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Abstract

Aircraft Landing Gear
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University of Toronto

2015

A transient numerical model for studying the thermo-tribomechanical behavior of an aircraft

landing gear is presented. The study reveals the major heat sources and heat sinks that impact

the characteristic thermal behavior of the landing gear shock absorber. The severe in-service

performance degradation and reported structural damage can be explained as a consequence

of the heat generated by the high drag loads induced by rough runways on the bearings, and

by the high sliding velocities of the piston. A conclusive model may lead to improved landing

gear performance once the transient process of heat generation in a phase-changing grease-

lubricated lower bearing is fundamentally understood. A novel tribotopological lubrication

theory is derived in order to take into account all distinct physical phases of the non-Newtonian

Bingham lubricant. The governing equations are solved using a hybrid numerical solver that is

optimized for numerical efficiency and fast convergence. The proposed framework is validated

against existing theories and results, and it demonstrates accurate predictions of the thermal

performance of the landing gear. Strategies to passively optimize the lower bearing lubrication

mechanism are further suggested in order to achieve optimal thermal performance of future

aircraft landing gear.
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Chapter 1

Introduction

If we knew what it was we were doing, it would not be called

research, would it?

Albert Einstein, physicist (1879-1955)

1.1 Purpose and Motivation

In recent years, many civil airlines operating in countries known for airports that have rough

runways have reported serious in-service overheating issues on commercial aircraft [4]. The

aircraft manufacturer as well as the landing gear (LG) supplier have attempted to assess the

reported problems, and the root-cause has been identified as the overheating of the LG shock

absorber (SA) bearings. LG are especially challenged during landing, taking-off, maneuvering

and taxiing on extremely rough and bumpy runways. Due to the combination of high sliding

speeds of the LG piston and high drag loads induced by the rough runway on the SA bearings (see

Fig 1.1), thermal issues arise leading to structural heat damage, such that the LG performance

is reduced [2]. Despite this finding, a coherent and sufficient numerical model for predicting,

understanding and studying the thermal behavior of the LG SA has not yet been established.

The fundamentals of LG as well as its associated design process are explained in detail in [5].

Since the Maiden Flight in 1903, LG systems have been actively designed and continuously

improved in production (see Fig. 1.2). For the last 40 years, Computational Fluid Dynamics

(CFD) and the Finite Element Method (FEM) have been used for many different purposes

beyond the application to in-service issues. The main efforts to develop a thermal model of the

LG SA were focused on the lower bearing-piston interface, where the main findings, which can be

classified as heat damage failure, have been reported. Nevertheless, even by simple calculations

and estimations based on test results recorded from test flights on different rough-runway

airports, an accurate quantification of the temperature field was not yet possible. Previous

theoretical but preliminary temperature calculations either under- or overestimated the heat

that must have been generated in order to lead to such heat damage.

1
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Commonwealth of Independent States (CIS)

Nose Landing Gear (NLG)

Left-Hand Main Landing Gear (LHMLG)

Right-Hand Main Landing Gear (RHMLG)

Fuselage

Figure 1.1: Commercial aircraft and regions reporting in-service overheating issues.1

Typical runways in the Commonwealth of Independent States (CIS) have a roughness with

a short bump wavelength and an excessive bump amplitude, as shown in Fig. 1.3 [1]. The

acceptability criterion is based on the level of vibrations on the aircraft while maneuvering and

might need to be revised in order to take into account thermal aspects of the LG SA.

Main Fitting

Lower Bearing

Torque Link

Piston

Axle

Brake Assembly

Tire

Side Stay

Pivot Jack

Drag Strut

Figure 1.2: Main landing gear (MLG)1.
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Figure 1.3: Airfield pavement roughness criterion
(isothermal LG, AC150/5380-9) [1].

In order to illustrate the severity of maneuvering on a rough runway, a sample runway

profile is shown in Fig. 1.4 [6]. A spectrum shown in Fig. 1.5 and calculated for this runway

profile using the Fast Fourier Transform (FFT with a constant ground speed of 1m/s), reveals

that a characteristic wavelength of a rough runway is small (XR = 2m). Rough runways are

mostly paved with concrete slabs, which are all at a different vertical level with an average

amplitude of ẐR = 0.03m (see Fig. 1.3). The excessively high loads on the LG SA combined

1Image based on CAD model available freely online - www.grabcad.com
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with the high piston sliding velocities are easily imaginable when considering a commercial jet

(weight-over-gear (WOG): W = 332kN, see Fig. 1.1) maneuvering and taking-off at a typical

(WOG dependent) speed of Ẋto = 270km/h (with an acceleration on the runway of Ẋl/t̂ = 0.25g).

At the airports in the CIS, a typical ground maneuver takes approximately t̂ = 30s, and includes

taxiing at Ẋt = 40km/h (21.6kts) for tt = 15s. These characteristic parameters will be used

throughout the development of the aircraft LG thermo-tribomechanical (TTM) model.
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Figure 1.4: Sample rough runway profile.
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Figure 1.5: Rough runway spectrum.

In order to prevent in-service overheating issues, it might seem obvious to repave or repair

runways in certain regions of the world. Some airports in the CIS are regional, and because

of various factors such as low passenger traffic or restricted budgets, they may not be at the

maintenance standard of heavily frequented airports in other parts of the world. The airfield

roughness degrades over time, and is mainly caused by poor maintenance, uncertified construction

techniques, adverse weather conditions, or failures of base or sub-base runway materials.

It is important to mention that not all aircraft operating on rough runways experience the

same overheating issues. Military aircraft or very large transport aircraft are able to cope with

landings on rough or unpaved runways. The LG of these aircraft are specifically designed to

withstand severe operations, whereas commercial aircraft that are operating in the CIS are not.

In addition, not every LG is equally affected when operating on rough runways. For instance,

no overheating issues have been reported on the nose landing gear (NLG), as the loads are

much lower on the NLG than on the MLG. An analogy can be drawn with an example from the

automotive sector. Similarly to the commercial aircraft, a luxury car might encounter suspension

damage when taken off-road or driven on rough roads.

In order to reduce ever-increasing maintenance costs and to prevent thermal issues, it is

critical to investigate a different solution strategy than repaving the runway or keep continually

replacing damaged LG components. Before formulating such suggestions, it is highly important

to thoroughly understand the thermal behavior of a LG system and to accurately model the

energy dissipated into heat. In other words, the frictional energy dissipated during taxiing and

take-off needs to be accurately quantified. Before introducing the numerical LG TTM model, a

summary of the state of the art in the area of LG thermo-tribomechanics is given in Section 1.2.
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1.2 LG Thermo-Tribomechanics: A Review

1.2.1 Dynamic and Thermal Modeling of LG

Dynamic Modeling of the SA and LG on Rough Runways

Dynamic simulations in the systems development process should ensure that the dynamic loads on

the LG components are within the design limits necessary to comply with high performance and

safety requirements for operation on rough runways. A complete overview of recent developments

in the area of LG dynamics is provided in [7], including a survey of the most critically needed

enhancements to LG simulations; among those listed is the requirement for a comprehensive

(nonisothermal) friction model for LG bearings. A relevant example of the dynamic modeling

of LG is shown in [8], where the impact of repetitive and excessive bearing loads on the LG

fatigue life is investigated, demonstrating the application of the general theory of multibody

systems [9]. The touchdown of a helicopter LG has been modeled in [10], assuming, however,

imperfect bearing lubrication, which was approximated as dry friction. Rough runways and

their impact on the isothermal performance of LG have been studied previously. For instance,

a Boeing 747’s capabilities on rough runways have been assessed in [11], and investigations to

reduce LG vibrations of runway excitations were conducted in [12]. However, all of the more

advanced LG studies used constant or isothermal bearing friction. Although runway profiles

have been studied and roughness criteria defined in [1], a sensitivity study that demonstrates

the effect of key runway parameters (e.g., runway bump amplitude) on the thermal behavior of

aircraft LG has never been performed [2]. LG related dynamic phenomena such as shimmy or

gear-walk have been studied in [13], including the LG shock strut elasticity, but omitting any

modeling of bearing friction forces. Brake-gear interactions have been tackled in [14], using the

model of isothermal friction with free-play in a similar way as in [15]. In neither study, was the

friction model extended beyond a typical, isothermal Coulomb model. The dynamics of LG have

been extensively studied in [16], but only the initial landing impact with no heat transfer effects

was considered. The inclusion of friction in a SA is a nonlinear phenomenon as demonstrated

in [17], but the specified nonlinearity did not include thermal effects. Nevertheless, all studies

mentioned to some extent the difficulties encountered with the stick-slip phenomenon, especially

in transient simulations.

Despite the fact that the theory of stick-slip for the case of dry surfaces has been shown

in [18], it remains a very active area of research; however, it seems as though the area of LG

dynamics and the field of tribology are disconnected. In addition to the lack of knowledge of

the frictional heat generation in LG dynamic simulations, little importance has been given to

stick friction phenomena, as stated by Dr. W. Krüger [19]: “Stick friction has not been covered

widely in past publications. [...] The subject is of major importance for future research [...] at

the main landing gears (when) taxiing.”
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Thermal Modeling of the SA

Although heat sources and sinks in a LG system have not been studied previously, heat transfer

effects have been considered in the LG SA chambers during landing impact by using the bond

graph methodology [20]. Bearing friction was not explicitly included, although the use of a more

advanced friction model was mentioned. While there exists a clear need for nonisothermal and

comprehensive friction models for LG dynamic simulations, heat generation has been taken into

account in other applications.

A thermomechanically coupled study of a SA of a car is shown in [21], including a more

advanced, although oil-based, friction model and dissipation of heat. A more sophisticated

thermodynamic model of a SA of a car is given in [22], but explicit frictional heat generation

was not taken into account. The influence of friction in the guide bearing of a suspension system

has been separately investigated in [23], showing that friction might have a negligible effect

for road bump amplitudes of more than 0.04m, but has a significant effect for smaller bump

amplitudes. The trend of omitting frictional heat generation in a SA has been reversed in [24],

where thermal phenomena are discussed specifically for the telescopic SAs of mountainbikes, but

the proposed model is based on high-level bond graphs.

Existing Dynamic Models and Frictional Heat Generation

Despite the fact that LG dynamic simulations have mostly used isothermal friction models,

research in other fields for other applications, such as published in [25], included frictional heat

generation. The surface temperatures of oscillating sliding surfaces have been calculated for

pin-joint assemblies (similar to LG bearings) using a frictional heat-flux, but the friction model

followed the laws of Coulomb. A simplified model of stick-slip motion and two coupled masses,

such as in a LG, has been shown in [26], but the contacts have been assumed to be dry and

isothermal. In similar dynamic models shown in [27, 28], heat generation has been included in

the dynamic behavior of sliding masses.

Although the comprehensive overview of friction models provided in [29] seems to provide

a solid base for developing dynamic simulations of mechanical systems, the need for a more

accurate prediction of the bearing friction coefficient (BFC) was formulated in [30]. It is a

fact that the BFC changes because of thermal effects, and therefore the research area of LG

thermo-tribomechanics and field of tribology have to be linked.

Nonisothermal Friction in Simulations of LG and Dynamic Systems

As illustrated previously, the trend has been to ignore the frictional heat generation in LG

dynamic simulations. In recent years, however, several publications have been released in order

to show the importance of thermal considerations in LG dynamic simulations [31], where a

characteristic aircraft LG model including the dynamics of the SA as well as frictional heat

generation have been considered. A first attempt to bridge the gap between LG dynamic

simulations and tribology is shown in [32], where a high-level methodology is introduced for

including a complex thermal model into existing LG dynamic simulations.
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1.2.2 Tribology and Thermo-Elastohydrodynamics

Tribology, which is the science of contacting surfaces in motion, including dry and lubricated

contacts, provides the fundamentals to explain the LG overheating issues. For a long time,

the field of tribology has been heavily studied; it is probably one of the oldest research fields,

having the obvious link to heat with prehistoric friction-based fire making. Tribology has been

extended to many different research fields, including dynamic modeling of mechanical systems.

For instance, a practical reference of lubrication principles is provided in [33].

Tribological Studies of Dry Friction

Although the joints in aircraft LG are lubricated, it is the dry-running of joints, including slider

bearings, that is of particular interest. The frictional heat generation between dry surfaces has

been considered in older studies [34, 35], but loses validity once the contacting surfaces are

lubricated. Some well-known studies like [36] focused on calculating how the heat is shared

between contacting surfaces, and are still very useful for comparing dry and lubricated contacts

from a thermal point of view. Analytical solutions to the frictional heat energy generation and

its impact on the temperature field are given in [37], but are hardly practical for modeling

complex industrial systems. A thermodynamic overview of the frictional thermal energy process

is shown in [38], but is only applicable to dry surfaces.

A first attempt to link the friction coefficient between contacting and lubricated surfaces

and the temperature is shown in [39], where the contact temperature drives a sudden change of

the physical phase of the lubricant. However, this inclusion of temperature in the BFC might

not be accurate enough to fundamentally understand frictional heat generation in lubricated

contacts. In addition to the effect of heat on the lubricant in lubricated contacts, the elasticity of

dry contacting structural components is considered in [40], but only parallel layers and vertical

thermoelastic oscillations have been studied.

Isothermal Classical Reynolds Lubrication Theory

After the derivation of the Navier-Stokes equations in the 1840s, the computational power

needed to solve them was not available, and the equations were simplified by using various

approximations. The most prominent simplified theory for thin films was derived by Osborne

Reynolds more than a century ago, who adapted the Navier-Stokes equations to a more simple

equation, namely the Reynolds equation. His equation has been used for many years, and was

the only means of obtaining an acceptable solution to hydrodynamic problems with the available

computational power.

Most studies in the field of hydrodynamics have focused on isothermal studies in order to

design higher performance and higher efficiency bearings. While shearing the lubricant, energy

is dissipated into heat, which raises the temperature within the lubrication gap, leading to a

change in the viscosity (and density) of the lubricant. Numerous publications that outline the

theory of lubrication in detail have been written, and this work has been summarized in [41].
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For more than 30 years, lubrication studies have been extended to include temperature

effects, but were mostly limited to simplified geometries in order to derive analytical solutions

such as in [42]. Similarly, the patterns that exist in flow between unsteady or oscillating plates

were investigated in [43]. Although analytical solutions are eventually relevant for validation

purposes, they are barely applicable in real-life applications, such as in LG.

Recent research has led to the conclusion that the performance of bearings is dependent

on the deformation of the contacting surfaces, and that the elasticity of lubricated contacting

surfaces has to be considered [44]. Friction in mixed and elastohydrodynamic (EHD) lubrication

that includes thermal effects has been discussed in [45], but the focus of the thesis was on

point-contact applications.

Thermo-Elastohydrodynamic Lubrication

The field of thermo-elastohydrodynamics (TEHD) is an extension of the EHD field through

the inclusion of thermal effects, and is the field within tribology that has seen the most recent

developments, especially to calculate the tribological performance of complex systems. The field

of TEHD is the field that is most relevant to the study of the reported overheating (thermal)

problem, as the slider bearings are grease-lubricated. The governing equations for thermo-

hydrodynamic (THD) behavior and a numerical scheme based on Finite Differences (FD) are

shown in [46] for the application of an oil-lubricated journal bearing, but did not include the

elasticity of the bearing. Slider bearings such as in [47] are rarely studied. Although the model

development steps might be relevant, the focus was not on TEHD, but on a more advanced

lubricant.

Similarly to the case of EHD studies, slider bearings have rarely been considered. A simplified

TEHD model of a surface slider is given in [48], estimating the elastic deformations of the slider

surface with a 1D elastic beam model. A validated fully-coupled and transient TEHD model

similar to the one proposed for an aircraft LG has been shown in [49], but the application was

for reciprocating cylinders in hydraulic machines (journal bearings), and the lubricant was oil.

The methodology and fluid-structure interaction (FSI) algorithms are partially applicable to the

LG SA.

To the author’s current knowledge, LG SA bearings have not been considered from a TEHD

point of view. In order to fill this gap in knowledge, multiple publications in connection with

the TTM model have been released. For example, a 3D model with rigid LG components and

an oil-lubricated lower bearing has been given recently [50], omitting, however, the elasticity of

structural components. Additionally, an axisymmetric numerical concept model for the LG SA

bearings has been shown in [51], demonstrating the differences of grease and oil flow and the

impact on the friction coefficient.

A more common application in TEHD is for rotating machinery, and such an analysis is

shown in [52] for an oil-lubricated journal bearing under severe operating conditions, outlining

the importance of including thermal and elasticity aspects. The work concludes by comparing
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both THD and TEHD results. Similar conclusions have been drawn in [53], where thrust

bearings have been studied from a TEHD point of view.

Transient TEHD analyses are the exception, and only a few studies have focused on run-in

phases of rotary machinery, on vibrations, or on oscillating machinery parts. TEHD problems

can, in some distinct applications and under specific operating conditions, be formulated as

quasi-static, because the inertia of the lubricant can be ignored. Longitudinal vibrations in line

contacts have been considered in [54], showing that both thermal and transient effects need

to be included with non-Newtonian lubricants. A new TEHD algorithm is shown in [55, 56]

for dynamically-loaded connecting-rod journal bearings, showing the influence of thermal and

elastic deformations and the importance of transient TEHD simulations. Depending on the

thermal boundary conditions of the system, a notable conclusion is that the TEHD and THD

results might not be very different, which implies that the thermal expansion of the structure is

dependent not only on the heat generated between the surfaces, but also on the surrounding

components and environment.

TEHD and Optimization of the Lubrication Mechanism

Other geometries such as the lemon-bore bearing have been explored in [57], where the THD

performance was evaluated. An interesting conclusion is that the lubrication mechanism of the

bearing can be modified according to application requirements in order to increase the THD

(and consequently TEHD) performance. Compressible lubricants, such as in gas-lubricated

bearings, have been considered in [58]. Although the lubricant was different than grease or oil,

it is the methodology of studying different bearing shapes that is of particular interest.

EHD/TEHD and non-Newtonian Lubricants (Bingham Fluids)

Most of the previously-cited work uses Newtonian lubricants, such as mineral oil. LG slider

bearings are lubricated with a high-pressure non-Newtonian lubricant, namely grease (a Bingham

fluid), which has rarely been considered. An experimental investigation of the EHD behavior of

grease is provided in [59], determining the limiting (or yield) shear stress τ0 for grease.

One of the first publications involving a Bingham fluid is [60], outlining the identification

of a solid (also known as plug) phase in grease-lubricated bearings, confirming the tendency

of an increased hydrodynamic pressure with increasing τ0. The rheology of the lubricant is

explained in detail in [61], resulting in the derivation of a 2D lubrication theory based on the

Herschel-Bulkley model. It is the comparison with experimental results and their good agreement

that is of particular importance. In a similar way, grease-lubricated point-contacts have been

considered in [62], comparing both the EHD and TEHD performance. A major and relevant

finding is that for the stiction case, the plug fills the entire lubrication gap. A relevant study

is given in [63], in which thermal effects using the THD theory are studied for a finite journal

bearing, taking into account multiple plug regions. Nevertheless, the work does not refer to

other phase changes, such as those caused by local disintegration or ’burning’ of the lubricant. A

similar study involving non-Newtonian lubricants that follow the power law (grease follows the
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power law of first order) is shown in [64]. However, the focus was only on the THD performance,

resulting in the conclusion that the thermal effects are generally more pronounced for shear

thickening fluids.

Another relevant THD analysis with a Bingham fluid is provided in [65], demonstrating a

multi-regional velocity field, together with a stationary and moving solid layer. Along these

lines, a THD study involving a Bingham fluid shown in [66] demonstrates multiple cases of plug

formations that can exist or co-exist, but does not consider other eventual phases, such as those

caused by an increasing temperature.

A more general approach has been taken in [67] for any non-Newtonian fluid (shear thin-

ning/thickening) in EHD lubrication, but the application was limited to line contacts. Nonethe-

less, the viscosity was considered to be a function of the shear rate and is included in the model

as an equivalent viscosity. A similar method using an equivalent viscosity is followed in [68]; the

conclusion is that thermal effects prevail over the rheological contributions in TEHD contacts.

A theory that considers TEHD effects of a Bingham fluid in an aircraft LG bearing and

its application in a comprehensive model has not yet been established. The phase changing,

transient character of grease is not captured in the classical Reynolds theory, and the solution

times of any more advanced technique used to solve the Navier-Stokes equations, such as CFD,

are not compatible with the stringent requirements of fast, transient dynamic simulations of

aircraft LG.

1.2.3 Relevant Numerical Developments

Numerical Methods in Classical Lubrication and Dry Friction

Despite considerable efforts in developing analytical solutions to the heat conduction equation

in solids [69] or to the Reynolds equation [70], numerical studies have emerged more frequently

during the last decade. For instance, several numerical methods have been combined in [71]

in order to determine a solution to the steady state and transient problem of THD lubrication

for the case of journal bearings. Similarly, boundary elements and finite elements (FE) have

been combined in [72] to yield a solution to the EHD problem of journal bearings, providing as

well a comprehensive algorithm of the FSI simulation. An interesting analysis of not using FSI

techniques, but rather solving both structural and Reynolds equations together for a simple

cylindrical journal bearing is provided in [73].

The fundamentals of fluid film lubrication and the associated modeling efforts for journal

bearings have been summarized in a very comprehensive way in [74]. In [75], an extensive

summary of numerical methods in EHD/TEHD together with a comparison of the different

methods is provided.

One of the most prominent numerical solution methods in TEHD is the Multigrid (MG)

method. A practical reference detailing the MG method and the underlying algorithms is

provided in [76]. A full MG implementation for a Poisson-type (elliptic) partial differential

equation (PDE) is detailed in [77].
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A computational study on the appropriate modeling of dry friction is shown in [78], where the

sliding process was modeled and the surface roughness considered. Similarly, an FE formulation

including the flash temperature in dry contacts is given in [79], and the numerical results are

compared to the analytically-derived expression.

Numerical Studies in Lubrication using CFD and FSI

As shown previously, the field of EHD and TEHD lubrication based on the classical (or modified)

Reynolds theory has been very active. Most notably, grease and other non-Newtonian lubricants

were considered in TEHD simulations, and their rheological models were derived. As confidence

was gained in the models and the computational resources became available in recent years,

researchers turned away from the Reynolds theory and towards the promising features of CFD.

Advanced modeling aspects of EHD lubrication were investigated in [80], where the perfor-

mance of pocketed bearings was investigated, but thermal aspects were not considered. A full

3D journal bearing is modeled using CFD in [81] using the Finite Volume (FVM) method and

the tridiagonal matrix algorithm (TDMA). The work is of particular importance as the results

are experimentally validated.

A relevant study dealing with the implementation of FSI and CFD algorithms that provided

results for Bingham fluids in lubrication gaps was done in 2008 [82]. For different journal bearing

configurations, the formation of the plug is calculated with FLUENT. The authors state that the

main advantage of solving the Navier-Stokes equations using CFD would be to take into account

the 3D formation of a plug, implicitly suggesting, however, a need for a Reynolds-based model.

A very practical EHD study of a journal bearing involving CFD and FSI techniques is shown

in [83], demonstrating the use of ANSYS and the deprecated FLOTRAN module. Nevertheless,

the use of this technique is limited to oil-lubricated journal bearings.

Comparison: Navier-Stokes equations and Classical Lubrication Theory

A line contact solution is obtained in [84] using the CFD method implemented in an open-

source software package. Apart from distinct cases of high viscosity, a good agreement with

the classical Reynolds theory was found. A similar problem yielding the same conclusion is

tackled in [85], assuming full elasticity of contacting surfaces. A study providing more details

on the implementation of CFD and FSI methods for the case of a rotor-bearing system is shown

in [86], concluding that CFD is a valuable tool for investigating the hydrodynamic and EHD

performance of journal bearings. The CFD method gives a certain flexibility for the inclusion

of other eventual study variables, but there is a high computational cost involved in obtaining

similar results as with the classical lubrication theory.

The Navier-Stokes equations are the underlying governing equations of CFD methods and

are commonly known to be very tedious and computationally expensive to solve numerically.

Solution times for CFD-based methods are generally quoted to be several orders of magnitude

longer than those for traditional Reynolds solvers.
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Year Model Computer/Processor Cores Nodes/elements N.-S. Class. Ref.

1995 3D Short Bearing SPARCstation 514 MP 4 1800 F + 54000 S 5400s 180s [81]

2007 3D Point contact Intel Xeon 5100 32 200’000 total 3 weeks N/A [87]

2010 3D Short Bearing Intel Core i5 2.67Ghz 1 7200 F + 16800 S 7440s 60s [86]

2012 2D Sliding Line Intel Xeon 2.27 Ghz 2 61000 F + 63000 S 600s N/A [85]

2014 2D Roller Bearing N/A N/A 23474 F + 0 S 20.21hrs. N/A [88]

Table 1.1: Quoted solution times for the solution of the Navier-Stokes equations (CFD) compared
to the classical (Reynolds) approach.

As shown in Table 1.1, the flexibility of CFD simulations comes at a substantial computational

cost. In [89], the major differences between the Navier-Stokes approach (CFD) and the Reynolds

approach are discussed. Inertia effects of the lubricant, as well as the flexibility to implement

complex rheological models, are cited as advantages of CFD. At the same time, the disadvantage

of full CFD is emphasized. By using CFD, four equations (Navier-Stokes) have to be solved,

compared to a single Reynolds equation. This negatively affects the solution times.

For the cases considered in [89], it is shown that almost no difference exists in the results

obtained from the Navier-Stokes equations (CFD) or with the Reynolds approach (even by

including inertia effects). In short, the CFD methods offer apparently more flexibility for

cavitation or rheological models, but are obtained at a much higher computational cost. The

Reynolds equation is still valid for non-Newtonian lubricants, but using the Reynolds equation for

non-Newtonian and multiphase (more than two phases) lubricants in transient 3D applications

(such as in a LG) has so far not been investigated.

Although the CFD method seems to be applied more and more often in the literature, the

drawback of a high simulation cost puts this method out of reach when trying to simulate

transient and grease-lubricated contacts. In fact, the quoted simulation times in Table 1.1 are

for steady state simulations and for oil. Simulating transient runs lasting 100s or more, with

time steps of the order of micro-seconds, would bring the total simulation time to months (or

even years) for the application of LG.

1.3 Research Goals and Outline

As a result of the review of existing work in the area of LG thermo-tribomechanics, two major

issues have crystallized. These are formulated as the following two research goals:

1. Fundamentally understand the LG SA thermal behavior, in particular the

transient heat generation process in a grease - lubricated LG SA bearing, by

developing a mathematical framework and providing accurate simulation results in suitably

fast manner.

2. Conceptualize and develop a strategy for solving the reported overheating problem.
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The logical outline of the thesis is shown in Fig. 1.6 and the aim of each chapter is specified.

All the chapters are shown as parts of a hexagon. The hexagon is equivalent to the research

area of LG TTM (see Fig. 1.7).

Analyze and define
problem

6

Draw conclusions

1

In-service
LG overheating

issue

3
Develop the

tribotopological
theory for fast and

accurate simulations

2

Understand
the global
thermal
behavior
of LG

4

Understand local
overheating of LG
lower bearing by

applying
tribotopological theory5

Conceptualize a
solution to the LG
overheating issue

Future work

Goal 1Goal 2

Figure 1.6: Outline of thesis and logical flow of chapters with specification of thesis goals.

The chapters are grouped into two indicated circles that correspond to the two postulated

goals. Although the chapters are shown in a sequence, it is the union of Chapters 2, 3 and 4

that leads to attaining Goal 1, so that Goal 2 can be reached in Chapter 5. A brief summary of

each chapter highlights its content and is given below for each of the two goals.

Goal 1: Fundamental understanding of the LG SA thermal behavior

In Chapter 2, the LG system is defined, the methodology and governing algorithm are outlined,

and the developments leading to a characteristic LG thermal model are highlighted. A general

overview of the LG system leads to the identification of three subsystems (mechanical, tribological

and thermal) and one interface module, which are modeled with a limited complexity, and which

give the name to the thermo-tribomechanical (TTM) model. Special emphasis is placed on the

rheology of the lubricant (grease) used in LG bearings.

The root-cause of the heat damage is confirmed, and characteristic results that quantify

the heat sources and sinks are provided. A sensitivity study of the effects of a change in key
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parameters, such as the characteristic dimensions of the runway profile and the WOG, on the

maximum temperature (proportional to the maximum frictional heat flux) in the thermal zone

of interest (TZI) is performed.

In Chapter 3, a novel tribotopological theory (TTT) is presented, which takes into account

non-Newtonian, multiphase lubricants, and rewrites the Reynolds equation. The theory relies

on CFD principles for accuracy, but uses the advantages of the classical lubrication theory for

fast simulations. Virtual topologies, namely shells and spaces, form the underlying concept of

the TTT. Spaces are surrounded by shells, and are defined through a threshold value (such as

maximum operating temperature or yield shear stress) of any scalar field, including electro- or

magneto-rheological fields. Spaces can either be attached to a contacting surface, or can float

within the lubrication gap.

The main difference between the present approach and [3, 63] is that not only is the

formation of a single plug space taken into account, but also multiple spaces (physical phases)

of a non-Newtonian lubricant are considered.

In Chapter 4, a comprehensive 3D transient TTM model that takes into account thermal

and elastic structural deformations of the LG lower bearing is developed by applying the TTT.

Special attention is given to the underlying algorithm of the numerical FSI framework used to

efficiently solve the governing equations. The transient model, which is a sequence of steady state

steps, each with different initial and boundary conditions, is validated against existing results,

both for rotational and translational motion. The discretization of the governing equations and

the MG implementation are shown. The newly developed hybrid Reynolds-based solver runs at

an acceptable speed and provides transient results in a short time frame.

The heat generation process within the lubrication gap is fundamentally understood, and

numerical results indicate significant differences in flow behavior between greased and oil-

lubricated bearings. Plug and dry spaces are identified, and their transient behavior as well as

their impact on the friction coefficient is studied. In addition to the THD results, the TEHD

results are shown, which demonstrate that the temperature field at both contacting surfaces is

different. This finding explains the reported uneven and asymmetrical heat damage.

Goal 2 : Conceptualization and development of solution strategy

In Chapter 5, the advantages and disadvantages of various solution strategies are discussed.

The fundamental understanding of the heat generation (Goal 1) leads to conceptualizing solutions

that will reduce the heat generation and avoid the local disintegration of the lubricant. An

in-depth systemic analysis of LG simulations is performed, the strategy of solving the overheating

problem is outlined, and design modifications are highlighted.

In addition, TEHD results show the effect and benefits of a modified lubrication mechanism.

Optimization results of a novel lubrication mechanism design of the lower bearing are summarized,

which show a significant and beneficial effect on the heat generation.

In Chapter 6, final conclusions are drawn. Design suggestions and the eventual practical

steps necessary to implement the findings that may lead to an industrial solution are highlighted.
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In addition, various aspects of optimizing the TEHD simulation, such as nonuniform grids, are

given. An industrial solution may allow aircraft operators to reduce maintenance costs and

allow aircraft LG suppliers to improve the LG system thermal performance.

1.4 Scope and Significance

The thesis contributions outlined above are significant from both academic and industrial points

of view. The aim is to seamlessly link various research areas together. Specifically, this thesis

defines a new area of LG TTM, which can be seen in Fig. 1.7 as a hexagonal intersection of

six fields: LG SA dynamics, fluid mechanics/CFD, classical lubrication, numerical analysis,

multiphysics/FSI and lubrication mechanism design.

In the area of LG dynamics, this thesis

provides a more accurate friction coeffi-

cient by including thermal effects. The

fields of fluid mechanics/CFD and the

classical lubrication field are linked by

the novel TTT, which incorporates the

advantages of both fields. The novel TTT

is applied during the development of the

comprehensive model, as the fields of mul-

tiphysics/FSI and numerical analysis are

linked by the integration of a new hybrid

solver (based on the MG method) into

ANSYS using advanced FSI techniques.

Conventional lubrication mechanism de-

sign guidelines can be extended by imple-

menting the results of the comprehensive

TTM model in order to avoid the over-

heating problem in the future.

Optimization and
Lubrication

Mechanism Design

Multiphysics
and FSI

Numerical
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Lubrication Theory

(Reynolds)

Fluid Mechanics
and CFD

LG/SA
Dynamics

Thesis

Aircraft LG
TTM Model
Development

2
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Figure 1.7: Thesis positioning at the intersection of six
research fields.

This thesis is believed to be one of the first comprehensive studies in the new area of LG TTM,

and the impact is believed to be significant in the larger field of LG design and engineering. It

covers various aspects of TTM model development which are beneficial to the understanding of

the reported overheating and to the design of future LG with a higher thermal performance.

Although the thesis takes a pioneering role in the area of LG TTM, specifically with the

development of the TTT for LG bearings, it is not thought to provide the only method of

solving the reported overheating problems; other strategies may also work, but entail issues or

complications that are not discussed (such as changing the type of LG).

This thesis does not aim to develop specific design guidelines for future LG, as it relies solely

on a theoretical framework. Although various real-life aspects, such as the roughness of bearing

surfaces, existing wear, or fatigue of parts are not included, the essential physics of the LG lower
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bearing overheating are captured in the numerical TTM model. The comprehensive model and

the TTT are validated for simplified and theoretical cases, but may need to be validated against

existing test results of LG before future model refinement steps can be taken. As the model is

not yet validated against existing test results, the model results provide insight into the thermal

behavior of LG, but do not give, for example, an exact quantification of the temperature at the

lower bearing sliding interface.

Although the TTT is developed for translational and rotational motion, the aim of the

comprehensive model is to provide results for the case of the translational motion of a slider in a

specific MLG of a commercial airliner that is operating on rough runways. This thesis provides

the fundamentals of LG TTM model development, and, if needed, they can be adapted to other

cases, such as for LG of military aircraft or NLG.

1.5 Relevant Notations

The unit base vector of a reference frame is defined as ei = ( 0 · · · 1 · · · 0 )T , with its

i-th component being one. The translation vector x(t) in the global reference frame describes

the position of the pivot jack (see Fig. 1.2) of the LG on the runway. As the aircraft is

moving in a straight line (no turning) over the runway, the position vector is given by: x(t) =

X(t) eX + Z(t) eZ , where X(t) is the position of the aircraft over the runway and the vertical

position Z(t) is given by the dynamic model. A vector v in the local reference frame of the

lubrication gap (O, ex, ey, ez) is written as: v = vxex + vyey + vzez. The nth spatial derivative

of a scalar field θ is written as:
∂nθ

∂xn
= θ, x...x︸︷︷︸

n times

(1.1)

The first order partial derivative of a scalar function f with respect to x is denoted as f,x. The

temporal derivative of a vector or scalar field is defined as:

θ̇ =
∂θ

∂t
, v̇ =

∂v

∂t
(1.2)

The material derivative (sometimes called total derivative) of a vector field v is written as
Dv
Dt = v̇ + v ·∇v. The gradient of a scalar field p is given by ∇p = p,xex + p,yey + p,zez. The

gradient of a vector field v is given by:

∇v =
∂vj
∂i

ej ⊗ ei , i, j = x, y, z (1.3)

where ej ⊗ ei designates the tensor operator between two vectors ej and ei: ej ⊗ ei = eie
T
j ,

or component-wise: (ej ⊗ ei)kl = eikej l. ∇v is also known as a second-order tensor. In some

cases, a quantity may yield the same analytical expression if derived in different directions in

the reference frame. For instance, p,x|z means that p,x = ∂p
∂x and p,z = ∂p

∂z . The notation ‘|’ reads

‘or’ and is adopted in order to simplify the equations. Any other notations are highlighted in

the respective model development sections. �



Chapter 2

Landing Gear

Thermo-Tribomechanics

If you can walk away from a landing, it’s a good landing. If you

use the airplane the next day, it’s an outstanding landing.

Chuck Yeager, test pilot (1923 - )

2.1 Landing Gear System Definition

Despite being considered dead-weight during flight, the LG is one of the most critical and

most complex systems of a modern aircraft. Although the LG system is composed of various

subsystems, such as the wheels and brakes assembly, torque link and side stay identified in

Fig. 1.2, it is the internal mechanism of the main fitting that is of particular interest to the field

of LG thermo-tribomechanics. The role of each LG component, the function of the internal

components and the flow of the hydraulic oil within the LG SA (chamber interactions) are key

to understanding the TTM behavior while operating on a rough runway.

Definition of the LG SA Components and Functions

In Fig. 2.1, the two major components of the LG SA are the cylinder (1)2, which is a part of

the main fitting defined in Fig. 1.2, and the piston (3). The piston, which links the LG SA to

the wheels and brakes assembly, is sliding inside the cylinder and is supported by two bearings,

namely the upper (5) and lower bearings (2). The upper bearing is fixed on the piston, whereas

the lower bearing assembly is inserted into the cylinder. The portion of the piston inside the

cylinder is submerged in hydraulic oil up to a certain level, and the remaining volume of the SA

is filled with nitrogen gas, which is chosen for its inert properties in consideration of the strict

requirements of aircraft operating in all parts of the world. In a double-acting SA such as is

2The bracketed numbers correspond to the components shown in Fig. 2.1

16
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considered in the present case, nitrogen gas fills the voids on the top inside (I) of the cylinder

and the bottom of the piston below the Piccolo tube base (4). The double-action of such a SA

results from the different stiffness characteristics of the two gas compartments and is designed

for operating on rough runways.
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4. Piccolo Tube Base
5. Upper Bearing
6. Support Tube
7. Orifice Plate
8. Piccolo Tube
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II
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IV
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Figure 2.1: LG SA components and oil flow during compression and extension within the chambers
II-IV. Chamber I is filled with nitrogen. The components (3), (4), (5) and (8) are moving and other
components are stationary.

In a single-acting SA, nitrogen gas fills a single void on the top inside of the cylinder (I).

The piston ends at the axle of the two wheels, as shown in Fig. 1.2, and is filled with oil

as shown in Fig. 2.1. In a double-acting SA and similar to the cylinder, the piston is filled

with oil and nitrogen. The nitrogen at the bottom of the piston is confined in a thermally

insulated compartment. For simplification of the thermal model, the second gas compartment

is omitted as explained in Section 2.6.4. The LG SA has two dynamic functions, namely a

spring and a damper function. The spring function is particularly relevant to the study of the

dynamics of the LG, whereas the damper function is of importance to study the dissipation of

the mechanical energy within the SA. Both functions drive the dynamic input of the thermal

model (see Section 2.3).

LG Spring Function The LG SA acts as a spring in order to allow the SA to rebound after

touchdown. The spring function is realized by compressing and expanding nitrogen gas. The
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stiffness of the SA is dependent on the pressure within the LG SA and other factors such as

temperature and the mixing of the hydraulic oil and nitrogen.

