a)

guidance for only the test cases of the old scenarios from which the engineer generates the new test
cases with the least possible changes (Line 19 in Alg. 8). We rank those old scenarios according to
the number of changes. If the number of changes are the same, we give priority to scenarios with
more changes removing test case steps. We assume that removing test case steps is more convenient
than adding new steps. For instance, our approach derives the new scenario in Fig. 6.10(a) from two
scenarios in Fig. 6.8(a) and (b). To generate a test case verifying the new scenario in Fig. 6.10(a), the
engineer can modify one of the test cases verifying the scenarios in Fig. 6.8(a) and (b). In Fig. 6.10(a),
our approach provides guidance for both scenarios because the number of changes and the number of
removed and added test case steps are the same for the two scenarios.

6.5.3 Step 4: Impact Report Generation

We automatically generate an impact report from the classified test cases of each previous product
in a product line (Step 4 in Fig. 6.4). To enable engineers to select test cases from more than one
test suite and thus maximize the number of test cases that can be inherited from previous products,
we compare all the test suites in the product line and identify sets of new scenarios and reusable and
retestable test cases for the product line. Assume that there are N previous products in a product
line. Snew1, Snew2, ..., and SnewN are the sets of new scenarios. Treus1, Treus2, ..., and TreusN are the
sets of reusable test cases; Tret1, Tret2, ..., and TretN are the sets of retestable test cases we identify
when we compare a new product with each previous product. To minimize the number of new test
cases the engineer needs to generate, we compute the intersection of the sets of new scenarios (Snew =
Snew1 ∩ Snew2 ∩ ... ∩ SnewN). The scenarios which are not in the intersection of the sets are covered
by at least one reusable or retestable test case in one of the previous products. Therefore, we take
the union of the sets of reusable test cases (Treus = Treus1 ∪ Treus2 ∪ ... ∪ TreusN) and the union of
the sets of retestable test cases (Tret = Tret1 ∪ Tret2 ∪ ... ∪ TretN). If a test case is considered both
retestable and reusable (i.e., (Treus ∩ Tret) 6= /0), we list the previous products in which the test case
is identified as retestable and reusable. The engineer decides the classification of the test case based
on the test suite of the previous product he chooses for the new product.
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Based on the system under test, engineers decide whether to select test cases from a single test
suite or from multiple test suites in the product line. For example, if multiple products include differ-
ent setup procedures (e.g., due to different HW architecture or library versions being used) that need
to be executed at the beginning of each test case, it is more practical to select test cases from a single
test suite.

6.6 Prioritization of System Test Cases in a Product Family

Test case prioritization is implemented as a pipeline (see Fig. 6.13). The pipeline takes as input the
test suite of the new product, the test execution history of the previous products (i.e., the outcome of
each test case of the product test suite, for each previous product and version), the size of the use case
scenarios exercised by the test cases, the classification of the test cases (i.e., reusable or retestable),
and the variability information of the product line. Based on a prediction model using these factors,
the test cases of the given test suite are sorted to maximize the likelihood of executing failing test
cases first.

The prioritization pipeline gives the highest priority to test cases covering new scenarios (i.e.,
scenarios not available for previous products) since they exercise features that have never been tested
before. The prioritization of retestable and reusable test cases is instead driven by a set of factors
typically correlated with the presence of faults, according to the relevant literature (e.g., [Srikanth
et al., 2005] [Engström et al., 2011] [Wong et al., 1997] [Rothermel et al., 2001] [Li et al., 2007]): the
number of previous products in which the test case failed, the number of previous products’ versions
in which the test case failed, the size of the scenario exercised by the test case, the degree of vari-
ability in the use case scenario exercised by the test case, and the classification of the test case (i.e.,
reusable or retestable). Note that different versions of a product share the same test suite because
functional requirements do not vary across the versions of the same product. The number of previous
products in which the test case failed and the number of versions in which the test case failed capture
the fault proneness of the test cases, a factor typically considered by other test case prioritization ap-
proaches [Srikanth et al., 2005] [Engström et al., 2011]. The size of the use case scenario exercised
by a test case is measured in terms of the number of use case steps it contains. The scenario size
captures the complexity of the operations performed by the system during the execution of the test
case, under the assumption that longer scenarios require more complex software implementations.
Implementation complexity is one of the factors considered in other requirements-based prioritiza-
tion approaches [Srikanth et al., 2005]. The degree of variability in the use case scenario exercised
by a test case is measured by counting the number of decision elements included in the use case sce-
nario. In the presence of high variability, it is more likely that some of the system properties verified
by the test case are not implemented properly. Finally, the classification of a test case as retestable is
considered for prioritization since, by definition, the scenario exercised by a retestable test case might
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be affected by changes in behaviour and thus may trigger a failure.
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based on Significant 

Factors
     Identifying Significant 

Factors 1 2
Prioritized 
Test Suite

Test Execution History & 
Variability Information

Size of Use 
Case Scenarios

Classification 
of Test Cases 

Start List of 
Significant Factors

Selected and 
Modified Test Cases

Figure 6.13. Overview of the Test Case Prioritization Pipeline

All these factors mentioned above may have varying importance for test case prioritization in
different product lines due to technical and organizational factors. Some factors may even not signif-
icantly affect test case prioritization for some product lines. To account for the changing importance
of risk factors on test case prioritization, the pipeline first identifies the factors significantly correlated
with the presence of failures and prioritizes test cases based on a prediction model relying on such
factors.

The prioritization pipeline includes two steps. In Step 1, Identifying significant factors, our ap-
proach automatically identifies significant factors for prioritizing the test cases of a new product. To
this end, we employ logistic regression [Jr. et al., 2013], i.e., a predictive analysis to determine the
relationship between one dependent binary variable (i.e., the failure of a test case) and one or more
independent variables, which might be either numeric (e.g., the number of the products in which the
test case failed in the past) or binary (e.g., the fact that a test case has been classified as retestable).

In our context, the logistic regression model estimates the logarithm of the odds that a test case
fails. The logistic regression model is trained using variability information, the size of the use case
scenarios exercised by the test cases, the classification of the test cases, and the execution history of
the test cases for previous products. The logistic regression model has the following form:

ln
(

p(TCx)
1−p(TCx)

)
= β0 +β1 ∗V +β2 ∗S+β3 ∗FP+β4 ∗FV +β5 ∗R

where p(TCx) is the probability that test case TCx fails, V is the degree of variability of the
scenario exercised by the test case (i.e., the number of decision elements in the scenario), S is the size
of the use case scenario exercised by the test case (i.e., the number of steps), FP is the number of
failing products, FV is the number of failing versions, and R indicates whether the test case has been
classified as retestable. β0 is the intercept, while β1...β5 are coefficients which are derived, using the
iteratively reweighted least squares approach [Coleman et al., 1980], to estimate the effect size on the
failure probability.

We rely on the R environment [Rpr, 2018] to derive the logistic regression model. Our toolset
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Table 6.4. Excerpt of the Training Data Set used for Logistic Regression

Product
ID

Version
ID

Test
Case
ID

Fails Retestable Size of the
Use Case
Scenario

Degree of
Variability of
the Scenario

# of Previous
Products in
which it Fails

# of Previous
Versions in
which it Fails

P1 V1 TC1 1 0 8 2 0 0
P1 V1 TC2 0 0 4 1 0 0
P1 V2 TC1 1 0 8 2 0 1
P1 V2 TC2 0 0 4 1 0 0
P1 V3 TC1 0 0 8 2 0 2
P1 V3 TC2 0 0 4 1 0 0
P1 V4 TC1 0 0 8 2 0 2
P1 V4 TC2 0 0 4 1 0 0
P2 V1 TC1 1 1 9 3 1 2
P2 V1 TC2 0 0 4 1 0 0
P2 V1 TC3 0 0 4 1 0 0
P2 V2 TC1 0 1 9 3 1 3
P2 V2 TC2 1 0 4 1 0 0
P2 V2 TC3 0 0 4 1 0 0
P2 V3 TC1 0 1 9 3 1 3
P2 V3 TC2 0 0 4 1 0 1
P2 V3 TC3 0 0 4 1 0 0
P3 V1 TC1 1 1 9 3 2 3
P3 V1 TC2 1 1 5 2 1 1
P3 V1 TC3 0 0 4 1 0 0
P3 V2 TC1 1 1 9 3 2 4
P3 V2 TC2 0 1 5 2 1 2
P3 V2 TC3 0 0 4 1 0 0

automatically generates from the available data the training data set to be processed by the R environ-
ment. Table 6.4 shows an excerpt of an example training data set generated by our toolset.

Table 6.4 includes the failure history of products P1, P2 and P3 to be used to prioritize the test
cases for P4. Each row in Table 6.4 reports the information belonging to a single test case executed
against a version of a product. The first and second columns represent the product and its version,
respectively. The third column reports the test case identifier, while the fourth column indicates
whether the test case fails (i.e., the dependent variable). The rest of the columns in Table 6.4 represent
independent variables used to predict failure. The fifth column indicates if the test case has been
classified as retestable. The sixth column reports the size of the use case scenario exercised by the
test case (i.e., the number of steps). The seventh column reports the degree of variability of the
scenario exercised by the test case (i.e., the number of decision elements in the scenario). Table 6.4,
for instance, shows that test case TC1 executed against P2 covers nine use case steps while the same
test case covers eight use case steps when executed against P1; this is due to the covered use case
scenario in P2 including one additional variant element than the use case scenario covered in P1 (see
column Degree of Variability). Test case TC3 has been introduced in P2 to cover one additional use
case scenario not present in P1. The eighth and ninth columns report the number of products and the
number of versions in which the test case fails, respectively.

