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by

Small unmanned aerial vehicles (UAVs) are expected to become highly innovative solu-

tions for all kind of tasks such as transport, surveillance, inspection or guidance, and

many commercial ideas already exist. Herein, small multi rotor UAVs are preferred

since they are easy to construct and to fly, at least in wide open spaces. However, many

UAV business cases are foreseen in complex urban environments which are very chal-

lenging from the perspective of UAV flight. Our work focuses on the autonomous flight

and collision-free navigation in an urban environment, where GPS is still considered for

localization but where variations in the accuracy or temporary unavailability of GPS

position data is explicitly considered. Herein, urban environments are challenging be-

cause they require flight nearby large structures and also nearby moving obstacles such

as humans and other moving objects, at low altitudes or in very narrow spaces and thus

also in areas where GPS (global positioning system) position data might temporarily be

very inaccurate or even not available. Therefore we designed a custom stereo camera

with adjustable base length for the perception of the possible potential obstacles in the

unknown outdoor environment. In this context the optimal design and sensitivity pa-

rameters are investigated in outdoor experiments. Using the stereo images, graph based

SLAM approach is used for online three dimensional mapping of the static and dynamic

environment. For the memory efficiency incremental online loop closure detection using

bag of words method is implemented here. By having the three dimensional map, the

cost of the cell and its transition calculated in real time by the modified D* lite which

will search and generate three dimensional collision free path planning. Experiments

of the 3D mapping and collision free path planning are conducted using small UAV in

outdoor scenario. The combined experimental results of real time mapping and path

planning demonstrated that the three dimensional collision free path planning is able to

handle the real time computational constraints while maintaining safety distance.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles

Small Unmanned Aerial Vehicles (UAV) have gained considerable importance in the

defense and commercial sectors in the last 20 years. According to the report [1], the

UAV industry business will be valued up to 127.3 billion USD and it opens up a lot

of potential possible applications in the future. More specifically small UAVs flying in

lower altitudes have been seen to be of great potential in many applications. Similarly

a large focus in current research is placed on the idea to increase the autonomy of the

existing UAV solutions and systems. As shown in Figure 1.1 different types of small

UAVs with different configurations are available on the market as commercially off the

shelf (COTS) products. Depending on the application and scenario, the configuration

can be custom made or tuned accordingly. Small UAVs can provide cost effective solu-

tions. For example, solution to get aerial videos and images by small UAVs are cheaper

compared to the images provided by satellites which also often have low resolution and

are weather dependent. Some of the applications include monitoring the crop growth

in the agricultural sector, surveys of the channelized pipelines in the energy sector for

maintenance as well as damage assessment. Since small UAVs are capable of flying in

confined space, they have the ability to monitor the situation during emergency and

disaster. Nowadays security companies are extensively using them to acquire the out

of range details where a static camera cannot be used from a fixed location. Damage

assessment or structural inspection using small UAVs is performed by logistic companies

in order to identify the cracks in the outer shell of ships, bridge monitoring, road dam-

ages and collapse inspection during accidents. Media and entertainment industry uses

small UAVs for photography and filming, while the communication sector uses them

for creating temporary networks where there is not enough ground towers to provide

1
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signal. In transportation and e-commerce sectors it is helping in delivering goods. This

clearly shows that the usage of small low altitude UAVs has dramatically increased in

civil applications. From the perspective of manufacturing and design configuration, the

Figure 1.1: Different types of small UAVs
Left to right : Octorotor, hexarotor, gimbal drone, delta-wing, fixed-wing, Quad-rotor

UAV sector is also evolving according to the feedback coming from the existing solu-

tions. From Figure 1.1 we can infer that the size, shape, payload capabilities of UAVs

are getting different. This is due to the fact that every sector has its own specific require-

ments to increase the usage of small UAVs like more payload capability, flight speed,

accurate sensing and perception, flexible maneuvering, aerial manipulation, cooperative

flight, more endurance etc. For example, a rotorcraft has hovering capabilities and it

can maneuver while the fixed wing can navigate fast but cannot hover. In infrastructure

inspection the requirement is to acquire high resolution stable video in a vast area. How-

ever, the existing solution needs atleast one pilot with additional people depending on

the application to conduct the mission without accidents. If the man power is reduced

through the autonomy of the small UAV, then it is considered to be a major advan-

tage for the user. While seeing the future of small UAVs with all the above mentioned

successful applications, there are still open questions in the case of mission safety and

autonomy in operations involving confined spaces. The unsolved open research questions

among other are:

• Do the small UAVs have sufficient autonomy to complete the mission without

trained pilot?
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• How does autonomous operation works in a practical scenario where both static

and dynamic objects are present?