LG Damper Function In modern LG SA, the dissipation of the mechanical energy during

ground maneuvers, taking-off and landing is realized by forcing hydraulic oil through two orifices,

which are holes designed according to the LG dynamic specifications (primary dissipation

mechanism). The orifices are the most critical and expensive components within the LG SA.

An important part of the mechanical energy is dissipated through mechanical friction within

the LG SA at the upper and lower bearings (secondary dissipation mechanism). The frictional

heat generated at these interfaces flows to the cylinder and the piston (normal heat fluxes).

As no energy is lost during operation, the dissipation of mechanical energy is equivalent to its

conversion to heat energy. Both dissipation (heat generation) mechanisms are considered in the

subsequent TTM model development.

The compression of the SA is governed by the flow of hydraulic oil through the primary

orifice plate (7), whereas the rebound (extension) of the LG is controlled by the flow through

the recoil orifice, which is part of the upper bearing assembly (5). The primary orifice plate is

held in place with a support tube (6). A Piccolo tube (8) (also called metering pin) is attached

to the Piccolo tube base (4), which is approximately situated in the middle of the piston, and

changes the flow rate through the orifice. The components (6)-(8) are not considered in the

thermal model, but contribute to the dynamic response of the LG SA. The design of the Piccolo

tube is key for determining the stroke-variable damping characteristics of the LG SA, and is

different for each type of LG. The cross-sectional area of the recoil orifice is also stroke-variable

and often mechanically realized using a stroke-dependent flapper valve.

When operating on smooth runways, the LG SA endures only heavy loadings during

the landing impact, which usually does not last longer than several milliseconds. However,

when operating on rough runways, the mechanical energy is dissipated during the entire

operation, which lasts several seconds, or even minutes. Consequently, the heat within the LG

SA accumulates during the operation on a rough runway and the heat generation process can

be considered as a repetitive process. Although the SA stroking amplitude is small, it is the

relative sliding speed that is key to the mechanical energy dissipation process (proportional to

the square of the relative sliding speed).

Definition of LG Chambers

In assembling the piston and the cylinder, and designing the orifices, several compartments,

called chambers, can be defined (see Fig. 2.1). The advantage of defining chambers within the

LG system is that the theory of thermodynamics can be applied. Consequently, relatively simple

equations can be derived by using the First and Second Laws of thermodynamics that describe

the TTM behavior of the LG SA from a macroscopic point of view. The thermodynamic laws

are applied to the open hydraulic and closed gas chambers that are pressurized, by considering

several assumptions that are defined in Section 2.4.
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Chamber I Although for the present LG type no physical barrier exists between the hydraulic

oil and the nitrogen gas, the nitrogen volume (or virtual chamber) is historically referred to

as chamber I. Chamber I can be physically considered as open, as the orifice support tube (6)

passes through chambers I and II. However, from a thermodynamic point of view, and as any

mixing of the nitrogen gas and the hydraulic oil is ignored, chamber I is considered as a closed

chamber that follows a polytropic transformation during the compression/extension of the LG

SA. For the purpose of simplifying the governing equations, the nitrogen gas is considered as a

perfect gas.

Chamber II The largest chamber in the LG SA that is filled with hydraulic oil and that is in

contact with chamber I is defined as chamber II. Although not defined by a physical barrier at

the top, the remaining borders of chamber II are the SA and piston walls. The top border of

chamber II corresponds to the mean oil level inside the LG SA, and consists of an emulsion of

nitrogen gas and hydraulic oil present as foam at this interface. Chamber II is an open chamber,

as hydraulic oil flows in and out through both orifices, which changes the volume of chamber II.

This chamber is also considered as being the exchange chamber through which the hydraulic oil

from chambers III and IV flows.

Chamber III The second-largest chamber in the LG SA is denoted as chamber III. During

ground maneuvers, this chamber is generally far away from the upper and lower bearings. The

primary heat generation in chamber III is due to the hydraulic oil exchange with chamber II.

Chamber IV The smallest chamber in the LG SA is chamber IV, and it is closest to the

Thermal Zone of Interest (TZI). Consequently, the energy dissipated at the upper and lower

bearing interfaces can flow into this chamber. Although chamber IV is the smallest chamber

in the LG SA, it has the largest area of the surrounding SA walls that are in contact with the

surrounding air, which leads to an increased heat evacuation potential.

Definition of Chamber Interactions and LG Operation

As the geometry of both orifices is variable, the TTM behavior of the LG SA is different

during compression and extension. The compression of the LG SA occurs at a relatively high

compression speed, whereas the extension is relatively slow. During compression, the oil flows

through the orifices as chambers I, II and III are compressed and chamber IV is extended.

During extension, the process is reversed.

The difference of hydraulic pressure between chambers II-IV ensures the damping function

and the conversion of the mechanical energy to heat by squeezing the flow through the orifices.

When passing through the orifices, a turbulent hydraulic oil flow (or turbulent jet) is generated,

in which the mechanical energy is dissipated. The heat is stored within each chamber and
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partially transferred to the nonadiabatic SA walls. The difficulty of modeling the turbulent jets

is overcome by applying the theory of thermodynamics to the various chambers of the LG SA.

Both the pressure and temperature of each chamber are included by considering the variation

of the specific enthalpy within each chamber. The combination of the thermodynamic differential

equations leads to a matrix system that reveals, together with the frictional heat energy

generation, the heat sources and sinks within the LG SA and the importance of each dissipation

mechanism.

The definition of the LG components reveals that multiple physics interact together and

that multiple heat sources and heat sinks exist. A thermo-tribomechanical (TTM) model is

defined in Section 2.3, which summarizes the functional links between the LG components and

illustrates how each LG component contributes to the TTM behavior of the LG SA.

2.2 TTM Model Development Strategy

The LG system as defined in Section 2.1 is designed and engineered to allow for rapid compression

and extension paired with a considerable stroking amplitude. This motion, however, occurs

mostly only once per flight cycle of the aircraft. On rough runways, the LG SA undergoes

a repetitive cycle of compressions and extensions, which suggests that the mechanical, the

tribological as well as the thermal response of the LG SA are closely related. As has been

described in Section 2.1, the thermal response of the LG cannot be neglected for maneuvers on

rough runways.

In order to determine the relationships between the individual thermo-, tribo- and mechanical

responses of the LG SA, the LG SA system is divided into subsystems. In other words, the

mechanical response is governed by the distribution of the loads and the structural response of

the SA, whereas the tribological response is determined by the rheological laws of the lubricant

between the moving (piston) and the stationary (cylinder) parts of the LG SA. The thermal

response of the LG SA can be seen not only as a result of the mechanical and tribological

responses, but also as a feedback element of the system. More precisely, it is through the thermal

response (or temperature) that the combined tribomechanical response is governed.

The model development is equivalent to the development of each of the subsystems, each

with different physics. Nonetheless, it is only the combination of all that results in determining

which of the three responses is dominant. Whichever subsystem dominates is dependent on the

input parameters (e.g., LG configuration, physical properties of the LG components), and the

runway and operating conditions.

2.3 TTM Model and Simulation Algorithm

The development of a TTM model of a LG SA which identifies the heat sinks and heat sources

and determines the position and instant of the occurrence of the maximum temperature, is one

of the major steps required in order to understand the global TTM behavior of a LG SA.
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A system diagram of the TTM model is shown in Fig. 2.2 and is subdivided into three

subsystems (thermal, tribological and mechanical) and one interface module, each including

two submodels. Each LG component and chamber identified in Section 2.1 contributes in each

subsystem to the overall TTM behavior of the LG SA.

The spring and damper functions of the LG SA are included in the dynamic submodel. In

addition, the pressure and temperature within chamber I (denoted as p1 and θ1) are driven by the

output of the dynamic submodel. The load vector f is applied to the cylinder (1) and the piston

(3) to determine the bearing pressures in the lower (2) and upper (5) bearings (see Fig. 2.10).

The lubricant governed by the rheology submodel is modeled between the upper and lower

bearing interfaces in the EHD submodel. The temperatures and pressures of chambers II-IV are

determined using the thermodynamic submodel. All LG components apart from components

(6) - (8) are considered in the thermal submodel. The mathematical details together with the

governing physical equations of each subsystem, including their submodels, are elaborated in the

following sections. The result is a complete theoretical description of a simplified 3D, transient

TTM characteristic model of a cantilevered MLG, which can be found on common commercial

airplanes.
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Figure 2.2: System diagram of the thermo-tribomechanical model (TTM model).

In simple terms, the thermal response θ of the LG SA depends on the dynamic input and can

only be determined once the appropriate boundary conditions and heat sources/sinks are known

(calculated by the governing equations of the thermo-, tribo- and mechanical subsystems).

Interface Module

The dynamic variables, such as the ground speed Ẋ of the aircraft, are input to the submodels

of the input subsystem, in which the runway profile ZR and the deformation of the tire (through

stiffness κT ) are captured. The output of the tire submodel is driven by the input of the runway

submodel and is provided to the mechanical subsystem.
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Mechanical Subsystem

The dynamic submodel provides the loads f acting on the LG SA, induced by the rough runway

profile through the tire. Additionally, the relative sliding speed ṡ and stroke s that yield the LG

gas chamber pressure p1 are calculated in the dynamic submodel. If the LG components are

considered to be rigid, the forces acting on the bearings Fu|l are calculated using a simplified

beam submodel; otherwise, the stress submodel provides the structural deformations and the

updated clearance c at the LG SA bearings.

Tribological Subsystem

The contact pressure p and contact area in the lower and upper bearing are calculated in a

contact model (Hertz). If the lubricant is modeled using EHD principles, the hydrodynamic

pressure p that is equivalent to the contact pressure p and the fluid flow velocity field v are

determined in the EHD submodel. In addition to the shear stress τ at the sliding interface, the

viscosity η of the lubricant is determined in the rheology submodel, which, for a simple case,

equals an empirical BFC µ. In addition to the friction forces, the frictional heat fluxes qfu|l are

calculated.

Thermal Subsystem

Once the dynamic response of the system is known, the bulk chamber pressures pi and tempera-

tures θi in each of the three chambers of the LG SA (see Fig. 2.10) filled with the hydraulic

oil (i = 2, 3, 4) are calculated in the thermodynamic submodel. Empirical correlations for the

heat transfer coefficients (HTCs) are used to determine the convective heat fluxes qi. The heat

diffusion equation in cylindrical coordinates is solved in a commercial software package using FE.

The temperature response θ is the main output of the system and is fed back to the tribological

module, which in turn affects the dynamic response of the LG.

Simulation Algorithm

The underlying algorithm used to calculate the thermal response of the LG SA is given in

Algorithm 1. A ‘weakly’ coupled simulation (sequential runs until convergence) is preferred to

a strongly coupled simulation, as the thermal response of the system is much slower than its

dynamic response. The thermal contribution of the repetitive impact energy dissipated into

heat is studied, the effect of the various heat sources/sinks in the LG SA on the maximum

temperature in the TZI are quantified, and the root-cause of the heat damage is confirmed in

Section 2.8. The TZI is the region near the lower bearing-piston interface. Emphasis is placed

on studying the evolution of the average temperature in the TZI while taxiing and taking-off. In

addition, it is shown that, during the aircraft ground maneuvers, the SA oil acts as a heat sink

and not as a heat source, leading to the conclusion that the heat energy dissipated during a

single landing impact does not contribute significantly to the LG lower bearing overheating. The

sensitivity of the maximum heat flux to variations of key runway parameters is studied, which

reveals that the LG lower bearing overheating is affected primarily by the runway amplitude.
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Algorithm 1 Simulation algorithm (weakly coupled simulation).

BEGIN
Read SA configuration (geometry)
Calculate runway input
Initialize pressures, temperatures, loads, velocities and displacements
Initialize heat fluxes, friction and HTCs
DO WHILE (structural temperature not converged)

Calculate loads, BFCs and friction forces
DO WHILE (temperature in SA not converged)

Calculate velocities, chamber pressures and chamber temperatures
END DO
Calculate HTCs, convective heat fluxes and friction forces
Calculate contact pressures and frictional heat fluxes
Calculate structural temperature field
IF(bearing is not dry) Calculate new viscosity

END DO
Plot results
END

2.4 Characteristic Assumptions

Before providing the mathematical descriptions of each submodel, a few assumptions must be

given. Most of the listed assumptions are alleviated or refined in Chapter 4. The transient

analysis is only performed in the case of steady acceleration of the aircraft on the runway and

constant speed taxiing (highest WOG and Ẋ). The ranges of the different study variables, such

as the WOG or the take-off (or taxiing) speed, are chosen for a single aisle commercial aircraft.

For the sake of simplicity, no vibrations or noise are considered.

Interface Module

The dynamic input variables are derived as a function of stroke and stroke velocity, and depend

on the initial thermodynamic state and the SA configuration. The LG thermal behavior is

studied using a simplified runway profile, which is empirically chosen to provide an oscillatory

vertical force. The profile and its first spatial derivative are continuous (the runway profile is

C1), in order to avoid jerks in the LG input force. The bump height is assumed to be constant,

but can be modeled as random. The tire is modeled to be constantly contacting the runway

surface at only one point. Tire slip is negligible in any direction.

Mechanical Subsystem

As the cantilevered MLG is twin-wheeled, the load is equally shared between both tires. The

dynamic model is a pure 2-DOF (1 vertical translation per body) model, rigidly fixed to the

airframe. The aircraft is not turning, so that no side loads (not to be confused with aerodynamic

side loads) contribute to the dynamic excitation of the LG system. Engine reverse thrust is zero

and the total braking force is provided solely by the aircraft brakes. The aircraft center of gravity
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is assumed to be above the LG and is not laterally or longitudinally shifted (same longitudinal

position as the MLG). The vertical tire stiffness follows an empirical model. Additionally, the

aerodynamic drag load created by the surrounding airflow is not considered.

For the purpose of studying the global behavior exclusively, the stresses generated in the

structure are independent of the temperature, which allows conclusions to be drawn on the

sensitivity of the maximum temperature in the TZI to a change of input variables, while not

being biased by the mechanical strain. By ignoring the thermal expansion of the structural

components, the governing equations are considerably simplified, which leads to a reduced

computation time. In other words, the uncoupling of the mechanical stress and thermal model is

equivalent to assuming that the structural components are rigid and initially stress-free (e.g., no

thermal mismatch stresses are considered): σ(r, θ, t) : ∇u̇(r, t)� 1, where u is the normalized

displacement field and σ the normalized stress field.

The dissipated power (friction and damping) during the motion of the piston is much higher

than the power loss due to structural deformation. Strains and strain rates are assumed to be

small, and the influence of the inertial contribution on the contact pressures is not considered.

Tribological Subsystem

In a simplified friction model, all the ranges of the BFC are empirically chosen. The upper and

lower dynamic BFCs are assumed to be 80% of the static BFC, and the critical stiction speed is

assumed to be 0.1mm/s. The BFCs are assumed to be exclusively velocity and temperature

dependent. The eventual sudden ’burning’ of grease, which happens at the dropping point

(temperature at which the lubricating characteristics of the grease deteriorate), is modeled using

a step function. The simulation for lubricated friction loses validity after the dropping point

temperature. The friction model is then adapted to pure dry friction. Only lubricated metal-

metal contact and no seals or visco-elastic materials are considered. The average BFC, which

is derived by following the viscous Stribeck friction model, takes into account the metal-metal

contact as well as the EHD lubrication that occurs when a bearing load is applied, and exists

over a wide range of temperatures.

Thermodynamic/Thermal subsystem

No local fluid effects are considered within the SA chambers, and the SA stiffness and damping

coefficients are derived using fundamental thermodynamics, fluid mechanics and Bernoulli’s

equation of the conservation energy. In order to simplify at most the governing equations, the

nitrogen N2 in the SA is modeled as a perfect gas that obeys the ideal gas laws. The mechanical

energy is dissipated in a turbulent jet created by the orifices (as stated in [90]), which is, however,

not modeled (the holes in the support tube are neglected). From experience of having a small

thermal effect, neither the nitrogen dissolution, nor cavitation conditions of the SA hydraulic

oil are considered. Although the inner chamber walls of the SA are assumed to be perfectly

smooth, a coefficient taking into account nonsmooth orifice holes is implemented.



Chapter 2. Landing Gear Thermo-Tribomechanics 25

Although the cylinder and piston are moving, it is only the relative speed that is considered

for advection in the moving domain (piston). The potential energy change due to gravity is

neglected. The viscous damping coefficient of the SA is a function of temperature, as the

density of oil is linearly dependent on temperature. The hydraulic SA oil is assumed to be

incompressible, as the pressure variations are small within the stroke range and are not believed

to have a significant impact on the thermal response of the LG SA.

It is assumed that both ends of the SA are far away from the TZI, such that both ends are

adiabatic and initially at the temperature of the fuselage. As the heat is only diffusing slowly

through the structure, the heating of the brakes is assumed to have a negligible effect on the

TZI. No heat diffusion in the gas or hydraulic oil is considered, as the thermal conductivity of

both fluids is low. As the temperature differential is small, no radiation from the SA to the

environment is considered. The external temperature is assumed to be constant. The influence

of convective cooling of the surrounding air on the TZI is studied, and is modeled using an

average convective HTC. Local turbulence is not considered.

In order to simplify the model development, no side loads are considered, which results in a

3D and half-cylindrical thermal model. Only the cylinder and the piston are considered, and

any other parts (such as the orifice plate) are not included, as they have a small effect on the

maximum temperature in the TZI. For thermal calculations only, it is assumed that the Piccolo

tube has a constant radius.

2.5 Review of Relevant Physical Properties

2.5.1 Fluid and Solid Materials

Nitrogen Gas and Surrounding Air

The heat capacity of N2 is assumed to be temperature invariant and is equal to cpN2
=

1040 J/kg/K. The properties of the surrounding air are taken from [91] and are evaluated at

STP conditions. In the range of interest of the external temperature θ5, the thermal conductivity

of air varies linearly with θ. The interpolation coefficients have been determined using the least

squares method: kθa (θ5) = 7.455 · 10−5 · θ5 + 3.737 · 10−3. The kinematic viscosity of air varies

linearly with temperature. The interpolation coefficients have been determined using the least

squares method: νa(θ5) = 8.814 · 10−8 · θ5 − 1.060 · 10−5. The Prandtl number for the air flow

around the cylinder is constant over the temperature range: Pra = 0.71.

Shock Absorber Hydraulic Oil and Base Oil of the Lubricant

As the oil is considered incompressible, the specific heat capacity at constant pressure is equal to

the specific heat capacity at constant volume. The physical properties for the SA oil (referenced

by MIL-H-5606), which is also considered the base oil of the lubricant, are taken from [92]. The

heat capacity cpi in chamber i of the SA oil depends linearly on θ: c∗pi = c∗p (θi) = G1θi +G2.
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The interpolation coefficients have been determined using the least squares method3. The data

for the thermal conductivity as a function of temperature have been retrieved from [92]. The

thermal conductivity of the SA oil varies linearly with temperature and can be expressed as:

k∗θ i = kθ(θi). The conductivity is very low compared to the solid materials surrounding the SA

oil. The properties k∗θ i and c∗pi do not vary significantly over the temperature range.

Figure 2.3: Density ρ∗ of the oil. Figure 2.4: Kinematic viscosity ν∗ of the oil.

The density of the hydraulic oil ρ∗ (pi, θi) in chamber i of the SA oil is linearly dependent on θi

but not on pi (see Fig. 2.3), and is expressed as ρ∗i = (G3pi +G4) θi+
(
G5p

3
i +G6p

2
i +G7pi +G8

)
.

By following the methodology (ASTM) and the suggestions given in [93], the kinematic vis-

cosity ν∗(pi, θi) (see Fig. 2.4, expressed in cSt) can be expressed as (in SI units): ν∗i =

G15 (exp (exp (G9ln10−G10lnθi) ln10)− 0.7) · exp
((
G11θ

3
i +G12θ

2
i +G13θi +G14

)
pi
)
.

Solid Materials

The material properties for the structural LG components are assumed to be homogeneous,

linear, and temperature independent. The thermal conductivity kθM , heat capacity cM , density

ρM , Young’s modulus EM , Poisson’s coefficient λM , and the coefficient of thermal expansion

κθM are shown for the materials M = A,B,C,D in Table 2.1. The chrome plating is omitted

in Chapter 2, but is considered in Chapter 4.

Quantity Unit Al alloy (A) Al-Bronze (B) Steel (C) Chrome (D)

kθM W/(mK) 130 78 13.8 12
cpM J/(kg K) 841 435 400 430
ρM kg/m3 2800 7700 8000 8730
EM GPa 68 110 210 200
λM / 0.30 0.32 0.28 0.3
κθM 1/K 2.2 · 10−5 1.8 · 10−5 1.2 · 10−5 1.2 · 10−5

Table 2.1: Physical properties of solid material evaluated at 20◦C [91, 94].

3 G1 = 4.295; G2 = 600.110; G3 = 3.067 · 10−9; G4 = −7.3525 · 10−1; G5 = 3.369 · 10−22; G6 = −3.688 · 10−14; G7 =
6.286 · 10−7; G8 = 1.071 · 103; G9 = 7.263; G10 = 2.889; G11 = −9.310 · 10−15; G12 = 9.381 · 10−12; G13 = −3.192 · 10−9;
G14 = 3.845 · 10−7
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2.5.2 Rheology of Lubricant

The dynamic viscosity of a non-Newtonian lubricant, such as grease, is dependent on the

temperature θ (following Arrhenius’ law), pressure p and the shear rate γ̇. An analytical

function is not determined, but the viscosity data are interpolated during the simulation. The

advantage of dynamic interpolation is that any lubricant can be used, as long as the viscosity

relationship η (p, θ) is known.

The lubricant is a common aerospace lubricant, which at room temperature is in a semisolid

state, and its rheological model is governed by N = η(p, θ, γ̇) = ηγ̇(γ̇)·η(p, θ). The dependency of

the lubricant’s viscosity on the shear rate can be modeled using the power law ηγ̇(γ̇) = η0
γ̇ · γ̇m−1,

where m is the order of the lubricant, which is, in general, determined experimentally. In the

application of a LG, the shear rate dependency on the viscosity does not have a decreasing

effect, as shown in [95], and is omitted by considering that the order of the grease is m = 1

(Bingham grease): η(p, θ, γ̇) = η(p, θ). The particularity of grease is a discontinuous shear stress

as a function of the shear rate, marked by a yield shear stress τ0, which, for grease in LG lower

bearings, is around 200Pa [61, 82]. The effect of the shear rate and the non-Newtonian behavior

of grease is taken into account with the Herschel-Bulkley model [62]:

τ = τ0 + η (p, θ) |γ̇|m (2.1)

The viscosity of grease η is given as a function of the base oil dynamic viscosity η∗ = ρ∗ · ν∗
(see Fig. 2.4) such that η = η∗ (1 + 0.25 · ι), where ι is the volumetric fraction of thickener and

oil [62]. The typical range of ι for aircraft LG specific greases is ι = 0.1− 0.12. The dropping

point of grease is the temperature at which the grease transforms from a semisolid state into a

liquid state, and is around 260°C [96]. The flash point, which is the point at which the grease

ignites, is lower and is around 235°C. The useful operating temperature range is considered to

be from -65°C to θ̂ = 204°C. The density of grease is ρ = 868 kg/m3 (at a temperature of 15°C)

and is considered to be constant, although in general, the density depends on the pressure and

temperature. In the model, only the dynamic viscosity is affected by a temperature change.

2.6 Subsystem Modeling

In consideration of the characteristic assumptions highlighted in Section 2.4, the submodels of

the subsystems that compose the TTM Model shown in Fig. 2.2 are detailed in the following

subsections.

2.6.1 Interface Module - Global System Part I

Tire Submodel

Empirical formulas yield the deflection of a LG tire under a given vertical load. It is assumed

that the tire damping is provided and dependent on the tire type. The static tire deflection is
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calculated using an empirical correlation δ0
T

(
FT , BT , pT , p

0
T , R

0
T

)
, given in [97] for a specific tire

type of commercial aircraft, where FT is the normal load on the tire, BT is the width of the

unloaded tire, pT is the pressure of the tire, p0
T is the rated pressure, and R0

T is the radius of the

unloaded tire. The tire deflection δ0
T is used to calculate the tire vertical stiffness κ0

T = κT
(
δ0
T

)
,

which is considered to be constant [15] under the initial tire load F 0
T = g

2tr(M). The tire model

is a point model, and no effects of the tire conforming to the runway are considered. The

mass matrix M includes the complete mass of the mechanical system (including W ). The total

aircraft landing mass and W are linked and can be determined as a function of the location of

the center of gravity of the aircraft. As shown in Fig. 2.7, no shift of the center of gravity is

considered.

Runway Submodel

The runway elevation is defined as a continuously differentiable cosine wave input (ZR ∈ C1),

expressed with reference to the spatial period XR. Every XR, the LG wheel rolls over a

bump. The chosen runway profile in Fig. 2.6 represents a typical runway profile and is con-

sidered to be the most representative for studying the impact of the bump spacing XR and

the bump amplitude ẐR on the TZI. However, an arbitrary and random profile could be input.
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Figure 2.6: Simple runway/taxiway profile [2].

The definition of the runway elevation is given by
(
∀i ∈ N, 0 ≤ i ≤ X̂/XR

)
:

ZR(X) =
ẐR
2


1− cos

(
4π

XR
X

)
, i ≤ −X

XR
≤ i+

1

2

0 , i+
1

2
≤ −X
XR
≤ i+ 1

(2.2)

Common practice suggests directing the horizontal axis along the airplane toward its tail. The

oncoming airflow velocity Ẋ is directed along eX , whereas the ground speed of the aircraft is the

opposite. The ground speed Ẋ(t) ≥ 0 (see Fig. 2.5) is defined for the taxi and take-off phases,

which are representative of an aircraft ground maneuver:

Ẋ(t) = Ẋt , 0 ≤ t ≤ tt and Ẋ(t) =
Ẋto − Ẋt

t̂− tt
(t− tt) + Ẋt , tt ≤ t ≤ t̂ (2.3)
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The take-off speed Ẋto is weight dependent and is calculated as 110% of the aircraft stall speed

(with a load factor of 1). The case of landing is not considered. Although an additional braking

force may be present, the WOG and landing speed are lower (and consequently the stroking

frequency) than at take-off, which leads to a reduced combined dissipation of heat.

The actual towing of the aircraft from and to the gate is considered as quasi-static and

not having an effect on the temperature. The simulation is stopped once the end of taxiing

is reached, marked by the time period t̂. The runway position of the aircraft is the negative

integral of the oncoming airflow velocity Ẋ, assuming that the initial position is zero. The

maximum distance, X̂ = X(t̂), traveled on the runway depends on the weight of the aircraft

and is determined using the governing equations of aerodynamics.

2.6.2 Mechanical Subsystem - Global System Part II

Dynamic Submodel

The dynamic submodel used to derive the piston sliding speed as a function of the runway profile

and ground speed of the aircraft is a simplified nonlinear 2-DOF model, shown in Fig. 2.7.
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Figure 2.7: Simplified 2-DOF nonlinear dynamic model of a MLG and beam model [2].

The upper mass consists of the reduced aircraft mass (equivalent to W ) and the cylinder

assembly. The lower mass is the reduced equivalent mass of the piston assembly, including

wheels and brakes. The dynamic ground reaction force is derived from static equilibrium as

a function of the tire deflection (two tires): FT = 2κ0
T

(
ZR + δ0

T

)
+ 2ζ0

T ŻR − F 0
T , where ζ0

T

is the tire damping coefficient. The horizontal and vertical forces FX , FZ are derived using

the projection of FT in the reference frame of the SA, modified using the slope of the runway

ZR,X = dZR
dX . The horizontal and vertical forces on the SA are defined by:(

FX

FZ

)
= FT · cos (ZR,X)

[
cosΘ −sinΘ

sinΘ cosΘ

](
µR + tan (ZR,X)

1

)
(2.4)
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where Θ is the MLG rake angle (negative for aft inclination) and µR an equivalent constant

Coulomb friction coefficient between the tire and the runway that includes the rolling resistance

and the braking of the aircraft. The nonlinear dynamic model is shown in Fig. 2.7. The vertical

position states are denoted as z =
(
z(t) Z(t)

)T
. By integrating the piston sliding speed, the

position (stroke) is defined as: s(t) = z(t)−Z(t) + s0. The sliding speeds of the reduced aircraft

and piston masses are obtained from the dynamic differential equations system of:

Mz̈(t) + fc (z, ż) + fk (z) = f(t) + ff (t, µ) (2.5)

where the stiffness and damping forces are defined by:

fk =

(
p1(s)AP + κ0

T z(t)

−p1(s)AP

)
and fc = ṡ

(
ζ(s) |ṡ|+ ζ0

T

−ζ(s) |ṡ|

)
(2.6)

The damping coefficient ζ = ζ(s) is dependent on the stroke of the SA (hence on time). As the

damping coefficient is dependent on the damping oil density (linearly dependent on the chamber

temperatures), the damping coefficient is also temperature dependent ζ = ζ(s, θ), as shown in

Eq. (2.16). The stiffness of the SA that is derived in Section 2.6.4 is dependent on the stroke:

κ = κ(s). As the LG structural components are assumed to be rigid, no structural damping is

considered. The mass matrix is diagonal and is written as M = diag (MP ,Mc +W/g). The sign

of the relative sliding speed provides the information as to whether the SA is in compression

(εṡ = 1) or extension (εṡ = −1), and is defined as εṡ = sgn(ṡ), ṡ 6= 0, and εṡ = 1, ṡ = 0. The

total friction force acting at the lower and upper bearing sliding interfaces is given by: F f (t) =

F fu (t) + F fl (t) = µu |Fu(t)|+ µl |Fl(t)|. The friction force vector is defined as f =
(
FZ 0

)T
,

and the input force vector as ff = εṡF
f
(
−1 1

)T
. The nitrogen pressure as a function of

stroke is denoted as p1(s) and follows a polytropic transformation. The visible length of the

piston is given by s′(t) = se − s(t), where se is defined as the fully extended length. The

initial conditions are given as z(0) = Z(0) = 0. The static stroke s0 = s(0) is defined from an

isothermal compression (Υ = 1):

s0 = Lo − Lo
p0

1

p1(0)
, p1(0) < p1 and s0 = L′o −

(
L′o − s

) p1

p1(0)
, p1(0) > p1 (2.7)

where L′o is the length of the second stage gas pressure (pure extension of chamber I, considered

adiabatic at all times) and p0
1 is the gas charge pressure (unloaded conditions). The breakout

pressure for a dual-stage SA is denoted as p1. The gas pressure under static load conditions is

denoted as p1(0) = WA−1
P cosΘ, where the breakout stroke s is defined by s = Lo

(
1− p0

1
p1

) 1
Υ

.

Beam Submodel

The load analysis that yields the bearing loads that are used in the Hertzian contact model is

simplified by using a beam model, illustrated in Fig. 2.7. As the displacements are very small,
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the forces acting on each bearing are calculated using static equilibrium with rigid LG structural

components (no dynamics and no structural deformations considered):

Fl(t) =
Lu − 2LP

2LP − Lu − Ll − 2s′(t)
· FX(t) , Fu(t) = −Fl(t)− FX(t) (2.8)

It can be seen that ∀t ∈ [0, t̂] : s ≤ se ⇐⇒ s′(t) ≥ 0. The equality only holds for the situation in

which no drag load is applied at the axle. In practice, however, this situation never occurs when

the aircraft is maneuvering on the runway. Under these operating conditions and for all times,

the load at the lower bearing is higher than the load at the upper bearing: |Fl(t)| ≥ |Fu(t)|. As

the frictional heat flux is proportional to the normal bearing load, the frictional heat flux at the

lower bearing will always be higher than the frictional heat flux at the upper bearing (for these

ground maneuvers). This beam model is only an approximation, and a more accurate analysis

would be given by a complete stress analysis.

2.6.3 Tribological Subsystem - Global System Part III

Contact Submodel

The parabolic contact pressure profile pHl is derived for a convex-concave Hertzian contact [98]

under a normal bearing load derived from the beam submodel, and closely follows the model

outlined in [25]. The top view of the lower bearing can be seen in Fig. 2.8. For a LG rake

angle Θ, the bearing loads are defined as Fl(t) > 0 and Fu(t) < 0. The semi-contact arc length

φ′l|u yields the area over which the frictional heat flux is input to the piston and cylinder. An

equivalent radius, effective elasticity modulus, and semi-contact width are defined in Table 2.2.

Although the contact model has been derived under the assumption that no angular frictional

forces are present at the contact interface, the surfaces are dry (or can be modeled with an

equivalent friction coefficient), and the contact length is infinite, the Hertzian theory serves as a

reasonable, but preliminary approximation of the contact stresses at the interface. As the LG

structural components are considered to be rigid, the cylinder and piston do not change shape

due to the temperature increase (inflation) or due to load (ovalization).

Lower Bearing Upper Bearing

Equivalent radius 1
R′l

= 1
RP−c0 −

1
RP

1
R′u

= 1
Rc−B−c0 −

1
Rc−B

Effective elasticity modulus 1
E′l

=
1−λ2

B
EB

+
1−λ2

C
EC

1
E′u

= 1
E′l

Semi-contact width a′l =

√
4|Fl(t)|R′l
πE′lLl

a′u =
√

4|Fu(t)|R′u
πE′uLu

Semi-contact arc length φ′l = sin−1
(
a′l
RP

)
φ′u = π − sin−1

(
a′u

Rc−c0

)
Table 2.2: Hertzian contact model parameters.



Chapter 2. Landing Gear Thermo-Tribomechanics 32

Friction Submodel

In the ideal Hertzian contact model, the contact pressure is zero everywhere, but not within the

semi-contact arc length (0 ≤ φ ≤ π):

pHl|u =

√√√√∣∣Fl|u(t)
∣∣E′l|u

πLl|uR
′
l|u

(
1− R2

P

a′2l|u
sin2φ

)
, φ < φ′l or φ > φ′u (2.9)

The clearance c0, considered constant at the upper and lower bearings, is filled with a

lubricant. In order to quantify the frictional heat fluxes at the contacting surfaces without

performing a TEHD analysis (see Chapter 4), it is suggested to derive an average and equivalent

BFC at the bearing sliding interfaces. The friction model that yields the BFC is an odd function,

such that during stiction, the absolute friction force is equal in any sliding direction.

2
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Figure 2.8: Bearing Hertzian con-
tact pressure profile [2].
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Figure 2.9: BFC as a function of relative sliding speed and
temperature [2].

The upper and lower bearing friction forces F fl|u follow the SWITCH Model [99] for viscous

Stribeck friction, and are dependent on the configuration of the bearings and the operating

conditions such that:

F fl|u =


min

(
|Fex| ,

1 + βH
β +H µ̂s

∣∣Fl|u(t)
∣∣) · sgn (Fex) , |ṡ| < ṡs

εṡ
1 + βH
β +H

∣∣Fl|u(t)
∣∣ (µ̂d +

(
µ̂s − µ̂d

)
e−|4ṡṡ

−1
s |
)

+εṡ (1−H) 2πRl|uLl|u
η
(
θl|u
)
|ṡ|

c0
, |ṡ| ≥ ṡs

(2.10)

where ṡs is the stiction speed, η the dynamic viscosity of the lubricant, and Fex is the externally

applied force during stiction, derived from the conservation of momentum [16]:

Fex =
Me2 · e2

tr (M)
(fe1 − fce1 − fke1)− Me1 · e1

tr (M)
(−fce2 − fke2) (2.11)

where ei are unit vectors. The radii at the lower and upper bearings are defined as Rl = RP

and Ru = Rc− c0. The lower and upper BFCs are calculated as µl|u = F fl|u(t)/Fl|u(t). The ratio

between the dry and the lubricated BFCs is defined as β = µ̂d ·
(
µd
)−1

= µ̂s · (µs)−1 = 0.8.
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The temperature dependent viscosity η yields a temperature dependent BFC. The transition

between lubricated and dry friction happens at a precise instant in time, as the grease disinte-

grates [39], once the maximum operating temperature θ̂ has been reached (see Fig. 2.9). The

transition is modeled with the Heaviside step function H = H
(
θl|u − θ̂

)
, where the interface

temperatures θl|u are area averaged temperatures at the lower and upper bearings.

2.6.4 Thermal Subsystem - Global System Part IV

Thermal Submodel

The aim of the thermal model shown in Fig. 2.10 is

to determine a continuous and smooth temperature

field θ : R3 × R+ → R : (r, t) 7→ θ(r, t) ∈
C2(Ω) at a position r(r, φ, z) ∈ Ω that satisfies the

applied boundary conditions in the homogeneous

and isotropic domain Ω(t)= Ω̃(t) ∪ Ω̂ for time

invariant and temperature independent material

properties. For the thermal analysis, the support

tube (6), the orifice plate (7) and the Piccolo tube

(8) are not considered. The stationary domain is

the union of all the stationary components: Ω̂ =

∪
i∈D̂

Ωi(t), and the moving domain is the union of

all the moving components: Ω̃(t) = ∪
i∈D̃

Ωi(t). The

index span D = D̂ ∪ D̃ is the union of the index

spans of a stationary domain D̂ = {1, 2} and a

moving domain D̃ = {3, 4, 5}. Each domain i ∈ D
corresponds to a component of the SA (see Table

2.3) and is defined as: Ωi(t) = {r ∈ R+ : R} ×
Φ × {z ∈ R− : Z}, where the angular domain Φ

corresponds to a 3D half-cylindrical model: Φ =

{φ ∈ R : 0 ≤ φ ≤ π}. The domain border Γ(t) =

∂Ω(t) is subdivided in different sub-boundaries,

indexed by B = {1, ..., 7}. The mobility parameter

m̆i is given by m̆i = 1, i ∈ D̃ and m̆i = 0, i ∈
D̂, and activates the advective contribution in the

transient heat diffusion equation, which is written

as
(
∀ (r, t) ∈ Ω(t)× [0, t̂], i ∈ D

)
:

∂,tθ − m̆i ṡ(t) θ,z = λθM ∇2θ (2.12)

where λθM is the thermal diffusivity of material

M [25].
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i Domain Name Condition Z Condition R Material M

1 Cylinder −Lc ≤ z ≤ 0 Rc −B < r < Rc C

2 Lower Bearing −Lc ≤ z < −Lc + Ll RP ≤ r ≤ Rc −B A,B (coating)

3 Piston 0 ≤ z + s′(t) + Lc ≤ L′P + 3B RP −B ≤ r ≤ RP C

0 ≤ z + s′(t) + Lc ≤ LP RP −B/2 ≤ r ≤ RP C

4 Piccolo Tube Base 0 ≤ z + s′(t) + Lc − L′P ≤ 3B 0 ≤ r ≤ RP − c0 C

5 Upper Bearing −Lu ≤ z + s′(t) + Lc − LP ≤ 0 RP ≤ r ≤ Rc −B A,B (coating)

Table 2.3: Component list and domain conditions.