To identify the significant factors for test case prioritization, we apply the p-value method of
hypothesis testing based on Wald test [Rice, 2007]. The method relies on the failure probability pre-
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dicted by the regression model to determine whether there is evidence to reject the null hypothesis
that there is no relationship between the two variables. The p-value indicates the likelihood of ob-
serving the data points when the null hypothesis is true. Therefore, if the p-value is smaller than a
given threshold (we use 0.05) then it is unlikely that the dataset has been generated by chance and,
consequently, the null hypothesis can be rejected (i.e., there is a relationship between the factor and
the dependent variable). In the model, we keep the given factors whose p-value is smaller than the
threshold. To automatically determine significant factors, we rely on the p-value computed by the
Wald test on the logistic regression model trained by including all the factors. Finally, we derive a
new, multivariate logistic regression model that includes only the significant factors. For example, the
logistic regression model derived for one of the products used in our empirical evaluation (see P4 in
Section 6.8) is the following:

ln
(

p(TCx)
1−p(TCx)

)
=−1.50−0.25∗V +0.04∗S+0.53∗FV−1.01∗R

This model, for example, does not include the number of failing products (FP) since it is not
significant according to the computed p-value.

The generated logistic regression model is a predictive model that returns based on the significant
factors the probability that a test case fails. In Step 2, Prioritize test cases, we prioritize test cases by
relying on the probability calculated by the regression model. The test cases are sorted in descending
order of probability and presented to the engineer.

6.7 Tool Support

We have implemented our test case selection and prioritization approach as an extension of PUMConf.
Section 6.7.1 provides the layered architecture of the tool while we describe the tool features in
Section 6.7.2. For accessing the tool, see: https://sites.google.com/site/pumconf/.

6.7.1 Tool Architecture

Fig. 6.14 shows the layered architecture of our tool PUMConf. It is composed of three layers: (i) the
User Interface (UI) layer, (ii) the Application layer, and (iii) the Data layer.

We briefly introduce each layer and explain the new components, i.e., the gray boxes in Fig. 6.14.

User Interface (UI) Layer. This layer supports creating and viewing PL and PS use case mod-
els (i.e., use case diagrams and specifications) and system test cases, and displaying the generated
impact reports. We employ Papyrus (https://www.eclipse.org/papyrus/) for use case di-
agrams and IBM Doors (www.ibm.com/software/products/ca/en/ratidoor/) for use case
specifications and system test cases. The impact reports are visualized as part of IBM Doors output

160

https://sites.google.com/site/pumconf/
https://www.eclipse.org/papyrus/
www.ibm.com/software/products/ca/en/ratidoor/


6.7. Tool Support
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Figure 6.14. Layered Architecture of PUMConf

using JGraph (https://www.jgraph.com/), Microsoft Excel (https://products.office.
com/en/excel/) and html.

Application Layer. With the new components, this layer supports the main activities of our
proposed approach in Fig. 6.3: classifying system test cases, providing guidance to modify system test
cases, and prioritizing the selected system test cases.

The Configurator component coordinates the other components in the application layer. The Ar-
tifact Consistency Checker and Decision Consistency Checker components were introduced in Chap-
ter 5. We further implemented some new components: Test Case Classification and Prioritization
Engine and Use Case Scenario Generator. The Use Case Scenario Generator component also em-
ploys the GATE workbench to extract control flow information, i.e., the order of alternative flows and
their conditions, from use case specifications. With the extracted control flow information, it identifies
the new and already tested use case scenarios to be used by the Test Case Classification and Priori-
tization Engine component to classify the system test cases for the new product in a product line and
to provide guidance to modify the system test cases for the new use case scenarios that have not been
tested before. To prioritize system test cases, the Test Case Classification and Prioritization Engine
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employs R scripts (https://www.rdocumentation.org/) to implement logistic regression.

Data Layer. The PL and PS use case specifications are stored in the native IBM DOORS format
while the PL and PS use case diagrams are stored as UML models. The decision models are saved in
Ecore [Ecl, 2018]. We generate the impact reports as Microsoft Excel spreadsheets and html pages.
Depending on industrial practice, the trace links between use case specifications and system test cases
can be saved in Excel spreadsheets or in IBM DOORS link database.

6.7.2 Tool Features

We describe the main features of our tool: classifying system test cases for the new product, providing
guidance to modify test cases, and prioritizing the selected system test cases for the new product.

Classifying system test cases. This feature supports Step 2, Classify System Test Cases for the
New Product, in Fig. 6.3. Before the analyst decides which system test cases to be run for the new
product, the tool automatically classifies the system test cases of the previous product(s) for the new
product.

Providing guidance to modify system test cases. As part of Step 2, Classify System Test Cases
for the New Product, in Fig. 6.3, the tool automatically provides guidance to modify some obsolete
and retestable test cases to cover new, untested use case scenarios in the new product.

Fig. 6.11 shows the generated guidelines to modify the test case verifying the retestable use case
scenario in Fig. 6.8(a) to cover the new use case scenario in Fig. 6.10(a). We use red and green colors,
with a legend, on the use case scenario to explain the impacted parts of the corresponding system test
case. The red steps in the use case scenario are deleted while the green ones are added to the use case
scenario. Using this information, the test engineer adds and deletes the corresponding test case steps
in the system test case to cover the new use case scenario.

Prioritizing the selected system test cases. This feature supports Step 4, Prioritize System Test
Cases for the New Product, in Fig. 6.3. Once the test engineer selects the system test cases of the
previous product(s) and generates the new system test cases of the new use case scenarios for the new
product, the tool automatically prioritizes the selected and generated system test cases using multiple
risk factors given in the test execution history.

6.8 Evaluation

Our objective is to assess, in an industrial context, whether our approach could improve test case reuse
and reduce testing effort. This empirical evaluation aims to answer the following research questions:

• RQ1. Does the proposed approach provide correct test case classification results? This research
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question aims to evaluate the precision and recall of the procedure adopted to classify the test
cases developed for previous products.

• RQ2. Does the proposed approach accurately identify new scenarios that are relevant for test-
ing a new product? This research question aims to evaluate the precision and recall of the
approach in identifying the new scenarios to be tested for a new product (i.e., new requirements
not covered by existing test cases).

• RQ3. Does the proposed approach successfully prioritize test cases? This research question
aims to determine whether the approach is able to effectively prioritize system test cases that
trigger failures and thus can help minimize testing effort while retaining maximum fault detec-
tion power.

• RQ4. Can the proposed approach significantly reduce testing costs compared to current indus-
trial practice? This research question aims to determine to what extent the proposed approach
can help significantly reduce the cost of defining and executing system test cases.

6.8.1 Subject of the Study

The subject of our study is the Smart Trunk Opener (STO) system developed by our industry partner
IEE. STO has been selected for the assessment of our approach since it is a relatively new project at
IEE involving multiple customers requiring varying features. The development history of the STO
product line includes five products delivered to different car manufacturers. STO customers include
major car manufacturers working in the European, Asian and US markets, with 2017 sales ranging
from 200,000 to 3 million vehicles. For each product, IEE engineers developed multiple versions,
each sharing the same functional requirements but differing with respect to non-functional require-
ments (e.g., hardware selection or performance optimizations). In total, STO includes 54 versions.

Table 6.5. Overview of the STO Product Line Use Cases

# of
Use
Cases

# of
Variation
Points

# of
Basic
Flows

# of Alterna-
tive Flows

# of
Steps

# of Optional
Alternative
Flows

# of
Optional
Steps

Essential UCs 15 5 15 70 269 5 14
Variant UCs 14 3 14 132 479 8 13
Total 29 8 29 202 748 13 27

To develop the STO system, IEE engineers elicited requirements as use cases from an initial
customer. For each new customer, they cloned the current use cases and identified differences to
produce new use cases. Table 6.5 provides an overview of the STO product line. The data in Table 6.5
shows that the system implements 29 use cases, each one being fairly complex since the use cases
in total include 202 alternative flows (i.e., alternative cases to be considered when implementing the
use case). The STO product line is highly configurable, with 14 variant use cases, 8 variation points,
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13 optional alternative flows and 27 optional steps. STO has the size and characteristics of typical
embedded product line systems managing automotive components. To apply the proposed approach,
we have considered STO requirements written according to PUM [Hajri et al., 2015] [Hajri et al.,
2018b]. Table 6.6 reports information about the STO products including the number of versions for
each product. In Table 6.6, the products are sorted according to their delivery date, with P1 being the
first product of the product line, and P5 being the last.

Table 6.6. Details of the Configured Products in the STO Product Line

Product ID # of Versions # of Use Case Elements # of Test Cases
Use Cases Use Case Flows Use Case Steps

P1 22 28 236 689 110
P2 8 25 169 568 86
P3 10 28 234 685 96
P4 5 26 212 618 83
P5 9 28 238 695 113

The different STO products are characterized by different test suites of different sizes while the
same test suite is shared by all the versions of the same product since their functional requirements
do not vary. The test cases have been traced to the use case specifications by IEE engineers. Column
# Test Cases in Table 6.6 shows, for every STO product, the number of test cases belonging to the
functional test suite of the product.

6.8.2 Experiment Setup

Our approach for test case classification can be applied using single-product settings (i.e., to classify
and prioritize test cases that belong to a previous product) and whole-line settings (i.e., to classify test
cases of multiple previous products). To evaluate our approach for test case classification and to spot
differences in terms of classification results with the two configurations (e.g., number of test cases that
can be reused), we applied the approach using both settings. To evaluate test case prioritization, we
prioritized test suites developed to test different STO products. We applied test case prioritization to
the entire test suite since its execution is required by safety standards for every product being released.

6.8.3 Results

6.8.3.1 RQ1

To answer RQ1, we, together with IEE engineers, inspected the classification results produced by
the approach. We evaluated the approach in terms of the average precision and recall we computed
over the three different classes according to standard formulas [Sokolova and Lapalme, 2009]. In
our context, a true positive is a test case correctly classified according to the expected class (e.g., a
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Table 6.7. Test Case Classification Results for Single-Product Settings

Classified
Test
Suite

Product to
be Tested

# of
Reusable

# of
Retestable

# of Ob-
solete

Precision Recall

P1 P2 94 2 14 1.0 1.0
P1 P3 105 2 3 1.0 1.0
P1 P4 102 2 6 1.0 1.0
P1 P5 84 22 4 1.0 1.0
P2 P3 85 0 1 1.0 1.0
P2 P4 83 0 3 1.0 1.0
P2 P5 67 16 3 1.0 1.0
P3 P4 91 0 5 1.0 1.0
P3 P5 77 17 2 1.0 1.0
P4 P5 77 5 1 1.0 1.0

reusable test case classified as reusable). A false positive is a test case incorrectly classified as being
part of a given class (e.g., a retestable test case classified as reusable). A false negative is a test case
that belongs to a given class but has not been classified as such (e.g., a reusable test case not classified
as reusable).