The Laplacian is expressed in the cylindrical reference frame (O′, er, eφ, ez) and the boundary

conditions are defined in Section 2.6.5. The structural temperature field, initially homogeneous

(∀r ∈ Ω(0) ∪ Γ(0)) θ(r, 0) = θ0, is solved with ANSYS.

Thermodynamic Submodel

The First Law of thermodynamics expressed in terms of power for closed and open systems [100]

is given by P = PQ + PV , where P is the total power, PQ is the heat power supplied and PV

the instantaneous work done on the system.

Based on the First Law, the governing equations of the thermodynamic submodel yield the

chamber temperatures θi and pressures pi, which are used to derive the convective heat fluxes in

each SA chamber i (see Fig. 2.10). Once the governing energy rate and flow rate equations are

expressed, a temperature differential matrix equations system is derived. Although the model

considered in the thermal submodel is for half of a SA, the equations for the thermodynamic

submodel are derived for a complete SA.

The Second Law of thermodynamics [100], which states that the entropy S can only increase

(∆S > 0) and that heat flows from a hot to a cold environment, is considered to be verified

at all times. The entropy of the process of compression and extension of the SA is considered

to increase at all times. The process is considered as irreversible, because heat is transferred

through the boundaries to neighboring chambers and the environment.

The SA chambers II-IV contain oil, whereas chamber I contains nitrogen. There is no

physical barrier between chamber I and II, and heat and mass transfer can occur, although mass

transfer, which happens by the mixing of the fluids (creation of foam), is not considered in this

model. Chambers II and III are sealed (no leakage), but no friction is modeled at this sliding

interface (piston and support tube), as the frictional heat flux is not considered to contribute

significantly to the maximum temperature in the TZI.

Chambers I-IV: Volumes The chambers deform during compression/extension of the SA,

but not the actual structure (rigid structural components). The inner cylinder area is given

by A′c = π (Rc −B)2, and the inner piston area (closed) is defined as: A′P = π (RP −B/2)2.

The external piston area on which the axle vertical load acts is defined as: AP = πR2
P . The

differential stroke (incremental vertical displacement) of the piston is defined as ∆s(t) = s(t)−s0.

The volumes for chambers I-IV are shown in Table 2.4.
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Initial Volume (t = 0) Volume (∀t ∈
[
0, t̂
]
)

I V1(0) = A′cLo V1(t) = V1(0)− εṡA′c |∆s|
II V2(0) = A′c

(
Lc + se − s0 − LP

)
− V1(0)

+A′P
(
Lst −B − Lc − se + s0 + LP

) V2(t) = V2(0) + εṡA
′
P |∆s|

III V3(0) = A′P
(
Lc + se − s0 − L′P − Lst − 3B

)
V3(t) = V3(0)− εṡA′P |∆s|

IV V4(0) = (A′c −AP )
(
LP − se + s0 − Ll − Lu

)
V4(t) = V4(0) + εṡ (A′c −AP ) |∆s|

Table 2.4: Volumes and areas of the chambers of the LG SA.

The initial volume of oil and gas V1(0) is provided, from which the initial volumes in each

chamber can be derived. The sum of the chamber volumes is given by
4
Σ
i=1
Vi(t) =

4
Σ
i=1
Vi(0) −

εṡAP |∆s|, where AP |∆s| corresponds to the piston displacement.

Chambers I and II: Pressures The pressure in chambers I and II follows a polytropic

compression of the nitrogen gas in the SA:(
∀t ∈ [0, t̂]

)
p1(t)V1(t)Υ = p1(t′)V1(t′)Υ (2.13)

where t′ is a previous instant in time such that 0 ≤ t′ < t and Υ is the polytropic exponent,

which is dependent on the LG SA type and correlated with experimental results. The initial

nitrogen pressure is given as p1(0). In combination with Eq. (2.13), the pressure p1 is given as:

(
∀t ∈ [0, t̂]

)
p1(t) = p2(t) = p1(t′)

(
Lo −∆s(t′)

Lo −∆s(t)

)Υ(εṡ)

(2.14)

For the static or quasi-static case, Υ is dependent on εṡ. For an isothermal compression (εṡ = 1),

Υ = 1 and an adiabatic extension (εṡ = −1), Υ = 1.4. The net heat transfer is only considered

during compression, as the extension is considered adiabatic (no heat transfer through the

chamber boundaries). As the relative sliding speeds are relatively high, a pure adiabatic or

isothermal transformation does not exist. Instead, the transformation is considered to be

polytropic, with a polytropic coefficient of Υ = 1.1.

Chambers III and IV: Pressures and Volumetric Flow Rates The damping function

in a LG SA consists of oil flowing through orifices (a damping orifice and a recoil orifice)

that physically separate the chambers. The primary orifice is fixed, but the rebound orifice

configuration, and hence the flow rate, change during extension and compression. The geometry

of both orifices is not uniform along the vertical axis, and together with viscous losses, leads to

combined discharge coefficients K
′or
εṡ

and K
′ro
εṡ

that are dependent on the direction of the piston

movement, and defined in Table 2.5. Although orifice viscous losses exist, they are considered to

be negligible for convective heat transfer, as the length of the orifice is relatively small. The

net mass flow rates through the orifices correspond to the internal chamber volume change,

and are determined using Bernoulli’s modified equation of the conservation of energy, such

that δV̇
or
εṡ

= K
′or
εṡ
Aorεṡ
√
|∆por| and δV̇

ro
εṡ

= K
′ro
εṡ
Aroεṡ
√
|∆pro|. The orifice areas are considered as

given.
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Symbol Compression (εṡ = 1) Extension(εṡ = −1)

Orifice K
′or
εṡ Kor

1

∣∣∣∣ρ3

2
− ρ2

2

Aor21

(A′P − πR2
mp)2

∣∣∣∣− 1
2

Kor
−1

∣∣∣∣ρ2

2
− ρ3

2

Aor2−1

(A′P − πR2
mp)2

∣∣∣∣− 1
2

Rebound orifice K
′ro
εṡ Kro

1

∣∣∣∣ρ2

2
− ρ4

2

Aro21

(A′c −A′P )2

∣∣∣∣− 1
2

Kro
−1

∣∣∣∣ρ4

2
− ρ2

2

Aro2−1

(A′c −A′P )2

∣∣∣∣− 1
2

Table 2.5: Orifice characteristics and discharge coefficients.

The static pressure differentials connecting chambers II-III and chambers II-IV are given by:

∆por(εṡ, t) = εṡṡ
2

[
A′P − πR2

mp

K ′orεṡ A
or
εṡ

]2

and ∆pro(εṡ, t) = εṡṡ
2

[
A′c −AP
K ′roεṡ A

ro
εṡ

]2

(2.15)

The pressure differentials yield the pressures in chambers III and IV such that p3(t) = p1(t)+∆por

and p4(t) = p1(t)−∆pro. In addition, the pressure differentials ∆por|ro ∝ εṡṡ2 are used in the

force equilibrium equation FZ − p1AP = ∆por
(
A′P − πR2

mp

)
−∆pro (A′c −AP ) = ζṡ |ṡ| to yield

the damping coefficient ζ of the SA [16]:

ζ(s, θ) =

(
A′P − πR2

mp

)3(
K ′orεṡ (θ) ·Aorεṡ (s)

)2 +
(A′c −AP )3(

K ′roεṡ (θ) ·Aroεṡ (s)
)2 (2.16)

Chamber I: Temperature A similar law to the polytropic gas law is applicable for the

temperature and yields the bulk temperature of chamber I:

(
∀t ∈ [0, t̂]

)
p1(t)1−Υθ1(t)Υ = p1(t′)1−Υθ1(t′)Υ (2.17)

where t′ is a previous instant in time such that 0 ≤ t′ < t. For higher temperatures, the

Benedict-Webb-Rubin (BWR) equation can be used to represent the behavior of real gas, for

which the pressure is temperature dependent. In combination with Eq. (2.14), the homogeneous

bulk temperature of chamber I is given by:

(
∀t ∈ [0, t̂]

)
θ1(t) = θ1(t′)

(
Lo −∆s(t′)

Lo −∆s(t)

)Υ(εṡ)−1

(2.18)

Chambers II - IV: Temperatures A convective heat flux through the boundaries of each

chamber is considered. Even though the heat flux is input as a boundary condition to the

thermal model (see Section 2.6.5), the total heat source is considered as the integral of the

convective heat flux over the active boundary surfaces, and is given by:

Qi = 2

¨

Γ(i)

hi (θi − θ|Γ(i)) dΓ = 2hiΓi
(
θi − θi

)
, i = 2, 3, 4 (2.19)

where the total surface i is given by: Γi =
˜
Γ(i)

dΓ, i ∈ B, and the average wall temperature is

given by: θi =
1

Γi

˜
Γ(i)

θ|Γ(i) dΓ , i = 2, 3, 4.
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Chambers II - IV Internal Energy Rate As shown in Section 2.5.1, the density of the

oil (assumed to be incompressible) in chamber i is denoted as ρi (pi, θi), and the specific heat

capacity as cpi (θi). All physical properties are evaluated at the mean pressure and temperature

values of the connecting chambers. In order to develop a thermodynamic differential matrix

system, it is essential to derive an analytical expression of the material properties. The specific

enthalpy in chamber i, defined as ui = cpiθi + ρ−1
i pi, is exchanged between chambers, and

together with the work done on the chamber, leads to a change in its internal energy. As

chambers II-IV are open thermodynamic systems, input and output flow from an adjacent

chamber is dependent on the sign of the stroke velocity. The following definition of a binary

flow coefficient is adopted:

εṡ =
1− εṡ

2
=

0 ṡ ≥ 0 (compression)

1 ṡ < 0 (extension)
(2.20)

The chamber internal energy rate (internal power) Pi is derived as:

Pi =
d

dt

[
ρicpiVi(t)θi(t)

]
= Viθi

(
dρi
dt
cpi + ρi

dcpi
dt

)
+ ρicpi

(
V̇iθi + Viθ̇i

)
, i = 2, 3, 4 (2.21)

The total derivative of the oil density within the chamber i, which can be simplified by considering

the oil as incompressible and time independent (ρi,pi ' 0), is expressed as:

dρi
dt

=
∂ρi
∂t

+
∂ρi
∂pi

∂pi
∂t

+
∂ρi
∂θi

∂θi
∂t
' ∂ρi
∂θi

∂θi
∂t

= θ̇i (G3pi +G4) (2.22)

Similarly, the total derivative of the heat capacity is simplified, as the heat capacity is only

dependent on temperature:

dcpi
dt

=
∂cpi
∂t

+
∂cpi
∂θi

∂θi
∂t

=
∂cpi
∂θi

∂θi
∂t

= G1θ̇i (2.23)

Finally, the internal energy rate of chamber i is given as:

Pi = cpiG3Vipiθiθ̇i +
(
cpiG4 + ρiG1

)
Viθ̇iθi + ρicpiV̇iθi + ρicpiViθ̇i (2.24)

By considering that the absolute work done on chamber i is the same absolute work needed to

increase the internal energy rate of chamber i, the internal energy rate of chamber II is given

by [22]:

P2 = (1− εṡ) ρ3δV̇
or
1 u3 − (1− εṡ) ρ2δV̇

ro
1 u2 + εṡρ4δV̇

ro
−1u4 − εṡρ2δV̇

or
−1u2 (2.25)

−Q2 +Q0 + p1(t)
(
A′c −AP −A′P + πR2

mp

)
ṡ(t)

The total heat released per unit of time by chamber I and transferred to chamber II is

denoted as Q0 and approximated using a polytropic transformation with a constant polytropic

coefficient Υ for dynamic conditions such that:
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Q0(t) = −p1(0)V1(0)

rN2θ1(0)

(
cpN2

− rN2

)
Υ− cpN2

Υ− 1
θ̇1(t) (2.26)

where the material properties for nitrogen are defined in Section 2.5.1 and:

θ̇1(t) = (1−Υ)
θ1(0)

V1(0)1−Υ

V̇1

V Υ
1

(2.27)

By combining Eq. (2.26) and Eq. (2.27):

Q0(t) =
((
cpN2

− rN2

)
Υ− cpN2

) p1(0)

rN2

(
V1(0)

V1(t)

)Υ

V̇1(t) (2.28)

Similarly as for chamber II, the internal energy rate (or power) in chambers III and IV are given

by:

P3 = εṡρ2δV̇
or
−1u2 − (1− εṡ) ρ3δV̇

or
1 u3 −Q3 + p3(t)

(
A′P − πR2

mp

)
ṡ(t)

P4 = (1− εṡ) ρ2δV̇
ro
1 u2 − εṡρ4δV̇

ro
−1u4 −Q4 − p4(t) (A′c −AP ) ṡ(t)

(2.29)

Temperature Differential Equations Matrix System

The outlined governing thermodynamic equations used to determine the chamber bulk tempera-

tures θi can be written as a nonlinear matrix system which is given by:

L(θ,p) θ̇(t) + Lθ(t) θ(t) = Lπ(t) p(t) +ψ(t) (2.30)

where θ =
(
θ2 θ3 θ4

)T
is the unknown temperature state vector, p =

(
p1 p3 p4

)T
is the pressure input vector, and ψ =

(
ψ2 ψ3 ψ4

)T
is the source vector that links the

chambers to the structure. The temperature and pressure matrices are defined by:

Lθ(t) =

 Lθ11 Lθ12 Lθ13

Lθ21 Lθ22 0

Lθ31 0 Lθ33

 , Lπ(t) =

 Lπ11 Lπ12 Lπ13

Lπ21 Lπ22 0

Lπ31 0 Lπ33

 (2.31)

Some matrix coefficients of Lθ and Lπ are zero for the case of chambers III and IV, as no

physical link (no heat or mass transfer) exists between both chambers. The corresponding

coefficients are given in Table 2.6. The normalized thermal mass matrix is defined as L(θ,p) =

I3×3 + diag (w(θ,p) ◦ θ). It can be seen that the internal chamber bulk temperatures depend

on other chamber temperatures (through Lθ), on the adjacent chamber pressures (through Lπ),

and on the average structural boundary temperatures (through ψ). The vector θ is the unknown

vector (states) of the chamber temperatures, p is the chamber pressure vector, and ψ is the

source vector. The oil properties are temperature dependent, making the differential system

nonlinear, and are taken into account in w(θ,p), making use of the Hadamard product defined

as (w(θ,p) ◦ θ)i = w(θ,p)i · θi:
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w(θ,p) = G3

 ρ−1
2

ρ−1
3

ρ−1
4

 ◦ p +

 G4ρ
−1
2 +G1c

−1
2

G4ρ
−1
3 +G1c

−1
3

G4ρ
−1
4 +G1c

−1
4

 (2.32)

Lθ coefficients Lπ coefficients

Lθ11 =
(1− εṡ)δV̇

ro
1

V2
+
εṡδV̇

or
−1

V2
+

2h2Γ2

ρ2c2V2
+
V̇2

V2
Lπ11 =

(
A′c −AP −A′P + πR2

mp

)
ṡ

ρ2c2V2
− (1− εṡ)δV̇

ro
1

ρ2c2V2
− εṡδV̇

or
−1

ρ2c2V2

Lθ12 = − (1− εṡ)ρ3δV̇
or
1 c3

ρ2c2V2
Lπ12 =

(1− εṡ)δV̇
or
1

ρ2c2V2

Lθ13 = − εṡρ4δV̇
ro
−1c4

ρ2c2V2
Lπ13 =

εṡδV̇
ro
−1

ρ2c2V2

Lθ21 = − εṡρ2δV̇
or
−1c2

ρ3c3V3
Lπ21 =

εṡδV̇
or
−1

ρ3c3V3

Lθ22 =
(1− εṡ)δV̇

or
1

V3
+

2h3Γ3

ρ3c3V3
+
V̇3

V3
Lπ22 =

(
A′P − πR2

mp

)
ṡ

ρ3c3V3
− (1− εṡ)δV̇

or
1

ρ3c3V3

Lθ31 = − (1− εṡ)ρ2δV̇
ro
1 c2

ρ4c4V4
Lπ31 =

(1− εṡ)δV̇
ro
1

ρ4c4V4

Lθ33 =
εṡδV̇

ro
−1

V4
+

2h4Γ4

ρ4c4V4
+
V̇4

V4
Lπ33 =

−εṡδV̇
ro
−1

ρ4c4V4
− (A′c −AP ) ṡ

ρ4c4V4

Table 2.6: Matrix coefficients of Lθ and Lπ.

The source vector ψ links the temperature of the structure to the thermodynamic model,

and its components are defined by:

ψi =
2hi

ρicpiVi
θiΓi +

(i− 3) (i− 4)

2

Q0

ρicpiVi
, i = 2, 3, 4 (2.33)

2.6.5 Boundary Conditions

In order to simplify the notations, the thermally active (nonadiabatic) boundaries are defined

mathematically. A partial boundary j of a segmented boundary k is denoted as Γ(k,j), which re-

sults in Γ(k)(t) = ∪
j=1,2,3

Γ(k,j), k = 2, 3, 5, and Γ(4) = ∪
j=1,2,3,4

Γ(4,j). For nonsegmented boundaries

(k = 1, 6, 7), the boundary is written as Γ(k)(t). At any boundary Γ(k)(t), either a frictional heat

flux qk or a convective heat flux with an average empirical HTC hk (and a fluid temperature θk)

is defined in the normal direction n to the surface Γ(k)(t) (hk = 0, k = 6, 7; qk = 0, k 6= 6, 7):

(
∀r ∈ Γ(t)× [0, t̂], i ∈ D, k ∈ B

)
k

(k)
θ M

∇θ|Γ(k) · n + hk (θ|Γ(k) − θk) = qk (r, t) (2.34)

Convective Boundary Conditions (i = k = 2, 3, 4 and k = 5)

The average HTCs hk are derived using empirical correlations that are adopted from [91] for

the case of laminar and turbulent flow in tubes and around cylinders. The average convective

HTC used in Eq. (2.34) is defined for the external surface (k = 5) as 1
2kθaR

−1
5 · Nu5, and for

the internal chamber walls (i = 2, 3, 4) as 1
2kθiR

−1
i Nui, where kθa is the thermal conductivity of

air, and kθi = kθ(θi) is the thermal conductivity of oil evaluated at the chamber temperature θi.

As only the average HTCs are studied, an average external radius R5 = 1
2 (Rc +RP ) is defined.
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External Surface (k = 5) The Reynolds number Re5 = 2Ẋ(t)R5ν
−1
a is not uniform around

the cylinder and the piston, and is also time dependent. The average temperature of the free

stream and the solid wall temperature at which the Reynolds number Re5 is evaluated is θ5.

The HTC around the cylinder is calculated using the empirical Churchill - Bernstein correlation

given in [91]:

Nu5 = 0.3 +
0.62Re5

1/2
Pr

1/3
a(

1 + (0.4/Pra)
2/3
)1/4

[
1 +

(
Re5

282000

)n1
]n2

(2.35)
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ẊeX

h5[Wm−2K−1]

Figure 2.11: Illustration of external air flow and wall HTC (Ẋ = 20 m/s).

According to [91], the exponents are n1 = 5/8 and n2 = 4/5 when Re5Pr > 0.2, and when

2 · 104 < Re5 < 4 · 105, n1 = 1/2 and n2 = 1. An illustration of the turbulent airflow around the

SA, calculated using a standard k-ε turbulent model in ANSYS/CFX, is shown in Fig. 2.11. For

the forced convection of air, the average HTC is generally in the range of h5 = 25 ∼ 250 W/(m2K).

For free convection, the average HTC is in the range of h5 = 2 ∼ 25 W/(m2K). The estimated

range of the Re5 numbers for the speed range of the aircraft (maximum 80 m/s), an average

cylinder radius of 0.1m, and a kinematic viscosity of dry air νa = 1.475 · 10−5 m2/s evaluated

at a temperature θ5 = 290K yields max(Re5) ' 106. For an aircraft ground speed of 0.5 m/s,

and for the same geometry and airflow conditions, min(Re5) ' 6 · 103. With the thermal

conductivity of air of kθa = 0.0263 W/(mK), and for the maximum Reynolds number, the

maximum average heat transfer coefficient is approximately 160 W/(m2K). For very slow speeds

(of around 0.5 m/s), the average HTC is approximately 5.5 W/(m2K). During towing to the

gate, the convection around the cylinder is neglected (free convection, h5 = 2 ∼ 25 W/(m2K)),

and the external walls are considered to be isothermal and at a temperature θ5 such that

θ|Γ(5) = θ5 , Ẋ ≤ Ẋt.

Internal Walls: Chambers II-IV (i = k = 2, 3, 4) The convection correlations used for

internal tube flow determine the average HTCs at the internal chamber walls. The Rei numbers

are based on the orifice outflow/inflow rates and the average chamber diameter, and are given

in Table 2.7.
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Chamber i Average radius Ri Reynolds number Rei

2
Rc +RP − 3B/2

2

2R2

ν2

|ṡ|A′c + δV̇
or
εṡ + δV̇

ro
εṡ

3A′c

3 RP −B/2
2R3

ν3

|ṡ|A′P + δV̇
or
εṡ

2A′P

4
Rc +RP −B

2

2R4

ν4

|ṡ|+ δV̇
ro
εṡ (A′c −AP )

−1

2

Table 2.7: Average radii and Reynolds numbers for different SA chambers.

Depending on Rei, various relations for the average Nusselt number Nui are used within

chamber i; for laminar flow:

Nui = 3.66 +
0.065ReiPri · 2πRi3 · V −1

i (t)

1 + 0.04
[
ReiPri · 2πRi3 · V −1

i (t)
]2/3

,Rei ≤ 3 · 103 , i = 2, 3, 4 (2.36)

where the average chamber radius Ri is given in Table 2.7 and the chamber volume Vi(t) is

defined in Table 2.4. In a turbulent regime, the chamber entrance region can be considered to be

equivalent to fully developed flow, as the lengths of the turbulent entry regions are small. The

Gnielinski equation is used for higher accuracy (based on the second Pethukov equation) [91]:

Nui =
(µfi /8)(Rei − 1000)Pri

1 + 12.7(µfi /8)0.5
(

Pr
2/3
i − 1

) , 3 · 103 < Rei < 5 · 106 , b = 2, 3, 4 (2.37)

where µfi is the fluid friction factor given by the first Pethukov equation for i = 2, 3, 4:

µfi =
(
0.790lnRei − 1.64

)−2
. The properties of the hydraulic oil are evaluated at the aver-

age temperature θi of the free stream within chamber i and the solid wall temperature.

Frictional Heat Flux Conditions (k = 6, 7)

In a first approximation, the temperature at the bearing surface is the same as at the piston

surface, which leads to the definition of an average gap temperature : θu = θ6 , θl = θ7. The

frictional heat flux generated at the lower and upper bearings is shared between the piston

and the cylinder, and is dependent on the heat capacities of both materials [36]. The sharing

coefficients ξ6 = cpA
(
cpA + cpB

)−1
and ξ7 = cpB

(
cpB + cpC

)−1
are dependent on the material

properties, such that the heat is flowing naturally to the softer material (upper bearing k = u = 6;

lower bearing k = l = 7):

qkc(r, t) = ξkµk(t, θk) |ṡ(t)| pHk , qkP (r, t) =
1− ξk
ξk

qkc(r, t) (2.38)

The frictional heat flux qk is positive when directed inward, and is defined as (for k = 6, 7):

qk(r, t) = qkc(r, t) + qkP (r, t). The total frictional heat flux is proportional to the absolute value

of the relative sliding speed, linearly dependent on the contact pressure, and dependent on µl

and µu, which are defined in Section 2.6.3.



Chapter 2. Landing Gear Thermo-Tribomechanics 42

Symmetry, Adiabatic and Isothermal Boundary Conditions

Not all of the boundaries, such as at the top and bottom of the SA, are thermally active

(nonadiabatic). The entire adiabatic boundary (including the symmetry boundary) is defined as:

Γ = Γ \
{
∪
k∈B

Γ(k)(t)

}
, such that the net heat flux vanishes on Γ: ∇θ|Γ · n = 0. During fast

extension/compression of the SA, the polytropic transformation is considered to be isothermal,

such that the wall boundaries are at the same temperature as the enclosed gas: θ|Γ(1) = θ1.

2.7 Model Verification, Validation and Limitations

Before yielding results for the characteristic thermal behavior of the LG SA, the model is

verified and validated. As the results shown are confidential, all quantities are normalized by the

maximum value such that for quantity Y : Y = Y/max(Y ). The maximum value is proprietary

and not available for publication.

The tire deflection curve is shown in Fig. 2.12. The data provided by the tire manufacturer

and the implemented tire model from [97] correlate well. In addition to the tire stiffness, an

additional damping coefficient of the tire is introduced and set as ζ0
T = 2 kNs/m for each

tire [101]. The power equivalence shown in Fig. 2.13 (t̂ = 1s) is used to verify the mechanical

model. The input power is split into the spring force power and the dissipated power such

that Pin + Pdiss + Pspring = 0. During compression, the frictional loss at the SA bearings is

the highest, as the sliding speeds are the highest and the SA damping coefficient the smallest.

During extension, the frictional loss is almost equal to the damping loss. The gas spring curve

for a common 2-stage SA is shown in Fig. 2.14, which validates the model against the provided

data. The small errors between the curves are due to the fact that the provided data have

been calculated using laws for real gas, whereas the model only considers perfect gas conditions.

The static spring curves have been calculated for the case of isothermal compression (Υ = 1)

and adiabatic extension (Υ = 1.4). The dynamic curves have been calculated for a constant

polytropic coefficient Υ = 1.1.
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Figure 2.12: Tire deflection curve. Figure 2.13: Normalized power equivalence [2].
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The gas spring curve is used to calculate the stiffness (or spring force) of the dynamic model.

In addition, the static stroke is determined from this curve, as the gas pressure under static

conditions is known. The SA damping coefficient, similar to a step function, can be seen in

Fig. 2.15 as a function of the SA stroke.
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Figure 2.14: Normalized spring curve of double-
acting SA.
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Figure 2.15: Normalized damping coefficient.

The characteristic damping curve is specific to this specific SA, whereas modern LG damping

characteristics are nonlinear. The damping force is highest during extension (recoil) and lowest

during compression. The aim of the model is to study the trend of the thermal behavior of a LG

SA and to identify its heat sources/sinks. It is not intended to be highly accurate in capturing

the details in lubricated contacts. The model is limited, as lubrication was not explicitly modeled.

If a lubricating layer had been present, heat would have been generated by viscous dissipation

due to pure sliding (shearing of the semisolid lubricant film). The temperature field is calculated

using commercial software that has been validated and verified. The consistency of the thermal

response is verified, and input errors are unlikely. The other submodels such as the dynamic

submodel, the tire submodel or the thermodynamic submodel, are validated against real LG

data, which are proprietary and not available for publication.

2.8 Characteristic Results

The temperature field was calculated for a ground maneuver of an aircraft equipped with

cantilevered MLG on a rough runway (µR = 0.5). A total time of t̂ = 30s (15s constant taxi

speed on the taxiway, 15s constant aircraft acceleration on the runway) is considered. The

static dry BFC is fixed as 0.3. The take-off speed of 74.75m/s is weight dependent, and the

taxi speed is set at Ẋto = 11.11m/s. The mesh shown in Fig. 2.16, used in order to calculate

the temperature field, is kept as coarse as possible for the regions not of interest. The mesh is

refined in the TZI, and is completely swept over the structure. The mesh used to compute the

thermal response consists of SOLID226 elements (20-node 3D bricks with DOF UX, UY, UZ,

T). In total, 24,962 elements are used with 38,029 nodes.
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All the simulations are performed on a dual 6-core machine at 3.46 GHz with 48GB of

memory. Global convergence is achieved after 3 global iterations and a total computation

time of 33.32 hours. This relatively long simulation time can essentially be attributed to slow

inputs/outputs between the two software systems and tight local convergence criteria.

Oscillatory motion

Piston

Cylinder

Lower Bearing
X

YZ
eZ

eX

eY

0 0.4 (m)

Figure 2.16: Mesh used for the temperature
field calculation.

Extension Compression

Speed

Figure 2.17: Friction forces as a function of the
sliding speed [2].

A corresponding plot of the friction forces as a function of time is shown in Fig. 2.18

(minimum constant lubrication clearance of c0 = 10−6m), from which the friction forces shown

in Fig. 2.17 as a function of the relative sliding speed are derived. As the friction forces are

normalized by the maximum combined friction force, it must be noted that this normalization

is not equivalent to the BFC. The friction force at the lower bearing is roughly 75% of the total

friction force, demonstrating that much of the drag load applied at the axle is taken by the

lower bearing under rough runway conditions.
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Figure 2.18: Evolution of friction forces.

Upper Bearing

Lower Bearing

Figure 2.19: Normalized heat flux [2].

As the load is much higher at the lower bearing than at the upper bearing, the frictional

heat flux (proportional to the temperature at the sliding interface) is much higher at the lower
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than at the upper bearing. For the sake of clarity, the heat flux at both bearings is plotted on

Fig. 2.19, revealing the characteristic evolution of the half-parabolic shape. The frictional heat

flux is applied in the normal (radial) direction of the contacting surfaces. The heat flux vanishes

completely for the case of stiction. The normalized heat flux is highest at the lower bearing

interface and oscillates as the contact angle changes as a function of time. The maximum heat

flux occurs at the aft position of the lower bearing, as no horizontal drag load was applied for

the idealized conditions. The heat flux is zero for all angles for which no contact pressure is

defined.
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Figure 2.20: Normalized temperature field in
the LG SA [2].
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Figure 2.21: Normalized heat flux vector field
at the lower bearing (t = 30s) [2].

The maximum temperature at the upper bearing will always be at the fore position. If

ovalization is considered and the cylinder and piston deform, a reduction of the peaks and

an irregular shaped surface of the heat flux are expected instead of a flat surface for angles

greater than the theoretical angles predicted by Hertz’s theory. A comprehensive model is

shown in Chapter 4, which is used to determine the heat flux surface more accurately. The

normalized temperature field in the LG SA is shown in Fig. 2.20, demonstrating that the

reported overheating is a very localized phenomenon, with thermal gradients that are very high

in the TZI. Although the temperature field provides insight to the thermal behavior in the TZI,

the thermal behavior of the lubricant film is not captured with the present simplified model. In

the circumferential direction, the temperature variation vanishes quickly. The heat flux vector

field is shown in Fig. 2.21. Shortly after a compression phase (t = 30s), the SA extends. In the

direction of movement, the heat flux at the leading edge of the stationary component is highest,

as advection occurs in the stationary body and the heat is advected by the moving component

(piston). The heat flux is higher on the cylinder side, which confirms the tendency of the heat to

flow into the softer base material (as stated in [37]), which in turn suggests that modeling a soft

coating on the piston would not alter the results. It must be noted that, although the heat flows

naturally to the lower bearing, it has been reported that the high temperature reached caused

asymmetric damage to the piston and the lower bearing, which is explained in Chapter 4.
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The temperature increase at the end of a typical rough runway maneuver of 30s is shown

in Fig. 2.22, confirming that the lower bearing is at the highest risk of heat damage, as the

maximum average temperature in the TZI occurs at the lower bearing sliding interface; this

suggests that the focus of the comprehensive model should lie on developing a more accurate

model for the lower bearing assembly.

Aircraft AccelerationConstant Taxi Speed

Figure 2.22: Evolution of increase of average
bearing temperatures [2].

Aircraft AccelerationConstant Taxi Speed

Figure 2.23: Evolution of increase of chamber
temperatures [2].

During the ground maneuver, a steady state is not reached and the average temperature

constantly increases. The oscillations in the temperature profile are due to the fact that the

hot region is periodically brought into contact with colder oil or air. The average temperature

constantly increases during taxiing at a constant speed, but follows an irregular pattern during

aircraft acceleration. By performing a regression analysis, a power law is determined that yields

the lower bearing average temperature during taxiing as a function of time: (∀t ≤ tt) ∆θ = a · tb.
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Figure 2.24: Normalized orifice flow rates.
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Figure 2.25: Normalized HTCs.

For this case, the parameters are determined as a = 5 and b = 0.55, and depend on the chosen

LG, the runway profile and the operating conditions. The average internal chamber temperature
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increase (see Fig. 2.23) is found to be small compared to the temperature increase at the lower

bearing. The temperature rates are variable as the inflow and outflow of each chamber are not

constant. The average temperature rate for chamber II is the highest because the work input to

chamber II is highest and additional heat is transferred from chamber I to chamber II. During

taxiing, the average temperature rate is almost constant, but the instantaneous temperature

increases at different rates at all times because the compression and extension speeds of the

SA are different. The temperature increase in chamber IV is the smallest, as the work done on

chamber IV is the smallest. As the recoil orifice is much smaller than the primary orifice, the

flow rates are lower for the recoil orifice, as shown in Fig. 2.24.

The normalized average HTCs for chambers II-IV are shown in Fig. 2.25. The HTC at the

external walls is much lower than the internal HTCs. This suggests that the external heat

removal is not as efficient as the internal heat removal. The ambient air is not as efficient a heat

sink as the hydraulic oil in the chambers. The Reynolds numbers in the chambers are much

higher than the Reynolds number of the external air flow, and the thermal conductivity of the

oil is also higher than the thermal conductivity of the surrounding air. The HTC is proportional

to the Nusselt number, and the thermal conductivity of the fluid, and consequently the internal

HTCs, are higher.

2.9 Sensitivity Study

In order to study the effect of the WOG on the heat flux at the lower bearing, the relative

sliding speed and the maximum Hertzian contact pressure are plotted in Fig. 2.26 and Fig. 2.27

respectively, for only a short time of 0.2s, during which only one bump is encountered. As all

the bumps encountered are the same, this time period is chosen for illustration purposes. It is

found that for an increasing WOG, the maximum normalized relative sliding speed decreases.

In addition with an increasing WOG, the maximum Hertzian contact pressure increases.

Stiction

Compression Extension
ǫ = 1 ǫ = −1

W ↑

Figure 2.26: Relative sliding speed under change
of W [2].

W ↑

Figure 2.27: Maximum Hertzian contact pres-
sure under change of W .
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As stated in [37], the interface temperature is proportional to the frictional heat flux. As

the maximum temperature occurs at the lower bearing sliding interface, it is sufficient to study

the sensitivity of the maximum heat flux over one bump instead of the maximum temperature

at the lower bearing. The sensitivity ratios depend on the values of the fixed parameters

(characteristic for a rough runway and determined by analyzing measured runway profiles). The

local sensitivities are calculated using the approach outlined in [102] and are normalized in order

to remove the effects of different units:

Srk,i =
∂Y (k)

∂Xi
· Xi

Yi
(2.39)

where Y (k) = Y (k)(Xi, Xj), j = 1, 2, 3, j 6= i, where k is the number of the output variable, and

Y (k) is the kth response surface. The local sensitivity ratios, calculated using the FD method, are

determined for the nominal values ẐR = 0.03m , XR = 2m , W = 332kN , tt = 15s , t̂ = 30s,

and are shown in Fig. 2.28. The nominal values are fictitious, but are compatible to a certain

rough runway. The input variables X1 = ẐR ∈ [0; 0.05], X2 = XR ∈ [1, 15], and X3 = W are

varied for the following output variables: Y (1) = max (ql), Y
(2) = max (ṡ), Y (3) = max (s), and

Y (4) = max
(
pHl
)
. The response surface is built using 11 different runway amplitudes and 15

different runway wavelengths (165 samples in total). The interpolated piecewise linear response

surface Y (1) = Y (1)
(
ẐR, XR,W

)
of the maximum heat flux is shown in Fig. 2.29. The highly

nonlinear relationship between the runway input and the frictional heat flux can be seen.

max(ql) max(ṡ) max(s) max(pH
l )

Figure 2.28: Local sensitivity ratios of output
variables [2].

Smooth Runway

Rough Runway

Figure 2.29: Response surface Y (1) =

Y (1)
(
ẐR, XR,W

)
[2].

2.10 Summary and Conclusions

A model was developed to highlight the characteristic thermal behavior of and identify the heat

sources and sinks within the LG system from a macroscopic, or global, point of view when
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maneuvering on a rough runway. After outlining the characteristic model assumptions, the

TTM model is defined and subdivided into three parts, all using simplified, but representative

equations. Emphasis is placed on developing a methodological framework and studying the

evolution of the average temperature in the TZI while taxiing and taking-off.

It is found that the zone of highest temperature is at the lower bearing, as the main heat

source is proven to be at this interface. The complete system must be considered as transient,

as the boundary conditions of the thermal model are closely related to the dynamic model.

Contrary to common belief, it is shown that the dynamic and thermal responses of the system are

closely related, despite the fact that the frequencies of both responses are different. Additionally,

it is possible to identify the key parameter, the runway amplitude, which has the highest impact

on the thermal response. Two statements are presented below regarding the characteristics of

the LG system.

Statement 1: The maximum heat flux at the lower bearing is not sensitive to a change

in WOG under the given runway and operating conditions. If the WOG is increased, the

maximum contact pressure increases. At the same time, the dynamic system becomes stiffer

(the stiffness of the SA and the friction force increase), yielding a smaller relative sliding speed:

Sr4,3 > 0 ∧ Sr2,3 < 0⇒
∣∣Sr1,3∣∣� 1.

Statement 2: The heat flux at the lower bearing is most sensitive to the runway amplitude.

If the runway amplitude increases, the vertical axle force is increased, yielding a higher system

excitation:
∣∣Sr1,1∣∣ > ∣∣Sr1,2∣∣� ∣∣Sr1,3∣∣ > 0.

In order to generate a high frictional heat flux, it is necessary to have high loads and high

relative sliding speeds. However, the heat generation is not very sensitive to a load change. It is

confirmed that the heat flows naturally to the softer material (as stated in [37]) and towards

chamber IV (see Fig. 2.10). The external heat sink (air) is not as efficient as the internal heat

sink (hydraulic oil). As heat is flowing to chamber IV, the lower bottom of the connecting

chamber must be included. The temperature in the chambers are not very high: the oil is acting

as a heat sink, not as a heat source.

The characteristic model shows that in order to find a solution to the reported overheating

issues, a more detailed and validated TEHD model of the lower bearing assembly is required.

Subsequent model refinements will focus on understanding and quantifying the heat generation

at the lower bearing interface by rejecting limiting assumptions, and will also take into account

local effects such as viscous heating of the lubricant.

Under load, the cylinder deforms and the lubricated film is squeezed out of the way, so that

peaks of temperature are reached locally, which need to be calculated accurately in order to

explain the reported uneven heat damage. A reduction of the heat flux peaks in Fig. 2.19 and

an irregularly shaped surface of the heat flux as a function of time and angle would likely be the

consequence of the ovalization of the piston and cylinder. Once the interface temperature as a

function of the bearing configuration and operating conditions is known, a modified BFC can be
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derived that can be used in existing aircraft LG dynamic simulations (see Chapter 5).