Tables 6.7 and 6.8 provide the results for the single-product and whole-line settings, respectively.
The first two columns report the ID of the product(s) whose test suite(s) have been considered for
classification and the ID of the product being tested, respectively. The next three columns provide
the number of test cases belonging to the three classes. The last two columns indicate precision and
recall. We observe that the approach has perfect precision and recall. This is the result of meticulous
requirements modeling practices in place at IEE where functional requirements are documented by
means of use cases together with proper traceability to test cases. These practices enable a precise
identification of impacted scenarios and consequently the correct classification of test cases. It is
typical for companies, like IEE, developing embedded, safety-critical systems, since requirements
need to be traced and tested to comply with international safety standards (e.g., ISO 26262 [ISO,
2018]). To apply the approach, we relied on the trace links assigned by IEE engineers to use cases
and system test cases. We did not need to ask IEE engineers to provide additional trace links to match
scenarios with test cases since all the trace links were at the right level of granularity required by our
approach.

6.8.3.2 RQ2

To answer RQ2, we checked if the new scenarios are exercised by the test cases in the manually
implemented test suites of the new products. If so, we consider those new scenarios relevant. In
addition, we, together with IEE engineers, checked whether the new scenarios not exercised by the
test suites of the new products are relevant for testing these new products. We classified the new

165



Chapter 6. Automated Test Case Classification and Prioritization in Product Lines

Table 6.8. Test Case Classification Results for Whole-Line Settings

Classified Test
Suites

Product to
be Tested

Reusable Retestable Obsolete Precision Recall

P1 P2 94 2 14 1.0 1.0
P1, P2 P3 107 0 2 1.0 1.0
P1, P2, P3 P4 102 0 12 1.0 1.0
P1, P2, P3, P4 P5 93 15 1 1.0 1.0

scenarios as true positive (i.e., a scenario identified by our approach and relevant for testing), false
positive (i.e., a scenario identified by our approach but not relevant for testing), and false negative
(i.e., a scenario tested by IEE but not identified by our approach). We computed precision and recall
accordingly.

Tables 6.9 and 6.10 report the results obtained using the single-product and whole-line settings,
respectively. The third, fourth, fifth columns provide the number of relevant scenarios identified by
our approach, and, among these, the number of scenarios tested and not tested by IEE engineers.
The sixth column (Not Relevant) indicates the number of irrelevant identified scenarios. The columns
named New Scenarios Not Identified provide the number of scenarios tested by IEE engineers but not
identified by our approach. The last two columns report precision and recall. All the new scenarios
identified by our approach are relevant; they are covered by the test cases produced by IEE engineers.
Consequently, the approach has perfect precision and recall.

In addition, we observe from Table 6.10 that the availability of additional products in the whole-
line settings enables the identification of additional new scenarios, and consequently more accurate
testing. This is what happens for product P5, in which the whole-line settings lead to the identification
of 14 new scenarios. Five of these new scenarios have not been tested by engineers in any of the
existing products. More precisely, the test suites of P1 and P3 enable the identification of four and
three scenarios not tested in the test suite of P5, respectively; only two of these scenarios are tested
by both for a total of five new scenarios identified. This difference between existing test suites is
explained by the fact that certain test teams have defined more complete test suites (i.e., the test team
for P1 and P3). Since new scenarios are identified based on obsolete test cases, for products with more
complete test suites, the availability of more test cases may lead to the identification of additional new
scenarios.

6.8.3.3 RQ3

To answer RQ3, we applied our test case prioritization approach to sort the test cases in the test suites
of four STO products (i.e., P2, P3, P4 and P5). In total, we built four regression models, one for
each STO product. To evaluate the quality of the prediction, we relied on historical data. Using test
execution history, we verified that higher priority was given to test cases that have failed. Because of
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Table 6.9. Relevance of Scenarios Identified using Single-Product Settings

Classified Product New Scenarios Identified New Precision Recall
Test
Suite

to be
Tested

Relevant
(TP)

Tested
by Engi-
neers

Not
Tested

Not
Rele-
vant
(FP)

Scenarios
Not Identi-
fied (FN)

P1 P2 3 3 0 0 0 1.0 1.0
P1 P3 3 3 0 0 0 1.0 1.0
P1 P4 2 1 1 0 0 1.0 1.0
P1 P5 27 23 4 0 0 1.0 1.0
P2 P3 1 1 0 0 0 1.0 1.0
P2 P4 1 1 0 0 0 1.0 1.0
P2 P5 22 22 0 0 0 1.0 1.0
P3 P4 1 1 0 0 0 1.0 1.0
P3 P5 26 23 3 0 0 1.0 1.0
P4 P5 10 10 0 0 0 1.0 1.0

Table 6.10. Relevance of Scenarios Identified using Whole-Line Settings

Classified Product New Scenarios Identified New Precision Recall
Test Suites to be

Tested
Relevant
(TP)

Tested
by En-
gineers

Not
Tested

Not
Rele-
vant
(FP)

Scenarios
Not
Iden-
tified
(FN)

P1 P2 3 3 0 0 0 1.0 1.0
P1, P2 P3 1 1 0 0 0 1.0 1.0
P1, P2, P3 P4 0 0 0 0 0 1.0 1.0
P1, P2, P3, P4 P5 14 9 5 0 0 1.0 1.0

this, we prioritized the test cases that belong to the test suite originally developed by IEE engineers
and ignored the new test scenarios we have identified (Section 6.5). This did not introduce bias in
the evaluation since test cases exercising new scenarios are always on top of the prioritized test suite
and their execution is always necessary independently from their predicted capability to discover
faults. In the following, we discuss our results including the identification of significant factors and
the effectiveness of the prioritized test suites.

Table 6.11 provides detailed information about the significant factors identified. Column Signifi-
cant factors lists the significant factors identified for each product. When more historical information
is available, more factors significantly correlate with the presence of faults. For example, we observe
that the classification of a test case as retestable becomes significant after three products are included
in the development history of the product line. This can be explained by the fact that updated con-
figuration decisions impact a limited number of scenarios (i.e., the number of retestable test cases is
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Table 6.11. Analysis of Significant Factors identified by Logisitic Regression

Classified test
suites

Product to be
tested

Significant
factors

Odds Ratio

P1 P2 V; S; FV 0.35; 1.08; 2.09
P1, P2 P3 V; S; FV 0.35; 1.06; 1.85
P1, P2, P3 P4 V; S; FV; R 0.78; 1.04; 1.71; 0.36
P1, P2, P3, P4 P5 V; S; FP; FV; R 0.36; 1.04; 0.92; 1.87; 0.51

Legend: V=Variation, S=Size, FP=Failing Products, FV=Failing Versions, R=Retestable.

Table 6.12. Test Case Prioritization Results

Classified
test suites

Product
to be
tested

AUC ratio
(Observed/Ideal)

%Test cases executed
to identify

%Failures
detected

with 50%
of the test

cases

All the
failures

80% of
the
failures

P1 P2 0.98 (65.46/66.48) 72.09% 38.37% 97.43%
P1, P2 P3 0.99 (82/82.48) 41.66% 22.91% 100%
P1, P2, P3 P4 0.97 (71.02/72.97) 51.80% 22.89% 95%
P1, P2, P3, P4 P5 0.95 (101.32/105.97) 26.54% 18.58% 100%

usually low) and thus, this factor only becomes significant when enough examples of retestable test
cases have occurred in previous products. As expected, the number of failing products also becomes
significant after a sufficient number of products in the product line.

Column Odds Ratio presents the odds ratio of each significant factor. The odds ratio captures the
effect size of the factor on the outcome of the regression model (i.e., the probability of observing a
failure). A value above one indicates that the factor positively contributes to the outcome; a factor
below one indicates that the factor negatively contributes to the outcome (note that this may be caused
by a statistical interaction with another factor). The results show that the number of failing versions is
the factor that impacts most positively the probability of failure. It is highly likely that a test case that
failed in the past will fail again, which is in line with previous research results. The odds ratio for the
number of failing versions varies between 1.71 and 2.09. We observe that, expectedly, the number of
failing products statistically interacts with the number of failing versions. This has been determined
by running logistic regression on each factor separately. Certain factors show a positive regression
parameters when considered alone but become negative when interacting with other factors in the
regression model. In this case, this is probably due to the two factors being correlated.

To evaluate the effectiveness of test case prioritization, we measured the percentage of test cases to
be executed to trigger all the failures, and compared our approach with the ideal case that executes all
the failing test cases first. Table 6.12 summarizes our findings. For all the products in our evaluation,
our approach identifies more than 80% of the failures by executing less than 50% of the test cases (see
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Table 6.13. Test Development Costs Savings

Product to Test Cases To Be Implemented using the Proposed Approach
be tested Single-Product Settings Whole-Line Settings
P2 3/99 (3%) 3/99 (3%)
P3 1/86 (1%) 1/108 (1%)
P4 1/92 (1%) 0/102 (0%)
P5 10/92 (11%) 14/122 (11%)

Table 6.14. Development Process Savings

Product
to be

Test
Suite

Number
of

Test cases to be executed to identify all the failures

tested Size Failures Current Practice Proposed Approach
P2 86 39 84 (97.67%) 62 (72.09%)
P3 96 27 80 (83.33%) 40 (41.66%)
P4 83 20 77 (92.77%) 43 (51.80%)
P5 113 14 69 (61.06%) 30 (26.54%)

Columns %Failures detected with 50% of the test cases and %Test cases executed to identify 80% of
the failures). We notice that the number of test cases required to trigger all the failures drops below
60% when the test execution history of at least two products becomes available (see Column %TCs
executed to identify all the failures). In the case of P5, for example, the execution of 27% of the test
cases is sufficient to trigger all failures. This is explained by the fact that newer products are more
mature (i.e., they tend to fail less frequently) but is also due to logistic regression models improving
over time. Indeed, for newer products, though it is less probable to identify failing test cases (they are
fewer), our approach remains accurate at giving higher priority to failing test cases. This capability is
particularly relevant for industry since the early identification of failures enables early maintenance
activities and, consequently, speeds up the product release.

To compare our approach with the ideal case, we computed the area under curve for the cumulative
percentage of failures triggered by executed test cases for both the ideal case and prioritization, and
computed the AUC ratio of the two. Fig. 6.15 shows the two curves. The best result is achieved when
the AUC ratio is equal to one (i.e., the AUC for the observed data matches the ideal AUC). The results
show that the proposed approach achieves impressive results since the AUC ratio is always greater
than or equal to 0.95.

6.8.3.4 RQ4

Our test case classification and prioritization approach may reduce both (i) test case development
costs (i.e., the number of test cases that need to be designed and implemented by engineers to test
the software) and (ii) software development time (e.g., by detecting more failures at early stages of
testing).

As a surrogate metric to measure the savings, for each product of the STO product line, we report
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Figure 6.15. Prioritization results: percentage of failures detected after running x prioritized test cases.

the number and percentage of test cases that can be reused when adopting the proposed approach (see
Table 6.13). Columns Single-Product Settings and Whole-Line Settings report the results achieved by
the approach when reusing only the test cases inherited from one previous product and from the test
suites of all the previous products in the product line, respectively. As seen in these two columns, the
effort required to implement test cases is very limited since, with the proposed approach, engineers
need to implement only the test cases required to cover new scenarios. For instance, in the whole-line
settings for product P4, engineers do not need to implement any test case at all. Instead, testing teams
at IEE currently do not rely on approaches that support systematic reuse of test cases, a practice which
often leads to re-implementing most of the test cases from scratch. Finally, one benefit provided by
the whole-line configuration settings is the identification of additional new scenarios, as discussed
in Subsection 6.8.3.2; this is the case of P5 where the whole-line configuration settings lead to the
identification of four additional scenarios not identified with the single-product settings.
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To evaluate the impact of our approach on software development time, we measured the per-
centage of test cases that need to be executed in order to identify all the failures in a product (see
Table 6.14). Column Current Practice in Table 6.14 reports the percentage of test cases that need
to be executed when considering the order followed by IEE engineers, which is based on domain
knowledge. Column Proposed Approach reports the results for the proposed approach. For all the
products, our approach identifies all the failures with less test cases than the current practice. This is
particularly true for product P5 where our approach requires the execution of less than half of the test
cases prioritized by engineers. By using our approach, IEE can detect and fix failures earlier and thus
speed up their software development.

6.8.4 Threats to Validity

Internal validity. To limit threats to internal validity, we considered the test cases developed by IEE
engineers and the historical information collected over the years of system development. To avoid
bias in the results, we considered the use case specifications written by IEE engineers and simply
reformulated them according to PUM [Hajri et al., 2015] [Hajri et al., 2018b].

External validity. To mitigate the threat to generalizability, we considered a software product
line that includes nontrivial use cases, with multiple customers and many sources of variability, in an
application domain where product lines are the norm. The fact that STO has been installed on cars
developed by major car manufacturers all over the world guarantees that the configuration decisions
for STO cover a wide spectrum of possible configurations and that the testing process put in place by
IEE adheres to the state-of-the-art quality standards. Based on our experience built over the years with
various automotive companies, we expect that the type of configuration decisions characterizing the
STO product line and the type and number of test cases developed for STO are good representatives
for other types of embedded automotive systems.

6.9 Conclusion

This chapter presents an automated test case classification and prioritization approach that supports
use case-driven testing in product lines. The approach automatically classifies and prioritizes, for
each new product, system test cases of previous product(s) in a product line, and provides guidance
in modifying existing system test cases to cover new use case scenarios that have not been tested in
the product line before.

We aimed to improve the test case selection and execution process in product lines by informing
engineers about the impact of requirements changes on system test cases in a product family and to
minimize manual test case selection and execution effort by automatically and incrementally classi-
fying and prioritizing system test cases, that is to only select the unaffacted test cases and modify the
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affected ones given a requirements change.

Our test case classification and prioritization approach is built on top of our Product line Use
case Modeling method in Chapter 3 and our Product line Use case Model Configurator in Chapter 4,
and supported by a tool integrated into IBM DOORS. The key characteristics of our tool support are
(1) the automated identification of the impact of requirements changes on system test cases to be
classified and selected for the new product, (2) the automated identification of new use case scenarios
in the new product that have not been tested in the product line, (3) the automated generation of
guidance for modifying existing system test cases to cover those new scenarios, and (4) the automated
prioritization of the selected system test cases for the new product. We performed a case study in the
context of automotive domain, which suggests that our approach is practical and beneficial to classify
and prioritize system test cases in industrial product lines and to provide guidance for modifying
existing system test cases for new products in industrial settings.

In this chapter, we answered Research Question 5 (How can a change in a configuration decision
be propagated to other decisions in PL use case models and to system test cases? How can we support
the analysts in performing changes? How can we reconfigure PS use case and domain models for
decision changes? How can we select and prioritize system test cases for such changes?). With the
test case classification and prioritization approach, we addressed the issues about automated identifi-
cation of change impact on system test cases, automated test case classification, and automated test
case prioritization in product lines.

This work is the last step to achieve our long term objective in this thesis, i.e., the support for
change impact analysis and regression test selection that help engineers manage changes in require-
ments and system test cases in a product family. Our approach does not support the evolution of PL
use cases. We still need to address and manage changes in variability aspects of PL use cases such as
adding a new variation point in the PL use case diagram, and their impact on test cases in the context
of test case selection and prioritization (see the future research directions in Chapter 7).
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Conclusion

This chapter summarizes the research contributions of this dissertation and discusses potential areas
for future work.

7.1 Introduction

This chapter concludes on the contributions described in this thesis. First, in Section 7.2, we sum-
marize the problems addressed in the thesis: (i) modeling variability in requirements with additional
traceability to feature models, (ii) manual, expensive and error prone configuration of product spe-
cific requirements, (iii) manual and expensive regression testing in product families. We reflect on the
solutions we proposed in Section 7.3, while Section 7.4 outlines further research directions.

7.2 Problems

In this thesis, we have addressed the following problems in supporting change in product lines for use
case-driven development and testing:

• Modeling Variability in Requirements with Additional Traceability to Feature Models.
Within the context of use case-driven development, there is a need to explicitly document re-
quirements variability in the form of use cases and domain models to be communicated to
customers and other stakeholders such as independent test teams during product configuration.
The most commonly adopted approach in the literature is relating feature models to use case
and domain models. It has shortcomings in terms of additional modeling and traceability ef-
fort. Requirements variability documented across various use case flows with several trace
links from feature models would have to be communicated to customers and used to configure
a product, which in practice, we were told by engineers, is very impractical.
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• Manual, Expensive and Error Prone Configuration of Product Specific Requirements.
Use case-driven product configuration requires a high degree of automation to enable analysts
to be interactively guided for their configuration decisions in PL use case and domain models.
Any inconsistency in PL use case and domain models may cause invalid configurations. There-
fore, before the decision-making process, it should be ensured that all artifacts with variability
information, including the use case diagram and specifications, as well as the domain model,
are consistent. There may be contradicting configuration decisions and hierarchies among de-
cisions during the decision-making process. Changes on configuration decisions may impact
prior decisions as well as on subsequent decisions. While making configuration decisions, ana-
lysts need to be interactively informed about contradicting decisions, the order of possible deci-
sions, and the impact of decision changes on other decisions. Without interactive guidance and
proper tool support, analysts have to manually identify and fix inconsistent PL artifacts, resolve
decision contradictions, and change subsequent decisions, which leads to time-consuming, ex-
pensive and error prone configuration.

• Manual and Expensive Regression Testing in Product Families. In most of the development
environments for product lines, product requirements are elicited from the initial customer and
documented as a use case diagram and use case specifications. Test engineers generate system
test cases from those use case specifications. For each new product in the product family,
engineers manually choose and prioritize, from the existing test suite(s) for the initial/previous
product(s), test cases that can and need to be rerun to ensure existing, unmodified functionalities
are still working correctly in the new product. This form of test reuse is not supported by any
structured, automated test case selection and prioritization method. It is fully manual, error-
prone and time-consuming, which leads to ad-hoc change management for system test cases in
product lines. Therefore, product line modeling and testing techniques are needed to automate
the reuse and adaptation of system test cases in the context of use case-driven development of
a product family.

7.3 Solutions

In this section, we explain how we have addressed the aforementioned problems. The proposed
techniques tackle manual and error prone requirements configuration and regression testing issues.

• A modeling method for capturing variability information in Product Line (PL) use case
and domain models. We proposed, applied, and assessed the Product line Use case model-
ing Method (PUM) that supports variability modeling in PL use case diagrams, specifications,
and domain models, without making use of feature models, thus minimizing modeling and
traceability overhead. PUM adopts existing PL extensions for use case diagrams and domain
models [Halmans and Pohl, 2003] [Ziadi and Jezequel, 2006]. For modeling variability in use
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case specifications, we introduced new product line extensions for the Restricted Use Case
Modeling method (RUCM) [Yue et al., 2013], which includes a template and restriction rules
to reduce imprecision and incompleteness in use cases. PUM is supported by a tool relying
on Natural Language Processing (NLP) to check the consistency of PL use case and domain
models.

• An approach for automated configuration of Product Specific (PS) use case and domain
models. We proposed, applied, and assessed a use case-driven configuration approach that pro-
vides, based on our modeling method (PUM), a degree of configuration automation for effective
product-line management in use case-driven development. The approach supports four activi-
ties. First, the analysts model the variability information explicitly in a PL use case diagram, its
use case specifications, and its corresponding domain model. Second, the analyst is guided to
make configuration decisions in an appropriate order. Third, the consistency of configuration
decisions is ensured by automatically identifying contradicting decisions. Fourth, PS use case
and domain models are automatically generated from PL models and configuration decisions.
Our approach is supported by a tool, PUMConf (Product line Use case Model Configurator),
relying on NLP and integrated with IBM DOORS. The tool automatically checks the consis-
tency of PL use case and domain models, identifies the partial order of decisions to be made,
determines contradicting decisions, and generates PS use case and domain models.