In order to develop a comprehensive model of the lubricating layer, several aspects must

be considered. The lubricant, a non-Newtonian fluid, may change phase over time because of

the generated heat, and the transient nature of the phase change must be accurately captured

in order to draw conclusions on the local and sudden ’burning’ of the lubricant. As noted

in Chapter 1, the evolution of multiple phases must be calculated at a reasonable speed, as

design/optimization studies need to be run. These specifications, combined with the requirement

for a more comprehensive model of the lower bearing, lead to a novel tribotopological theory

(TTT), derived in Chapter 3.

�



Chapter 3

Novel Tribotopological Theory

A mathematical theory is not to be considered complete until you

have made it so clear that you can explain it to the first man

whom you meet on the street.

David Hilbert, mathematician (1862-1943)

3.1 Derivation Strategy

As stated in Section 2.10 and in order to develop a more comprehensive model of the lubricant

at the sliding interface of the lower bearing that provides results of the multiphasic behavior of

the lubricant, a novel theory is derived in this chapter. This theory can be seen as an extension

of the classical lubrication theory to include multiphasic lubricants.

Starting from the fundamental laws of conservation of fluid mechanics, assumptions are

formulated that lead to the simplification of these laws. This simplification closely follows

previous derivations such as shown in [41]. The benefit and the novelty of the theory, however,

lie in the definition of tribotopologies, which are virtual spaces within the lubricant that are

englobed with shells and that contain each a distinct phase of the lubricant. As shown in [82],

the plug phase of the lubricant is distinct and separated from other phases. Similarly, the shell

that englobes the disintegrated lubricant can be seen as distinct, despite the eventual possibility

of bubbles or other highly-complex fluid patterns. In each of the tribotopological (TT) spaces, a

different velocity field of the lubricant is defined. It is the definition and identification of the

velocity profile within each TT space that are key to the novel theory.

The governing equations are integrated while taking into account the velocity profile in

each TT space. This integration leads to the derivation of one governing equation, namely the

general tribotopological (TTR) equation, which gives the pressure field within the lubricant that

drives the velocity field. The square of the components of the gradient of the velocity field is

proportional to the heat generation, which is the cause of the reported damage. A demonstration

of the extension of the existing classical lubrication theory and validation is provided. The

theory is kept as general as possible, and can be applied to other applications with similar

multiphasic and transient system characteristics.

51
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3.2 Fundamental Conservation Laws

Conservation of Mass

As shown in [103], the transient conservation of mass equation for a compressible lubricant is:

v ·∇ρ+ ρ∇ · v = −∂,tρ. For an incompressible lubricant, the conservation of mass simplifies to:

∇ ·v = 0 (∇ρ = 0 and ∂,tρ = 0). The divergence of the velocity field ∇ ·v is derived in the local

Frenet-Serret reference frame (x, y, z). Commonly, a Frenet-Serret reference frame is chosen

in order to capture the local phenomena of TEHD lubrication. According to the assumptions

adopted in the field of TEHD lubrication (see Section 3.3), the radial component of the velocity

gradient is ignored, such that vy,y = 0.

Conservation of Momentum

The definitions of the stretching and spin tensors follow [41]. The gradient of the velocity field

in the domain of the lubricant is given by ∇v = D + Ω, where Ω is the anti-symmetric spin

tensor. The symmetric stretching tensor D is given explicitly as:

D =
1

2

(
∇v + (∇v)T

)
=

1

2

 2vx,x vx,y + vy,x vx,z + vz,x

vx,y + vy,x 2vy,y vy,z + vz,y

vx,z + vz,x vy,z + vz,y 2vz,z

 (3.1)

The shear rate tensor γ̇ is defined as γ̇ = ∇v + (∇v)T = 2D, and its norm is defined as:

γ̇ =
√

2D : D =
√

2tr (DTD) (3.2)

where the inner product (Frobenius inner product) of two tensors T and D is defined as

T : D = tr
(
TTD

)
. The general Cauchy stress tensor T for a compressible, non-Newtonian fluid

is given in [103] as:
T = (−p+ ηD trD) I + 2ηD (3.3)

where p is the hydrodynamic pressure and ηD the bulk viscosity. The general Navier-Stokes

equations are given by:

ρ
Dv

Dt
= ∇ ·T + ρb̆ (3.4)

where b̆ is the body force vector and Dv
Dt is the material derivative of v as explained in Section 1.5.

By deriving Eq. (3.3), the gradient of the stress within the incompressible lubricant is given by

(ηD = 0):

∇ ·T = −∇p+ η∇2v + 2D∇η (3.5)

By ignoring all inertia effects of the lubricant as well as the body forces (b̆ = 0), the Navier-Stokes

equations for an incompressible non-Newtonian lubricant reduce to ∇ ·T = 0. The flow within

the lubrication gap is laminar, and the pressure gradient is given by:

∇p = η∇2v + 2D∇η (3.6)
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The shear rate variation across the film is zero: γ̇,y = 0. The viscosity derivatives are expressed

as η,x = η,pp,x + η,θθ,x + η,γ̇ γ̇,x and η,y = η,pp,y + η,θθ,y + η,γ̇ γ̇,y. The Laplacian of the vector

field v is given by ∇ ·∇v, and the angular, radial and vertical pressure gradient components

are given respectively by:

p,x = ηvx,xx + ηvx,yy + ηvx,zz + 2η,xvx,x + η,yvx,y + η,yvy,x + η,zvx,z + η,zvz,x

p,y = ηvy,xx + ηvy,yy + ηvy,zz + η,xvx,y + η,xvy,x + 2η,yvy,y + η,zvy,z + η,zvz,y

p,z = ηvz,xx + ηvz,yy + ηvz,zz + η,xvx,z + η,xvz,x + η,yvy,z + η,yvz,y + 2η,zvz,z

(3.7)

Conservation of Energy

The general conservation of energy within a fluid is given in [103]:

ρ
Dĕ

Dt
= λθ∇2θ + T : D (3.8)

where ĕ denotes the lubricant’s specific internal energy, θ the temperature field and λθ the

lubricant’s isotropic thermal conductivity, which is constant within the temperature range

(λθ,θ ∼ 0). In consideration of the classical assumptions in the field of TEHD lubrication (see

Section 3.3), Eq. (3.8) can be written as:

ρ
(

˙̆e+ v ·∇ĕ
)

= λθ∇2θ − ρpv ·∇
(
ρ−1
)

+ 2ηtr
(
DTD

)
(3.9)

It is assumed that the lubrication gap is very long in the directions x and z compared to the

radial direction y, which implies that the temperature derivatives in these directions can be

ignored. The same holds for the velocity gradient. The components of the velocity gradient are

not of the same order, such that vx,z � vz,y and vz,x � vz,y. For an incompressible lubricant,

the tensor product of the stretching tensor with itself is defined as D : D = γ̇2/2. The square of

the shear rate is given as:

γ̇2 = 8
(
v2
x,x + v2

y,y + v2
z,z

)
+ (vx,y + vy,x)2 + (vx,z + vz,x)2 + (vz,y + vy,z)

2 (3.10)

By ignoring second order velocity derivatives and under the given assumptions, the shear rate γ̇

simplifies to γ̇2 = v2
x,y + v2

z,y. The transient energy equation is given by:

ρ ˙̆e+ ρv ·∇ĕ+ ρpv ·∇
(
ρ−1
)

= λθθ,yy + ηγ̇2 (3.11)

By following [104], the energy differential can be expressed as a function of known quantities such

that ∂ĕ = cp∂θ − θ
(
ρ−1
)
,θ
∂p− p∂

(
ρ−1
)
, which takes a simplified form for the case of constant

density: ∂ĕ = cp∂θ. It has been shown in [104] that convective cooling in a hydrodynamic

bearing is not as important as conduction cooling (thermal gradient along the lubrication gap in

x and z directions is not considered in the heat source). Within the lubricant film, the transient

temperature field is governed by:

ρcpθ̇ − kθθṗ = λθθ,yy + kθvxp,xθ + kθvzp,zθ + η
(
v2
x,y + v2

z,y

)
(3.12)

where the coefficient of thermal expansion κθ is defined by κθ = ρ
(
ρ−1
)
,θ

.
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The Dirichlet boundary conditions for the pressure field are provided by the pressure of the

connecting oil chambers in the LG SA and the atmosphere. For this application, the lubricant is

considered incompressible (volume change due to varying pressure), but the compression of the

lubricant is considered to contribute to the temperature field (large temperature range). The

coefficient of thermal expansion of grease is kθ = 8.2 · 10−4 C−1 [92].

On the left-hand-side of Eq. (3.12), the rate of temperature can be distinguished, whereas

on the right-hand-side, a diffusion term proportional to θ,yy as well as compressive heating

terms can be seen. The key term that links the velocity field to the temperature is given by

η
(
v2
x,y + v2

z,y

)
, which is the dissipation of energy through shearing of the lubricant. A key

observation is that the heat generation term is proportional to the square of the components of

the velocity gradient, or shear stress.

3.3 Thermo-Elastohydrodynamic Lubrication

In order to evaluate the importance of each term in Eq. (3.7), an order of magnitude analysis

is performed as shown in [41]. For this purpose, normalized quantities are defined such that:

ε =
Ly
Lxz
� 1, where Lxz is the length scale of the bearing in the (x, z) plane and Ly = ς is

the length scale of the domain of the lubricant film across the lubrication gap. The slider

bearing contains a primary thrust portion located at z0 and at an angle of α0 and is governed

by: ς = z0 · tanα0. The coordinates can be normalized as x = Lxzx = 2πRcx (Note: Rc ' RP ),

y = εLxzy = ςy, and z = Lxzz = Lz. The velocity and viscosity are normalized as η = η0η,

vy = εŨvy, vx = Ũvx, and vz = Ũvz, where Ũ is the nominal characteristic velocity. The

pressure is normalized by p = η0ŨLς
−2p. By using the normalized quantities, the normalized

pressure gradient components along the circumference are given by:

p,x = ε2ηvx,xx + ηvx,yy + ε2ηvx,zz + 2ε2η,xvx,x + η,yvx,y + ε2η,yvy,x + ε2η,zvx,z + ε2η,zvz,x

ε−2p,y = ε2ηvy,xx + ηvy,yy + ε2ηvy,zz + η,xvx,y + η,xvy,x + 2η,yvy,y + ε2η,zvy,z + η,zvz,y

p,z = ε2ηvz,xx + ηvz,yy + ε2ηvz,zz + ε2η,xvx,z + ε2η,xvz,x + ε2η,yvy,z + η,yvz,y + 2ε2η,zvz,z

(3.13)

All components of the velocity field are of first order, and the pressure gradient components

along z and x are not of the same order as the pressure gradient across the lubrication gap.

By ignoring higher order velocity and derivative terms η,yvy,x � vx,xx, as well as the eventual

contribution of a significant viscosity increase under high pressures (small pressure variations)

as explained in [105], the pressure gradient is finally given by:

∇p = (ηvx,y),y ex + 0 ey + (ηvz,y),y ez (3.14)

The pressure gradient ∇p reveals some significant characteristics of the fluid flow in the

lubrication gap. In each direction x and z, the pressure gradient p,x|z (driving force of the fluid

flow) is proportional to the variation of the respective shear stress component. As the shear

stress is dependent on the yield shear stress τ0 for a non-Newtonian lubricant such as grease,

the pressure gradient, and consequently the fluid flow, are impacted as the lubrication gap is

locally narrowed.
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3.4 Definition of Tribotopologies

The behavior of grease in small lubrication gaps is dependent not only on the shear rate γ̇ and

the pressure p, but also on the temperature θ. The underlying principle of the TTT in the

lubrication gap is that multiple but deformable spaces stacked across the clearance can exist

and co-exist within the lubrication gap. These phases in Ω are delimited by distinct isosurfaces,

which are called shells. The englobed region is called a space. Within that space, no threshold

value (if applicable) of a state variable (such as

temperature θ or shear stress τ) is reached. An

illustrative configuration of multiple spaces and

shells is shown in Fig. 3.1. In the lubrication gap,

Ns + 1 shells of Ns spaces can be distinguished

(Ns > 1). A space S(n) can either be a fluid space

Sf (similar to oil, flowing grease), a dry space

Sd (grease residual after θ̂ has been reached) or

a plug flow space Sp (grease that is not sheared

beyond τ0). The type of each TT space is defined

such that:

l(n) =


0 if S(n) = S(n)

d (Dry)

1 if S(n) = S(n)
p (Plug)

2 if S(n) = S(n)
f (Fluid)

(3.15)
X

Sf

Sp

Sd

Cc

∂Sd

∂Sf

∂Sp

eX

Z

XY

eZ

eY

X

z

ex

ey

ez

xy X

Figure 3.1: Illustration of TT spaces in Ω.

In order to determine the lubricant’s behavior, the velocity profile must be determined in

multiple TT spaces. In each space S(n), a different threshold criterion is satisfied. The velocity

profile is continuous and derivable (continuous shear stress) at the shells ∂S(n), such that for a

space S(n) in between the space S(n−1) and S(n+1), the velocity is given by v|∂S(n) = v|∂S(n−1)

and ∇v|∂S(n) = ∇v|∂S(n−1) (derivability condition not enforced for stiction cases 2.3-2.5).

Tribotopological Dry Space S(n) = S(n)
d (l(n) = 0)

The TT dry space S(n)
d consists of the volume occupied by grease residuals that are left after

the maximum operating temperature θ̂ of grease has been reached. This type of space is the

last stage after the continuous and repetitive shear motion (translational or rotational) of both

contacting surfaces. The main hypothesis is that no lubricant is physically lost, either through

leakage, or through ’burning’ of the lubricant. The lubricant can only physically disintegrate

and change its lubricating properties. The dry space S(n)
d is defined by:

S(n)
d =

{
x ∈ Ω

∣∣∣ θ ≥ θ̂
}

(3.16)

The shell ∂S(n)
d is defined by ∂S(n)

d =
{

x ∈ Ω
∣∣∣ θ = θ̂

}
. In the dry space S(n)

d , no lubricating

fluid is present, such that v|S(n)
d

= 0. The velocity of the adjacent fluid film vanishes at ∂S(n)
d ,
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such that v|
∂S(n)

d

= 0. As a fluid is not present per se in the dry space, the pressure gradient

is zero, such that ∇p|S(n)
d

= 0. From an energy point of view, it is considered that no heat

generation occurs in the dry space.

Tribotopological Plug Space S(n) = S(n)
p (l(n) = 1)

As stated in [61, 62], grease differs from oil flow in small lubrication gaps by the existence of

a plug phase. The TT plug space S(n)
p consists of the volume occupied by a semisolid phase

of the grease, which is not sheared beyond a yield shear stress τ0 in order to flow. The plug

space can only exist for a grease-like lubricant or any non-Newtonian fluid, such as a shear

thinning/thickening lubricant. The plug space S(n)
p is defined such that:

S(n)
p = {x ∈ Ω | τ ≤ τ0 } (3.17)

The shell ∂S(n)
p is defined as ∂S(n)

p = {x ∈ Ω | τ = τ0 }. A special case must be considered when

the semisolid space is floating and moving at a constant velocity determined by the velocity of

its shells, such that v|S(n)
p

= v|
∂S(n)

p
. The velocity gradient of the fluid film is zero within the

space S(n)
p , such that ∇v|S(n)

p
= 0. Similar to the dry space, a proper fluid is not present in the

plug space, which implies that the pressure gradient is zero, such that ∇p|S(n)
p

= 0. From an

energy point of view, no heat generation occurs within a plug space.

Tribotopological Fluid Space S(n) = S(n)
f (l(n) = 2)

The TT fluid space S(n)
f is the only space in the lubrication gap in which an actual fluid flow can

develop. The space is occupied by the part of the grease that is sheared enough to flow like oil

and at a temperature below the maximum operating temperature. The fluid space is defined in

the lubrication gap as S(n)
f = Ω \ Ns∪

n=1
S(n)
d \ Ns∪

n=1
S(n)
p . The velocity field in S(n)

f is governed by the

pressure gradient obtained from the tribotopological Reynolds equation (TTR, see Section 3.6).

3.5 Tribotopological Velocity Profile

The TT velocity profile in the lubrication gap consists of several distinct and connected spaces

S(n) and is defined as:

v|S(n) =


(v

(n)
x 0 v

(n)
z ) T

(v̆
(n)
x 0 v̆

(n)
z ) T

( 0 0 0 ) T

if l(n) = 2

if l(n) = 1

if l(n) = 0

(3.18)

where v̆
(n)
x = v̆

(n)
x (x, y, z, t) and v̆

(n)
z = v̆

(n)
z (x, y, z, t) are the constant velocities within the plug

space S(n)
p . The dynamic viscosity of the lubricant is variable, which is taken into account by

defining the integral factors C̃yk and ˜̃Cyk by:

C̃yk =

ŷ

0

υk

η
dυ , ˜̃Cyk =

ŷ

0

C̃υk dυ (3.19)
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The shells of any space S(n) are defined by:

c
(n)
− = δc(n) +

c− c′(n)

2
, c

(n)
+ = δc(n) +

c+ c′(n)

2
(3.20)

where δc(n) is the radial shift of any space S(n) from the center line of the lubrication gap.

Both shells are linked by the radial thickness c′(n) = c
(n)
+ − c(n)

− of the space S(n) such that

c
(n)
+ = c

(n)
− + c′(n). By continuity of the domain Ω, the shells of adjacent spaces are equal such

that c
(n)
− = c

(n−1)
+ and c

(n)
+ = c

(n+1)
− . The velocity profile in the space S(n) is determined from

the conservation of momentum by directly integrating the pressure gradient in Eq. (3.14) over

the entire space S(n). The circumferential velocity v
(n)
x and the vertical velocity v

(n)
z in the space

S(n) are defined as a parabolic velocity profile, which is driven by a hydrodynamic pressure

gradient:
∀x ∈ S(n) : v

(n)
x|z (x, y, z, t) = Λ′′

(n)
x|zC̃

y
1 + Λ′

(n)
x|zC̃

y
0 + Λ

(n)
x|z (3.21)

where Λ′
(n)
x|z and Λ

(n)
x|z are integration functions. As the fluid flow of the lubricant in space S(n)

resembles the flow of oil in small lubrication gaps under pressure (Poiseuille flow), the integration

functions can be expressed as linear functions of the governing pressure gradient such that:

Λ
(n)
x|z = a

(n)
x|zp,x|z + b

(n)
x|z , Λ′

(n)
x|z = a′

(n)
x|zp,x|z + b′

(n)
x|z , Λ′′

(n)
x|z = a′′

(n)
x|zp,x|z + b′′

(n)
x|z (3.22)

Once the velocity integration functions are known, the entire velocity profile within the lubrication

gap can be determined. The definition of the integration functions as being linear functions of

the governing pressure gradient is critical for the derivation of the governing TTR equation. The

factors of the integration functions a, a′, b, b′ and a′′, b′′ are dependent on position (x, y, z) and

time t. For each space S(n), the velocity field at the shells is given by the type of the adjacent

space. The TTT is based on the assumption that adjacent spaces of the same kind merge into

one space such that S(n)
f |p|d

∣∣∣ S(n−1)
f |p|d → S(n)

f |p|d and Ns ← Ns − 1.

Piston surface Bearing surface

Circumferential velocity vx|y=0 = φ̇ = RPωP vx|y=c = R′cωc

Vertical velocity vz|y=0 = ż vz|y=c = Ż

Table 3.1: Boundary conditions of the velocity field.

A space with an overall thickness below the mesh size (c′(n) < ∆y) is considered a zero-

thickness space, or globally flat space. Locally flat spaces are commonly found when local

disintegration of grease occurs. The velocity field at the contacting surfaces (lubricated surfaces)

is given in Table 3.1.

Integration Functions Algorithm (IFA)

The Integration Functions Algorithm (IFA) is a core algorithm (see Algorithm 2) of the TTT,

and is used to determine the integration functions Λ′
(n)
x|z and Λ

(n)
x|z . The IFA relies on the type

vector l, which is determined using the Topology Detection Algorithm (TDA) that is explained
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in Section 4.4.5. The boundary detection algorithm detects the shells c
(n)
+ and c

(n)
− of each space

S(n). In order to determine the boundary conditions to the velocity profile in the TT spaces,

the velocity profile for the space with the lowest type vector l is calculated first. The type

vector is sorted in ascending order. For example, the type vector could read l = (2 1 0 1 2)T

for a dry space embedded between a plug and fluid space. In this case, the sorted type vector

would read l? = (0 1 1 2 2)T . Similarly, a fluid space connected to the inner side of a plug

space is characterized by a type vector l = (2 1)T . The second order integration function Λ′′
(n)
x|z

is nonzero for a fluid space (and vanishes for any other type), and is dependent on the fluid

pressure gradient such that:

Λ′′
(n)
x|z =

0 if l(n) = 0, 1

p,x|z if l(n) = 2
(3.23)

Consequently, for any fluid space (l(n) = 2), the factors of the integration functions are given

by a′′
(n)
x|z = 1 and b′′

(n)
x|z = 0. In addition to the second order factor, the first and zero-th order

integration functions Λ′
(n)
x|z and Λ

(n)
x|z must be determined for fluid spaces (l(n) = 2) using the

IFA. For plug and dry spaces (l(n) = 0, 1), the first integration function is zero. Additionally,

for a dry shell (l(n) = 0), the zero-th order integration function is zero. For the special case

of one or more plug spaces in the lubrication gap, several cases have to be distinguished. The

listed cases are only for the special cases of plug spaces that are floating or surrounded by other

spaces. For constellations not involving plug spaces, such as the case of fluid-dry-fluid, the 2BC

algorithm is used.

CASE 1: Plug space floating between fluid spaces (3-Spaces Algorithm - 3SA)

When a plug space is floating between two fluid spaces, the 3-Spaces Algorithm (3SA) with a

constant plug flow velocity is used to determine the velocity field in the fluid spaces S(n−1)
f and

S(n+1)
f , and the constant plug flow velocity in the plug space S(n)

p .

CASE 1 : Plug is floating between 2 fluid shells

1.1 fluid plug fluid

plug fluidfluid

x|z

y

∆x|z

0

v̆x|z (constant) 3SA

Table 3.2: Possible velocity profile configuration - Case 1.

For given shells c
(n)
+ and c

(n)
− , a pressure gradient p,x|z and shell velocities vx|z

∣∣
c
(n+1)
−

and

vx|z
∣∣
c
(n−1)
−

, the uniform plug flow velocity v̆
(n)
x|z and the integration functions Λ′

(n±1)
x|z and Λ

(n±1)
x|z

can be determined. At the shells of the plug space, the velocity field is continuous such that

v
(n)
x|z

∣∣∣
c
(n)
±

= v
(n±1)
x|z

∣∣∣
c
(n)
∓

= Λ
(n)
x|z = v̆

(n)
x|z . The integration factors are given by a′

(n)
x|z = a′′

(n)
x|z = b′

(n)
x|z =

b′′
(n)
x|z = 0 and b

(n)
x|z = v̆x|z. The velocities at the shells from the adjacent space are denoted as

v
(n)
x|z

∣∣∣
c
(n−1)
−

= Ṽ
′
x|z and v

(n)
x|z

∣∣∣
c
(n+1)
+

= Ṽ x|z, where Ṽ x|z and Ṽ
′
x|z are linear dummy velocities which
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depend on the neighboring spaces. The velocity continuity conditions lead to a linear system

T
(n)
s Λ(n) = s(n), where T

(n)
s is the topology matrix, Λ(n) the integration functions vector, and

s(n) the shell vector:
C̃
c
(n−1)
−

0 1 0 0

C̃
c
(n)
−

0 1 0 0

0 0 C̃
c
(n+1)
+

0 1

0 0 C̃
c
(n)
+

0 1


︸ ︷︷ ︸

T
(n)
s


Λ′

(n−1)
x|z

Λ
(n−1)
x|z

Λ′
(n+1)
x|z

Λ
(n+1)
x|z


︸ ︷︷ ︸

Λ(n)

=



Ṽ
′
x|z − C̃

c
(n−1)
−

1 p,x|z

v̆
(n)
x|z

Ṽ x|z − C̃
c
(n+1)
+

1 p,x|z

v̆
(n)
x|z


︸ ︷︷ ︸

s(n)

(3.24)

Algorithm 2 Integration Functions Algorithm (IFA)

BEGIN
Allocate and initialize all variables and the shell counter n = 1
Determine the type vector l and its size Ns
Sort the type vector l and save as l?. Save sorted index table n↔ n?

Define the velocities at the boundaries y = {0, c}
DO WHILE (i ≤ Nx + 2 & k ≤ Nz + 2)

DO WHILE (n? ≤ Ns)
Current shell: l?(n

?) ↔ l(n), n↔ n?

Determine the adjacent shell types l(n−1) and l(n+1) (neighbors)

Extract the boundaries c
(n)
+ and c

(n)
− and the corresponding indices along y

IF (shell is locally flat)
Skip space n

END IF
IF (l(n) = 1 & l(n−1) = 2 & l(n+1) = 2) ∼ 1.1 - 3SA -Floating Plug Space

Λ′′(n)x|z =Λ′(n)x|z=0 and 3SA calculation for Λ′(n±1)x|z , Λ
(n±1)
x|z and Λ

(n)
x|z (plug velocity)

Skip the spaces n± 1 (neighbors)
END IF
IF (shell is not skipped)

IF (l(n) = 0) ∼ Dry Space

Λ′′(n)x|z =Λ′(n)x|z=Λ
(n)
x|z = 0

ELSE IF (l(n) = 1) ∼ Sticking Plug Space

Λ′′(n)x|z =Λ′(n)x|z=0

IF (n = 1 & l(2) = 2) | (n = Ns & l(Ns−1) = 2) ∼ 2.1- 2.2

a
(n)
x|z = 0 and b

(n)
x|z

∣∣∣
y={0,c}

= vx|z
∣∣
y={0,c}

ELSE IF (Ns = 1) | (n = 1 & l(2) = 1) | (n = Ns & l(Ns−1) = 1) ∼ 2.3- 2.5

2BC0 calculation for Λ′(n)x|z and Λ
(n)
x|z

END IF
ELSE ∼ Fluid Space

2BC1 calculation for Λ′(n)x|z and Λ
(n)
x|z

END IF
END IF

n? = n? + 1
END DO
Increment counters i and k
END DO
END
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The topology matrix T
(n)
s is generally nonsymmetric. The linear system shown in Eq. (3.24)

is solved analytically to determine the integration functions in Λ(n) and the unknown plug

flow core velocity v̆
(n)
x|z . The determinant of the topology matrix T

(n)
s is given by: ∆T

(n)
s =

det
(
T

(n)
s

)
= Λ̃+

0 · Λ̃−0 , where Λ̃−0 = C̃
c
(n)
−

0 − C̃c
(n−1)
−

0 and Λ̃+
0 = C̃

c
(n)
+

0 − C̃c
(n+1)
+

0 . Similarly, the

factors Λ̃−1 = C̃
c
(n)
−

1 − C̃c
(n−1)
−

1 and Λ̃+
1 = C̃

c
(n)
+

1 − C̃c
(n+1)
+

1 are defined. The integration factors are

calculated such that:

a′
(n−1)

x|z =
−Λ̃−1
Λ̃−0

, a′
(n+1)

x|z =
−Λ̃+

1

Λ̃+
0

, b′
(n−1)

x|z =
v̆x|z − Ṽ

′
x|z

Λ̃−0
, b′

(n+1)

x|z =
v̆x|z − Ṽ x|z

Λ̃+
0

(3.25)

In a similar manner, the remaining integration factors are given by

a
(n−1)
x|z =

C̃
c
(n−1)
−

0 C̃
c
(n)
−

1 − C̃c
(n)
−

0 C̃
c
(n−1)
−

1

Λ̃−0
, b

(n−1)
x|z =

C̃
c
(n)
−

0 Ṽ ′x|z − C̃
c
(n−1)
−

0 v̆x|z

Λ̃−0

a
(n+1)
x|z =

C̃
c
(n+1)
+

0 C̃
c
(n)
+

1 − C̃c
(n)
+

0 C̃
c
(n+1)
+

1

Λ̃+
0

, b
(n+1)
x|z =

C̃
c
(n)
+

0 Ṽx|z − C̃
c
(n+1)
+

0 v̆x|z

Λ̃+
0

(3.26)

The shear stress at the shell of the adjacent space must be continuous such that ηv
(n)
x|z,y

∣∣∣
c
(n)
±

=

ηv
(n±1)
x|z,y

∣∣∣
c
(n)
∓

, which determines the plug flow core velocity along the vertical and circumferential

directions:

v̆
(n)
x|z =

∆T
(n)
s

Λ̃−0 − Λ̃+
0

(
Λ̃+
1 p,x|z + Ṽx|z

Λ̃+
0

−
Λ̃−1 p,x|z + Ṽ ′x|z

Λ̃−0
+
(
c
(n)
− − c(n)+

)
p,x|z

)
(3.27)

CASE 2: Plug space sticking on a wall

CASES 2.1 and 2.2: Wall | Plug | Fluid or Fluid | Plug | Wall In this case, the plug

space sticks on a wall on one side and contacts a fluid space on the other side. The plug space

can be considered as an ‘extension’ of the wall, and the velocity within the space is dependent

on the velocity of the wall. The coefficients of the integration functions are given by a
(n)
x|z = 0

and b
(n)
x|z

∣∣∣
y=c

= vx|z
∣∣
y=c

. Similarly, b
(n)
x|z

∣∣∣
y=0

= vx|z
∣∣
y=0

.

CASES 2.3, 2.4 and 2.5: Wall | Plug | Wall or Wall | Plug | Dry or Dry | Plug |
Wall The plug space either sticks on both walls or contacts a wall and a dry space. If the plug

space sticks in-between and contacts both walls, the lubricant is not sheared enough such that it

would allow any other space to co-exist. This case is only likely to occur if both contacting walls

have a near-zero velocity, leaving the plug almost entirely intact. This case is most commonly

described as the near zero-velocity case or the stiction case. The velocity profile within the

plug shell is given by a linear distribution, not governed by a pressure gradient. An eventual

pressure that is calculated by the TTR equation is not applicable for nonflowing or solid phases

of lubricants. The stiction case with grease can be considered as a solid-like wax that is confined

between two moving surfaces.
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CASE 2 : Plug is sticking on a wall

2.1 wall plug fluid

plug fluid

x|z

y

∆x|z

0

wall

vx|z
∣∣
y=c

(1)
−

(constant wall velocity)

2.2 fluid plug wall
y

plugfluid

x|z

∆x|z

0

wall

vx|z
∣∣
y=c

(Ns)
+

(constant wall velocity)

2.3 wall plug wall

plug

x|z

y

∆x|z

0

wall wall

linear, small slope (stiction)

2.4 wall plug dry

plug

x|z

∆x|z

0

wall dry

y

linear

2.5 dry plug wall

plug

x|z

∆x|z

0

walldry

y

linear

CASE 3 : Plug is contacting a dry shell, but not a wall

3.1 dry plug dry

plug∆x|z

0

dry dry

y

x|z

stationary plug

3.2 dry plug fluid

plug fluid

x|z

∆x|z

0

dry

y

stationary plug

3.3 fluid plug dry
y

plugfluid

x|z

∆x|z

0

dry

stationary plug

Table 3.3: Possible velocity profile configuration - Cases 2 and 3.
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Within the plug space, the velocity profile is derived from the reduced Navier-Stokes

equations: (
ηvx,y

)
,y

= 0 ,
(
ηvz,y

)
,y

= 0 (3.28)

Double integration of Eq (3.28) together with the boundary velocities v
(n)
x|z

∣∣∣
y=c

(n)
+

= Ṽ
′
x|z

and v
(n)
x|z

∣∣∣
y=c

(n)
−

= Ṽ x|z, where Ṽ x|z and Ṽ
′
x|z are linear dummy boundary velocities, leads to

calculating the velocity profile using the 2BCχ algorithm (with χ = 0, no pressure gradient).

CASE 3: Plug space contacting a dry space but not a wall (Dry | Plug | Dry or

Dry | Plug | Fluid or Fluid | Plug | Dry)

In this case, the plug space contacts a dry space, and the velocity profile within both spaces is

zero. Cases 3.1-3.3 shown in Table 3.3 can be considered in a very similar way to Cases 2.1 and

2.2, for which the plug space is sticking on a wall. As the wall is not moving, the integration

factors are given by: a
(n)
x|z = b

(n)
x|z = 0.

Velocity Dirichlet Boundary Conditions (2BCχ)

By imposing Dirichlet boundary conditions on the velocity field of the lubricant within a fluid

space S(n)
f , the integration functions can be determined in a manner similar to using the 3SA.

The velocity boundary conditions are imposed as v
(n)
x|z

∣∣∣
c
(n)
−

= Ṽ
′
x|z and v

(n)
x|z

∣∣∣
c
(n)
+

= Ṽ x|z, where

Ṽ x|z and Ṽ
′
x|z are linear dummy boundary velocities. The continuity condition of the velocity

field at the boundaries c
(n)
− and c

(n)
+ yields the integration factors given by: C̃

c
(n)
−

0 1

C̃
c
(n)
+

0 1


︸ ︷︷ ︸

T
(n)
s

 Λ′
(n)
x|z

Λ
(n)
x|z


︸ ︷︷ ︸

Λ(n)

=

 Ṽ
′
x|z − χC̃

c
(n)
−

1 p,x|z

Ṽ x|z − χC̃
c
(n)
+

1 p,x|z


︸ ︷︷ ︸

s(n)(χ)

(3.29)

The determinant of the topology matrix T
(n)
s is given by ∆T

(n)
s = det

(
T

(n)
s

)
= C̃

c
(n)
−

0 − C̃c
(n)
+

0 .

For a locally nonflat space, the determinant ∆T
(n)
s 6= 0. The linear system shown in Eq. (3.29)

yields the integration factors for the fluid space S(n)
f :

a′(n)x|z =
χ

∆T
(n)
s

(
C̃
c
(n)
+

1 − C̃c
(n)
−

1

)
b′(n)x|z =

1

∆T
(n)
s

(
Ṽ ′ − Ṽ

)
a
(n)
x|z =

χ

∆T
(n)
s

(
C̃
c
(n)
+

0 C̃
c
(n)
−

1 − C̃c
(n)
−

0 C̃
c
(n)
+

1

)
b
(n)
x|z =

1

∆T
(n)
s

(
C̃
c
(n)
−

0 Ṽ − C̃c
(n)
+

0 Ṽ ′
) (3.30)

3.6 General Tribotopological Reynolds Equation

The general tribotopological Reynolds (TTR) equation is the governing equation of the TTT,

is a novel equation and is derived from the continuity equation (conservation of mass) by

integration of the velocity profile across multiple spaces. By making use of the velocity definition
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in Eq. (3.21) and by transforming the original integration using the Leibniz integral rule, an

integrated continuity equation across the film is given by −ċ = Ix + Iz, where:

Ix|z =

Ns∑
n=1

c
(n)
+̂

c
(n)
−

(
Λ′′

(n)
x|zC̃

y
1 + Λ′

(n)
x|zC̃

y
0 + Λ

(n)
x|z

)
,x|z

dy (3.31)

The integration components of the continuity equation are further simplified by using the

linearity of the integration functions and by applying the product rule of differentiation:

Ix|z =

Ns∑
n=1

(
Λ′′

(n)
x|z

)
,x|z

˜̃Γ
(n)
1 x|z +

Ns∑
n=1

Λ′′
(n)
x|z

˜̃Γ
(n)
1 x|z,x|z +

Ns∑
n=1

Λ′′
(n)
x|z Γ̃

(n)
1 x|z

+

Ns∑
n=1

(
Λ′

(n)
x|z

)
,x|z

˜̃Γ
(n)
0 x|z +

Ns∑
n=1

Λ′
(n)
x|z

˜̃Γ
(n)
0 x|z,x|z +

Ns∑
n=1

Λ′
(n)
x|z Γ̃

(n)
0 x|z +

Ns∑
n=1

(
Λ
(n)
x|z

)
,x|z

c′
(n)

(3.32)

where c′(n) = c
(n)
+ − c(n)

− and:

˜̃Γ
(n)
1 x|z = ˜̃C

c
(n)
+

1 − ˜̃C
c
(n)
−

1
˜̃Γ

(n)
0 x|z = ˜̃C

c
(n)
+

0 − ˜̃C
c
(n)
−

0

Γ̃
(n)
1 x|z = C̃

c
(n)
−

1 c
(n)
− ,x|z − C̃

c
(n)
+

1 c
(n)
+ ,x|z Γ̃

(n)
0 x|z = C̃

c
(n)
−

0 c
(n)
− ,x|z − C̃

c
(n)
+

0 c
(n)
+ ,x|z

(3.33)

By using Eq. (3.22), the derivatives of the integration functions are given by(
Λ

(n)
x|z

)
,x|z

= a
(n)
x|z ,x|z

p,x|z + a
(n)
x|zp,xx|zz + b

(n)
x|z ,x|z(

Λ′
(n)
x|z

)
,x|z

= a′
(n)
x|z ,x|z

p,x|z + a′
(n)
x|zp,xx|zz + b′

(n)
x|z ,x|z(

Λ′′
(n)
x|z

)
,x|z

= a′′
(n)
x|zp,xx|zz

(3.34)

By using Eq. (3.34), the integration components of Eq. (3.32) can be further simplified to:

Ix|z =

Ns∑
n=1

a′′
(n)
x|z

˜̃Γ
(n)
1 p,xx|zz + a′′

(n)
x|z

˜̃Γ1

(n)

,x|zp,x|z + a′′
(n)
x|z Γ̃

(n)
1 p,x|z + a′

(n)
x|z ,x|z

˜̃Γ
(n)
0 p,x|z

+ a′
(n)
x|z

˜̃Γ
(n)
0 p,xx|zz + b′

(n)
x|z ,x|z

˜̃Γ0

(n)

+ a′
(n)
x|z

˜̃Γ
(n)
0 x|z,x|zp,x|z + b′

(n)
x|z

˜̃Γ
(n)
0 x|z,x|z

+ a′
(n)
x|z Γ̃

(n)
0 p,x|z + b′

(n)
x|z Γ̃

(n)
0 + a

(n)
x|z ,x|z

c′
(n)
p,x|z + a

(n)
x|zc

′(n)p,xx|zz + b
(n)
x|z ,x|z

c′
(n)

(3.35)

In order to reduce the integrals and identify the dominant pressure derivatives, Eq. (3.35) can

be rewritten such that Ix|z =
˜̃
fx|zp,xx|zz + f̃x|zp,x|z + fx|z, where:

˜̃
fx|z =

Ns∑
n=1

a′′
(n)
x|z

˜̃Γ
(n)
1 x|z +

Ns∑
n=1

a′
(n)
x|z

˜̃Γ
(n)
0 x|z +

Ns∑
n=1

a
(n)
x|zc

′(n)

f̃x|z =
Ns∑
n=1

a′′
(n)
x|z

˜̃Γ1

(n)

,x|z +
Ns∑
n=1

a′′
(n)
x|z Γ̃

(n)
1 x|z +

Ns∑
n=1

(
a′

(n)
x|z

˜̃Γ
(n)
0 x|z

)
,x|z

+
Ns∑
n=1

a′
(n)
x|z Γ̃

(n)
0 x|z +

Ns∑
n=1

a
(n)
x|z ,x|z

c′(n)

fx|z =
Ns∑
n=1

(
b′

(n)
x|z

˜̃Γ
(n)
0 x|z

)
,x|z

+
Ns∑
n=1

b′
(n)
x|z Γ̃

(n)
0 x|z +

Ns∑
n=1

b
(n)
x|z ,x|z

c′(n)

(3.36)
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The variable coefficients shown in Eq. (3.36) contain the factors of the velocity integration

functions within each TT space. The sum of these factors are redefined as fx|z, f̃x|z and
˜̃
fx|z,

which physically represent an assembly of tribotopological spaces. For any non-Newtonian fluid

that is behaving in a nonhomogeneous, multiphasic manner, the general transient tribotopological

Reynolds (TTR) equation is finally given as:

˜̃
fx p,xx +

˜̃
fz p,zz + f̃x p,x + f̃z p,z = −∂,tc− fx − fz (3.37)

The TTR equation shown in Eq. (3.37) is the core of the TTT and gives the pressure field

within the lubricant. This transient second-order PDE is a global equation that is valid within

the entire lubrication domain. In combination with the velocity profile determined in Section 3.5

and the temperature field resulting from Eq. (3.12), the physical behavior of the lubricant is

fully defined.