• A change impact analysis approach for evolving configuration decisions in PL use case
models. We proposed, applied, and assessed a change impact analysis approach that supports,
based on our use case-driven modeling and configuration techniques, the evolution of configu-
ration decisions. The approach automates the identification of configuration decisions impacted
by decision changes in PL use case models. It supports three activities. First, the analyst pro-
poses a change but does not apply it to the corresponding configuration decision. Second, the
impact of the proposed change on other configuration decisions for the PL use case diagram are
automatically identified. In the PL use case diagram, variant use cases and variation points are
connected to each other with some dependencies, i.e., require, conflict and include. In the case
of a changed diagram decision contradicting prior and/or subsequent diagram decisions, such as
a subsequent decision resulting in selecting variant use cases violating some dependency con-
straints, we automatically detect and report them. To this end, we developed a change impact
analysis algorithm, which traverses the input PL use case diagram and reasons on prior and sub-
sequent decisions. Based on this, the analyst should decide whether the proposed change is to
be applied. Third, the PS use case models are incrementally regenerated only for the impacted
decisions after the analyst actually makes all the required changes. To do so, we implemented a
model differencing pipeline which identifies decision changes to be used in the reconfiguration
of PS models. There are two sets of decisions: (i) the set of previously made decisions used
to initially generate the PS use case models and (ii) the set of current decisions including de-
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cisions changed after the initial generation of the PS models. Our approach compares the two
sets to determine for which decisions we need to incrementally regenerate the PS models. We
extended our configurator, PUMConf, to support these three activities

• An approach for automated classification and prioritization of system test cases in a fam-
ily of products. We proposed, applied, and assessed an automated regression testing approach
that supports, based on our use case-driven modeling and configuration techniques, product
line testing for evolving products of a product family in terms of evolving configuration deci-
sions in PL use cases. The approach automates the identification of system test cases impacted
by changes in configuration decisions in PL use case models when a new product is config-
ured. After the initial product is tested, subsequent products are tested using regression testing
techniques, i.e., test case selection and prioritization based on configuration decision changes
between the previous product(s) and the new product to be tested. Therefore, system test cases
for a new product are derived by reusing system test cases for previous product(s), and by iden-
tifying use case scenarios of the new product that have not been tested so far in the product
family. To reuse the existing system test cases, our approach automatically classifies the system
test cases of the previous product(s) as obsolete, retestable, and reusable. An obsolete test case
cannot be executed on the new product as the corresponding use case scenarios are not selected
for the new product. A retestable test case is still valid but needs to be rerun to determine the
possible impact of changes whereas a reusable test case is also valid but does not need to be
rerun for the new product. To do so, we implemented a model differencing and test case clas-
sification pipeline which identifies changes in the decisions made to configure a product (e.g.,
selecting an optional use case). The pipeline compares the configuration decisions of the previ-
ous and new products to classify the decisions as new, deleted and updated, and to identify the
impacted parts of the use case models of the previous product(s). By using the trace links from
the impacted parts of the use case models to the system test cases, we automatically classify
the existing system test cases to be reused for testing the new product. In addition, we automat-
ically identify the use case scenarios of the new product that have not been tested before, and
provide information of how to modify existing system test cases to cover these new, untested
use case scenarios, i.e., the impact of use case changes on existing system test cases. System
test cases are automatically prioritized based on multiple risk factors such as fault proneness of
requirements and requirements volatility in the product line. To this end, we compute a prior-
itization score for each system test case based on these factors building a statistical prediction
model based on historical data. To support these activities, we extended PUMConf.
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7.4 Future Research Directions

This thesis covered various applications of automated use case-driven configuration to solve the man-
ual and error-prone change management of requirements and test cases in product families. These
applications led to open issues that we will investigate in the future.

• Change Impact Analysis for Evolving Product Line Use Case Models. Change can occur
both in configuration decisions and variability aspects of PL use case models. For the latter
(e.g., making a variant use case essential or changing the cardinality constraint of a variation
point), the impact on configuration decisions in each configuration in the product line needs
to be assessed and reconfiguration should be considered in PS use case models for impacted
configurations. To this end, we plan to develop a change impact analysis approach to identify
impacted configurations in the product line and parts of PS models that need to be reconfigured
when PL use case models evolve.

• Classification and Prioritization of Test Cases for Evolving Product Line Use Case Models.
When PL use case models evolve in a product family, the change impact on the execution of
system test cases need to be assessed for configurations impacted by changes in the PL use
case models. For instance, changing the cardinality constraint of a variation point may cause
the unselection of a variant use case selected for a product. All the test cases verifying the
previously selected use case will be obsolete as a result of changing the cardinality constraint
in the PL use case models. We plan to provide an automated regression test selection approach
for system test cases in configurations impacted by changes in PL use case models.

• Change Impact Analysis and Regression Testing for Evolving Product Specific Use Case
Models. After a product is configured for a customer, there might still be changes in the config-
ured PS use case models. The customer may not want to expose these changes at the level of the
product line and therefore to other customers. These changes might be updating some use case
steps or alternative flows even when they do not contain variations. Therefore, change impact
analysis and regression testing approaches need to be developed to manage such changes for
PS use case models and system test cases.

• Automated Generation of Trace Links between System Test Cases and Use Case Speci-
fications. Some existing test case generation approaches [Wang et al., 2015a] [Wang et al.,
2015b] [Yue et al., 2015a] can be adapted to the product line context to generate system test
cases and their trace links in the presence of PL requirements. The adoption of these test case
generation approaches may not be feasible in all contexts since such approaches require addi-
tional modeling efforts such as use case conditions written in OCL. We would like to investigate
the recent advances in NLP, such as semantic role labeling [Jurafsky and Martin, 2000], text
chunking [Jurafsky and Martin, 2000], and syntactic and semantic similarity measures [Man-
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ning et al., 2008] [Rus et al., 2013], for the generation of trace links between system test cases
and use case specifications.

• Tooling. We have developed tool support, PUMConf, for the approaches and techniques devel-
oped within the context of the thesis. PUMConf has been developed as an IBM DOORS Plug-
in. PUMConf relies on Papyrus (https://www.eclipse.org/papyrus/) for managing use
case diagrams, and IBM Doors (www.ibm.com/software/products/ca/en/ratidoor/)
for managing use case specifications and test cases. The output of PUMConf are visualized as
part of IBM Doors output using JGraph (https://www.jgraph.com/) and Microsoft Excel
(https://products.office.com/en/excel/). We plan to make PUMConf an indepen-
dent tool in which the user can manage use case diagrams and specifications without relying on
any external tool.
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Appendix A

Configuration Algorithm

In this appendix, we provide the algorithm for the configuration of Product Specific (PS) use case and
domain models. The algorithm is presented in seven functions. The main function, config, is given in
Algs. 11 and 12. It collects the configuration decisions from the user and checks if they are consistent.
Decisions made by the user are said to be consistent if they do not violate any dependency constraint
(i.e., constraints imposed by the require and conflict relations specified in the Product Line use case
diagram). After all decisions are collected and confirmed to be consistent, the algorithm generates the
PS use case and domain models (the function calls for generatePSDiagram, generatePSSpecifications
and generatePSDomainModel in Algs. 11 and 12). Six functions (Algs. 25-22) are called in config to
check decision consistency:

• checkConflictingVP (Alg. 25) and checkConflictingUC (Alg. 23) identify the contradicting deci-
sions with regards to the conflict relation for selected variation points and variant use cases;

• checkRequiringVP (Alg. 15) and checkRequiringUC (Alg. 27) identify the contradicting deci-
sions with regards to the require relation for selected variation points and variant use cases,
respectively;

• checkRequiredVP (Alg. 16) and checkRequiredUC (Alg. 22) determine the contradicting deci-
sions with regards to the require relation for unselected variation points and variant use cases,
respectively;

The check functions calls some other functions (Alg. 19 and Alg. 20) in order to infer use cases
which are automatically selected or unselected.

• inferUnselectedElements (Alg. 19) infers unselected elements for the use case unselected in
the given decision. Inferred, unselected use cases are in the variation points included by the
unselected use cases. All the variant use cases of the inferred, unselected variation points are
unselected and have no more further decisions to be made.

• inferSelectedElements (Alg. 20) infers selected elements for the use case selected in the given
decision. Inferred use cases are with a mandatory variability relation in the variation points
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included by the selected use cases. Inferred, selected variation points are either variation points
which have inferred, selected use cases, or mandatory variation points included by inferred,
selected use cases.
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Appendix A. Configuration Algorithm

Alg. 11: config
Inputs : Product Line use case diagram, PLD,

Set of Product Line use case specifications, PLS,
Product Line domain model, PLDM

Output: Set of Product Specific use case and domain models

1 Let PSD be the product specific use case diagram
2 Let PSS be the product specific use case specifications
3 Let PSDM be the product specific domain model
4 Let PSM be the set of product specific use case and domain models
5 Let DC be the empty set for completed decisions for PLD
6 Let L be the set of pairs of variation points vp and use cases uc such that use cases are essential and they include the variation points, or the

variation points are not included by any use case
7 T ← L
8 while L 6= /0 do
9 d p ∈ L

10 Let SUC be the set of variant use cases selected in dp.vp
11 Let NSUC be the set of variant use cases unselected in dp.vp
12 Let d be the quadruple (dp.vp,dp.uc,SUC,NSUC)

13 if (d satisfies the cardinality constraints in dp.vp) then
14 Let C be the empty set for contradicting decisions
15 C← checkConflictingVP(dp.vp, DC, d, PLD)
16 C←C∪checkRequiringVP(dp.vp, DC, d, PLD)
17 C←C∪checkRequiredVP(dp.vp, DC, d, PLD)
18 foreach (u ∈ SUC) do
19 C← C∪checkConflictingUC(u, DC, d, PLD)
20 C← C∪checkRequiringUC(u, DC, d, PLD)

21 end foreach
22 foreach (u ∈ NSUC) do
23 C←C∪checkRequiredUC(u, DC, d, PLD)
24 end foreach
25 if (C = /0) then
26 DC← DC∪{d};
27 L← L\{d p}
28 Let newp = {(vp,uc) |uc includesvp ∧ uc ∈ SUC ∧ (vp,uc) /∈ T}
29 L← L∪newp

30 T ← T ∪newp

31 else
32 updateDecisions(C ∪ {d})
33 end if
34 else
35 updateDecisions({d})
36 end if
37 end while
38 C← overallConsistencyCheck(DC,PLD)
39 if (C = /0) then
40 PSD← generatePSDiagram(DC, PLD)
41 else
42 do
43 updateDecisions(C)
44 C← overallConsistencyCheck(DC,PLD)

45 while (C 6= /0)
46 PSD← generatePSDiagram(DC, PLD)

47 end if
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Alg. 12: config(continued)
48 /* Configure PS Use Case Specifications*/
49 Let U be the set of use cases selected in DC containing variability in their specifications
50 Let Y be the set of essential use cases containing variability in their specifications
51 F ←U ∪Y
52 Let S be the empty set for optional steps and alternative flows selected by the user
53 Let O be the empty set for decided orders
54 foreach ( f c ∈ F) do
55 Let OF be the set of selected, optional alternative flows, of fc, containing variability
56 Let b be the basic flow, of fc, containing variability
57 Let AF be the set of mandatory alternative flows, of fc, containing variability
58 AC← OF ∪ {b} ∪ {AF}
59 foreach (a ∈ AC) do
60 Let MS be the set of mandatory steps in a
61 Let SS be the set of optional steps selected by the user from a
62 Let ORD be the set of steps that need to be ordered in SS∪MS
63 if (ORD 6= /0) then
64 O← O∪updateStepOrder(ORD)
65 end if
66 S← S∪SS∪OF∪O
67 end foreach
68 end foreach
69 PSS← generatePSSpecifications(S, PLD, PLS)
70 /* Configure PS Domain Model*/
71 Let DE be the empty set for optional and variant entities selected by the user
72 Let OE be the set of selected, optional domain entities in PLDM
73 DE← DE∪OE
74 Let V be the set of variation domain entities in PLDM
75 foreach (vc ∈V ) do
76 Let VE be the set of selected, variant domain entities in vc
77 DE← DE ∪VE
78 end foreach
79 PSDM← generatePSDomainModel(DE, PLDM)
80 /* Save all the decisions in the decision model and return the generated models*/
81 Let DM be the decision model for the configuration
82 DM← saveDecisions(DC, S, O, DE)
83 PSM← {PSD} ∪ {PSS} ∪ {PSDM} ∪ {DM}
84 return PSM
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Appendix A. Configuration Algorithm

Alg. 13: checkConflictingVP
Input : Variation point, vp, Set of decisions, DC,

Decision, d, Product Line use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions
2 Let SUC be the set of selected variant use cases of variation point vp in decision d/* d.SUC in

the quadruple*/
3 if (SUC 6= /0) then
4 Let C be the empty set for conflicting elements
5 C←getConflictingElements(vp, PLD) /* get set of elements that conflict with vp*/
6 if (C 6= /0) then
7 foreach (dm ∈ DC) do
8 Let p be the variation point in decision dm /* dm.vp in the quadruple*/
9 Let S be the set of selected use cases of variation point p in decision dm /* dm.SUC in

the quadruple*/
10 if (S 6= /0) and (p ∈C)) then
11 RES← RES ∪ {dm}
12 end if
13 foreach (u ∈ S) do
14 Let I be the empty set for inferred, selected elements
15 I← {u} ∪ inferSelectedElements(u, dm, DC, /0, PLD)
16 foreach (e ∈ I) do
17 if (e ∈C) then
18 RES← RES∪ getInvolvedDecisions(e, dm, d, DC)
19 end if
20 end foreach
21 end foreach
22 end foreach
23 end if
24 end if
25 return RES
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Alg. 14: checkConflictingUC
Input : Use Case, uc, Set of decisions, DC,

Decision, d, Product Line use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions
2 Let I be the empty set for inferred, selected elements
3 I← {uc} ∪ inferSelectedElements(uc, d, DC, /0, PLD)
4 Let C be the empty set for conflicting elements
5 foreach (e ∈ I) do
6 C←C∪getConflictingElements(e, PLD) /* get the set of elements conflicting with e*/
7 end foreach
8 if (C 6= /0) then
9 foreach (dm ∈ DC) do

10 Let vp be the variation point in decision dm /* dm.vp in the quadruple*/
11 Let SUC be the set of selected variant use cases in dm /* dm.SUC in the quadruple*/
12 if ((SUC /∈ /0)and(vp ∈ C)) then
13 RES← RES ∪ {dm}
14 end if
15 foreach (u ∈ SUC) do
16 Let B be the empty set for inferred, selected elements
17 B← {u} ∪ inferSelectedElements(u, dm, DC, /0, PLD)
18 foreach (e ∈ B) do
19 if (e ∈C) then
20 RES← RES∪ getInvolvedDecisions(e, dm, d, DC)
21 end if
22 end foreach
23 end foreach
24 end foreach
25 end if
26 return RES
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Appendix A. Configuration Algorithm

Alg. 15: checkRequiringVP
Input : Variation Point, vp, Set of decisions, DC,

Decision, d, Product Line use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions
2 Let R be the empty set for required elements
3 Let SUC be the set of selected variant use cases in d /* d.SUC in the quadruple*/
4 if (SUC 6= /0) then
5 R ←getRequiredElements(vp, PLD)
6 if (R 6= /0) then
7 foreach (dm ∈ DC) do
8 Let p be the variation point in the decision dm /* dm.vp in the quadruple*/
9 if ((p is unselected in DC ∪ {d}) and (there is no more decision to be made for p)

and (p ∈ R)) then
10 RES← RES∪ getInvolvedDecisions(p, dm, d, DC)
11 end if
12 Let NSUC be the set of unselected variant use cases in dm /* dm.NSUC in the

quadruple*/
13 foreach (v ∈ NSUC) do
14 Let EX be the empty set for inferred, unselected elements
15 EX←{v}∪ inferUnselectedElements(v, d, DC, /0, PLD)
16 foreach (e ∈ EX) do
17 if ((e is unselected in DC ∪ {d}) and (there is no more decision to be made for

e) and (e ∈ R)) then
18 RES← RES∪ getInvolvedDecisions(e, dm, d, DC)
19 end if
20 end foreach
21 end foreach
22 end foreach
23 end if
24 end if
25 return RES
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Alg. 16: checkRequiredVP
Input : Variation Point, vp, Set of decisions, DC,

Decision, d, Product Line use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions
2 Let R be the empty set for required elements
3 if ((vp is unselected in DC ∪ {d}) and (there is no more decision to be made for vp)) then
4 foreach (dm ∈ DC) do
5 R← getRequiredElements(dm.vp, PLD)
6 Let SUC be the set of selected elements in dm /* dm.SUC in the quadruple*/
7 if ((SUC 6= /0) and (vp ∈ R)) then
8 RES← RES ∪ {dm}
9 end if

10 foreach (u ∈ SUC) do
11 Let I be the set of inferred, selected elements (variant use cases and variation points)
12 I← {u}∪ inferSelectedElements(u, dm, DC ∪ {d}, /0, PLD)
13 foreach (e ∈ I) do
14 if (vp ∈ getRequiredElements(e, PLD) then
15 RES← RES∪ getInvolvedDecisions(e, dm, d, DC)
16 end if
17 end foreach
18 end foreach
19 end foreach
20 end if
21 return RES
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Appendix A. Configuration Algorithm

Alg. 17: checkRequiringUC
Input : Use Case, uc, Set of decisions, DC,

Decision, d, Product Line use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions
2 Let I be the empty set for inferred, selected elements (variant use cases and variation points)
3 I← {uc}∪ inferSelectedElements(uc, d, DC, /0, PLD)
4 Let R be the empty set for required elements
5 foreach (e ∈ I) do
6 R← R∪getRequiredElements(e, PLD) /* get set of elements required by e*/
7 end foreach
8 if (R 6= /0) then
9 foreach (dm ∈ DC) do

10 Let vp be the the variation point in dm /* dm.vp in the quadruple*/
11 if ((vp is unselected in DC ∪ {d}) and (there is no more decision to be made for vp) and

(vp ∈ R)) then
12 RES← RES∪ getInvolvedDecisions(vp, dm, d, DC)
13 end if
14 Let NSUC be the set of unselected elements in dm /* dm.NSUC in the quadruple*/
15 foreach (n ∈ NSUC) do
16 if ((n is not selected in DC ∪ {d}) and (there is no more decision to be made for n)

and (n ∈ R)) then
17 RES← RES∪ getInvolvedDecisions(n, dm, d, DC)
18 end if
19 end foreach
20 end foreach
21 end if
22 return RES
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Alg. 18: checkRequiredUC
Input : Use Case, uc, Set of decisions, DC,

Decision, d, Product Line use case diagram, PLD
Output: Set of contradicting decisions

1 Let RES be the empty set for contradicting decisions
2 if ((uc is not selected in the completed decisions DC) and (there is no further decision to be

made for uc)) then
3 Let EX be the empty set for inferred, unselected elements
4 EX←{uc} ∪ inferUnselectedElements(uc, d, DC, /0, PLD)

5 foreach (dm ∈ DC) do
6 Let SUC be the set of selected use cases in dm
7 Let vp be the variation point in dm
8 if (SUC 6= /0) and ((EX∩ getRequiredElements(vp, PLD)) 6= /0) then
9 RES← RES ∪ {dm}

10 end if
11 foreach (u ∈ SUC) do
12 Let I be the empty set for inferred, selected elements
13 I← {u}∪ inferSelectedElements(u, dm, DC ∪ {d}, /0, PLD)
14 foreach (e ∈ I) do
15 if (EX∩ getRequiredElements(e, PLD) 6= /0) then
16 RES← RES∪ getInvolvedDecisions(e, dm, d, DC)
17 end if
18 end foreach
19 end foreach
20 end foreach
21 end if
22 return RES
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Appendix A. Configuration Algorithm

Alg. 19: inferSelectedElements
Input : Traversed element (Variation Point or Use Case), elem,

Set of decisions, DC,
Decision, d,
Set of previously traversed elements, PR,
Product Line use case diagram, PLD