3.7 Validation of the TTT

The TTT is validated for several simplified cases and is demonstrated to be an extension of the

existing Newtonian uniphasic lubrication theory. In addition to the validation of the Reynolds

equation, the temperature field, calculated with the energy equation, is validated. The validation

of the theory is performed under the assumption of rigid contacting surfaces. The detailed

convergence procedure of the shells is shown for a grease-lubricated bearing in Section 3.7.2. In

addition, an analytical formula of the shell between a plug and a fluid space is given.

3.7.1 Special Case I: Oil-lubricated Bearing

Linear Motion (Vertical Translation)

For the case of a single (Ns = 1) fluid space S(1)
f , the fluid film velocity is calculated by using

the 2BCχ (χ = 1) algorithm. The boundary velocities are set as vz|y=c = 0 and vz|y=0 = Ũ . In

order to generate a noncavitating hydrodynamic pressure, one of the contacting surfaces must be

moving in the direction of the converging thrust portion. For a purely linear motion (nonrotating

piston), the boundary circumferential velocities are given by vx|y={0,c} = 0. The shells of the

single fluid space are given as c
(1)
− = 0 and c

(1)
+ = c. The thickness of the fluid space is given by

c′(1) = c. The determinant of the topology matrix T
(1)
s is given by ∆T

(1)
s = det

(
T

(1)
s

)
= −C̃c0.

As the flow within the fluid space is governed everywhere by the same hydrodynamic pressure

gradient, the integration factor of the pressure gradient is given by a′′
(1)
x|z = 1. The integration

functions of the fluid film velocity are simplified to

a′
(1)
x|z = − C̃

c
1

C̃c0
, b′

(1)
z =

Ũ

C̃c0
, a

(1)
x|z = b

(1)
x|z = b′

(1)
x = 0 (3.38)

The velocity field components for a nonisoviscous lubricant in the circumferential direction
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x and in the vertical direction z are given by (∀x ∈ S(1)
f ):

v(1)
x =

(
C̃y1 −

C̃c1C̃
y
0

C̃c0

)
p,x , v(1)

z =

(
C̃y1 −

C̃c1C̃
y
0

C̃c0

)
p,z +

(
1− C̃y0

C̃c0

)
Ũ (3.39)

Furthermore, Eq. (3.33) simplifies to:

˜̃Γ
(1)
0 ,x|z = ˜̃C

c
0 , Γ̃

(1)
0 ,x|z = −C̃c0c,x|z , ˜̃Γ

(1)
1 ,x|z = ˜̃Cc1 , Γ̃

(1)
1 ,x|z = −C̃c1c,x|z (3.40)

Finally, the TTR equation given by Eq. (3.37) is written as:(
˜̃
fxp,x

)
,x

+
(

˜̃
fzp,z

)
,z

= −ċ− fx − fz (3.41)

By realizing that f̃x|z =
˜̃
fx|z,x|z, the integration functions are given by:

˜̃
fx|z = ˜̃Cc1 −

C̃c1
C̃c0

˜̃Cc0 , fz = −Ũ
(

˜̃Cc0
C̃c0
− c
)
,z

, fx = 0 (3.42)

For isoviscous oil (η = η0), the velocity profile is given by (∀x ∈ S(1)
f ):

v(1)
x =

p,x
2η0

(
y2 − cy

)
, v(1)

z =
p,z
2η0

(
y2 − cy

)
+
(

1− y

c

)
Ũ (3.43)

In this particular case, the integration functions are further simplified to yield:

˜̃
fx|z = − c3

12η0
, fz =

(
Ũ
c

2

)
,z

, fx = 0 (3.44)

In this particular case, the TTR equation is written in the well-known form:(
c3

12η0
p,x

)
,x

+

(
c3

12η0
p,z

)
,z

= ∂,tc+
1

2

(
Ũc
)
,z

(3.45)

In [41], the governing Reynolds equation for a typical slider bearing configuration with a perfectly

concentric arrangement (e = 0) is given as
(

c3

12η0
p,z

)
,z

= U0
2 c,z + V0, where the velocities are

defined as U0 = U1 −U2 and the radial velocity V0 is given by V0 = V2 − V1, where the indices 1

and 2 refer to the surfaces 1 (cylinder) and 2 (piston) respectively (see Fig. 3.2). By analogy, the

velocities are given as U2 = Ũ, U1 = 0 and V0 = ∂,tc, which validates the TTT as an extension

of the classical lubrication theory.

Rotational Motion

The case of the rotational motion of a journal bearing is provided only for the validation of the

numerical code (provided in Chapter 4), as for a LG slider bearing, the rotation of the piston is

neglected. The governing equations are similar to the linear motion of an oil-lubricated slider

bearing and are derived for isoviscous oil. The boundary velocities, are set as vx|y=c = 0 and

vx|y=0 = Ũ , where Ũ is a dummy boundary velocity. There is only one fluid space present, such
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that within S(1)
f :

v(1)
x =

p,x
2η0

(
y2 − cy

)
+
(

1− y

c

)
Ũ , v(1)

z =
p,z
2η0

(
y2 − cy

)
(3.46)

The integration functions are derived from the velocity profile of Eq. (3.46) to yield the factors

of the TTR equation:

˜̃
fx|z = − c3

12η0
, fz = 0 , fx =

(
Ũ
c

2

)
,x

(3.47)

Temperature Field

Without considering the impact of the compressive heating on the temperature field, the energy

equation given in Eq (3.12) is simplified to λθθ,yy = −η0

(
v2
x,y + v2

z,y

)
. For the case of constant

viscosity (η = η0), the components of the velocity gradient (see Eq. (3.43)) are given by:

vx,y =
p,x
2η0

(2y − c) , vz,y =
p,z
2η0

(2y − c)− Ũ

c
(3.48)

By using Eq. (3.48), the second-order derivative of the temperature field is given by a quadratic

polynomial θ,yy = H4(x, z)y2 +H3(x, z)y +H2(x, z), where:

H2 =
c2H4

4
− Ũp,z

λθ
− Ũ2η0

c2λθ
, H3 = −cH4 +

2Ũp,z
cλθ

, H4 = − 1

η0λθ

(
p2
,x + p2

,z

)
(3.49)

The double integration of the quadratic polynomial yields:

θ(x, y, z) =
H4(x, z)

12
y4 +

H3(x, z)

6
y3 +

H2(x, z)

2
y2 +H1(x, z)y +H0(x, z) (3.50)

where the coefficient functions H0 and H1 are given by:

H0 = θ|y=0 , H1 =
θ|y=c − θ|y=0

c
− H4

12
c3 +

H3

6
c2 +

H2

2
c (3.51)

The analytical temperature field is used in Chapter 4 to validate the temperature field, which is

calculated numerically. A revelation is that the temperature within the lubrication gap is of 4th

order across the lubrication gap for adiabatic boundaries, which indicates that there could, in

theory, be more than one dry space across the lubrication gap. These dry spaces might not be

located on the same contacting surface, which suggests eventual local ’burning’ of the lubricant

on both contacting surfaces. This finding is confirmed in Chapter 4.

3.7.2 Special Case II: Grease-lubricated Bearing

Single Sticking Plug Space (η = η0)

The validation of the TTT for a grease-lubricated bearing relies on iteratively detecting multiple

spaces within the lubrication gap. The analytical derivation at each iteration step leads to the
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analytical formula for the thickness of a single plug space. For illustration purposes only, the

iteration procedure is shown below for an isoviscous (η = η0) and isothermal grease, which has

only two distinct phases (configuration of S(1) = S(1)
f and S(2) = S(2)

p ). The case of an eventual

floating plug space is not considered. The same boundary conditions are considered as for the

pure linear motion of an oil-lubricated bearing. The convergence procedure is illustrated for a

2D case, or in other words, a concentric arrangement (e = 0, p,x = 0).

Isoviscous oil: 0-th iteration (S(1) = S(1)
f ) At x = z = 0, the velocity component vz across

the lubrication gap is given by:

v[0]
z =

p,z
2η0

y2 + a[0]y + b[0] (3.52)

Given the boundary conditions, the integration factors are determined as a[0] = − Ũ
c −

p,zc
2η0

and

b[0] = Ũ . The shear stress τ is given as τ [0] = η0

∣∣∣v[0]
z,y

∣∣∣ =
∣∣p,zy + η0a

[0]
∣∣. For this example, the

numerical value of the yield stress τ0 is chosen such that only one distinct root of τ ± τ0 = 0

exists. At the 0-th iteration, and in order to determine a possible plug shell, the region (space)

where τ [0] < τ0 is delimited by the shell given by y
[0]
− , calculated from τ [0] = ±τ0 as:

y
[0]
− =

±τ0

p,z
+
η0Ũ

cp,z
+
c

2
(3.53)

The shell positions are denoted as y− until convergence and until the types of the respective spaces

are determined. The value of +τ0 is used when p,z > 0, otherwise −τ0 is used. Consequently,

the ratio ±τ0p,z
is written as

τ0

|p,z|
. The type of the shell is determined using the inequality τ > τ0,

and is only determined at the 0-th iteration.

Detection of the plug space: 1-st iteration (S(1) = S(1)
f and S(2) = S(2)

p ) The second

iteration of the boundary can be determined by assuming that a pressure gradient governs the

entire lubrication gap until convergence, even in non-fluid spaces. For the case of two spaces

(determined as plug and fluid spaces) and with a plug space attached to the stationary surface,

the velocity profile is calculated in two spaces such that v
[1]
z

∣∣∣
y=c

= 0 and v
[1]
z

∣∣∣
y=0

= Ũ . The types

and the arrangement of the two spaces determine that v
[1]
z

∣∣∣
y=y

[0]
−

= 0. Under the assumptions

of a governing pressure gradient in the lubrication gap, the shear stress τ [1] − τ0 within S(1)
f is

given by (0 < y < y
[0]
− ):

τ [1] − τ0 =

p,zy
[1]
− − p,z

2 y
[0]
− − Ũη0

y
[0]
−

= 0 y
[1]
− < y

[0]
−

p,zy
[1]
− − p,z

2 y
[0]
− − p,z

2 c = 0 y
[1]
− > y

[0]
−

(3.54)

The equation system leads to the conclusion that y
[1]
− > y

[0]
− , or more precisely: y

[1]
− =

c+y
[0]
−

2 .

The shear stress within the plug space is independent of the pressure gradient, which leads to

the conclusion that the shell y
[1]
− is the average of both plug space boundaries.
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Convergence of the shells of the plug space: n-th iteration In general terms, and for

a 2D case (e = 0), the boundary at iteration n is given by:

y
[n]
− =

η0Ũ

y
[n−1]
− |p,z|

+
y

[n−1]
−
2

(3.55)

The boundary at iteration n is given as a nonlinear sequence of the previous boundaries, which

converges to a final value at iteration N such that y
[N ]
− − y

[N−1]
− � 1, or y

[N ]
− ≈ y[N−1]

− , which is

given by:

y
[N ]
− = c

(2)
− = c

(1)
+ =

√
2η0Ũ

|p,z|
(3.56)

An observation is that the final value of the nonlinear convergence sequence does not depend on

the initial position of the boundary y
[0]
− . Instead of calculating the shell boundaries using an

initial boundary determined by τ [0] = ±τ0, the initial point can be determined using τ [0] = 0.

The series converges to the same value, but the convergence speed might be faster, as subsequent

iterations use the same condition. The only difference between both initial conditions is that

the type of the shells cannot be determined. The type of each shell must be determined using

the condition τ [0] = ±τ0. From [62], it is known that, for this particular case, y
[N ]
− is given by

y
[N ]
− = 2τ0

|p,z | . By calculating the shear stress at the shell y
[N ]
− , it is a given fact that:

τ = ±τ0 =⇔ p,zy
[N ]
− + η0a

[N ] = 0 (3.57)

where a[N ] = − Ũ

y
[N ]
−
− p,z

2η0
y

[N ]
− . Consequently, ±τ0 = 1

2p,zy
[N ]
− = η0Ũ

y
[N ]
−

. The equivalence is achieved

when τ0 = 1
2y

[N ]
− p,z or τ0 = η0Ũ

y
[N ]
−

. The nonlinear sequence converges to the same final value,

which validates the iteration procedure.

Convergence of the boundary (3D case) With a similar reasoning as for the 2D case, the

converged value of the shell for the 3D case can be calculated from:

τ0 =

∣∣∣∣12p,xy[N ]
−

∣∣∣∣ and τ0 =

∣∣∣∣∣yn−2 p,z −
ηŨ

yn−

∣∣∣∣∣ (3.58)

After the subtraction of both equations and further rearrangement, the theoretical final shell

y
[N ]
− is given by:

y
[N ]
− = c

(2)
− = c

(1)
+ =

√
2η0Ũ

|p,x|+ |p,z|
(3.59)

For the case of a single plug space sticking on the bearing surface, the film thickness c′ is given

by c′(x, y) = c(x, y)− y[N ]
− .

Single Floating Plug Space (η = η0, S(1) = S(1)
f , S(2) = S(2)

p , S(3) = S(3)
f )

For the special case of a single grease plug space floating in oil, the 3SA is used to determine

the integration factors. This special case has been studied in detail in [51]. Three spaces
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(Ns = 3) are present in the lubrication gap, and the surface velocities are given by vz|y=c = 0

and vz|y=0 = Ũ . For pure vertical sliding and for the case of a nonrotating piston, vx|y={0,c} = 0.

It must be noted that compared to [51], the moving and stationary surfaces are swapped (y is

inverse). For simplification purposes, the shells of the plug space are denoted as y− and y+ and

consequently, c
(1)
− = 0, c

(1)
+ = c

(2)
− = y−, c

(2)
+ = c

(3)
− = y+ and c

(3)
+ = c.

O

∆c c′c/2

Ũ
v′z

z

y y+y−

U2
U1

yR

OR

bR

aR

xR

S(3)
f

S(1)
f

S(2)
p

bearing

∆z

piston

v(1)z v(2)z

Figure 3.2: Velocity profile of grease flow in the infinitesimal part of the lubrication gap. Reference
frame R is from [3].

The type vector is given by l = (2 1 2)T , and the corresponding sorted type vector is

given as l? = (1 2 2)T . The determinant of the topology matrix T
(2)
s is given by: ∆T

(2)
s =

det
(
T

(2)
s

)
= Λ̃+

0 · Λ̃−0 , where Λ̃−0 = C̃
y−
0 and Λ̃+

0 = C̃
y+

0 − C̃c0. Similarly, the factors Λ̃−1 = C̃
y−
1

and Λ̃+
1 = C̃

y+

1 − C̃c1 are defined. Within the plug space, the integration factors are given by

a
(2)
x|z = a′

(2)
x|z = a′′

(2)
x|z = b′

(2)
x|z = b′′

(2)
x|z = 0 and b

(2)
x|z = v̆x|z. The thicknesses of the 3 spaces are given

by c′(1) = y−, c′(2) = y+ − y− and c′(3) = c− y+. The integration factors are given by:

a′
(1)
x|z = − C̃

y−
1

C̃
y−
0

a′
(3)
x|z = − C̃

y+

1 − C̃c1
C̃
y+

0 − C̃c0
b′(3)
z =

v̆z

C̃
y+

0 − C̃c0
b′(1)
x =

v̆x

C̃
y−
0

b′(3)
x =

v̆x

C̃
y+

0 − C̃c0
b
(3)
x = −C̃c0b′(3)

x

(3.60)

The remaining integration factors are given by a
(1)
x|z = 0, b

(1)
x = 0, b

(1)
z = Ũ , and:

a
(3)
x|z =

C̃c0C̃
y+

1 − C̃
y+

0 C̃c1
C̃
y+

0 − C̃c0
, b(3)

z = − C̃c0v̆z

C̃
y+

0 − C̃c0
, b′

(1)
z =

v̆z − Ũ
C̃
y−
0

(3.61)

The remaining integration components for the present case are given as:

˜̃Γ
(1)
1 x|z = ˜̃C

y−
1

˜̃Γ
(2)
1 x|z = ˜̃C

y+
1 − ˜̃C

y−
1

˜̃Γ
(3)
1 x|z = ˜̃Cc1 − ˜̃C

y+
1

Γ̃
(1)
1 x|z = −C̃y−1 y−,x|z Γ̃

(2)
1 x|z = C̃

y−
1 y−,x|z − C̃

y+
1 y+,x|z Γ̃

(3)
1 x|z = C̃

y+
1 y+,x|z − C̃

c

1c,x|z
˜̃Γ
(1)
0 x|z = ˜̃C

y−
0

˜̃Γ
(2)
0 x|z = ˜̃C

y+
0 − ˜̃C

y−
0

˜̃Γ
(3)
0 x|z = ˜̃Cc0 − ˜̃C

y+
0

Γ̃
(1)
0 x|z = −C̃y−0 y−,x|z Γ̃

(2)
0 x|z = C̃

y−
0 y−,x|z − C̃

y+
0 y+,x|z Γ̃

(3)
0 x|z = C̃

y+
0 y+,x|z − C̃

c

0c,x|z

(3.62)
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The nonisoviscous velocity profile for the 3-space configuration (∀x ∈ Ω) is given by:

v
(1)
x = p,xC̃

y
1 +

(
v̆x

C̃
y−
0

− C̃
y−
1

C̃
y−
0

)
C̃y0

v
(1)
z = p,zC̃

y
1 +

(
v̆z − Ũ
C̃
y−
0

− C̃
y−
1

C̃
y−
0

)
C̃y0 + Ũ

v
(2)
x = v̆x =

C̃
y−
0

(
C̃
y+
0 − C̃c0

)
C̃
y−
0 − C̃y+0 + C̃c0


(
C̃
y+
1 − C̃c1

)
p,x

C̃
y+
0 − C̃c0

− C̃
y−
1 p,x

C̃
y−
0

+ (y+ − y−) p,x


v
(2)
z = v̆z =

C̃
y−
0

(
C̃
y+
0 − C̃c0

)
C̃
y−
0 − C̃y+0 + C̃c0


(
C̃
y+
1 − C̃c1

)
p,z

C̃
y+
0 − C̃c0

− C̃
y−
1 p,z + Ũ

C̃
y−
0

+ (y+ − y−) p,z


v
(3)
x|z = p,x|zC̃

y
1 +

v̆x|z − C̃y+1 p,x|z + C̃c1p,x|z

C̃
y+
0 − C̃c0

C̃y0 −
v̆x|zC̃c0

C̃
y+
0 − C̃c0

+
C̃c0C̃

y+
1 − C̃

y+
0 C̃c1

C̃
y+
0 − C̃c0

p,x|z

(3.63)

The isoviscous velocity profile (y+ 6= y− and y+ 6= c) is given by:

v
(1)
x =

p,x
2η0

y2 +

(
v̆x
y−
− p,xy−

2η0

)
y

v
(1)
z =

p,z
2η0

y2 +

(
v̆z − Ũ
y−

− p,zy−
2η0

)
y + Ũ

v
(2)
x = v̆x = (y+ − c)

p,xy−
2η0

v
(2)
z = v̆z =

y+ − c
y+ − y− − c

Ũ + (y+ − c)
p,zy−
2η0

v
(3)
x|z =

p,x|z
2η0

y2 +

(
v̆x|z
y+ − c

− y+ + c

2η0
p,x|z

)
y +

cy+p,x|z
2η0

− cv̆x|z
y+ − c

(3.64)

It can be seen that the plug velocities v̆x|z are constant across the lubrication gap. For the

nonisoviscous case, the second order factors of the TTR equation are given by:

˜̃
fx|z = ˜̃C

y−
1 + ˜̃Cc1 − ˜̃C

y+
1 −

C̃
y−
1

˜̃C
y−
0

C̃
y−
0

− C̃
y+
1 − C̃c1

C̃
y+
0 − C̃c0

(
˜̃Cc0 − ˜̃C

y+
0

)
+
C̃c0C̃

y+
1 − C̃

y+
0 C̃c1

C̃
y+
0 − C̃c0

(c− y+) (3.65)

The transformation of the integration functions shows that f̃x|z =
˜̃
fx|z,x|z. After differentiation:

fx =

(
v̆x

˜̃C
y−
0

C̃
y−
0

+ v̆x

˜̃Cc0 − ˜̃C
y+
0

C̃
y+
0 − C̃

c

0

)
,x

− v̆xy−,x + v̆x,x (y+ − y−)

− (c− y+)

(
v̆xC̃

c
0

C̃
y+
0 − C̃

c

0

)
,x

+ v̆x
C̃
y+
0 y+,x − C̃c0c,x
C̃
y+
0 − C̃

c

0

(3.66)

fz =

((
v̆z − Ũ

) ˜̃C
y−
0

C̃
y−
0

+ v̆z

˜̃Cc0 − ˜̃C
y+
0

C̃
y+
0 − C̃

c

0

)
,z

−
(
v̆z − Ũ

)
y−,z

+ v̆z,z (y+ − y−)− (c− y+)

(
v̆zC̃

c
0

C̃
y+
0 − C̃

c

0

)
,z

+ v̆z
C̃
y+
0 y+,z − C̃c0c,z
C̃
y+
0 − C̃

c

0

(3.67)
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For the isoviscous case (η = η0), the integration functions are:

˜̃
fx|z = −c

3 + 3cy2
+ − 3y+c

2 + y3
− − y3

+

12η0

fx =

(
v̆x
2

(c+ y+ − y−)

)
,x

, fz =

(
v̆z
c+ y+ − y−

2
+ Ũ

y−
2

)
,z

(3.68)

The integration functions shown in Eq. (3.68) correspond exactly to the integration functions

derived in [51].

Reference for validation In [3], the Reynolds equation that takes into account the formation

of a ‘core’ (or plug space) is derived. The subscripts H and L designate the upper and lower

boundaries of the regions4, and the reference configuration with reference frame (OR, xR, yR) is

shown in Fig. 3.2. The coefficients F that take into account variable viscosity effects are defined

as:

F
j
0 =

cjĤ

cjL

1

η
dυ , F

j
1 =

cjĤ

cjL

υ

η
dυ , F

j
2 =

cjĤ

cjL

υ

η

(
υ − F

j
1

F
j
0

)
dυ (3.69)

For a 1D case, the Reynolds equation taking into account a floating plug is given in [3] as:

((
F
aR
2 + F

bR
2

)
p,xR

)
,xR

= −
((
UaRH − U

aR
L

) F aR1

F
aR
0

+
(
U bRH − U

bR
L

) F bR1
F
bR
0

)
,xR

+ ∂,tc (3.70)

By developing the integral factors for the isoviscous case η = η0, Eq. (3.70) can be rewritten as:

F
aR
2 =

c3 − 3c2y+ + 3cy2
+ − y3

+

12η0
, F

bR
2 =

y3
−

12η0
(3.71)

Clearly, the sum of both factors F
aR
2 and F

bR
2 yields

˜̃
fx, which is exactly the factor shown in

Eq. (3.68) and developed in [51] (sign is different as yR and y are opposite). The boundary

velocities are given by UaRH = 0, UaRL = U bRH = v̆xR , and U bRL = Ũ . The right-hand side of the

TTR equation is
(
v̆xR

c+y+−y−
2 + Ũ y−

2

)
,xR

+ ∂,tc, which corresponds exactly to the factor given

in Eq. (3.68). In [3], the core (or plug space) velocity is derived for the special configuration of

a typical slider bearing. It must be noted that for the special case when UaRL = 0 and U bRH = Ũ ,

the regions aR and bR are the S(3)
f and S(1)

f spaces respectively. The plug space velocity is given

in [3] as:

v̆xR =
F
aR
0 F

bR
0

F
aR
0 + F

bR
0

(
Ũ

F
bR
0

+ p,x

(
F
aR
1

F
aR
0

− F
bR
1

F
aR
0

))
(3.72)

which is equivalent to v
(2)
z shown in Eq. (3.63). The velocity profile in the spaces aR and bR is

4The notation is adopted from [3] and is only applicable for this validation.



Chapter 3. Novel Tribotopological Theory 72

verified using:

vaR|bR =
U
aR|bR
H − Ua]bR

L

F
aR|bR
0

ŷ

c
aR|bR
L

1

η
dυ + p,z


ŷ

c
aR|bR
L

υ

η
dυ − F

aR|bR
1

F
aR|bR
0

ŷ

c
aR|bR
L

1

η
dυ

+ U
aR|bR
L (3.73)

which yields the same velocity components as shown in Eq. (3.63). The demonstrated theoretical

equivalence clearly validates the TTT as an extension of existing work.

3.8 Summary and Conclusions

A tribotopological theory (TTT) that includes multiple phases of a non-Newtonian lubricant,

such as grease, has been developed. The governing equations are derived from the fundamental

conservation principles. A unique equation of the pressure gradient, proportional to the variation

of the shear stress, is the result of the adapted Navier-Stokes equations, and is integrated over

the entire lubrication gap to yield the TTR equation.

The theory relies on tribotopologies, which are defined as spaces englobed by shells. These

TT spaces form the basis for deriving the governing equations, taking into account multiple

physical phases. Within a TT space, the parabolic velocity profile is governed by the pressure

gradient and the linear (vertical or rotational) motion of the contacting surfaces. Contrary to

full CFD, the velocity profile is not calculated from a governing equation, but instead, several

velocity profile cases are distinguished by the types of the spaces.

An analogy to the TTT can be drawn as a busy, and very long, multi-lane highway. The

focus of any traffic information source (equivalent to the TTR equation) is on how well the

traffic flows (equivalent to the pressure gradient), thereby providing the information on the

overall behavior, and on providing a bird’s-eye view of the traffic. Key to this information is the

barriers (equivalent to the shells detected by the Topology Detection Algorithm (TDA) shown in

Chapter 4) around the zones of construction work or traffic accidents (equivalent to the spaces).

The detailed pattern of the traffic flow (equivalent to the velocity field) is dependent on the

type of the zone (i.e., construction or accident). For example, a moving construction zone has a

different impact on the traffic flow than a stationary accident.

The major benefit and novelty of the TTT is that transient simulations of multiphasic,

non-Newtonian lubricants are possible with acceptably short calculation times. This is due to

the fact that the radial variation of the shear stress within the lubricant is directly linked to the

pressure gradient, as shown in Eq. (3.14). As explained in Section 1.2.3, full CFD simulations

provide similar results, but cannot compete from a computational speed point of view. Major

highlights of the theory include:

Highlight 1: The theory is comprehensive, takes into account various physical phases of

a non-Newtonian lubricant, such as dry, plug and fluid phases, and can be extended to take
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into account any other physical phase (e.g., derived from electrical or magnetic properties) by

adapting the classical Reynolds equation and deriving the TTR equation. Of particular interest

to the LG overheating issue is the inclusion of dry spaces.

Highlight 2: The theory is demonstrated to be an extension of existing theories in 3D

lubrication. In addition, the thickness of the plug space for the common case of one fluid and

one plug space has been determined analytically. The theory is also validated against other

existing studies for an oil- and grease-lubricated bearing, for both linear and rotational motion.

The theory can be viewed as a link between the classical Reynolds theory and the Navier-

Stokes equations solved with the CFD method. The concepts of the classical Reynolds theory

are used (e.g., long and thin lubrication gap), and the feature of multiple phases in a transient

regime, which is an advantage of CFD, is included.

The theory is applied in Chapter 4 to the overheating of LG bearings. The theory can,

however, be applied to any other lubricant that exhibits multiple phases in other applications

(e.g., the bearings of the SAs of cars or other LG joints). �



Chapter 4

Comprehensive Model and

Validation

We think in generalities, but we live in detail.

Alfred North Whitehead, mathematician (1861 - 1947)

4.1 Comprehensive Model Development Strategy

The TTT has been derived in Chapter 3, but it is only its application to the LG SA lower bearing

that truly reveals its significant benefits. As explained in Section 2.10, a major step in the TTM

model development is an understanding of the local phenomenon of the overheating of the LG

lower bearing. This chapter presents the application of the TTT and the related numerical

developments for the 3D fluid film analysis of oil- and grease-lubricated flexible aircraft LG

(slider) bearings.

Only the components within the TZI and in the vicinity of the lower bearing interface are

of interest. In other words, it is only the interaction of the piston and cylinder assembly at

the grease-lubricated sliding interface (composed of a layer of chrome and the lower bearing

itself) that are of interest to the development of the comprehensive model. In addition to the

application of the TTT, a major focus is the numerical implementation of the TTT and the

interaction between the lubricant and the structure (fluid-structure interaction, FSI).

The governing equations, derived from First Principles and shown in Chapter 3, are discretized

and solved using a hybrid solver that is based on the MG method. In addition, key numerical

algorithms such as the Topology Detection Algorithm (TDA) and the method behind the FSI

mapping are shown. The validation of the numerical model against existing theoretical and

experimental results is given.

74
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4.2 Model Definition and Assumptions

The comprehensive model is a 3D transient numerical model shown in Fig. 4.1. The depicted

lower bearing assembly is a detailed view of the LG system shown in Fig. 2.10. The sliding

interface between the cylinder (1)5 and the piston (3) is detailed, and the lubrication profile

of the lower bearing (2) is shown. Grease (10) is used for lubrication between the chrome

layer (9) that protects the piston and the lower bearing inset. In order to clearly show the

eccentricity of the piston, the model is not depicted to scale. In addition to the geometry and

applied loads, convective heat fluxes (around the assembly) and within the assembly (chamber

IV) are shown. The sliding and rotational velocities of both the piston (3) and the cylinder (1)

are shown, together with the external heat flux q5 as well as the internal chamber pressure p4.

In Detail A, a cross-section of the assembly is shown and the boundaries of the sliding interface

are defined. The lubrication mechanism (bearing profile) with the primary thrust portion of

angle γs and length z0 is shown, which defines its radial dimension as ς.

Thermal and 3D flow effects are taken into account, and the model is solved using FE and

CFD methods in a customized version of ANSYS. The underlying principle of the development of

the transient model is that for thin lubrication films, the transient performance can be evaluated

using a sequence of steady state simulations, each with different initial and boundary conditions.

This assimilation has been mathematically demonstrated in Chapter 3, due to the omission of

the lubricant’s inertia. As a consequence, the development steps are shown for a steady state

case, which explain the heat generation mechanism in the LG lower bearing. The transient

performance of an aircraft maneuvering on a rough runway may be derived from its steady state

performance. Transient results are highlighted, but do not add significantly to an understanding

of the formation of TT spaces. In order to fundamentally understand the non-Newtonian

fluid behavior within the lubrication gap, it is instructive to analyze a cross-section of the

assembly, which is equivalent to assuming perfect circumferential symmetry (zero eccentricity,

see Detail A in Fig. 4.1). The thermo-mechanical analysis of the structure is performed using

FE in ANSYS, whereas the governing equations of fluid flow in the lubrication gap of the lower

bearing are from the TTT and solved using a customized in-house hybrid solver. Heat and

load transfer between the fluid and the solids occurs at the FSI boundaries, and the exchange

and application of physical quantities is based on FSI interpolation methods for irregular and

nonconforming meshes. The governing thermo-mechanical structural equations are strongly

coupled whereas the governing fluid equations (TTR and energy equation) are weakly coupled.

The fluid and structural equations converge in a staggered manner at each time step (referred

to as instantaneous steady state).

Once the lubricant is locally disintegrated, the heat is generated as for dry friction, and the

mechanism of dry frictional heat generation is adopted from Chapter 2 and [31]. As explained

in Chapter 1, full CFD provides very high accuracy that is not necessary for lubricated contacts

in the slider bearings of aircraft LG, and therefore the proposed hybrid methodology combines

5The bracketed numbers correspond to the components shown in Fig. 4.1
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the assumptions of the classical theory and the basics of CFD. The proposed numerical hybrid

solver obtains nearly-exact solutions in a very fast manner, allows for the freedom of using

different rheological models, and integrates well into an existing industrial model framework for

simulating aircraft LG performance.
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The main model assumptions are given in Section 2.4, but the assumptions related to

the tribological submodel are refined and follow the classical Reynolds lubrication theory as

explained in Section 3.3 and detailed in [51]. In addition, and throughout the present analysis, a

line contact with no side leakage is assumed. The contacting surfaces are smooth, the viscosity of

grease (which follows the rheology model shown in Section 2.5.2) is dependent only on pressure

and temperature, and the lubricant is assumed to be entirely incompressible (ρ,p = 0 and

ρ,θ = 0). In compliance with the TTT, all the body forces and surface tension forces, as well

as the inertia forces, are omitted. The structural components surrounding the lubrication gap

are linear and isotropic. Contrary to the characteristic model shown in Chapter 2, the thermal

expansion of the structural components is considered, as well as a chrome layer of 100µm on

the piston. The temperature of the SA oil and surrounding air is constant, and in order to

have a negligible boundary effect, the upper and lower boundaries are considered to be far away

from the TZI. In order to primarily study the impact of the heat generation on the structure,

a constant heat transfer coefficient of h5 = 50 W/(m2 K) is assumed and local effects of the

airflow around the structure are considered. In addition, as the thermal performance is evaluated

for steady state only, the application of external loads is omitted in order to understand the

structural deformation due to hydrodynamic thermal and mechanical effects only.

4.3 Application Related Considerations

4.3.1 Governing Structural Equations

The provided governing structural equations follow [106]. With respect to the current as-

sumptions, the body forces are neglected such that the structural equilibrium is given as

ρ(i)d̈
(i)

= ∇σ(i). The infinitesimal strain tensor in domain i (including thermal expansion) is

given as ε(i) = 1
2

(
∇u(i) + (∇u(i))T

)
+ κ

(i)
θ I3×3. The fundamental stress-strain relationship in

domain i is σ(i) = E(i)ε(i), where E(i) is the symmetric stiffness matrix (stress-strain matrix).

The governing transient temperature diffusion equation for constant λ
(i)
θ is reduced to ∇2θ(i) = 0,

with transient boundary conditions.

4.3.2 Film Thickness (Clearance) Equation

The vertical contribution of the undeformed film thickness for a simple slider bearing is given by

cz(z) = c0 + ς
(
1− z−1

0 z
)

for 0 < z ≤ z0, and cz(z) = c0 for z0 < z < L, where ς = z0 · tanα0

(see Fig. 4.1). The clearance c between the piston (chrome layer) and the bearing surface is

given by:

c(x, z) = cz(z) + e · cos (φ+ φe) (4.1)

where φ = R−1
P x (see Fig. 4.1). In the reference frame (eX , eY , eZ), the center of the cylinder

is given as Cc (0, 0, 0), and the center of the piston is given as CP (ex, ey, 0). The eccentricity

angle is defined as φe = π
2 − tan−1

(
ey
ex

)
, and the eccentricity is defined as e =

(
e2
x + e2

y

)1/2
.
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The film thickness (clearance) is a driving parameter in the TEHD solution. The clearance is

updated during the solution process at each equilibrium iteration using the displacement field u,

calculated by and retrieved from ANSYS.

4.3.3 Boundary Conditions and Cavitation

The relative hydrodynamic pressure at both ends of the lubricated region is imposed by

p|x,z={0,L} = 0. The reference pressure is the atmospheric pressure. The Dirichlet boundary

conditions for the pressure field are provided by the pressure of the connecting oil chambers

in the LG SA. The boundary conditions at z = {0, L} of the temperature field are continuous

Dirichlet boundary conditions and depend on position (x, y) and time t. The temperature of

the medium connecting to the convective boundary is denoted as θ(i′). The condition for a

convective heat flux at the shared boundary k is given by:

∇θ(i) · n(k) = − hk

λ
(i)
θ

(
θ(i) − θ(i′)

)
(4.2)

For an adiabatic boundary k, the heat transfer coefficient is zero: hk = 0. A summary of the

applied external boundary conditions is provided in Table 4.1. The motion of the structural

components is given by vz|y=c = ż, vx|y=c = Rcφ̇c. Similarly, vx|y=0 = RP φ̇P and vz|y=c = Ż.

For a LG lower bearing, only the vertical sliding motion is considered, such that φ̇c = φ̇P = 0.

Boundary Structure Thermal Fluid

Γ31 = Γ91 = Γ11 constrained isothermal

Γ32 = Γ94 = Γ22 = Γ14 ssi ssi ssi

Γ33 = Γ93 loaded isothermal

Γ34 free adiabatic

Γ92 = Γ102 = Γ104 = Γ24 fsi fsi fsi

Γ′92 = Γ21 = Γ′14 convection pressure

Γ′′92 = Γ23 = Γ22 = Γ13 free convection

Γ101 = Γ103 isothermal pressure

Table 4.1: Summary of boundary conditions (ssi: structure-structure interaction, fsi: fluid-structure
interaction).

As the LG slider bearing is a long bearing, cavitation of the lubricant is unlikely. Nevertheless,

as the bearing surfaces deform, cavitation might occur. The eventual cavitation of the lubricant

is taken into account using the Swift-Steiber condition that sets p = 0 for p ≤ 0.