Output: Set of inferred, selected elements

1 Let RES be the empty set for inferred, selected elements
2 if (elem /∈ PR) then
3 PR← PR ∪ {elem}
4 if (elem is a Variation Point) then
5 Let SU be the set of selected use cases of elem in {d} ∪ DC
6 if ((elem is mandatory) or (SU 6= /0)) then
7 RES←{elem}
8 Let Y be the set of variant use cases of elem with a mandatory variability relation
9 Let T be the set of variant use cases of elem selected in DC∪ {d}

10 U ← Y ∪T
11 foreach (uc ∈U) do
12 RES← RES ∪ inferSelectedElements(uc, DC, d, PR, PLD)
13 end foreach
14 end if
15 else
16 if (elem is a Use Case) then
17 if ((elem is mandatory) or (elem is selected in {d}∪ DC)) then
18 RES←{elem}
19 Let V be the set of variation points included by elem in PLD
20 foreach (vp ∈V ) do
21 RES← RES ∪ inferSelectedElements(vp, DC, d, PR, PLD)
22 end foreach
23 end if
24 end if
25 end if
26 end if
27 return RES
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Alg. 20: inferUnselectedElements
Input : Traversed element (Variation Point or Use Case), elem,

Set of decisions, DC,
Decision, d,
Set of the previously traversed elements, PR,
Product Line use case diagram, PLD

Output: Set of inferred, unselected elements

1 Let RES be the empty set for inferred, unselected elements
2 if (elem /∈ PR) then
3 PR← PR ∪ {elem}
4 if (elem is a Variation Point) then
5 Let SU be the set of variant use cases of elem selected in {d} ∪ DC
6 if ((SU = /0) and (there is no more decisions to be made for use cases of elem)) then
7 RES←{elem}
8 Let U be the set of the use cases of elem that are unselected in DC∪ {d}
9 foreach (uc ∈U) do

10 RES← RES ∪ inferUnselectedElements(uc, DC, d, PR, PLD)
11 end foreach
12 end if
13 else
14 if (elem is a Use Case) then
15 if ((elem is unselected in {d}∪ DC) and (there is no more decisions to be made for elem)) then
16 RES←{elem}
17 Let V be the set of variation points included by elem in PLD
18 foreach (vp ∈V ) do
19 RES← RES ∪ inferUnselectedElements(vp, DC, d, PR, PLD)
20 end foreach
21 end if
22 end if
23 end if
24 end if
25 return RES
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Appendix B

Algorithm for Identification of Subsequent
Decision Restrictions

In this appendix, we provide the algorithm for the identification of subsequent decision restrictions.
The algorithm is presented in six functions. These functions (Algs. 2-7) are called in the algorithm
inferDecisionRestrictions (Alg. 21) to infer restrictions on subsequent decisions. The restrictions are
imposed by the require and conflict relations specified in the product line use case diagram.

• inferConflictingUC (Alg. 23) and inferConflictingVP (Alg. 25) infer decision restrictions with
regards to the conflict relation for selected variant use cases and variation points in a decision
d, respectively;

• inferRequiringUC (Alg. 27) and inferRequiringVP (Alg. 26) infer decision restrictions with re-
gards to the requires relation for unselected variant use cases and variation points in a decision
d, respectively;

• inferRequiredByUC (Alg. 22) and inferRequiredByVP (Alg. 24) infer decision restrictions with
regards to the require relation for selected variant use cases and variation points in a decision d,
respectively.

We also provide in this appendix the algorithm for checking decisions restrictions. Alg. 28 identi-
fies (1) contradicting restrictions regarding the selection and unselection of the same variant use cases
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in a given variation point, and (2) restrictions violating cardinality constraints in variation points.

Alg. 21: inferDecisionRestrictions
Input : Set of diagram decisions (D), PL use case diagram (PLD)
Output: Set of inferred decision restrictions (IR)

1 DC← D
2 Let IR be the empty set for inferred decision restrictions
3 while (DC 6= /0) do
4 Let d be a decision in DC
5 Let vp be the variation point in decision d
6 Let SUC be the set of selected variant use cases in decision d
7 Let NSUC be the set of unselected variant use cases in decision d
8 Let SE be the set of variant use cases automatically selected when the variant use cases in

SUC are selected in decision d
9 Let NSE be the set of variant use cases automatically unselected when the variant use cases

in NSUC are unselected in decision d
10 foreach (u ∈ (SUC∪ SE)) do
11 IR← IR ∪ inferRequiredByUC (u,D,PLD)
12 IR← IR ∪ inferConflictingUC (u,D,PLD)

13 end foreach
14 foreach (u ∈ (NSUC∪ NSE)) do
15 IR← IR ∪ inferRequiringUC (u,D,PLD)
16 end foreach
17 if (SUC 6= /0) then
18 IR← IR ∪ inferRequiredByVP (SUC,vp,D,PLD)
19 IR← IR ∪ inferConflictingVP (SUC,vp,D,PLD)

20 else
21 IR← IR ∪ inferRequiringVP (NSUC,vp,D,PLD)
22 end if
23 DC← DC\{d}
24 end while
25 return IR
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Appendix B. Algorithm for Identification of Subsequent Decision Restrictions

Alg. 22: inferRequiredByUC
Input : Use case (u), Set of decisions (D)

PL use case diagram (PLD)
Output: Set of inferred decision restrictions (IR)

1 Let IR be the empty set for inferred decision restrictions
2 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a boolean variable
3 Let R be the empty set of required elements
4 R ←getRequiredElements(u, PLD)
5 if (R 6= /0) then
6 foreach (p ∈ PLD) do
7 if (p is a variation point ) then
8 if ((there is a subsequent decision to be made for p) and (none of the variant use cases in p has been selected in prior decisions in D)

and (p ∈ R)) then
9 IR← IR ∪ {(null, p, true)}

10 Let UC be the set of variant use cases automatically selected in p when there is a decision made for p
11 IR← IR ∪ inferConflictingVP(UC, p, D, PLD)
12 IR← IR ∪ inferRequiredByVP(UC, p, D, PLD)
13 foreach (vc ∈ UC) do
14 IR← IR ∪ inferConflictingUC(vc, D, PLD)
15 IR← IR ∪ inferRequiredByUC(vc, D, PLD)
16 Let AUS be the set of variant use cases that are automatically selected when vc is selected
17 foreach (y ∈ AUS) do
18 Let x be the variation point of y
19 IR← IR ∪ inferConflictingUC(y, D, PLD)
20 IR← IR ∪ inferRequiredByUC(y, D, PLD)
21 IR← IR ∪ inferConflictingVP({y}, x, D, PLD)
22 IR← IR ∪ inferRequiredByVP({y}, x, D, PLD)

23 end foreach
24 end foreach
25 end if
26 end if
27 if (p is a variant use case ) then
28 if ((there is a subsequent decision to be made for p) and (p has not been selected in prior decisions in D) and (p ∈ R)) then
29 Let e be the variation point of p
30 IR← IR ∪ {(p, e, true)}
31 IR← IR ∪ inferConflictingUC(p, D, PLD)
32 IR← IR ∪ inferRequiredByUC(p, D, PLD)
33 IR← IR ∪ inferConflictingVP({p}, e, D, PLD)
34 IR← IR ∪ inferRequiredByVP({p}, e, D, PLD)
35 Let AUS be the set of variant use cases that are automatically selected when the variant use case p is selected
36 foreach (c ∈ AUS) do
37 Let vp be the variation point of c
38 IR← IR ∪ inferConflictingUC(c, D, PLD)
39 IR← IR ∪ inferRequiredByUC(c, D, PLD)
40 IR← IR ∪ inferConflictingVP({c}, vp, D, PLD)
41 IR← IR ∪ inferRequiredByVP({c}, vp, D, PLD)

42 end foreach
43 end if
44 end if
45 end foreach
46 end if
47 return IR
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Alg. 23: inferConflictingUC
Input : Use case (u), Set of decisions (D), PL use case diagram (PLD)
Output: Set of inferred decision restrictions (IR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a boolean variable
2 Let IR be the empty set for inferred decision restrictions
3 Let CVP be the set of variation points conflicting with u
4 Let CUC be the set of variant use cases conflicting with u
5 foreach (c ∈ CUC) do
6 if ((there is a subsequent decision to be made for c) and (c has not been selected in prior decisions in D)) then
7 Let vp be the variation point of c
8 IR← IR ∪ {(c, vp, f alse)}
9 IR← IR ∪ inferRequiringUC(c, D, PLD)

10 IR← IR ∪ inferRequiringVP({c}, vp, D, PLD)
11 Let AUC be the set of variant use cases automatically unselected when c is unselected
12 foreach (a ∈ AUC) do
13 Let p be the variation point of a
14 IR← IR ∪ {(a, p, false)}
15 IR← IR ∪ inferRequiringUC(a, D, PLD)
16 IR← IR ∪ inferRequiringVP({a}, p, D, PLD)

17 end foreach
18 end if
19 end foreach
20 foreach (p ∈ CVP) do
21 if ((there is a subsequent decision to be made for p) and (none of the variant use cases in p has been selected in prior decisions in D)) then
22 Let UC be the set of variant use cases in p
23 IR← IR ∪ {(null, p, false)}
24 IR← IR ∪ inferRequiringVP(UC, p, D, PLD)
25 foreach (vc ∈ UC) do
26 IR← IR ∪ inferRequiringUC(vc, D, PLD)
27 end foreach
28 Let AU be the set of variant use cases automatically unselected when the variant use cases in p are unselected
29 foreach (vuc ∈ AU) do
30 Let vp be the variation point of vuc
31 IR← IR ∪ {(vuc, vp, false)}
32 IR← IR ∪ inferRequiringUC(vuc, D, PLD)
33 IR← IR ∪ inferRequiringVP({vuc}, vp, D, PLD)

34 end foreach
35 end if
36 end foreach
37 return IR
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Appendix B. Algorithm for Identification of Subsequent Decision Restrictions

Alg. 24: inferRequiredByVP
Input : Set of selected use case cases (SUC)

Variation Point (vp), Set of decisions (D)
PL use case diagram (PLD)

Output: Set of inferred decisions restrictions (IR)
1 Let IR be the empty set for inferred decision restrictions
2 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a boolean variable
3 Let R be the empty set for required elements
4 R ←getRequiredElements(vp, PLD)
5 if (R 6= /0) then
6 foreach (p ∈ PLD) do
7 if (p is a variation point ) then
8 if ((there is a subsequent decision to be made for p) and (none of the variant use cases in p has been selected in prior decisions in D)

and (p ∈ R)) then
9 IR← IR ∪ {(null, p, true)}

10 Let UC be the set of variant use cases automatically selected in p when there is a decision made for p
11 IR← IR ∪ inferConflictingVP(UC, p, D, PLD)
12 IR← IR ∪ inferRequiredByVP(UC, p, D, PLD)
13 foreach (vc ∈ UC) do
14 IR← IR ∪ inferConflictingUC(vc, D, PLD)
15 IR← IR ∪ inferRequiredByUC(vc, D, PLD)
16 Let AUS be the set of variant use cases that are automatically selected when vc is selected
17 foreach (y ∈ AUS) do
18 Let x be the variation point of y
19 IR← IR ∪ inferConflictingUC(y, D, PLD)
20 IR← IR ∪ inferRequiredByUC(y, D, PLD)
21 IR← IR ∪ inferConflictingVP({y}, x, D, PLD)
22 IR← IR ∪ inferRequiredByVP({y}, x, D, PLD)

23 end foreach
24 end foreach
25 end if
26 end if
27 if (p is a variant use case ) then
28 if ((there is a subsequent decision to be made for p) and (p has not been selected in prior decisions in D) and (p ∈ R)) then
29 Let e be the variation point of p
30 IR← IR ∪ {(p, e, true)}
31 IR← IR ∪ inferConflictingUC(p, D, PLD)
32 IR← IR ∪ inferRequiredByUC(p, D, PLD)
33 IR← IR ∪ inferConflictingVP({p}, e, D, PLD)
34 IR← IR ∪ inferRequiredByVP({p}, e, D, PLD)
35 Let AUS be the set of variant use cases that are automatically selected when the variant use case p is selected
36 foreach (c ∈ AUS) do
37 Let vp be the variation point of c
38 IR← IR ∪ inferConflictingUC(c, D, PLD)
39 IR← IR ∪ inferRequiredByUC(c, D, PLD)
40 IR← IR ∪ inferConflictingVP({c}, vp, D, PLD)
41 IR← IR ∪ inferRequiredByVP({c}, vp, D, PLD)

42 end foreach
43 end if
44 end if
45 end foreach
46 end if
47 return IR
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Alg. 25: inferConflictingVP
Input : Set of selected use case cases (SUC), Variation Point (vp), Set of decisions (D), PL use case diagram (PLD)
Output: Set of inferred decisions restrictions (IR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a boolean variable
2 Let IR be the empty set for inferred decision restrictions
3 Let CVP be the set of variation points conflicting with vp
4 Let CUC be the set of variant use cases conflicting with vp
5 foreach (p ∈ CVP) do
6 if ((there is a subsequent decision to be made for p) and (none of the variant use cases in p has been selected in prior decisions in D)) then
7 IR← IR ∪ {(null, p, false)}
8 Let UC be the set of variant use cases in p
9 IR← IR ∪ inferRequiringVP(UC, p, D, PLD)

10 foreach (vc ∈ UC) do
11 IR← IR ∪ inferRequiringUC(vc, D, PLD)
12 end foreach
13 Let AUC be the set of variant use cases that are automatically unselected when the variant use cases in p are unselected
14 foreach (vuc ∈ AUC) do
15 Let q be the variation point of vuc
16 IR← IR ∪ {(vuc, q, false)}
17 IR← IR ∪ inferRequiringUC(vuc, D, PLD)
18 IR← IR ∪ inferRequiringVP({vuc}, q, D, PLD)

19 end foreach
20 end if
21 end foreach
22 foreach (c ∈ CUC) do
23 Let x be the variation point of c
24 if ((there is a subsequent decision to be made for c) and (c has not been selected in prior decisions in D)) then
25 IR← IR ∪ {(c, x, false)}
26 IR← IR ∪ inferRequiringUC(c, D, PLD)
27 IR← IR ∪ inferRequiringVP({c}, x, D, PLD)
28 Let AUC be the set of variant use cases that are automatically unselected when c is unselected
29 foreach (a ∈ AUC) do
30 Let y be the variation point of a
31 IR← IR ∪ {(a, y, false)}
32 IR← IR ∪ inferRequiringUC(a, D, PLD)
33 IR← IR ∪ inferRequiringVP({a}, y, D, PLD)

34 end foreach
35 end if
36 end foreach
37 return IR
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Appendix B. Algorithm for Identification of Subsequent Decision Restrictions

Alg. 26: inferRequiringVP
Input : Set of variant use cases (NSUC), Variation point (vp),

Set of Decisions (D), PL use case diagram (PLD)
Output: Set of inferred decisions restrictions (IR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a boolean variable
2 Let IR be the empty set for inferred decision restrictions
3 Let R be the empty set of required elements
4 Let U be the set of variant use cases in vp
5 if ((NSUC = U) or (the variant use cases in (U \NSUC) are already restricted to be unselected)) then
6 foreach (e ∈ PLD) do
7 R ←getRequiredElements(e, PLD)
8 if (e is a variation point ) then
9 if ((there is a subsequent decision to be made for e) and (none of the variant use cases in e has been selected in prior decisions in D)

and (vp ∈ R)) then
10 IR← IR ∪ {(null, e, false)}
11 Let UC be the set of variant use cases in e
12 IR← IR ∪ inferRequiringVP(UC, e, D, PLD)
13 foreach (vc ∈ UC) do
14 IR← IR ∪ inferRequiringUC(vc, D, PLD)
15 end foreach
16 Let AU be the set of variant use cases that are automatically unselected when the variant use cases in e are unselected
17 foreach (vuc ∈ AU) do
18 Let v be the variation point of vuc
19 IR← IR ∪ {(vuc, v, false)}
20 IR← IR ∪ inferRequiringUC(vuc, D, PLD)
21 IR← IR ∪ inferRequiringVP({vuc}, v, D, PLD)

22 end foreach
23 end if
24 end if
25 if (e is a variant use case ) then
26 if ((there is a subsequent decision to be made for e) and (e has not been selected in prior decisions in D) and (vp ∈ R)) then
27 Let p be the variation point of e;
28 IR← IR ∪ {(e, p, false)}
29 IR← IR ∪ inferRequiringUC(e, D, PLD)
30 IR← IR ∪ inferRequiringVP({e}, p, D, PLD)
31 Let AUC be the set of variant use cases automatically unselected when p is unselected
32 foreach (a ∈ AUC) do
33 Let y be the variation point of a
34 IR← IR ∪ {(a, y, false)}
35 IR← IR ∪ inferRequiringUC(a, D, PLD)
36 IR← IR ∪ inferRequiringVP({a}, y, D, PLD)

37 end foreach
38 end if
39 end if
40 end foreach
41 end if
42 return IR
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Alg. 27: inferRequiringUC
Input : Use Case (u), Set of decisions (D), PL use case diagram (PLD)
Output: Set of inferred decision restrictions (IR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc and b is a boolean variable
2 Let IR be the empty set for inferred decision restrictions
3 Let R be the empty set of required elements
4 foreach (e ∈ PLD) do
5 R ←getRequiredElements(e, PLD)
6 if (e is a variation point) then
7 if ((there is a subsequent decision to be made for e) and (none of the variant use cases in e has been selected in prior decisions in D)

and (u ∈ R)) then
8 IR← IR ∪ {(null, e, false)}
9 Let UC be the set of variant use cases in e

10 IR← IR ∪ inferRequiringVP(UC, e, D, PLD)
11 foreach (vc ∈ UC) do
12 IR← IR ∪ inferRequiringUC(vc, D, PLD)
13 end foreach
14 Let AU be the set of variant use cases automatically unselected when the variant use cases in e are unselected
15 foreach (vuc ∈ AU) do
16 Let vp be the variation point of vuc
17 IR← IR ∪ {(vuc, vp, false)}
18 IR← IR ∪ inferRequiringUC(vuc, D, PLD)
19 IR← IR ∪ inferRequiringVP({vuc}, vp, D, PLD)

20 end foreach
21 end if
22 end if
23 if (e is a variant use case) then
24 if ((there is a subsequent decision to be made for e) and (e has not been selected in prior decisions in D) and (u ∈ R)) then
25 Let p be the variation point of e
26 IR← IR ∪ {(e, p, false)}
27 IR← IR ∪ inferRequiringUC(e, D, PLD)
28 IR← IR ∪ inferRequiringVP({e}, p, D, PLD)
29 Let AUC be the set of variant use cases automatically unselected when p is unselected
30 foreach (a ∈ AUC) do
31 Let y be the variation point of a
32 IR← IR ∪ {(a, y, false)}
33 IR← IR ∪ inferRequiringUC(a, D, PLD)
34 IR← IR ∪ inferRequiringVP({a}, y, D, PLD)

35 end foreach
36 end if
37 end if
38 end foreach
39 return IR
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Appendix B. Algorithm for Identification of Subsequent Decision Restrictions

Alg. 28: checkDecisionRestrictions
Input : Set of decision restrictions (R), PL use case diagram (PLD)
Output: Set of sets of contradicting decisions (CR)

1 Let a triple (uc,vpo,b) denote a decision restriction where uc is a variant use case, vpo is the variation point of uc, and b is a boolean variable
2 Let CR be the empty set for sets of contradicting restrictions
3 Let VP be the set of variation points in PLD
4 foreach (p ∈ VP) do
5 Let DR be the set of decisions restrictions in R for p
6 IR← DR
7 foreach (r ∈ DR) do
8 IR← IR\{r}
9 foreach (e ∈ IR) do

10 if (e.uc = r.uc and e.b 6= r.b) then
11 CR←CR ∪{{e,r}}
12 end if
13 if (r.uc = null) then
14 if (r.b = f alse) then
15 if (e.b = true) then
16 CR←CR ∪{{e,r}}
17 end if
18 end if
19 end if
20 end foreach
21 if (r.uc = null and r.b = true ) then
22 CR←CR ∪ checkSeveralRestrictions(p, DR, PLD)
23 end if
24 end foreach
25 CR←CR ∪ checkCardinality(p, DR, PLD)

26 end foreach
27 return CR
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