4.3.4 Hydrodynamic Loads and Friction Coefficient

The hydrodynamic pressure field is integrated over the lubrication gap in order to yield the

total load that is generated as the structural components are moving. The magnitude of the

radial load wy is given by integration of the pressure field on the contacting surfaces:
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wy =

2πRPˆ

0

L̂

0

p dz dx (4.3)

The load components in (eX , eY , eZ) are given as:

wy · eY =

2πRPˆ

0

L̂

0

p sinφ dz dx , wy · eX =

2πRPˆ

0

L̂

0

p cosφ dz dx (4.4)

where φ = xR−1
P . The tangential load is given by integration of the pressure field projected on

the gradient of the clearance surface c:(
wx|y=c , wz|y=c

)T
=

2πRPˆ

0

L̂

0

p∇c dzdx (4.5)

where ∇c = (c,x c,z)
T . The shear loads on both contacting surfaces located at y = {0, c} are

given by

w′z
∣∣
y={0,c} =

2πRPˆ

0

L̂

0

τ |y={0,c} dz dx (4.6)

A zero tangential load does not imply that the shear load is zero. The key parameter that is

calculated by the TEHD code is the friction coefficient, which is the ratio of the sum of the

tangential and shear loads, and the radial load:

µ =
w′z|y=c + wz|y=c

wy
= −

w′z|y=0

wy
(4.7)

For the case of a LG slider bearing, the static equilibrium of the generated forces at the sliding

interfaces is: w′z|y=0 + w′z|y=c + wz|y=c = 0.

4.4 Numerical Model Development

4.4.1 Governing Simulation Algorithm

The model is a multiphysics model, and the fluid and structural fields are linked through FSI

boundaries. Although the governing equations in the lubricant film are solved using in-house

FORTRAN code, the code is tightly integrated into the convergence process of ANSYS. The

FORTRAN code is compiled together with the existing ANSYS mechanical code in order to yield

a customized and user-compiled version of ANSYS. The considerable advantage of integrating

the in-house code into ANSYS is that, contrary to a co-simulation where multiple software

packages are run concurrently or sequentially, the memory is shared between ANSYS and the

in-house FORTRAN code. Sharing the memory in a multiphysics analysis is rarely done as

it requires hard coding the interface between two software packages, but the gain in shorter

solution times is considerable. The underlying algorithm is shown in Algorithm 3.
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Algorithm 3 Algorithm for the strongly coupled TEHD - FSI simulation.

BEGIN
Allocate memory (local and global variables)
Read geometry, U , f , u0, σ0

Read C, p0, v0, q0, θ0,τ0 and lubricant properties
DO WHILE (final time has not been reached)

Determine contact elements and retrieve fluid film thickness c from ANSYS
Read u, p, θ, η, τ , σ (FSI)
Generate/update deformed mesh
DO WHILE (structural solution - u, σ, θ - has globally not converged)

DO WHILE (p and θ have globally not converged)
∼ Fluid - Multigrid for p ∼
Reduction of grid to lower spatial dimension (xz plane)
DO WHILE (p has locally not converged)

Multigrid for TTR equation
END DO
Extension of grid to higher spatial dimension (xyz space)
IF (first iteration)

Calculation of v (IFA - oil)

Calculation of shells c
(n)
+ , c

(n)
− and spaces and define types of TT spaces (TDA)

ELSE
Load shells from memory

END IF
Combine dry and plug spaces and remove globally flat spaces
DO WHILE (tribotopologies have not converged)

Calculation of τ and γ̇

Adjustment of shells c
(n)
+ , c

(n)
− (TAA)

Calculation of v (IFA - oil/grease)
END DO
∼ Fluid - Multigrid for θ ∼
Read boundary conditions θ|y={0,c}
DO WHILE (θ has locally not converged)

1D Multigrid for energy equation
END DO
Calculation of q and η
Update TTR equation factors

END DO
Read and apply p, τ and q|y={0,c} (FSI)

Solve for u, σ and θ (ANSYS)
Partial deallocation of memory (fluid)
END DO

Save u, p, θ, η, τ , σ, c, and calculate µ
END DO
Output analysis summary and deallocate memory (local and global variables)
END

The domain of the lubricant is physically located around the lower bearing. By unwrapping

the domain of the lubricant film as shown in Fig. 4.2, a 2D plane xz is defined. At each position

within the 2D plane, a 1D radial domain is defined to form the domain of the 3D lubrication

film. This is a very convenient way to represent field variables and is used throughout the thesis.
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Figure 4.2: Unwrapping of the fluid film domain and mapping to the xz plane (2D).

The pressure field is constant across the lubrication gap (and variable along x and z), which

reduces the numerical problem to finding the solution of a Poisson-type PDE with variable

coefficients on a 2D grid with a high number of grid points. The diffusion term in the energy

equation is only significant across the lubrication gap (along y). The energy equation can

be reduced to a 1D numerical problem which needs to be solved repetitively along x and z.

Consequently, the dimension of both governing equations is different, which yields a hybrid

numerical problem that converges in a staggered manner. As long as global convergence of the

pressure and temperature field has not been reached, the pressure field is obtained on a 2D grid

(xz plane) before the grid is extended to a 3D grid (xyz space). On this extended 3D grid, a

heat source term is calculated, which is used in the 1D temperature diffusion equation solved on

the y-line while iterating over the 2D grid (xz plane).

The 2D pressure field is obtained using the 2D-MG method, whereas the energy equation is

solved using the 1D-MG method. The hybrid solver is based on the MG method and has been

developed in order to significantly speed up the solution of the governing equations, solved on

a fine mesh. The MG method is preferred for the solution of the governing equations, as the

discretized matrices are generally nonsymmetric and very large. The high number of grid points

is necessary to ensure an accurate determination of the tribotopologies, which is required by the

governing equations of the TTT. Instead of solving a tightly coupled TTM system, a staggered

solution approach for convergence is more efficient, as iterative solvers such as the MG solver

converge within a few iterations once the initial solution guess is close to the solution. Global

convergence is consequently accelerated during the solution process. The staggered approach

is guaranteed to converge once the TT shells and the MG iterations converge. No additional

relaxation parameters other than for the MG loops have been introduced to accelerate or force

convergence.

4.4.2 Computational Mesh of the Fluid and the FD Method

The finite difference (FD) method is chosen as a numerical discretization scheme in order to

discretize the governing equations of the TTT. The transient governing equations are both

discretized in space and time. As the partial differential equations contain highly nonlinear
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coefficients, a backward differencing numerical discretization scheme for the time derivatives is

used in order to ensure unconditional numerical stability of the discretization scheme. All of the

physical quantities are evaluated on a regular mesh with Nx + 2, Ny + 2 and Nz + 2 grid points

in the x, y, z directions respectively (see Fig. 4.3). The interior grid spacing is denoted as ∆x,

∆y and ∆z. The spatial discretization scheme is a centered FD scheme. The running indices

along x, y, z are denoted respectively as i, j, k, where 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz.

Before highlighting the discretization scheme, a set of interior boundary nodes is defined as:

B = {m |1 ≤ i ≤ Nx and m mod Nx = 0 and m mod Nx = 1 and (Nz − 1)Nx + 1 ≤ i ≤ N } (4.8)

The set of Nx ·Nz interior nodes is defined by I = {i |i /∈ B}. As the pressure is obtained

on a 2D grid (see Fig. 4.4), and in order to simplify the notations, an index m is defined as

m = (k − 1)Nx + i, i ∈ I. The exterior edges of the computational domain (see Fig. 4.4) are

the actual physical boundaries. The left and right walls are equal, as the computational domain

is periodic.
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Dirichlet boundary conditions for field variables are input at the bottom and top walls. The

discretization of the boundaries is shown in Section 4.4.3. The stencil around node m is shown

in Fig. 4.4. The derivative of a scalar function f in directions x and z evaluated at node m is:

f,x|m '
fm+1 − fm−1

∆x
, f,z|m '

fm+Nx − fm−Nx
∆z

(4.9)

Similarly, the second order derivative of f in direction x is:

f,xx|m '
fm+1 − 2fm + fm−1

∆x2
, f,zz|m '

fm+Nx − 2fm + fm−Nx
∆z2

(4.10)

The FD discretization in time is a backward Euler scheme with Nt timesteps of duration ∆t:

f,t|n '
fn − fn−1

∆t
(4.11)
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4.4.3 Numerical Discretization of Tribotopological Equations

Discretization of the Tribotopological Reynolds Equation

The TTR equation (Eq. 3.37) is discretized at node m and at time step n:

anm+1p
n
m+1 + anmp

n
m + anm−1p

n
m−1 + anm+Nxp

n
m+Nx + anm−Nxp

n
m−Nx = bnm (4.12)

The discretization factors read:

anm = aPm
n

= −2
˜̃
fx
n

m

∆x2
− 2

˜̃
fz
n

m

∆z2
, anm−1 = aWm

n
=

˜̃
fx
n

m

∆x2
−
f̃x

n

m

2∆x

anm+Nx
= aNm

n
=

˜̃
fz
n

m

∆z2
+
f̃z
n

m

2∆z
, anm−Nx

= aSm
n

=
˜̃
fz
n

m

∆z2
−
f̃z
n

m

2∆z

(4.13)

At timestep n, the matrix equation is consequently formulated as:

aPNx+2 aENx+2 0 aNNx+2 0 · · · 0

aWNx+3

. . .
. . .

. . .
. . .

. . .

0
. . .

. . .
. . .

. . .
. . .

. . .
...

aS2Nx+2

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 aSm
. . . aWm aPm aEm

. . . aN
′

m 0

. . .
. . .

. . .
. . .

. . .
. . .

. . . aNN′′
...

. . .
. . .

. . .
. . .

. . .
. . . 0

. . .
. . .

. . .
. . .

. . . aEN′−1

0 · · · 0 aSN′ 0 aWN′ aPN′



n 

pNx+2

...

pm

...

pN′



n

=



bNx+2

...

bm

...

bN′



n

(4.14)

where N ′ = (Nz − 1)Nx − 1 and N ′′ = (Nz − 2)Nx − 1. As the structural deformation is not

strongly coupled to the hydrodynamic pressure, the film thickness is not calculated simultaneously

at time tn under the hydrodynamic pressure at time tn. However, as low structural accelerations

across the fluid film gap exist, it is assumed that the structural deformation velocity is similar:

cn − 2cn−1 + cn−2

∆t
' 0⇔ cn−1 − cn−2 ' cn − cn−1 (4.15)

Finally, the right-hand-side components of the discretized TTR equation are given by:

bnm = −c
n−1
m − cn−2

m

∆t
− fxnm − fznm (4.16)

For a steady state, all the factors of the TTR equation are the same, except for the right-hand-side

vector components, which simplify to bnm = −fxnm − fznm.

Discretized Boundary Conditions (Hydrodynamic Pressure)

Bottom Wall (z = 0) and Top Wall (z = 1) At the bottom and top walls, a Dirichlet
pressure boundary condition is imposed, which results in a boundary charge for all nodes m
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that are located on the top and bottom boundaries:

∀ 1 ≤ m ≤ Nx : pnm−Nx
= pa

n
m and ∀ (Nz − 1)Nx + 1 ≤ m ≤ NxNz : pnm+Nx

= pb
n
m (4.17)

Left and Right Boundaries (x = 0 and x = 1) The condition of continuity and derivability

at the common boundary of x = 0 and x = 1 is implemented using a common ghost point. The

pressure value calculated at the ghost point is determined as the average of both boundary

values.

m m + 1m − 1

m − Nx

m + Nx

N

S

W EP m − Nx + 1

z

x

m m + 1m − 1

m − Nx

m + Nx

N

S

W EPm + Nx − 1

Left WallRight Wall Left WallRight Wall

∀m mod Nx = 0 ∀m mod Nx = 1

Figure 4.5: Periodicity boundary conditions of 2D grid.

The discretization of the left and right walls, which are shown in Fig. 4.5, translates at the

left wall into:

∀m mod Nx = 0 : pn+1
m+1 =

1

2

(
pn+1
m + pn+1

m−Nx+1

)
(4.18)

Similarly, at the right wall:

∀m mod Nx = 1 : pn+1
m+1 =

1

2

(
pn+1
m + pn+1

m+Nx−1

)
(4.19)

Discretization of the Energy Equation

At time step n, the pressure vector pn, the derivative vectors pn,x and pn,z, as well as the shear

rate vector components vnx|z,y, are calculated before the matrix system of the discretized energy

equation is solved. The discretized temperature at grid node (i, j, k) = (m, j) is denoted as θm.j .

The transient energy equation (see Eq. (3.12)) is discretized across the lubrication gap (along y,

index j) on a 1D line, which is situated above the 2D grid at node m, such that:

(
ρcp
λθ

)
m

θnm.j − θn−1
m.j

∆t
−
(
κθ
λθ

)
m

pnm − pn−1
m

∆t
θnm.j =

θnm.j+1 − 2θnm.j + θnm.j−1

∆y2

+

(
κθ
λθ

)
m

vx
n
m.jp,x

n
mθ

n
m.j +

(
κθ
λθ

)
m

vz
n
m.jp,z

n
mθ

n
m.j +

(
ηn−1

λθ

)
m

(
v2
x,y + v2

z,y

)n
m.j

(4.20)

which can be written in a compact form as:

anm.j+1θ
n
m.j+1 + anm.jθ

n
m.j + anm.j−1θ

n
m.j−1 = bnm.j (4.21)
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In addition to the obvious identification of anm.j+1 = −1
∆y2 and anm.j−1 = −1

∆y2 , the discretization

factors are given as:

anm.j =
2

∆y2
−
(
κθ
λθ

)
m

vx
n
m.jp,x

n
m −

(
κθ
λθ

)
m

vz
n
m.jp,z

n
m −

(
κθ
λθ

)
m

pnm − pn−1m

∆t
+

1

∆t

(
ρcp
λθ

)
m

bnm.j =

(
ηn−1

λθ

)
m

(
v2x,y + v2z,y

)n
m.j

+
θn−1m.j

∆t

(
ρcp
λθ

)
m

(4.22)

An important fact to consider is that the lubricant’s physical properties, such as the viscosity η

at timestep n, are not updated with the temperature at timestep n. Instead, the viscosity at

timestep n− 1 is used, such that ηn ' ηn−1. The discretized Eq. (4.21) at the 2D grid position

m is written in a tridiagonal matrix system (0 ≤ j ≤ Ny):

tridiag [am.j−1 , am.j , am.j+1]nNy×Ny [θm.j ]
n
Ny

= [bm.j ]
n
Ny

(4.23)

For a steady state, some discretization factors of the energy equation are simplified such that:

anm.j =
2

∆y2
−
(
κθ
λθ

)
m

vx
n
m.jp,x

n
m −

(
κθ
λθ

)
m

vz
n
m.jp,z

n
m

bnm.j =

(
ηn−1

λθ

)
m

(
v2x,y + v2z,y

)n
m.j

(4.24)

The remaining discretization factors of the steady state energy equation are the same as for the

transient energy equation.

Discretized Boundary Conditions (Temperature Field)

The boundary conditions of the temperature field are defined as Dirichlet boundary conditions

(fixed temperatures). Similar to the hydrodynamic pressure, the boundaries for the temperature

field are discretized as:

∀m.0 : θnm.0 = θa
n
m and ∀m.Ny + 1 : θnm.Ny+1 = θb

n
m (4.25)

4.4.4 Hybrid Multigrid-based Numerical Solver

Both the energy and the generalized TTR equations are classified as elliptic Poisson-type PDEs

with variable coefficients. As shown in Section 4.4.3, the PDE is discretized using the FD

method, which yields a linear system of the form Av̂ = b, where v̂ is either the pressure vector p

or the temperature vector θ. For variable coefficients, the matrix A is sparse, but not necessarily

symmetric. For the TTR equation with periodic boundary conditions, A is generally 7-diagonal,

whereas for the energy equation, A is 3-diagonal. As the same solver is used to solve matrix

systems of different dimensions, the solver is classified as hybrid.

In order to save on computation time and storage, the matrix coefficients of the 7-diagonal

(or 3-diagonal for the energy equation) matrix A are stored in 7 (respectively in 3) vectors. The
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7-diagonal matrix is written as A = diag
(
aS ,ab

′
,aW ,aP ,aE ,ab

′′
,aN

)
, where the vectors ab

′

and ab
′′

are non-zero for the nodes close to the left and right walls (periodic boundaries) of the

2D grid. The linear system can be solved using direct methods (such as Gaussian elimination

or LU decomposition) or indirect methods (such as Gauss-Seidel) to calculate an approximate

solution ṽ. The direct methods are reportedly slow for high numbers of nodes. The disadvantage

of indirect methods (not MG) is that their convergence is slow once the residual error between

convergence iterations becomes small and smooth on a given grid. Various numerical methods

have been investigated but have failed to provide fast converging results for the problem at

hand.

The reason behind investigating higher performing and faster converging numerical methods

is that many iterations are needed for optimization studies and transient simulations, especially

for a very high number of grid points. One of the fastest numerical algorithms known today is

the MG method (with a linear logarithmic convergence rate of O(N)), which is explained in a

very illustrative way in [107]. In order to solve the governing equations of the TTT, the MG

method is implemented in an in-house hybrid solver, such that the governing TTR equation is

solved on a 2D grid and the governing energy equation on a 1D-grid using MG.

As demonstrated in [108], the idea behind the MG method is to take advantage of a fast

iterative scheme, but to also represent the residual rε = b−Aṽ on a coarser grid once the error

is smooth enough. The advantage is that a smooth error eε = v̂ − ṽ is eliminated faster on

a coarser grid than on a finer grid. The convergence procedure shown in Fig. 4.6 starts with

an initial guess ṽ, which is obtained on the fine grid. Once the error eε is smooth enough, the

residual rε is transferred onto a coarser grid (restriction) and the residual error is computed from

Aeε = rε. The iteration procedure continues until the error is smoothed out on the coarsest

grid. Then, a correction is applied to each approximation of the solution until the fine grid is

reached (prolongation). Such a convergence cycle of restriction and prolongation steps can be

seen as a V-cycle.

The restriction of the residual error from a finer grid level to a coarser grid level is performed

by averaging the value at the neighboring nodes. As can be seen in Fig. 4.6, the mesh is

coarsened during the restriction, whereas during the prolongation, the mesh is refined at every

step. For an interior node (i, k) on the coarse grid:

eε
coarse
(i,k) =

1

16

(
eε

fine
(2i−1,2k−1) + eε

fine
(2i−1,2k+1) + eε

fine
(2i+1,2k−1) + eε

fine
(2i+1,2k+1)

+2
(
eε

fine
(2i,2k−1) + eε

fine
(2i,2k+1) + eε

fine
(2i−1,2k) + eε

fine
(2i+1,2k)

)
+ 4eε

fine
(2i,2k)

) (4.26)

where eε
coarse is the restricted residual error on the coarse grid, and eε

fine the residual error on

the finer grid. Similarly as for the restriction, the prolongation from a coarser to a finer grid

level for an interior node (i, k) is given by:

eε
fine
(i,k) =

1

4

(
eε

coarse
(i,k) + eε

coarse
(i+1,k) + eε

coarse
(i,k+1) + eε

coarse
(i+1,k+1)

)
(4.27)
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In order to guarantee proper restriction and prolongation of the grids in the MG algorithm,

the grid is considered uniform and the number of nodes is an exponential of base 2 in each

direction x and z, such that Nx|z = 2$ − 1, where $ is the grid level index. The number of

coarser grids in the MG algorithm is $ − 1.
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Figure 4.6: Typical first V-cycle restriction/prolongation cycle of the error eε (logarithmic scale).
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The convergence of the 2D-MG solver is illustrated for an oil-lubricated, isothermal, steady

state slider bearing, in which case the coefficients of the TTR equation (see Eq. (3.37)) are given

in Eq. (3.47). The convergence sequence of the TTR equation residual on the fine grid (end of

each V-cycle) is shown in Fig. 4.7. The random initialization of the solution p, generated with

the random number generator explained in [109], is shown in sub-figure A.

Figure 4.7: Convergence sequence of the 2D-MG algorithm (A: Initial solution guess; B-O: Logarithm
of error eε; P: Converged solution).

For an oil-lubricated slider bearing, the solution is obtained after 212 V-cycles for 127x127

nodes (without boundaries), and the natural logarithm of the residual error on the fine grid

is shown for several V-cycles in the sub-figures B-O. The residual error, although high in the

first V-cycles, dissipates fairly quickly during the V-cycle iterations. An interesting observation
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is that the residual numerical error dissipates in the circumferential direction (with Neumann

boundary conditions at x = {0, 1}), while the vertical edges at z = {0, 1} are fixed with Dirichlet

boundary conditions. The converged solution of the normalized pressure field is shown in

sub-figure P. The implemented MG method follows a V-cycle with relaxation factors chosen by

trial and error, with ν1 = 2 error relaxations per restriction step and ν2 = 1 error relaxation

per prolongation step. The criterion for global convergence is chosen as |eε| < 10−7 for the

pressure and temperature fields. The restricted matrices on the coarser grids are solved using

the iterative weighted Jacobi algorithm, as the linear system for variable material properties

and deformable surfaces is generally nonsymmetric.

The weighted Jacobi method is similar to the Gauss-Seidel method, but in the Jacobi

method, the matrix A is decomposed into a diagonal matrix A\ = diag
(
aP
)

and an off-

diagonal matrix A′\ = A −A\. The numerical error at iteration k + 1 is given by e
(k+1)
ε =

(1− ω̆) e
(k)
ε + ω̆A−1

\

(
b−A′\e

(k)
ε

)
. The weight ω̆ of the weighted Jacobi method is initially 0.99

(aggressive). However, if the logarithm of the residual in the first iterations is greater than zero,

the weight is gradually reduced in order to guarantee convergence. In total, ν0 = 30 weighted

Jacobi iterations are performed at the coarsest grid level. With the storage of the matrix A as 7

vectors, the matrix products are equivalent to vector multiplications, with trivial multiplications

being avoided.

4.4.5 Topology Detection Algorithm (TDA)

The Topology Detection Algorithm (TDA, shown in Algorithm 4) is used to determine the shells

(virtual boundaries) of the TT spaces within the lubrication gap. The TT shells are isosurfaces

determined from a scalar field f . The TDA is consequently an isosurface extraction algorithm,

which determines the shells and the types of each enclosed TT space. In order to reduce the

complexity of the numerical model and generate nonintersecting and bijective surfaces, the TDA

relies on root detection techniques [110]. Any other sophisticated isosurface detection/extraction

algorithm that is based on the Marching Cubes method might not necessarily guarantee bijective

shells and splitting into bijective surface parts might be required, which may increase robustness

at the cost of an increased computation time.

The underlying method of the TDA is the Van Wijngaarden–Dekker–Brent root-finding

method [111] for a 1D scalar function f ′(y)− f0, which is defined across the lubrication gap as

the restriction of a scalar field f(x, y, z) along y for a given position (x, z). This method has

been chosen as the ideal method for the problem at hand, as it is specifically meant to converge

at an acceptable speed for functions that might have a discontinuous second order derivative. As

explained in [111], this method is also particularly suitable for finding roots of functions where

the derivatives are not available, which are generally required for Newton-based root-finding

algorithms. The restricted scalar function f ′(y)− f0 is discretely defined on all grid points. In

order to use root-finding techniques, the restricted scalar function f ′(y) − f0 is interpolated

along the radial direction y. The interpolation of the restricted function is performed using a

cubic spline interpolation technique [111].
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Algorithm 4 Topology Detection Algorithm (TDA)

BEGIN

DO WHILE (i ≤ Nx + 2 & k ≤ Nz + 2)

Extract a restriction f ′ of the function f (either τ or θ)

Interpolate the extracted restriction f ′ using a cubic spline interpolation technique

Split the radial domain [0, c(i, k)] into Ni intervals.

DO WHILE (m < Ni + 1)

Find root cm of f ′ − f0 within [(m− 1) ·Ni,m ·Ni]
IF (cm found)

Determine which shell is most appropriate based on previous roots

IF (jump detected and no existing shell fits)

Initialize a new shell and update the shell type vector

Store the root in the newly created shell and initialize existing shells

ELSE

Store the root in the appropriate shell

END IF

ELSE

Adjust existing shells depending on their position

Continue with the next interval: m = m+ 1

END IF

END DO

END DO

Remove globally flat spaces

Determine the type vector and the type of each TT space

END

The scalar field f(x, y, z) for the TT plug space is the norm of the shear stress τ , and the

corresponding isovalue is τ0. For the TT dry space, f = θ and the isovalue is θ̂. The shell is

hence determined as the root c
(n)
+|− that satisfies f ′

(
c

(n)
+|−

)
− f0 = 0. The TDA, however, is not

only a root-finding algorithm, but is also the algorithm used for detecting nonintersecting shells,

especially for multiple types of TT spaces. The TDA is also used to remove globally flat shells

that appear during the convergence iterations.

4.4.6 Topology Adjustment Algorithm (TAA)

The Topology Adjustment Algorithm (TAA) is called during the iteration procedure of the

TEHD - FSI simulation (see Algorithm 3). Once the tribotopologies are detected using the

TDA, the velocity field is updated and a new shear stress field is calculated. The TAA relies

on the principle of the existence of at least one position across the lubrication gap where the

shear stress is minimum. If a shell exists as determined by the TDA, the shear stress across

the lubrication gap (along y) within the fluid space is linear, as the velocity field is a quadratic

polynomial as postulated in the TTT. Consequently, the shell is located at the minimum shear

stress of the grease, or, in other words, where vx|z,y = 0. Across the lubrication gap, the values

of the shear stress exist at discrete nodes, as shown in Fig. 4.8.
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Figure 4.8: Illustration of the Topology Adjustment Algorithm (TAA).

At the minimum, the relative shear stress is, in theory, zero. However, for discretely defined

values, there is one (or more) minimum(a) of the shear stress, because the shear stress is a

derived and numerically calculated field. In order to determine the theoretical minimum, the

shell c
(2)
+ is adjusted using linear extrapolation of the neighboring nodes.

Algorithm 5 Topology Adjustment Algorithm (TAA)

BEGIN

DO WHILE (i ≤ Nx + 2 & k ≤ Nz + 2)

DO WHILE (m < Ns)

Determine the grid index of the existing shell boundaries of space m

Find the numerical minimum of the shear stress field

IF(numerical minimum is close to either contact surface)

Move minimum to the contact surface

ELSE

Calculate the theoretical value of the minimum and adjust the minimum value

END IF

END DO

END DO

END

4.4.7 Fluid-structure Interaction (FSI)

The fluid-structure interaction mapping (FSI mapping) of the physical quantities between the

structure and the fluid is implemented in the TEHD module, which is integrated in ANSYS

in order to profit from the shared memory. The FSI boundaries (shown in Fig. 4.1) are the

boundaries at which the hydrodynamic pressure p, the shear stress τx|z, and the heat flux qy

calculated within the lubricant, are applied. The clearance c and the boundary temperatures

θy={0,c} are retrieved from ANSYS and input to the TEHD module. As explained in [112], the

in-house code relies on the partitioned FSI approach, where the behavior of the structure is

solved on two independent meshes. The displacement (or clearance) between the two physical

domains i, i′ and a shared boundary k is compatible, which is ensured by u(i)
∣∣
Γ(k) = u(i′)

∣∣∣
Γ(k)

.

In addition, the shear stress at the FSI interface is equal, such that the traction equilibrium

at the interface is given by σ(i)n(k) = −σ(i′)n(k′) = σ(i′)n(k). The heat flux at the interface is

conserved by λ
(i)
θ ∇θ(i) · n(k) = −λ(i′)

θ ∇θ(i′) · n(k).
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Figure 4.9: FSI mapping of p (grease). Figure 4.10: Interpolated clearance c.

The temperature field between the two domains i and i′ is continuous at the boundary:

θ(i)
∣∣
Γ(k) = θ(i′)

∣∣∣
Γ(k)

. The applied hydrodynamic pressure is applied at the FSI interface and

balanced by structural reaction forces (see Fig. 4.9). The values retrieved from ANSYS are

irregularly distributed, as they are retrieved on the integration points of the structural contact

elements, which are averaged on the structural element (see Fig. 4.10). The values retrieved

need to be on a structured grid for the TEHD module, and are interpolated using the method

of bivariate interpolation shown in [113].

4.4.8 Computational Mesh of the Structure

The structural components of the comprehensive model are meshed in ANSYS. In order to allow

optimal for contact detection and mapping of the physical fluid quantities onto the structure,

the mesh is a structured and swept mesh on all the structural components.
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Figure 4.11: Structural mesh (assembly).
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Figure 4.12: Structural mesh
(lower bearing).

The structural mesh of the assembly is shown in Fig. 4.11. The mesh is similar to the

structural mesh of the characteristic model shown in Fig. 2.16, but different types of elements are

used and the mesh is refined in the TZI. It is of particular importance to adequately mesh the
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lower bearing interface (shown in Fig. 4.12), as the FSI boundaries are mapped at this interface.

There are 180 circumferential divisions at the lower bearing interface, and the remaining

structural components have 90 circumferential divisions. The number of circumferential divisions

at the lower bearing interface and on the piston are identical, in order to guarantee proper

detection of the contact. In addition, each component is divided radially three times in order

to allow the calculation of a radial temperature gradient. A summary of all the elements is

provided in Table 4.2.

Type Element Count Purpose

SOLID226 42480 Calculate structural deformation and temperature

CONTA174 65340 Contact elements on the bearing surface

TARGE170 65340 Target elements on the piston surface

SURF154 N/A Apply hydrodynamic pressure and shear stress

SURF152 N/A Apply heat fluxes and boundary temperatures

TOTAL 107820 248220 nodes

Table 4.2: Summary of the structural elements.

4.5 Numerical Performance Analysis

Before the comprehensive model validation is given, a numerical convergence and mesh indepen-

dence study is performed. The mesh independence study guarantees that the solution of the

governing equations is obtained on an optimal mesh. As the numerical code is intended to be

used for diverse LG bearing applications and lubricants, the numerical performance is studied

for several cases shown in Table 4.3 and for various mesh sizes shown in Table 4.4. For these

cases, a rigid and isothermal structure is assumed (no structural deformation considered), in

order to analyze the performance of the TEHD code and, in particular, the performance of the

hybrid numerical solver based on the MG method.
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Figure 4.13: Total solution time.
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Figure 4.14: True solution time per node.
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The convergence criterion for the field f (either pressure f = p or temperature f = θ) at

the global iteration n is
(
f [n] − f [n−1]

)
/f [n−1] < 10−7. The grids shown are structured grids

and have an equal grid spacing in all the directions x, y, z. The numerical performance analysis

cases were run on a UNIX-based computer with 2.7GHz Intel quad-core i7 processors and 16GB

of RAM. The total solution times for each case as a function of N are shown in Fig. 4.13, where

N is the dimension of the square system matrix on the fine grid that is solved. The solution

times for the cases with grease are higher than for oil, and increase (almost) linearly with higher

node numbers, in particular for Case 3. The linear trend of the solution time as a function of N

is due to the MG solver, which scales as O(N). The total solution time does not exactly follow

a linear trend for the cases with grease, and this is primarily due to the fact that the TDA does

not scale as O(N). In order to evaluate the hardware-independent numerical performance of the

hybrid solver, the true solution time per node as a function of N is shown in Fig. 4.14. The

total number of operations is obtained by multiplying the true solution time by the clock rate of

the computer. For the cases with oil, the solution times per node are constant and even slightly

decrease for higher node numbers. This observation is in agreement with the expected behavior

of a MG-based solver. Nevertheless, for higher N and the cases with grease, the solution times

per node are not only higher, but also increase with N .

Case Lubricant e/c0 Isothermal η = η0

1 oil 0.0 no yes

2 oil 0.286 no yes

3 oil 0.0 no no

4 grease 0.0 no yes

5 oil 0.286 yes yes

6 grease 0.286 yes yes

Table 4.3: Analysis cases.

Grid $ Nx|y|z N

1 4 17 4913

2 5 33 35937

3 6 65 274625

4 7 129 2146689

5 8 257 16974593

Table 4.4: Computational grids.

This fact is an indication of a need for parallelizing the numerical code, especially for the

cases with grease. The numerical algorithm can be parallelized, and the necessary steps are

discussed in Chapter 6. Of particular interest is the numerical performance of the 2D-MG solver

for the TTR equation. As the residual error of a parabolic PDE is mostly reduced at the first

global iterations (see Fig. 4.7), the number of V-cycles necessary for the convergence of the first

two global iterations is shown in Fig. 4.15. An interesting observation is that for all cases, the

number of V-cycles is reduced after the first global iteration. For increasing N , the number of

V-cycles increases almost quadratically, which demonstrates the performance and applicability

of the MG method to the TTR equation. The optimal grid for solving any of the given cases

is chosen by comparing the maximum hydrodynamic pressure to the maximum hydrodynamic

pressure calculated on the finest grid ($ = 8), as shown in Fig. 4.16. The acceptable error for

the maximum pressure is restricted to 2%. In order to satisfy this upper limit, and based on the

accuracy obtained and the respective solution times, Grid 4 ($ = 7) is chosen for consecutive

simulations. Grid 5 ($ = 8) is used for validation purposes only.
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Figure 4.15: Number of V-cycles for the first 2
global iterations as a function of N .
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Figure 4.16: Relative error of maximum hydro-
dynamic pressure as a function of N .

4.6 Validation of the Comprehensive Model

4.6.1 Methodology and Limitations

The comprehensive model is validated by considering two specific cases. First, the case of a

quasi-isothermal, oil-lubricated inclined slider bearing, for which an analytical solution exists,

is considered. The hydrodynamic pressure, the temperature field, the velocity field and the

hydrodynamic loads generated are validated with analytical formulas. Second, the comprehensive

model is validated using the experimental data of the hydrodynamic pressure field available

in the literature for the case of an oil-lubricated bearing and rotational motion. Although the

model is validated against some experimental data, the validation of the comprehensive model

is limited, as no experimental data for a LG slider bearing are available.

Solution Quantity Vertical Motion Rotational Motion

Number of nodes 16974593 16974593

Number of global iterations 2 4

Weight ω̆ of MG solver (Press. Iter. 1) 0.99 0.07

Number of V-Cycles (Press. Iter. 1) 1259 10243

Average number of V-Cycles (Temp. Iter. 1) 7 N/A

Total solution time [s] 163.85 526.04

True solution time per node [µs] 6.44 2.24

Table 4.5: Validation solution summary.

In addition, the validation is only performed for a steady state case, and no transient effects

are included. Nevertheless, as the transient behavior is considered as a sequence of instantaneous

steady states (see Section 4.7.5), the comprehensive model is considered to be validated. For

both validation cases shown in Table 4.5, the numerical performance is notably fast, as the

solution times are very low for a high number of grid points. Although it is not required to solve



Chapter 4. Comprehensive Model and Validation 96

the governing equations on a structured mesh with such a high number of grid points to reach

convergence, as demonstrated in Section 4.5, the high number of grid points has been chosen to

demonstrate the performance of the numerical code and to obtain numerical errors within a 1%

limit.

4.6.2 Analytical Validation - Vertical Motion

As the available validation data are limited for slider bearings, the numerical model is validated

using a quasi-isothermal, steady state reference case provided in [114] and the parameters

Ũ = 1.0 m/s, η0 = 0.032 Pas, c0ς = 0.127, and is validated for an inclined bearing surface with a

noneccentric piston (e = 0, z0/L = 1) and isoviscous oil. The TTR equation shown in Eq. (3.37)

reduces to
(
c3p,z

)
,z

= 6η0Ũc,z, which, after full integration, leads to:

p,x = 0 and p(z) =


− η0H

c · c,z
− η0H1

2ρc2c,z
+H2 if c,z 6= 0

H3z +H4 if c,z = 0

(4.28)

where H = 6Ũ . The application of the boundary conditions p|z=0 = p|z=L = 0, combined with

the conditions for continuity p|z=z−0 = p|z=z+
0

and p,y|z=z−0 = p,z|z=z+
0

, leads to the following

coefficients of Eq. (4.28):

H1 = −2Hρc0
c0 − ς + ςz−1

0 L− c2
0 (c0 + ς)−1

c0 − 2ς + 2ςz−1
0 L− c3

0 (c0 + ς)−2 (4.29)

H2 = − η0Hz0

(c0 + ς) ς
− η0H1z0

2ρ (c0 + ς)2 ς
, H3 =

Aη0

c2
0

+
η0H1

ρc3
0

, H4 = −H3L (4.30)

The analytical velocity field for a moving slider is given in Eq. (3.43). The pressure and velocity

fields (normalized by p̂ = ς2η−1Ũ−1L−1 and Ũ respectively) are shown in Fig. 4.17. The

recirculation zone can clearly be distinguished and the pressure profile matches the analytical

solution. The temperature field is normalized as θ =
ς2ρ0cp
η0·ṡ2t′′

θ, where t′′ is a characteristic time,

chosen as 1s. The normalization value of the temperature field corresponds to the temperature

raise from the reference temperature in 1s for characteristic frictional energy generated through

shear motion at a velocity ṡ. For constant lubricant properties, and by ignoring compressive

heating, the steady state energy equation in the lubricant film domain is given in Eq. (3.50).

The analytical and numerical solutions of the temperature field are shown in Fig. 4.18. Although

the pressure, velocity and temperature fields are validated, it is only through the comparison of

the hydrodynamically generated loads that the numerical model is truly validated. By defining

c0 = c0/ς, the analytical normalized radial load wy and the tangential load component are given

in [114] as:

wy ·
p̂

L
= 6ln

(
1 + c0

c0

)
− 12

1 + 2c0
, wz|y=c ·

p̂

ς
= wy ·

p̂

L
(4.31)
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Figure 4.17: Normalized pressure and velocity
fields (numerical and analytical solutions).

Figure 4.18: Normalized temperature field. Nu-
merical solution (mesh) and analytical solution
(surface).

The shear forces on the slider and on the bearing are given in [114] as:

w′z
∣∣
y=0
· p̂
ς

= 4ln

(
c0

1 + c0

)
+

6

1 + 2c0
, w′z

∣∣
y=c
· p̂
ς

= 2ln

(
c0

1 + c0

)
+

6

1 + 2c0
(4.32)

The friction coefficient is the ratio of the tangential and shear forces over the applied radial

load and is given analytically in [114] as:

µ =
2ςlnc0 − 2ςln (1 + c0) + 3ς (1 + 2c0)−1

3Llnc0 − 3Lln (1 + c0) + 6L (1 + 2c0)−1 (4.33)

The normalized forces as well as the friction coefficient are shown in Table 4.6, validating the

numerical code.

Quantity Symbol Code Theory Absolute Error

Normalized radial load wy|y=0 3.538 3.540 0.06%

Normalized tangential load wz|y=0 3.566 3.538 0.79%

Normalized slider shear force w′z
∣∣
y=0

-3.923 -3.956 0.84%

Friction coefficient µ · 1/1000 5.877 5.851 0.47%

Table 4.6: Normalized hydrodynamic loads and absolute error.

4.6.3 Experimental Validation - Rotational Motion

In addition to the analytical validation, an experimental validation is performed. For the

application of a LG slider bearing, no data exist that can be used for validation. Instead, the

numerical code is validated against experimental data available in the literature for isothermal

oil-lubricated bearings in rotational motion.
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Figure 4.19: Hydrodynamic pressure profile (oil,
e/c0 = 0.7).
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Figure 4.20: Hydrodynamic pressure at the cen-
ter line of the bearing (oil, z = 0.5) [60, 82].

The generated hydrodynamic pressure, normalized with p̂ =
c20

η0ωcR2
c
, is shown in Fig 4.19.

Clearly, the lubricant cavitates for x ≥ 0.5. By ignoring side effects, the pressure profile at

z = 0.5 is shown in Fig. 4.20 and compared to existing data from [60, 82]. A very close match is

found, validating the numerical code.

4.7 Comprehensive Results

The results of the comprehensive model include the structural deformation, structural tem-

perature and fluid quantities such as the hydrodynamic pressure, the shear stress and the

temperature within the lubrication gap. All the coupled simulations were performed on a dual

6-core computer (12x3.47GHz, 48GB RAM), but only a single core has been used to perform the

numerical iterations to solve the governing equations of the TTT, and 8 cores (and a GPU) were

used for the iterations to reach structural equilibrium. The nonstructural simulations have been

obtained using a quad-core machine (4x2.7GHz) with 16GB of RAM. All the results are obtained

on Grid 4 ($ = 7), as explained in Section 4.5. Although no external load is applied (f = 0),

the case of an eccentric piston is studied for both rigid and flexible structural components. The

eccentricity is such that ex/ς = 0.09 and ey/ς = 0, yielding an eccentricity angle φe = π. The

ratio governing the normalization of the lubrication gap is given as c0/ς = 0.3165. The relative

thrust portion is located at z0/L = 0.4. The reference temperature is fixed at θ0 = 273.15K and,

for the rigid and isothermal structure case, the boundary temperature is set as θbc = 293.15K.

The rigid and isothermal cases are of major importance to the understanding of the lubrication

mechanism and the fundamental differences between oil- and grease-lubricated slider bearings.

4.7.1 Numerical Details of Results

The convergence graphs of the last iteration of the two coupled simulations for oil- and grease-

lubricated LG slider bearings are shown in Fig. 4.21 and Fig. 4.22. As shown in Fig. 4.21, global
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convergence of the governing equations for oil is reached after 3 global iterations, whereas for

grease, global convergence is only achieved after 9 iterations. For both cases, the characteristic

linear convergence of the 2D-MG solver can be seen. In addition, convergence accelerates over

the course of the iteration procedure, as fewer and fewer V-cycles are necessary in order to

obtain convergence.

For oil, the global error is reduced quickly, once the 2D-MG solver has converged once.

However, for grease, the global error increases after the first iteration. This is primarily due to

the fact that after the detection of the TT spaces, the factors of the TTR equation are updated,

hence modifying the PDE. The global error is not reduced linearly, but reduces only slowly

until close to the final solution, when the error suddenly drops below the convergence threshold.

This behavior is typical for the numerical model. The details of the key numerical simulations

(solution Sets 1-12) performed are shown in Table 4.7.
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Figure 4.21: Structural iteration 3/3 - conver-
gence history (oil, Set 3).
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Figure 4.22: Structural iteration 3/3 - conver-
gence history (grease, Set 4).

As indicated in Section 4.5, the total solution times for simulations with grease are higher

than for oil. In addition, the solution time is much longer due to the taking into account of

the structural behavior (FSI). The increased solution times are an indication of the structural

simulation being a bottleneck for slider bearing simulations. As the structural solver and the

fluid solver share the same memory, the difference in solution time is essentially due to the

different scaling of the solvers for the structural and fluid equations. For all 12 solution sets, the

number of V-cycles is similar at the first iterations for both pressure and temperature fields.

It has been found, however, that the coupled FSI simulations show a slightly higher number

of V-cycles for the first iterations, as the mapping of the FSI quantities modifies the coefficients of

the TTR equation. It is remarkable that the friction coefficient is similar for both oil and grease

under isothermal and isoviscous conditions (solution Sets 1-4 and 9-12). This is primarily due

to the fact that during the (instantaneous) steady state, the temperature increase does not have

a significant effect on the viscosity, and consequently on the friction coefficient. Nevertheless,

the friction coefficient is very different for oil- and grease-lubricated bearings, which is due to
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the presence of a plug space. It is remarkable that the plug space, which reduces the clearance,

has such a high impact on the friction coefficient3. The results of the friction coefficients shown

in Table 4.7 demonstrate that the TTT is essential for capturing the nonhomogeneous behavior

of grease.

Set Lubricant FSI η = η0 θ = θ0 # Glob. Iter.* Solut. Time [s] µ · 1/1000 **

1 oil no yes no 3 31.29 6.43

2 grease no yes no 15 2532.10 11.97

3 oil yes yes no 3+3+3 1339.00 6.94

4 grease yes yes no 9+9+9 7209.00 10.32

5 oil no no no 4 123.58 6.38

6 grease no no no 20 3961.14 11.97

7 oil yes no no 4+4+5 1726.00 6.95

8 grease yes no no 20+20+20 13755.00 10.42

9 oil no yes yes 3 8.84 6.42

10 grease no yes yes 15 2552.80 11.97

11 oil yes yes yes 2+2 690.00 7.00

12 grease yes yes yes 10+15 5135.00 14.33

Table 4.7: Solution summary for select solution sets ($ = 7). * Number of fluid iterations at each
structural iteration. ** Last structural iteration.

The simulations for an isothermal and nonisoviscous lubricant are not shown, as the effect

of increased pressure on the viscosity is not of particular interest to the study at hand. The

set that best simulates the actual situation of an aircraft LG slider bearing is Set 8, but the

solution time is long. This is essentially due to a stagnation of the residual global error for very

tight convergence criteria.

4.7.2 Rigid and Isothermal Structure (Oil and Grease)

Isoviscous Oil-lubricated Bearing (Set 1)

As the hydrodynamic behavior of grease is derived from the behavior of the base oil, the

isoviscous behavior of oil is of major interest to the understanding of the flow patterns that

are guided by the hydrodynamic pressure field shown in Fig. 4.23. The pressure isolines are

perpendicular to the streamlines, which demonstrates that oil is escaping the high pressure zone

while lift is generated through the motion of the piston surface. The pressure peak is located

at the relative position of the thrust portion z0 and shifted by the eccentricity angle φe/(2π)

along the circumference. The norm of the pressure gradient, which is a measure of the driving

force behind the fluid flow and which indicates the concentration of the pressure force, is shown

in Fig. 4.24. In addition, the pressure force varies most for z < z0, which is an indication of a

different flow behavior at the thrust portion. The norm of the velocity field for the case of a

piston sliding in vertical motion only is shown in Fig. 4.25. The stationary (bearing) and sliding

(piston) contacting surfaces are visible.

3Seemingly different data for the friction coefficient have been reported in [51] in the context of a noneccentric piston.
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Figure 4.23: Hydrodynamic fluid pressure p. Figure 4.24: Pressure gradient norm |∇p|.

The velocity at the thrust portion is low (and even drops to zero), and a recirculation zone

can be distinguished. The shear stress field, normalized by τ = c0τ
η0Ũ

, is shown in Fig. 4.26, and

the cross-sections across the lubrication gap are shown in the sub-figures A-I. The shear stress,

which can be understood as proportional to the frictional heat generation term, is highest at

the moving surface (piston) for z < z0 and highest at the stationary bearing surface for z > z0.

Sub-figures E-I indicate a notable observation (region for y > 0.5c): the shear stress is very low

in this region and the formation of a plug space (for grease) is likely. In order to understand the

fluid flow behavior and the cause of the shear stress variations, it is instructive to analyze the

normalized components of the velocity gradient.

Figure 4.25: Fluid film velocity field v (oil).
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Figure 4.26: Shear stress field τ across the lu-
brication gap (oil).
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Figure 4.27: Normalized circumferential com-
ponent of velocity gradient vx,y.
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Figure 4.28: Normalized vertical component of
velocity gradient vz,y.
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Figure 4.29: qy across the lubrication gap.
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Figure 4.30: θ across the lubrication gap.

At the thrust portion, the shear stress field is practically constant along the circumference

of the bearing, which is the result of the vertical motion of the piston (see Fig. 4.28). The

circumferential variations of the shear stress are due to the shearing of the lubricant caused by

the lubricant escaping from the area of highest pressure, as shown in Fig. 4.27. An interesting

observation is that on the piston side, the velocity variation is opposite to the velocity variation
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on the bearing side, which suggests that a shell (for grease) might exist. The formation a plug

space is most likely (for grease) at the thrust portion where the dominant component vz,y is

zero.

The normalized temperature field θ is shown in Fig. 4.30. At the piston and bearing surfaces,

the temperature is uniform and fixed at θ = 0. The highest temperature does not occur at

the mid-plane of the lubrication gap; rather the temperature is almost uniform along the

circumference of the bearing, which is due to the sliding motion of the piston (no significant heat

generated along x). It must be noted that the amount of heat generated and the incremental

temperature for the case of a rigid and isothermal structure are not very high. This is due to the

fact that the temperature at the contacting surfaces is fixed. The case of isothermal contacting

surfaces is of interest especially for an FSI case (nonisothermal and flexible structure), as the

temperature values from the contacting surfaces are input to the TEHD code. The heat flux is

normalized by q = q0q, where q0 is given by q0 = λθ0ς
−1
(
θbc − θ0

)
. The predominant component

of the heat flux vector field is across the lubrication gap qy = −λθθ,y, and is shown in Fig. 4.29.

The heat flux field is almost symmetric across the lubrication gap. At the piston surface, the

heat flux is negative, whereas on the bearing side, the heat flux is positive. The magnitude of

the heat flux at both contacting surfaces is not equal (higher at the piston surface) [51]. At the

mid-plane of the lubrication gap, the heat flux does not vanish, which is an indication that the

maximum temperature, contrary to common belief, does not occur at the mid-plane.

Isoviscous Grease-lubricated Bearing (Set 2)

Figure 4.31: Fluid film velocity field v (grease).
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Figure 4.32: Shear stress field τ across the lu-
brication gap (grease).

Although the peak pressure is higher for the case of grease than for oil, the hydrodynamic

pressure field is not shown for the present case, because the shape of the pressure field is similar
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to that in Fig. 4.23. The hydrodynamic pressure fields for both oil and grease are compared

in Section 4.7.4. The velocity profile for isoviscous grease is shown in Fig. 4.31. At the thrust

portion, a plug space is formed, as postulated by the results for oil shown in Section 4.7.2.

Within the plug space, the velocity field is zero, as the semisolid plug sticks to the stationary wall

(bearing). The shear stress τ is a function of the gradient of the velocity field. The normalized

components of ∇v are shown in Fig. 4.33 and Fig. 4.34.

The normalized relative shear stress τ = c0(τ−τ0)

η0Ũ
is shown in Fig. 4.32. At the thrust portion,

the relative shear stress is zero, indicating the presence of a plug space. The heat generation

term of the energy equation can also be written as ηγ̇2 = η−1 (τ − τ0)2, which indicates that

the heat generation can be seen as proportional to the square of the relative shear stress. The

plug and the fluid spaces within the lubrication gap are shown in Fig. 4.35, delimited by their

respective shells. There are no dry spaces present, as the temperature is not high enough.
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Figure 4.33: Normalized circumferential com-
ponent of velocity gradient vx,y.
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Figure 4.34: Normalized vertical component of
velocity gradient vz,y.

The thicknesses of the spaces S(1)
p and S(2)

f are shown in Fig. 4.36. In addition, the theoretical

thickness of the plug space is shown, and a very close match can be observed. In order to

illustrate the plug and the fluid spaces within the lubrication gap, a cross-section at x = 0.5 is

shown in Fig. 4.37. The plug space is shown and the calculated shells coincide very well with

the predictions of the theory. As a plug space is present, it is of interest to understand the

(radial) heat flux, which is shown in Fig. 4.38. The heat is conducted through S(1)
p , despite the

fact that no heat is generated within S(1)
p . The heat flux is not uniform along the lubrication

gap (contrary to the theory for dry friction). The highest heat flux is at the aft portion of

the slider, and almost no heat is input at the location of S(1)
p , which acts as an insulator. For

the isothermal case, the maximum heat flux is at the slider, although the highest share of the
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heat flows into the bearing surface. The locus of the maximum temperature is highlighted in

Fig. 4.38, which confirms that the maximum temperature along the thrust portion of the bearing

is not at the center line of the lubrication gap (contrary to the theory for dry friction).

S(1)
p

S(2)
f

Figure 4.35: Combined shells. Figure 4.36: Thicknesses of the spaces.

S(1)
p

S(2)
f

Figure 4.37: τ and cross-sections of shells (x =
xe).

S(1)
p

Figure 4.38: qy and maximum temperature lo-
cus (x = xe).

4.7.3 Flexible, Nonisothermal Structure (Grease, Set 4)

For a LG lower bearing, the structure is not isothermal and the lubricant is not isoviscous, as

heat leaves the fluid film and diffuses through the adjacent structure. It is critical to consider full

FSI and to take into account the behavior of the fluid and the structure, as the deformation of

the lubrication gap yields different pressure and temperature fields. As the structural behavior

is similar for oil- and grease- lubricated bearings (see Section 4.7.4), the results for a grease-

lubricated bearing only are highlighted. The normalized radial heat flux field is shown in

Fig. 4.39. The shape of the heat flux across the lubrication gap is similar, which indicates
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that the temperature is almost linearly (asymmetrically) distributed across the lubrication gap.

Nevertheless, the heat flux is higher in the region of the highest hydrodynamic pressure, and

it is lowest at the thrust portion. This behavior is due to the presence of the plug space as

postulated in Section 4.7.2. The normalized temperature field across the lubrication gap is

depicted in Fig. 4.40. One important fact is that the temperature is highest on the piston side,

and lowest on the bearing side. The temperature is highest around φe across the lubrication

gap. This temperature profile is characteristic for the LG lower slider bearing, as the inner side

of the piston is adiabatic, whereas the structure on the bearing side is surrounded by external

air, and the heat is removed by convection (h5 = 50W/(m2K)). On the piston side, the heat

that is input stagnates, and diffuses slowly along the circumference (wide temperature band).
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Figure 4.39: Normalized heat flux field across
the lubrication gap (grease).
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Figure 4.40: Normalized temperature field θ
across the lubrication gap (grease).

However, as the heat at the lower bearing diffuses radially and quickly through the structure,

the heat does not diffuse significantly in the circumferential direction (narrow temperature

band). Unexplained uneven damage has been reported on both surfaces. An asymmetrically

distributed temperature field is likely responsible for the reported damage. All structural and

fluid quantities are normalized with the same factors. The normalized structural heat flux vector

field is shown in Fig. 4.41. By displaying the heat flux as a vector field instead of only the scalar

component as in Fig. 4.39, the insulating properties of the plug space are visible. In addition,

the heat flux is present around the entire circumference, contrary to the Hertzian contact theory,

where only a small contact area over which the generated frictional heat is input exists, as shown

in Fig. 2.21. For completeness, the structural temperature field of the piston (more specifically

the chrome layer) is shown in Fig. 4.42, which suggests that the phenomenon is very localized

and indicates a similar axial thermal behavior as shown in Fig. 2.20.
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Figure 4.41: Normalized struc-
tural heat flux field at the lower
bearing.
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Figure 4.42: Normalized structural temperature field at the
piston.

The normalized temperature field of the lower bearing inset is shown in Fig. 4.43. The

temperature field is highest at the aft portion of the bearing (positive X direction), as the

applied hydrodynamic pressure is highest at this point. The normalized shear stress field τ rφ is

a result of the generated friction forces and the applied fluid pressure, and is shown in Fig. 4.44.

The shear stress is lowest for negative φ and highest for positive φ, which is an indication of the

lubricant escaping the high pressure zone.
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Figure 4.43: Normalized structural temperature
field at the lower bearing.
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Figure 4.44: Normalized structural shear stress
field τφz at the lower bearing.

The shear stress, however, vanishes at the aft and fore portions of the lower bearing, which is

an indication of high and low pressure zones. The structural deformation plays an important role

in the performance of the lubrication mechanism, as the clearance c between the piston and the
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bearing is a driving parameter in the TEHD solution. The maximum of the total displacement

u =
√
u2
r + u2

φ + u2
Z occurs at the aft portion of the bearing, as shown in Fig. 4.45d. All

displacement components of the lower bearing inset are normalized by max(u). The normalized

radial displacement ur of Fig. 4.45a indicates that the aft portion of the bearing is deformed

more than the fore portion, but the largest radial displacement occurs at the lower end of the

bearing. The normalized circumferential displacement uφ is positive in the Y− direction and

negative in the Y+ direction, which indicates an ovalization of the lower bearing inset (not

taken into account in Chapter 2). The normalized vertical displacement uZ , although not as

high as ur or uφ, indicates that the bearing is squeezed vertically, which is a consequence of the

shearing of the lubricant. The impact of the displacement field on the clearance and behavior of

the lubricant is shown in Section 4.7.4.
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Figure 4.45: Normalized displacement field of the lower bearing inset.

4.7.4 Comparison Cases

In order to study the impact of the structural behavior as well as the impact of a different

lubricant, two comparison studies are performed.

The first study aims to compare the behavior of the lubricant (hydrodynamic pressure and

shear stress) when surrounded by a flexible and nonisothermal structure to the behavior of

the lubricant in a rigid and isothermal bearing assembly. This comparison study is important

for understanding the effect of the structure (especially the deformation) on the lubrication

mechanism. The goal of the second study is to understand the impact of the type of lubricant

(oil or grease) for both rigid (and isothermal) and flexible (and nonisothermal) structures. This

comparison study demonstrates that the TTT developed in Chapter 3 is key to the fundamental

understanding of the lubrication mechanism, especially with the presence of a plug space.

Several solution sets from Section 4.7.1 are compared, and the normalized absolute difference

of two sets is shown. For example, any physical quantity f (but not the clearance) of solution

sets a and b are denoted as f [a] and f [b] respectively. The normalized absolute difference is:

δf
[b−a]

= f [b]−f [a]

f̂ [a]
, where f̂ [a] is the normalizing value of f [a]. For the clearance, the relative

difference of c[b] to the undeformed clearance c[a] is equivalent to the Cauchy strain, and is

defined as ε[b−a] = c[b]−c[a]

c[a] , expressed as a percentage.
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Rigid, Isothermal Structure versus Flexible, Nonisothermal Structure

In order to draw a conclusion on the difference between the behavior of the fluid surrounded by a

rigid and isothermal structure and that surrounded by a flexible and nonisothermal structure for

both oil [7-5] and grease [8-6], the normalized absolute difference of the hydrodynamic pressure

δp governing the fluid flow and the resulting mechanical strain ε are shown in Fig. 4.46. In both

cases, the lubricants are nonisoviscous and nonisothermal, and δp is negative, which indicates a

reduction of the hydrodynamic pressure compared to the respective reference case. For both

comparison cases, the maximum relative strain occurs at (xe, z0), which is the location of the

highest pressure. An interesting observation is that the relative shear strain is predominantly

positive for z > z0 and predominantly negative for z < z0, which is an indication of the

nonuniform displacement that is a result of the applied hydrodynamic pressure.
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Figure 4.46: Comparison of δp and ε for various solution sets.
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Figure 4.47: Normalized shear stress difference
δτ [7−5] for an oil-lubricated bearing.
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Figure 4.48: Normalized shear stress difference
δτ [8−6] for a grease-lubricated bearing.

The bearing surface, under applied pressure, deforms and opens up the lubrication gap,

which leads to a significant decrease in pressure, especially for grease. The maximum mechanical

strain is high for both cases, but especially for grease, which confirms the need for taking into
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account the elastic structural deformation. In addition, a particularly critical observation is that

the structural deformation is higher for grease than for oil. This observation is studied in more

detail in the subsequent comparison case. The normalized shear stress difference for the case of

an oil-lubricated bearing is shown in Fig. 4.47, and for the case of a grease-lubricated bearing

in Fig. 4.48. For both cases, the shear stress is mostly lower for z > z0 and greater for z < z0,

which is a consequence of the nonuniform pressure gradient. Nevertheless, the δτ is higher for

grease than for oil, which is primarily due to the presence of a plug space. In addition, for the

case of grease, δτ is constant for z < z0 and y ≥ 0.5c, and negative for z < z0 and closer to the

piston, which is a direct consequence of the presence of a plug space. As the shear stress is

proportional to the heat generation, Fig. 4.48 confirms that an elastic structure has to be taken

into account (especially for grease), in order to correctly quantify the heat generation.

Oil- and Grease-lubricated Bearing

As stated previously, the structural deformation is very different for an oil-lubricated bearing

than for a grease-lubricated bearing. In order to quantify the differences of the hydrodynamic

pressure, the shear stress, and the temperature field for both lubricants, Cases 5 (oil) and 6

(grease) for a rigid and isothermal structure are compared, as well as Cases 7 (oil) and 8 (grease)

for a flexible and nonisothermal structure.

S(1)
p

S(2)
f

c
(2)
+

Position z

Figure 4.49: Normalized pressure difference
δp[6−5] and grease velocity field (rigid, isother-
mal, x = xe).
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Figure 4.50: Normalized pressure difference
δp[8−7] and grease velocity field (flexible, non-
isothermal, x = xe).

The hydrodynamic pressure fields at x = xe = 0.5 are shown in Fig. 4.49 and Fig. 4.50.

In addition, the velocity field for grease is shown in each figure. The detected plug S(1)
p and

fluid S(2)
f spaces are indicated, as well as the shell that delimits both spaces, denoted as c

(2)
+ .

For each case, the pressure for grease is higher than for oil, and for the cases with a flexible

structure, the reduction in the hydrodynamic pressure field can be seen. In addition, c
(2)
+ is

also affected by the deformation of the structure. The plug reduces the clearance between both

contacting surfaces, and a notable observation is that the difference in pressure is reduced once

the structural deformation is taken into account. The normalized shear stress difference δτ
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between grease and oil for a rigid and isothermal structure is shown in Fig. 4.51, and for a

flexible and nonisothermal structure in Fig. 4.52. The shear stress difference δτ is highest on

the piston side, and is positive for z > z0.
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Figure 4.51: Normalized shear stress difference
δτ [6−5] (rigid, isothermal).
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Figure 4.52: Normalized shear stress difference
δτ [8−7] (flexible, nonisothermal).
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Figure 4.53: Normalized temperature difference

δθ
[6−5]

(rigid, isothermal).
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Figure 4.54: Normalized temperature difference

δθ
[8−7]

(flexible, nonisothermal).
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In addition, the shear stress difference δτ varies the most for z < z0. A similar trend is

observed if the flexibility of the structure is considered, but the difference, although mostly

positive, is less pronounced and more homogeneous. In other words, the shear stress is higher

for grease than for oil, which is equivalent to more heat being generated in a grease-lubricated

bearing. The heat generation is overpredicted by omitting the structural deformation, especially

for a grease-lubricated bearing.

The normalized temperature difference δθ is shown in Fig. 4.53 and Fig. 4.54. For the case

of a rigid and isothermal structure, the temperature is lower for grease than for oil for y > 0.25c,

which is attributed to the presence of the plug space. The largest absolute difference, for both

cases (rigid and flexible structure), occurs at the thrust portion. Although δθ is negative or

positive for the case of a rigid and isothermal structure, δθ is strictly positive for the case

of a flexible and nonisothermal structure. In particular, the temperature is highest at the

thrust portion on the piston side. In other words, the temperature is higher for the case of a

grease-lubricated bearing than for an oil-lubricated bearing.

4.7.5 Transient Results

The transient results are shown for an oil-lubricated, rigid and isothermal bearing. In previous

sections, the results for a steady state regime were highlighted. Although a rigid structure is

considered, transient results of a flexible structure would not provide any additional insight to

the lubrication mechanism and how to formulate a solution to the reported overheating problems.

As stated in Section 4.2, the omission of the inertia of the lubricant allows the consideration of

the transient case as a sequence of instantaneous steady states, as shown in Fig. 4.55.

∆t

tftn+1tn−1 tn

t

0 instantaneous
steady state

Figure 4.55: Transient regime - sequence of instantaneous steady states.

Each instantaneous steady state converges after the boundary conditions have been applied

from the previous converged steady state. As the chosen numerical discretization scheme is

implicit (as shown in Section 4.4.3), no conditions on numerical stability have to be considered.

For illustration purposes only and in preparation of Chapter 5, the numerical results are shown

for a simplified compression/extension movement. For convenience, the motion of the piston is

vertical only and is performed during t̂ = 1s, such that UzP = sin(2πt), as shown in Fig. 4.56a.

This motion is sufficient and appropriate for studying the behavior of the lubricant and the

transient heat generation mechanism. As can be seen in Fig. 4.56b, no hydrodynamic pressure

is generated during the extension of the SA (negative UzP ). For repetitive sliding motion, this

lack of hydrodynamic pressure can be considered as the primary cause of the break-down of the

lubrication mechanism, which causes high heat generation. In general, the SA experiences fast
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compression and slow extension, as shown in Section 2.9, for which case a single thrust portion

is appropriate. Nevertheless, for the maneuvers on rough runways, a single thrust portion is not

sufficient. This observation will be further discussed in Section 5.3.
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Figure 4.56: Illustration of transient piston motion.

The transient temperature field (or heat flux field) is not shown, as the temperature field is

highly dependent on the surrounding structure, as shown in Section 4.7.4. Instead, the evolution

of the shear stress (proportional to the generated frictional heat) is highlighted in Fig. 4.56c.

The heat generation is almost zero during stiction (very low sliding velocity). As the transient

motion is implemented as a sequence of instantaneous steady states, the eventual numerical

problems that result from a discontinuity of the friction force as experienced in Chapter 2 are

avoided. For zero hydrodynamic pressure, the heat generation is reduced, and the flow regime is

classified as Couette flow.

Although the transient results are shown for oil, the transient results for grease can be

obtained in a similar way. For grease, the transient hydrodynamic pressure behaves in a similar

manner to the hydrodynamic pressure generated in an oil-lubricated bearing. A study of the

transient birth and death of TT spaces is however not relevant to the study of the break-down

of the lubrication mechanism during extension. For the current bearing design, c,z ≤ 0. In

other words, the previously mentioned break-down is primarily governed by the clearance c,

and is not dependent on the type of lubricant. However, similar to the previous findings of the

steady state difference between an oil- and grease-lubricated bearing, the transient structural

thermal behavior for a grease-lubricated bearing is different than for oil and is dependent on the

lubrication mechanism.

4.8 Summary and Conclusions

The development of a comprehensive model for studying the TEHD behavior of both a rigid (and

isothermal) and flexible (nonisothermal) oil- and grease-lubricated aircraft LG lower bearing is

shown. The TTT developed in Chapter 3 is applied, for which both the fluid and structural

governing equations are solved. In both cases, the physics are coupled through an FSI mapping

technique.

The algorithm governing the TEHD-FSI simulation is detailed, and the characteristic
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staggered convergence procedure is highlighted. Particular attention is placed on the development

of the hybrid numerical solver that is based on the high performance MG method. In addition

to the detailed discretization of the governing equations of the TTT using the FD method,

the numerical inclusion of the boundary conditions is described, in particular how to include

periodicity conditions into a MG solver. The numerical performance of the hybrid numerical

solver is demonstrated for various grid sizes and simulation cases, and an ideal mesh size is

determined from a mesh convergence study. In addition, the Topology Detection Algorithm

(TDA) that is responsible for detecting the shells is shown. The Topology Adjustment Algorithm

(TAA) is developed to guarantee convergence of the detected shells.

The 3D model is used to quantitatively investigate the reported heat damage, with the goal

of understanding the lubrication mechanism and to determine a solution strategy to improve the

performance of a LG lower bearing design. Relevant field variables such as the hydrodynamic

pressure, shear stress, heat flux and temperature fields are plotted for a typical aircraft LG

lower bearing assembly with an eccentric piston.

From a numerical point of view, the simulations of a grease-lubricated bearing need more

global iterations than the simulations of an oil-lubricated bearing, as the presence of TT spaces

make the problem highly nonlinear. As a consequence, the solution times for grease are longer

than for oil. The solution times are also greatly increased by taking into account the structural

behavior, which is a bottleneck in the coupled FSI simulation.

Major findings include that the maximum temperature is not at the mid-plane of the

lubrication gap, and that, if grease was used as a lubricant, a plug space is likely to form at

the thrust portion (low shear stress region) for the LG bearing. If the plug space formation is

not taken into account, invalid conclusions regarding the bearing performance are likely to be

drawn. It has also been found that the temperature is higher for the case of a grease-lubricated

bearing than for an oil-lubricated bearing. Contrary to the Hertzian contact theory, the heat

flux is present around the entire circumference and modified significantly by the presence of a

plug space (insulator).

The numerical code is validated against existing analytical solutions for the case of a vertically

moving piston and is validated against experimental data for the case of a rotating piston.

Nonetheless, the comprehensive model is limited as it is not (yet) validated against experimental

data for an existing LG slider bearing.

Four conclusions can be drawn from this chapter:

Conclusion 1: Full FSI must be considered in order correctly quantify the heat generation,

as the deformation of the lubrication gap yields different pressure and temperature fields. The

structural deformation is higher for a grease- than for an oil-lubricated bearing, and although

the clearance is reduced by the presence of a plug space, the structure deforms such that the

hydrodynamic pressure is reduced more for a grease- than for an oil-lubricated bearing.
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Conclusion 2: Due to the presence of a plug space, the friction coefficient is very different for

oil- and grease-lubricated bearings. For future LG dynamic simulations, performing simulations

for a grease-lubricated bearing is advised in order to correctly determine the friction coefficient.

Conclusion 3: The temperature field at the surface of the piston is noticeably different

from the temperature field at the bearing surface. The heat stagnates on the piston, whereas

the heat diffuses radially and quickly on the bearing side. This asymmetrically distributed

temperature field is likely responsible for the reported uneven heat damage. The calculated

thermal response confirms that the phenomenon of overheating at the lower bearing is a very

localized phenomenon.

Conclusion 4: The transient response is calculated as a sequence of instantaneous steady

states, which is an efficient means of performing transient simulations (inertia of lubricant

omitted) and avoids any numerical difficulties for modeling stiction. For the current bearing

design, no hydrodynamic pressure is generated during extension of the SA, and the lubrication

mechanism breaks down.

The results of the present chapter will be used in Chapter 5 to conceptualize a solution.

Preserving a TEHD lubrication regime during extension and avoiding the escape of the lubricant

from the high pressure zone must be taken into account in a novel bearing design.

�



Chapter 5

Conceptualization and Development

of Solution Strategy

Ideas shape the course of history.

John Maynard Keynes, economist (1883 - 1946)

5.1 Landing Gear Systemic Analysis

In previous chapters, a comprehensive transient TEHD-FSI model of a greased LG lower bearing

that relies on a novel TTT has been given. In order to formulate a solution strategy to remedy

the reported overheating issue, a systemic analysis of the LG system is necessary to determine

the driving factor(s) of the TTM model in a dynamic simulation of the LG. As the computation

times for simulating grease in a coupled dynamic setting are long, the underlying idea is to use

the TEHD-FSI model offline in order to determine the temperature variation and the change of

the BFC under general loads and speeds for a particular bearing configuration and to generate

a response surface (response space). The calculated response of the modified BFC can then be

used to efficiently perform online dynamic simulations without the need of a very costly online

TEHD-FSI simulation.

This approach satisfies the need for efficient aircraft LG dynamic simulations that include

frictional heat generation. The main benefit of this particular approach (offline TEHD-FSI) is

shorter computation times compared to online TEHD-FSI simulations. The systemic analysis

aims to outline the required steps, but does not aim to demonstrate practically the setup of an

offline TEHD-FSI simulation. As shown in [115], a common model of the friction coefficient is

a function solely of the sliding speed: µ = F0(ṡ). This friction model closely follows the laws

postulated by Coulomb and is often used to model mechanical systems, as illustrated in Fig. 5.1.

The LG dynamic simulations are generally performed in a multibody software package (labeled

with �) that makes use of an isothermal and empirical BFC.

116
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Figure 5.1: Block-diagram of the nonlinear dy-
namic LG SA model [32].
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Figure 5.2: On-line TEHD-FSI in a LG dynamic
simulation [32].

In Fig. 5.1, the BFC is independent of the LG bearing configuration C and the loads f . For

simplified LG dynamic simulations (such as shown in Chapter 2) for which the LG components

are all considered rigid, an equivalent lubricated contact can be modeled through an empirical

formulation using a temperature dependency θ of the BFC, cut-off at the dropping point of

grease θ̂: µ = F1(ṡ, θ). In this case, the structural deformations are such that u = 0 and the

loads f are determined using a simplified beam submodel, which allows the determination of the

dry frictional heat fluxes. These are proportional to an empirical BFC. Lubrication of the LG

bearings is modeled indirectly through this empirical BFC. Following [39], the temperature at

the interface can be calculated as being directly proportional to the heat flux: θ̇ ∼ F2(µ, ṡ, f).

As concluded in Chapter 2, a simplified model is not sufficient to accurately capture the

frictional heat energy generation at the lower bearing sliding interface. In Chapter 4, it has been

demonstrated how to capture local effects and the accurate fluid film behavior, which is achieved

by applying the TTT shown in Chapter 3. For the case of dry friction (no lubricant), a dry

BFC that is known for the pair of materials is used. As concluded in Chapter 4, the advantage

of a full TEHD simulation is that the BFC is calculated for a specific bearing configuration, and

specific loads and speeds.

The block-diagram of the integration of the online TEHD-FSI simulation (comprehensive

model of Chapter 4) into a LG dynamic simulation is shown in Fig. 5.2. In general, the TEHD

simulation is a computationally expensive and strongly coupled (or staggered) FSI simulation.

The comprehensive model is generally solved in a different software package or in different

in-house code (labeled with F) than the overall dynamic model, which is usually solved by a

multibody dynamics solver (labeled with �). As highlighted previously, the BFC is impacted the

most by the lubricant’s viscosity, which is dependent on temperature θ, on pressure p (hence on

load f) and on the shear rate γ̇: η = N (θ, f , γ̇(ṡ)). The results shown in Chapter 4 indicate that

the BFC is determined as a function of the operating conditions (structural deformation u and

sliding speed ṡ) and the resulting temperature θ, as well as of the configuration C (materials and

geometry). For elastic and homogeneous materials, the structural deformation u is proportional

to the loads f . The modified BFC generally can be defined as:

µ = F3(ṡ, θ,u(f), C, γ̇) = F4(ṡ, η, C) (5.1)
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In Chapter 4, the separate transient TEHD-FSI simulation (comprehensive model) yields results

for the BFC as a function of the operating conditions. A block-diagram showing the input and

output of the TEHD-FSI simulation is shown in Fig. 5.3.
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Modified
Bearing
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Figure 5.3: Off-line TEHD-FSI numerical simu-
lation (Comprehensive model) [32].
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Figure 5.4: Block-diagram of the LG dynamic
simulation with a modified BFC [32].

As concluded in Chapter 4, the interface temperature is dependent on the sliding speed ṡ

and the deformation u for a particular bearing configuration C:

θ = F5(ṡ,u(f), C) (5.2)

Consequently, Eq. (5.2) yields the change of the BFC as a function of the operating conditions

only. By combining the rheological model, Eq. (5.1) and Eq. (5.2), we have:

µ = F6(ṡ, f , C) = µ? (5.3)

The temperature is implicit and can be determined offline for general operating conditions and

a particular bearing configuration. A different reasoning leads to the same results. The law of

shearing for a Bingham fluid combined with Eq. (5.2), is given as:

µ = F7(ṡ,N (θ, f , γ̇(ṡ))) = F7(ṡ, η) = µ? (5.4)

Eq. (5.4) is hence qualitatively the same as Eq. (5.3). The modified BFC µ? is a functional L of

the sliding speed ṡ and the loads f. The block-diagram of the dynamic LG simulation can be

reduced using the modified BFC (shown in Fig. 5.4) defined by µ? = L(ṡ, f , C). The goal of the

TEHD-FSI simulation is to calculate F4, which in combination with Eq. (5.2), implies that the

temperature depends on the geometry only (the lubrication mechanism, gap or clearance). In

this model, the geometry is given by: C : c = c(x, z). It is critical to mention that an optimal

configuration C can be found such that the temperature at the sliding interface is minimal.

Various solution strategies are discussed in Section 5.2 for the present application of a LG

lower bearing. The systemic analysis, which helped to identify the modified BFC as a function

of the driving factors (see Eq. (5.4)), is shown to be beneficial for determining a promising

solution strategy.
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5.2 Solution Strategies

In order to remedy and avoid the reported problems, the following solution strategies can be

adopted:

1. Allow the heat generation, but focus on improving the heat evacuation.

2. Withstand the heat generation by improving the material characteristics.

3. Reduce the heat generation by reducing the BFC, loads or sliding speed.

Strategy 1: The heat generated and the hydrodynamic pressure depend primarily on the

clearance between the contacting surfaces. In order to address the issues of excessive heat

generation at the lower bearing, several strategies can be considered. Heat can be tolerated and

evacuated from the lower bearing interfaces. This strategy, often used in brake cooling, might not

lead to a significant improvement as the heat generated at the interface is local and, as shown

in Chapter 4, only slowly leaves the TZI. Although materials with higher thermal conductivity

and eventual external cooling could lead to heat evacuation, the structural characteristics of the

system might be changed and the weight of the LG increased. Neither of these two drawbacks

is desired.

Strategy 2: Another strategy is to withstand the heat generation and change the materials

of the contacting surfaces. Although lubricant-free (sometimes referred to as self-lubricating)

bearings might be promising, appropriate materials that tolerate high contact pressures and

withstand excessive heat are not known to be used in aircraft LG lower bearings. They are,

however, used more frequently in other LG joints. This strategy is impractical for the application

of a LG lower bearing, but is sometimes applied in applications using ceramic materials, where

high amplitude shock-loads (rapidly varying pressure) are rare.

Strategy 3: The last and preferred solution strategy is to reduce the heat generation. In a

TEHD lubrication regime, the heat generation is mainly influenced by the clearance between the

contacting surfaces. In the present application, as shown by the systemic analysis in Section 5.1,

the configuration C dominates the design, as the input speeds and loads cannot be changed for

a given rough runway. The configuration C of a bearing is defined by the materials and the

geometry, whereas the materials are generally defined by aerospace standards. Consequently,

the following sections concentrate on changing the geometry in C (in this context, equivalent to

the clearance c), which can be designed for optimal bearing performance.

The practice of optimizing the bearing surface is often referred to as the design of the

lubrication mechanism, which is a highly complex task. The lubrication mechanism is critical to

the design of high efficiency fluid film bearings and is highly application dependent. Unfortunately,

in practice, the lubrication mechanism design is often neglected, not only because of time

constraints, but mainly because of the longer engineering time, which has a detrimental effect

on unit production cost. As the most promising solution strategy is the optimization of the

lubrication mechanism, the desired lubrication mechanism characteristics need to be formulated

first, before an optimization problem can be mathematically formulated.
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5.3 Desired Lubrication Mechanism Characteristics

As explained in Section 5.2, the preferred solution strategy is to optimize the lubrication

mechanism. As shown in Chapter 4, the hydrodynamic pressure profile is similar for both

oil- and grease-lubricated bearings, but the maximum value is different. In order to simplify

the discussion, the hydrodynamic pressure profile for an isoviscous, oil-lubricated, rigid and

isothermal bearing is shown in Fig. 5.5 (solution Set 3 from Section 4.7.1). As can be seen in

Fig. 5.6, the actual pressure profile has a single pressure peak along the circumference, positioned

at the normalized eccentricity position xe. The lubricant escapes from this high pressure zone,

which causes a low clearance (film, thickness) that barely supports the load, and hence leads

to excessive heat generation (as shown in Chapter 4). The underlying idea is to separate the

pressure peak into two distinct peaks, such that the desired pressure profile hinders the lubricant

from escaping the high pressure zone. In order to further analyze the fluid flow behavior in the

lubrication gap, the normalized components of the pressure gradient ∇p, which governs the

fluid flow, are shown in Fig. 5.7a and Fig. 5.7b respectively.

Figure 5.5: Pressure contours and streamlines.

p̄

x̄
0 1

Actual pressure profile

Desired pressure profile

x̄e

Figure 5.6: Actual and desired profile of p (z =
z0).

The circumferential pressure component p,x is negative for decreasing values of x and positive

for increasing values of x, which indicates that the lubricant is escaping circumferentially. In

addition, p,x is zero around xe, which indicates a circumferential stagnation line. The vertical

pressure component p,z indicates that the pressure gradient acts against the fluid flow for z < z0,

but forces the fluid flow to escape vertically for z > z0. This driving force vanishes for z ' z0.

The norm of the pressure gradient is shown in Fig. 5.7c, and indicates a localized region of high

pressure force for z < z0. In addition, the norm of the pressure gradient changes rapidly around

(xe, z0), which suggests a saddle point of the pressure gradient.

A saddle point is a stagnation point of the fluid flow, and this saddle point can be found

using the Laplacian of the hydrodynamic pressure, shown in Fig. 5.7d. The Laplacian is defined
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as the divergence of the pressure gradient field such that ∇2p = ∇ ·∇p, and yields the spatial

variations of the hydraulic force (peaks of forces). The sinks and sources of the pressure gradient

are distributed around the saddle point.
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Figure 5.7: Pressure gradient and Laplacian (oil, solution Set 3).

In order to reduce the heat generation, the aim is not to increase the hydrodynamic pressure,

but to reduce the pressure gradient, as ∇p is directly proportional to the heat source term. In

other words, less heat is generated with a lower pressure gradient.

The strategy of optimizing the lubrication mechanism has been applied successfully in [116],

but their design is based on a novel wave bearing design for rotational motion, and their

numerical model is 2D, hence not making the findings applicable to the LG lower bearing.

In [117], a similar study for optimizing the lubrication mechanism has been performed, but the

study only includes multilobe, pressure dam and tilting pad bearings. The results are provided

for rotating machinery only, and are not applicable to the current configuration of a LG slider

bearing.
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Figure 5.8: Parametric bearing shape (highlighted areas represent physical removal of material).

As shown in Fig. 5.6 and confirmed by the shape of ∇p and ∇2p, the solution strategy

(Strategy 3) is achieved by separating the pressure peaks and preserving the lubricant in a
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pocket, allowing for a cushion of grease to form, as shown in Fig. 5.8. Grease in pockets is not

sheared enough to flow, and remains stationary in a pocket, preserving a lubricated contact.

Similarly, oil is trapped inside a pocket, only escaping under increased pressure. The cushion is

positioned opposite to the forward motion of the aircraft where the reported damage occurred

(around xe).

In addition to the cushion design, the optimized bearing design includes a secondary thrust

portion, as is suggested in Section 4.7.5. In the current configuration and as shown in Fig. 4.56b,

a hydrodynamic pressure is generated only during compression, and not during extension.

Although the bearing is likely to partially cavitate with the presence of a second thrust portion,

it is this second thrust portion that allows for the generation of a hydrodynamic pressure during

extension. In the current configuration, the fluid film is likely to break down during extension.

Although the sliding speed during extension is lower than during compression (because of the

SA damping), the lubrication regime changes from hydrodynamic to mixed. By introducing a

secondary thrust portion, a full TEHD lubrication regime can be preserved in both compression

and extension, hence reducing the heat generated.

Although this engineering design problem may be solved using a reverse solution technique to

obtain the lubrication mechanism for a given pressure profile, it is the fact that multiple objectives

need to be satisfied that defines the lubrication mechanism design problem as a multi-objective

optimization problem. This optimization study with the objectives of a maximized bearing load

capability and minimized heat generation is given in Section 5.5 for a rigid, isothermal and

oil-lubricated bearing.

5.4 Analytical Film Thickness (Cushion Thickness)

The clearance of the novel bearing design discussed in Section 5.3 can be seen as a physical

removal of material along the circumference. Analytically, the clearance is determined from the

intersection of two circles. The undeformed, nonmodified clearance is given in Section 4.3.2.

The modified film thickness is given as:

c(x, z) = c̆z(z) + e · cos (φ+ φe) + cg (δg, αg) (5.5)

where cg (δg, αg) is the cushion thickness and c̆z(z) the vertical bearing profile that includes the

second thrust portion. The analytical expression of cg is derived as:

cg (δg, αg) =

δg · cos
(

π
2αg

φ
)
−αg ≤ φ ≤ αg

0 elsewhere
(5.6)

where φ = xR−1
P . The half-angle of the cushion αg is given by:

αg = tan−1

(
u′
−1
√

4u2
XR
′
c
2 − u′2

)
(5.7)

where u′ = u2
X −R2

P +R′c
2, R′c is the inner radius of the bearing, RP the radius of the piston
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and uX|Y the displacement of the virtual cushion circle in X and Y directions respectively. For

the engineering design optimization shown in Section 5.5, uY = ey = 0 and uX = δg + c0 + ex.

5.5 Engineering Design Optimization

Several parameters shown in Table 5.1 are studied to find a higher performing lower bearing

profile. The parameters RP , R′c and L are considered to be fixed for an existing bearing, as

their sensitivities have been extensively studied in the literature [114].

0 < z0, z′0 < 0.4 Normalized primary and secondary thrust position

0 < α0, α′0 ≤ 1 Normalized primary and secondary cushion thrust angles

0 ≤ δg ≤ 0.362 Normalized cushion thickness

Table 5.1: Independent parameters for novel lubrication mechanism.

For the present engineering optimization study, a single normalizing parameter is defined as

ς = z0 · tanα0. For a vertically symmetric geometry case (i.e., for similar compression/extension

speeds of the SA), z0 ' z′0 and α0 ' α′0. Consequently, only three independent parameters have

to be studied: z0, α0 and δg. In Chapter 4, the differences between an oil- and grease-lubricated

bearing have been investigated, and it has been found that eventual TT spaces within grease

can be predicted by studying an oil-lubricated bearing; therefore, the engineering optimization

study is performed for an oil-lubricated bearing only (isothermal and rigid structure). It has

been found that a plug space is likely to form for large cushion thicknesses. The performance of

an oil-lubricated (nonisothermal, flexible structure) bearing is evaluated in Section 5.6.1.

In order to determine the most appropriate cushion thickness for the novel bearing design

presented in Section 5.3, the load wy as well as the shear stress τ (proportional to the heat gen-

eration) are studied for the novel bearing lubrication mechanism. Consequently, the engineering

optimization study can be seen as multi-objective, and a Pareto analysis is performed under

constraints. Both multi-objective functions are normalized by their respective maximum for the

case of a bearing without a cushion (δg = 0) such that:

Ξw = −wy|δg ·max−1
(
wy|δg=0

)
, Ξτ = τ |δg ·max−1

(
τ |δg=0

)
(5.8)

As the main goal is to obtain a maximized load capability and a minimized heat generation,

and in order to define a minimization problem, the ratio Ξw is defined negatively. The optimal

bearing configuration with the highest load capability and lowest heat generation is obtained by

the minimization of both normalized multi-objective functions:

Ξ
∗

= min
z0,α0,δg

[
Ξw Ξτ

]
s.t. 0 < z0 ≤ 0.4 and 0 < α0 ≤ 1 and 0 ≤ δg ≤ 0.362 (5.9)

The multi-objective optimization problem is solved with a popular Evolutionary Algorithm

(EA) in order to obtain a set of Pareto optimal solutions, as given in Section 5.5.1. The

engineering optimization study is performed for two different gap configurations: a clearance

with a cushion and one thrust portion (Gap 1), and a clearance with a cushion and a second
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thrust portion (Gap 2). The normalized objective vector components are given for various values

of δg. For both gaps, the normalized load values Ξw are shown in Fig. 5.9 and Fig. 5.10 as a

function of z0 and α0. Similarly, for both gaps, the normalized shear stress values Ξτ are shown

in Fig. 5.11 and Fig. 5.12. The shape of the optimization functions is convex, suggesting that a

scalar and weighted optimization function is very difficult to define.

Figure 5.9: Normalized multi-objective function
Ξw (Gap 1).

Figure 5.10: Normalized multi-objective func-
tion Ξw (Gap 2).

Figure 5.11: Normalized multi-objective func-
tion Ξτ (Gap 1).

Figure 5.12: Normalized multi-objective func-
tion Ξτ (Gap 2).
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5.5.1 Pareto Analysis and Genetic Algorithm

The goal of the Pareto Analysis is to determine a Pareto optimal solution set such that both

objectives are in optimal equilibrium, that is, that neither of the two objectives can be improved

without degrading the other. As the two objectives of the engineering optimization problem

are different, the chosen method is to use the commonly used Non-dominated Sorting Genetic

Algorithm-II (NSGA-II).

The present optimization study has been performed using the gamultiobj function within

MATLAB, which is an implementation of a variant of the NSGA-II algorithm. This variant

is classified as a controlled elitist algorithm [118], which not only attributes a higher fitness

value to better solutions, but also favors individual solutions that increase the diversity of the

solutions set, which helps the convergence of the algorithm to an optimal Pareto set.

Although the speed of the optimization algorithm is low, the chosen algorithm serves the

purpose of determining a Pareto solution set in a reasonable time. The default parameter

settings of the implementation within MATLAB have been chosen. As the NSGA-II algorithm is

a stochastic algorithm, and in order to obtain a representative Pareto solution set, the algorithm

is run 20 times consecutively.
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Figure 5.13: Mean silhouette values and silhouette plots.

The most challenging stage of a multi-objective optimization is the decision stage for

determining the best Pareto solution [119]. Several techniques exist, but for the engineering

optimization study at hand, the data clustering method is performed on the Pareto solution

set. As shown in [120], the clusters are calculated with the well-known k-means++ partitioning

algorithm, which is used to minimize the Euclidean distance to the center of the cluster k. Based

on the mean silhouette value as a function of k for both gaps, the optimal cluster configuration is

k = 2 (see Fig. 5.13a). The higher the silhouette value, the tighter the data are grouped around

the center of the cluster and the better the cluster separation. In other words, the quality of the

cluster is given by the silhouette value. The silhouette plots, which are used to determine the

appropriate number of clusters, are shown in Fig. 5.13b and Fig. 5.13c.



Chapter 5. Conceptualization and Development of Solution Strategy 126

5.5.2 Post-Pareto Analysis and Optimal Configuration

For each gap, the cluster plot is shown in Fig. 5.14 and Fig. 5.15 respectively. It has been found

that the optimal configurations are all such that α0 ' 1. In addition to the cluster data points

(Pareto optimal solution set), the centers of the clusters are shown. The advantage of grouping

the Pareto solution set into clusters is that the decision of the optimal configuration can then

be made among a few distinct solutions.

1

2

Figure 5.14: Pareto optimal solution set and
clusters (Gap 1).

1

2

Figure 5.15: Pareto optimal solution set and
clusters (Gap 2).

Although the calculated solutions are Pareto optimal, they are not necessarily optimal from

an engineering point of view.

k z0 α0 δg Nk

Gap 1 : One thrust portion 1 0.190 0.992 0.130 232

2 0.348 0.992 0.319 90

Gap 2 : Two thrust portions 1 0.351 0.986 0.182 185

2 0.204 0.986 0.032 135

Table 5.2: Pareto optimal configurations.

The normalized clearance c0/ς = 0.317 as well as the normalized eccentricity e/ς = 0.09 are

shown in Fig. 5.14 and Fig. 5.15, which form the engineering physical limits the feasibility of

the solutions. Although δg can be smaller than the eccentricity of the piston, the clearance

between the bearing and the piston would be extremely low, and a full TEHD regime would not

be guaranteed. If δg was larger than c0/ς, the clearance would be larger than the mechanical

tolerances of the lower bearing assembly. The normalized coordinates of the centers of the

clusters are shown in Table 5.2, where Nk is the number of Pareto solutions in cluster k. In

addition, the optimal solution, which is the center of the cluster and found within the engineering

limits, is identified.
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5.6 Novel Lubrication Mechanism Analysis

5.6.1 Thermo-Tribomechanical Performance Study

The engineering optimization study shown in Section 5.5 provides an optimal solution for

reducing the heat generation and maximizing the load capability of the bearing, but in order

to confirm the optimal solution, a performance analysis of the novel bearing design is done.

The performance analysis is shown for an oil-lubricated bearing (nonisothermal and flexible

structure) for the two considered clearances (Gap 1 and Gap 2), and compared to the existing

design shown in Section 4.7.1 (solution Set 3, denoted as the reference case).

(a) p (ref.) (b) p (Gap 1) (c) p (Gap 2)

Figure 5.16: Hydrodynamic pressure contours and streamlines.

The hydrodynamic pressure contours and streamlines are shown in Fig. 5.16, and the reference

pressure is shown in Fig. 5.16a. One primary pressure peak as mentioned in Chapter 4 is clearly

identifiable. For both cases (Gap 1 and Gap 2), two pressure peaks exist in the hydrodynamic

pressure field, and are separated from the eccentricity position xe by the angle of the cushion

2αg. Although the total load is reduced, it is the separation of the pressure peaks that is of

interest in order to avoid the fluid escape from the high pressure zone noted in Section 5.3.

A similar pressure peak separation is shown in Fig. 5.16c. However, the bearing cavitates for

z > z0. Cavitation is not desirable, and is a direct consequence of a second thrust portion. In

order to avoid cavitation, the bearing length should be increased for a second thrust portion.

In order to understand the lubrication mechanism of the optimized bearing design, the

normalized components of the pressure gradient shown in Fig. 5.17 are compared to the reference

bearing shown in Fig. 5.17a and Fig. 5.17d. With the separation of the pressure peak, the pressure

gradient changes significantly. As desired, the circumferential pressure gradient component p,x

shown in Fig. 5.17b indicates that the lubricant is contained within the cushion and is hindered

(opposite p,x to the direction of fluid flow) from escaping. A similar cushion effect is observed

when a second thrust portion is present, as shown in Fig. 5.17c.

The normalized vertical pressure gradient components are shown in Fig. 5.17e and Fig. 5.17f.

The separation of the pressure peaks has a significant effect on p,z, which is reduced for Gap 1.

Due to the encountered cavitation for Gap 2, p,z is higher. The net effect of the thrust portion
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and the separation of the pressure gradient on the fluid behavior can be understood by analyzing

the norm of the pressure gradient and the Laplacian of the pressure, which are shown in Fig. 5.18.

Compared to the reference case, ∇2p is lower at the thrust portion for Gap 1 and Gap 2, which

indicates that the cushion thickness has a significant effect on the driving force ∇2p.
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Figure 5.17: Normalized components of the hydrodynamic pressure gradient ∇p.

For the reference case, the Laplacian indicates one saddle point, whereas for Gap 1 and

Gap 2, two saddle points appear and the Laplacian is significantly increased, indicating a higher

variation of ∇p.
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Figure 5.18: Norm of the pressure gradient |∇p| and Laplacian ∇2p.

The velocity field in the lubrication gap is shown in Fig. 5.19 for the compression of the

SA. The recirculation zone occurs at the primary thrust portion for the reference case as well

as for Gap 1 (see Fig. 5.19a and Fig. 5.19b). However, for Gap 2 as shown in Fig. 5.19c, the

recirculation zone is not present at the secondary thrust portion, because the bearing cavitates.

Instead, the velocity profile is similar to Couette flow.

(a) v (ref.) (b) v (Gap 1) (c) v (Gap 2)

Figure 5.19: Normalized velocity field v.
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Figure 5.20: Normalized shear stress field τ
(Gap 1).
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Figure 5.21: Normalized shear stress field τ
(Gap 2).
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Figure 5.22: Normalized temperature field θ
(Gap 1).
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Figure 5.23: Normalized temperature field θ
(Gap 2).

In addition to v, the clearance profile can be seen in Fig. 5.19. The cushion effect is clearly

visible, as the defined cushion thickness ’eliminates’ the eccentricity of the piston. The normalized

shear stress field τ is shown in Fig. 5.20 for Gap 1 and in Fig. 5.21 for Gap 2. Although the

shear stress for both cases is low at the thrust portion, where a plug space is likely to form (as
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described in Section 4.7.2), the overall τ (proportional to the heat generation) is lower for Gap 2

than for Gap 1, but locally higher for Gap 2.

The shape of θ is similar for both gaps. The temperature is higher on the piston side than

on the bearing side. However, θ is lower for Gap 2 than for Gap 1, which is essentially due to

a lower pressure gradient and a cavitating bearing. In order to understand the effect of the

heat generation on the temperature field (for the instantaneous steady state), the normalized

temperature field θ is shown in Fig. 5.22 and Fig. 5.23 for Gap 1 and Gap 2 respectively. In

order to demonstrate the desired effect of a reduced temperature field and shear stress field, the

novel lubrication mechanism is compared to the current bearing design in Section 5.6.2.

5.6.2 Comparison to Current Bearing Design

The hydrodynamic pressure difference between Gap 1 and Gap 2 and the current bearing design

is shown in Fig. 5.24 and Fig. 5.25 respectively. The normalized difference is negative for both

cases, suggesting that the hydrodynamic pressure in the novel bearing design is less than that in

the current bearing design (reference case). Although the maximum hydrodynamic pressure is

reduced, the load capability is similar to that of the lubrication mechanism of the reference case,

as the pressure at both vertical ends of the bearing is higher than for the reference configuration.

In addition to a reduced pressure peak, the position of the maximum pressure is different for

both Gap 1 and Gap 2, which is an effect of the second thrust portion. In particular, for Gap 2

(shown in Fig. 5.25), the pressure is significantly reduced for z ' 0.5, which is the vertical

position of cavitation.

Figure 5.24: Normalized hydrodynamic pres-
sure difference (Gap 1 - ref.).

Figure 5.25: Normalized hydrodynamic pres-
sure difference (Gap 2 - ref.).

The normalized shear stress difference (proportional to the heat generation) between the

novel bearing designs and the reference case is shown in Fig. 5.26 and Fig. 5.27. For both

lubrication mechanisms, the shear stress is reduced on the piston side, and slightly but locally

increased on the bearing side. In particular for Gap 2, the heat generation is significantly
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reduced under the second thrust portion, which is a consequence of the vanishing pressure.

Although the shear stress is reduced, it is the temperature field difference that is of particular

interest, because it confirms that the novel lubrication mechanism has a significant effect on

reducing the temperature.
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Figure 5.26: Normalized shear stress difference
(Gap 1 - ref.).
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Figure 5.27: Normalized shear stress difference
(Gap 2 - ref.).

The temperature difference between Gap 1 and Gap 2 and the reference case is shown in

Fig. 5.28 and Fig. 5.29 respectively. For both cases, the temperature difference is negative,

which indicates a reduction in temperature, especially on the piston side. Most significantly,

the temperature difference is higher and negative for Gap 2. Although the temperature on

the bearing side is only slightly reduced, it is the significant reduction of the temperature

on the piston side that is particularly important, because the reported heat damage occurs

predominantly on that side.

The reduced temperature in the novel bearing design is shown for the instantaneous steady

state. The temperature field at the lower bearing assembly after an aircraft ground maneuver

on a rough runway is significantly reduced with the novel bearing design, as the transient

temperature rise is an additive sequence of instantaneous steady states. The results are for

oil, as the differences between oil and grease are similar in the new bearing design as shown in

Chapter 4. For thick cushions (e.g., δg > 0.25), a plug space is likely to form within the cushion

space. This storage of semisolid grease restricts the clearance, which has a similar effect as the

plug space at the primary thrust portion identified in Chapter 4. The optimization results could

change if other engineering design and manufacturing factors, such as production costs, are

included in the optimization study. Further investigations would determine the importance of

these other factors.
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Figure 5.28: Normalized temperature difference
(Gap 1 - ref.).
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Figure 5.29: Normalized temperature difference
(Gap 2 - ref.).

5.7 Summary and Conclusions

In this chapter, a conceptualized solution strategy is developed for efficiently including frictional

heat generation and thermal effects in aircraft LG dynamic simulations (e.g., for landing and

taxiing) without the need for online and costly thermal simulations. A methodological framework

is developed using block-diagrams and functional analysis.

The systemic analysis led to the identification of a functional that yields the BFC as

a function of the operating conditions and bearing configuration. The temperature at the

lower bearing interface is found to be implicit and can be determined offline for a particular

bearing configuration. As the bearing materials are defined by aerospace standards, the bearing

configuration can be seen as equivalent to the clearance (or lubrication mechanism) between the

lower bearing and the piston.

In order to conceptualize a solution to the reported overheating issues, three relevant solution

strategies are considered: allow, withstand or reduce the heat generation. For a LG, reducing

the heat generation by modifying the lubrication mechanism is the most promising strategy.

The novel lubrication mechanism includes a second thrust portion to guarantee a TEHD

regime for both the compression and extension of the LG SA. In addition, the novel lubrication

mechanism includes a cushion to eliminate the eccentricity of the piston (caused either through

manufacturing or through the application of the external load) and avoid the escape of the

lubricant from a high pressure zone.
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As multiple goals must be satisfied to determine the optimal design parameters of the novel

lubrication mechanism, a Pareto analysis is used to determine, by using the NSGA-II algorithm,

a set of Pareto optimal solutions. These solutions are then grouped into clusters using the

k-means++ algorithm in order to determine the best Pareto optimal solution. Once the optimal

solution has been determined under the practical constraints as shown in Section 5.5.2, the

results of a TTM performance analysis are shown for a flexible and nonisothermal oil-lubricated

bearing. Three major findings are:

Finding 1: The shear stress, which is proportional to the heat generation, is significantly

reduced for the novel lubrication mechanism compared to the current mechanism.

Finding 2: Cavitation occurs for a second thrust portion. In order to avoid cavitation, the

bearing length should be increased for a second thrust portion. This is necessary in order to

guarantee a TEHD regime during transient motion.

Finding 3: For the novel lubrication mechanism that includes a cushion, the hydrodynamic

pressure is reduced, but the total generated load is preserved. The pressure peak identified in

the current bearing design is split into two pressure peaks, hindering the lubricant from escaping

the region of highest pressure.

Based on these findings and the attained goal of reducing the heat generation and lowering the

temperature, the proposed novel bearing design is promising for engineering higher performing

aircraft LG lower bearings in the future. Nevertheless, a more detailed engineering analysis is

needed in order to practically implement the proposed design.

�



Chapter 6

Conclusions and Recommendations

Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

Winston Churchill, politician (1874 - 1965)

6.1 Summary and Conclusions

A TTM model of an aircraft LG is developed to fundamentally understand the thermal behavior

of the LG SA. When maneuvering, landing or taking-off on rough runways, a commercial aircraft

typically encounters high piston sliding velocities and, in combination with high drag loads,

excessive heat generation at the bearing sliding interface leads to damaged chrome coating on

the piston and thermal damage on the bearing surface. Commercial airlines have reported severe

issues on the MLG, such as piston cracks and SA oil and lubricant loss. Previous studies have

postulated the root cause to be the overheating of the lower bearing due to frictional heating;

quantitative investigations have not delivered plausible results or sufficient explanations of how

and why excessive heat generation occurred.

While overheating problems have been studied and solved for machine elements such as

rotational bearings or components of automobiles, no studies have satisfactorily considered

aircraft LG overheating. In addition, although the LG system is counted among the most critical

components of an aircraft, extensive thermal (or TTM) studies of the LG SA are usually not

performed as part of the engineering process. The LG is designed to withstand high loads and

perform when maneuvering, landing or taking-off on smooth runways, but is not designed to

perform well on rough runways. Two goals address the reported heat damage. The first goal is

to understand the overall thermal behavior of a LG SA, and in particular, the transient heat

generation process in a grease-lubricated LG SA bearing. A numerical model is essential for

theoretical understanding, but is not sufficient for formulating strategies to solve the reported

overheating problems; consequently, the second goal is to conceptualize and develop a solution

strategy.

134
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To the best of the author’s knowledge, this thesis is the first comprehensive study in the

area of LG TTM. Eight contributions to the research in the area of TTM modeling are:

1. Understanding of the overall TTM behavior of the LG SA

Although the root cause of the reported overheating is postulated to be at the lower bearing, the

overall thermal behavior of a LG SA was unknown. Therefore, it is essential to understand the

location and magnitude of the heat sources and sinks within the LG from a global point of view.

The TTM model is defined and subdivided into three parts (thermo-, tribo- and mechanical-

subsystems). The complete system must be considered in a transient regime, as the dynamic and

thermal responses are closely related. The overheating occurs in a localized region, called the

TZI, which confirms the root-cause theoretically and also confirms the need for a comprehensive

model of the lower bearing interface.

2. Determination of critical parameters in the TTM model

A sensitivity study shows that the maximum heat flux is not sensitive to a change in WOG.

Contrary to common belief, the contact pressures are higher for a higher WOG, but as the

stiffness of the LG SA is nonlinear, the piston sliding speed is reduced; consequently, the heat

flux (product of the contact pressure and the piston sliding speed) is also reduced. In addition,

the heat flux at the lower bearing is most impacted by the runway amplitude, and not the

runway bump wavelength.

3. Development of a novel tribotopological theory

As the LG SA overheating must be modeled in a transient regime and as the lubricant is

multiphasic and non-Newtonian, one of the only known numerical methods is full CFD that

solves the transient Navier-Stokes equations. However, the computational cost is so high for

non-Newtonian transient lubrication simulations that it is impractical to obtain a solution for

the case of an aircraft maneuvering on a rough runway. Other theories, including the classical

lubrication theory, are based on the Reynolds equation, which is only applicable for a uniphasic

and Newtonian lubricant. The TTT, falling between the classical lubrication theory and the

Navier-Stokes equations solved with the CFD method, modifies the classical lubrication theory

by deriving a modified Reynolds (TTR) equation, and takes into account the advantages of CFD

(such as cavitation and a multiphasic lubricant). The TTT is not only essential for understanding

the heat generation within the lubricated lower bearing, but is necessary for determining the

transient TTM behavior of a grease-lubricated LG lower bearing.

4. Definition of tribotopologies for high numerical performance

The TTT is based on tribotopologies derived from a scalar threshold value. The defined TT

spaces are surrounded by shells that englobe the various physical phases of the lubricant. For

example, the semisolid phase is denoted as a plug space, and the disintegrated phase (or dry

phase) is denoted as a dry space. The virtual tribotopologies have a huge positive impact on the

computational speed of the velocity profile and the hydrodynamic pressure. In combination with
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high-performing numerical methods, they provide a unique method for solving the governing

equations derived from conservation laws. It has been demonstrated that the TTT is an extension

of existing theories.

5. Development of a hybrid solver for the governing equations of the TTT

As the TTR equation is a 2D parabolic PDE with variable and nonlinear coefficients (circumfer-

ential and vertical directions), the only known iterative method that allows for fast solution

times is the MG method. Similarly, the energy equation is reduced to a 1D parabolic PDE

(radial direction). As the dimensionality of both governing equations is different, a hybrid solver

based on the MG method is developed and implemented. A performance analysis shows that

the numerical method provides results efficiently for both oil- and grease-lubricated bearings.

The code has been verified and validated against analytical solutions and existing test data.

6. Integration of the TEHD-FSI code into a commercial FE package (ANSYS)

The detection and convergence of the tribotopologies is a critical algorithm and is kept as simple

as possible to avoid affecting the speed of the overall convergence of the numerical code. The

numerical simulation is the result of a unique TEHD-FSI integration. The TEHD code is tightly

integrated into commercial FE code, and the FSI algorithm relies on shared memory, contrary

to conventional co- or coupled simulations. This allows for very efficient fluid-structure data

mapping and the exchange of data between the TEHD code and ANSYS.

7. Development of a comprehensive transient model of the lower bearing interface

The comprehensive model is a detailed numerical model of the lower bearing slider interface

and relies on the TTT. The model assumptions allow the transient simulation to be seen as

a sequence of instantaneous steady states, which is an efficient means of performing transient

TEHD-FSI simulations; consequently, the focus is on the steady state results. A plug space

forms at the thrust portion, significantly affecting the friction coefficient. In addition, full FSI

must be considered in order to correctly quantify the heat generation. Although application

dependent, the temperature on the piston side is higher than on the bearing side, which explains

the reported unevenly and asymmetrically distributed heat damage.

8. Development of a novel lubrication mechanism

The comprehensive model based on the TTT is a powerful tool that allows for the conceptual-

ization and development of a solution strategy. Several solution strategies are considered, and

a simple yet efficient way of reducing the heat generation is to modify the clearance between

the piston and the lower bearing by introducing a cushion, allowing for the retention of the

lubricant in a pocket and hindering it from escaping. In addition, in order to avoid a break-down

of the TEHD regime, a second thrust portion is added, preserving the TEHD regime during

compression and extension of the SA. A multi-objective optimization study shows that the

proposed modifications of the lubrication mechanism have a beneficial effect on the reduction of

the temperature in the TZI.
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The TTM model can be integrated into existing LG dynamic simulations in order to design

higher-performing future aircraft LG. The proposed solution to the overheating problem - the

novel lubrication mechanism - alters the TTM behavior of the LG such that the reported heat

damage is unlikely to occur when operating on rough runways.

6.2 General Applicability

Although this thesis focuses on developing a TTM model for aircraft LG, and in particular on

explaining phenomena only occurring while operating on rough runways, some concepts and

methods are intentionally kept as general as possible to be of use for other research communities.

Several new methods described in this thesis might be of use to modeling, in a more general

sense, any mechanical systems, especially grease-lubricated systems, that undergo rapid transient

translational or rotational motion with high loads and load variations. For instance, such systems

can be found in the sector of heavy machinery and energy generation installations.

The analytical method of defining the system and identifying the response of complex

mechanical systems such as the LG can be applied to other mechanical systems that are

dominated by all three subsystems or any combination of a mechanical, tribological and thermal

subsystem. Such systems can be found in any branch of engineering and can be of any scale.

The tribotopological theory has been derived for grease in general, and can be applied to any

other grease-like lubricant. As the number of physical phases of the lubricant is not limited, the

TTT can be applied to any other lubricant or thin film exhibiting electro- or magneto-rheological

phases. This can be particularly interesting for the development of smart lubricants. The

concept of tribotopologies is not specific to lubrication problems. For instance, the concept

might well be applied to analyze live traffic, as outlined in Chapter 3.

The numerical approach has been detailed in a general way, and can be applied to solve

governing equations of the same type as those of the TTT. The numerical approach relies

on coupling multiple fields of physics together in an efficient way, in particular to achieve

convergence in a staggered manner. The hybrid solver based on the MG method is applicable

for determining a solution to lubrication problems. The memory is shared between the fluid and

structural code, which might be of particular interest for the development of FE/CFD software

in order to accurately and efficiently simulate multiphasic thin films in a transient way.

6.3 Limitations and Recommendations for Future Research

Although the model development steps are extensive, there are some limitations. The TTM

model development only sets the stage for further research. The novel TTT is derived for the

general case of an oil- and grease-lubricated bearing and has been applied to the slider bearing of

a specific aircraft LG, but is more widely applicable and has been prepared to be applied to other

non-Newtonian or smart lubricants. Although it has been demonstrated that the TTT is an

extension of the classical lubrication theory, eventual recirculation effects are not included (zero

velocity gradient across the lubrication gap), and may need to be considered if deep groves were
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included in the lubrication mechanism. Future research in the following areas is recommended:

1. Advanced Numerical Development

The results retrieved from the comprehensive model are valid only for a slider bearing. Although

the TTT has been validated for journal bearings, no results have been retrieved for this

configuration and setup, and some numerical adaptations may be necessary (e.g., convergence

relaxation parameters).

The convergence procedures as well as the TTT have been developed in order to overcome the

challenge of TEHD simulation being a bottleneck in a transient TTM model. The current TDA

relies on a basic root finding algorithm and is appropriate for the application at hand, but might

not be for studying different applications. Under different operating conditions, the current

TDA might eventually become numerically unstable, with convergence of the tribotopologies not

achieved, limiting the applicability of the TEHD-FSI software. A different isosurface detection

algorithm based on the Marching Cubes algorithm would likely provide higher robustness,

reliability and stability of the numerical code.

In this thesis, the computational grid used for solving the governing fluid equations is

uniform. Nonuniform grid generation methods shown in [121] would likely help to achieve faster

convergence, especially when TT spaces are present. The mesh is currently globally refined in

order to accurately capture the TT spaces. Adaptive grids with local refinements at the shells

(mesh squeezing) are a promising way of reducing the total number of nodes, and speeding

up convergence. During the simulations, the structural solver is a bottleneck due to the fact

that serial code dictates the number of processors used (in this case, the TEHD code). The

TEHD-FSI code could be parallelized to take advantage of multiple cores and speed up the

process. Parallelization can initially be achieved by forcing the TEHD code to run on a single

processor, and the FE code on multiple processors.

2. Birth, Growth and Death of Overlapping Tribotopologies

In the TTT, multiple spaces could co-exist and overlap each other. After long transient runs,

there is a possibility for dry spaces to be born and grow. The birth of dry spaces marks a local

disintegration of the lubricant. The growth of dry spaces is not relevant for the understanding

of the heat generation mechanism, but might contribute to the explanation of heat damage. As

the disintegration of the lubricant is an irreversible process, the death of dry spaces (equivalent

to the regeneration of the lubricant), contrary to the death of plug and fluid spaces, would never

occur. In addition, the tribotopologies might be overlapping, for example, with the dry spaces

dominating a plug space. The growth and death of various TT spaces would allow for the study

of the mechanism of grease disintegration (’burning’ of the lubricant), providing valuable insight

into the limits of operation. These simulations would be application specific.

3. Experimental Validation of the Numerical Model

The numerical model is validated against existing experimental test data for rotational motion

and oil and against existing analytical solutions for slider bearings. However, as experimental data
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of a LG slider bearing are not available, the model development consists of a partially validated

theoretical framework, and an experimental validation of the numerical code is important and

needed. A validated numerical code would pave the way for the integration of the numerical

TEHD-FSI code into an industrial environment.

4. Additional Real-life Applications

The TTM model is a representation of a specific LG lower bearing. Several assumptions of

the model allowed for the development of numerical code that can be used to study real-life

applications. Several other factors may have an effect on the TEHD solution. For instance,

the roughness of the surfaces in contact could be included to obtain similarly-shaped, but

closer-to-reality solutions. Grooves that are usually present in bearings could also be included to

simulate the spread of the lubricant within the bearing. Sealing elements such as rubber seals

that preserve the oil within the LG SA and prevent external dust from entering the lubrication

mechanism have been omitted, as the sealing material behaves fundamentally differently than the

surrounding structure. The seals contribute to the overall friction force and could be included.

In the comprehensive model, the applied external HTC is constant. For an aircraft accelerating

(or decelerating) during take-off and landing, the application of a position- and time-varying

HTC from a full CFD simulation would be necessary for capturing the external heat removal

more accurately by taking into account the eventual turbulence around the LG SA.

In the current model, the loads are applied from a simplified dynamic model of the LG. In order

to take into account the structural deformations under real-life loads, a multibody simulation

would be required. In particular, the method for running an offline TEHD simulation and

performing dynamic multibody simulations with an implicit temperature could be implemented.

5. Active Control of Lubrication Mechanism

The novel lubrication mechanism takes into account a fixed cushion thickness. As the eccentricity

of the piston changes as a function of time for a real-life LG application, the optimal cushion

thickness is not preserved during a typical ground maneuver. The thrust portion might not be

at the right position and angle throughout a transient maneuver. Instead of passively controlling

the lubrication mechanism, and in order to maintain an optimal solution, the design parameters

of the lubrication mechanism could be actively controlled. This implementation could be a

promising avenue of future research. An actively controlled lubrication mechanism might be

theoretically feasible, but it could prove difficult in practice. Another possibility would be to

replace the lubricant with an electro- or magnetorheological fluid used to control the stiffness of

the bearing and derive the TT spaces from a magnetic or electric field.

The TTM model is developed to determine an optimal lubrication mechanism and improve

the TTM performance of existing LG. Once validated against LG-specific experimental data,

the numerical model would be ready for use in an engineering design process to determine the

pre-service TTM performance of the LG. This would allow the maintenance costs of the operator

to be kept at a minimum. �
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[93] D. Knežević, V. Savić. Mathematical modeling of changing of dynamic viscosity, as a function of temperature

and pressure, of mineral oils for hydraulic systems. Facta Universitatis. Series: Mechanical Engineering, 4

(1):27–34, 2006.

[94] Verein Deutscher Ingenieure. VDI Heat Atlas. Springer Verlag, Berlin/Heidelberg, 2nd edition, 2010.

[95] K. Siik and J. Vuorinen. The influence of shear thinning behavior on lubricating grease consistency and its



BIBLIOGRAPHY 144

effect on oil separation. In Annual Transactions of the Nordic Rheology Society, volume 13, 2005.

[96] AeroShell. The Aeroshell Book. 18th edition, 2003.

[97] R.F. Smiley and W.B. Horne. Mechanical properties of pneumatic tires with special reference to modern

aircraft tires. Technical Report R-64, Langley Research Center, Langley Field, Va., 1960.

[98] M. Meier. Dimensionieren I. WS 2003-04. ETH, Eidgenössische Technische Hochschule Zürich, Zentrum
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