• What are currently available capabilities in autonomous operations? Can a UAV

perform maneuvering in close environments involving people, in an “everyday”

scenario?

Since the word “autonomous” is often used in the robotics community, we would like

to provide atleast a working definition. According to International Organization of

standardization[2] the robot autonomy is defined as,

Definition 1.1. (Autonomy) A robot which has the ability to perform intended task

based on the current state and sensing without human intervention.

So the small UAVs which can perform an intended task without human intervention

will be considered as an autonomous small UAV. One of the ways to achieve it, is by

considering a more realistic and practical approach. The practical requirements are,

• Real time onboard computation.

• Real time decision making.

• Safety aspects.

This thesis concentrates on the autonomy of Vertical Take Off and Landing (VTOL)

UAVs. The concerned open research questions are listed in section 1.1. The autonomous

module includes submodules such as mapping and localization, collision avoidance, path

planning as shown in Figure 1.2. With these submodules the small UAVs are capable of

flying in lower altitudes autonomously. But there are challenges when it comes to reality

and practicality. Because in the urban environment complex manoeuvring in real time

is still difficult due to the uncertainties associated with it.

Figure 1.2: Primary modules for autonomous navigation
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1.2 Problem statement

Small UAVs navigating in low altitudes require a high level of autonomy and sophis-

ticated sensing capabilities. When a UAV is hovering above the ground at just a few

meters the GPS information is not reliable and accurate. It is possible to combine the

GPS information with the already measured map to estimate the collision free path, but

this solution might not provide new object updates with three dimensional details. So

this means the altitude information of the structures like buildings, trees, power lines

and poles cannot be directly obtained up to date. The practical urban environment

consists of buildings, moving humans, automobiles as shown in Figure 1.3. The only

known information here is the initial position and goal position of the UAV, while the

rest of the details are partially unknown. Then navigating in this environment as seen

Figure 1.3: Example of the practical urban environment

in Figure 1.3 which is highly dynamic and unstructured requires the acquisition of real

time data. Through the acquired real-time data we have to retrieve the possible threats

for crashing, for example the size, shape, position of the obstacles with its relative dis-

tance. In order to consider the dynamic objects, frequent update and data refreshment

is needed to capture the modification happening at each time instance. With the use of

real-time information, a new collision-free path should be planned and re-planned online

if necessary. Therefore, the small UAVs in low altitudes that needs to be used in the

urban environment should have a high level of autonomy to achieve the mission safely

with efficiency.
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1.3 Objectives

The objectives of this thesis are briefly summarized below,

• The primary objective is to develop a real-time collision avoidance module for a

small UAV.

• Exploring the environment by mapping and estimating the possible obstacles in-

cluding moving objects.

• Collision free path planning and re-planning in the case of dynamic objects.

• Implementation and execution in the on-board computer with the available mem-

ory mounted on the small UAV

• Validating the developed module/package through real time experiments in un-

known as well as dynamic outdoor environments.

1.4 Solution approach

In this thesis our proposed solution approach is to endow certain level of autonomy which

can be applied in a real-time outdoor environment. To meet existing challenges small

UAVs require additional exteroceptive sensors to sense and perceive the environment.

Since vision-based sensors are considered to be promising for small UAVs performing

real-time processing, a stereo camera is chosen here. Due to its reliable performance as

observed in the literature with low cost, a forward looking custom made stereo camera is

used here. Using the calibrated stereo camera, point clouds are generated online where

the distance to objects are obtained. That is not enough for the collision avoidance,

because the trajectory of the vehicle is not yet estimated.

Therefore Simultaneous Localization and Mapping (SLAM) is applied here. Online

SLAM with memory efficiency and accuracy are the requirements here. Recent ad-

vancements in graph based SLAM approaches are evidently powerful and suitable for

real time processing. For memory constraints and computational power requirements,

a loop closure detector using the bag of words methods is designed to reject the pre-

viously estimated locations which then directly influences the memory of the on-board

computer. The graph SLAM forms a set of nodes to store the poses where the g20

optimization algorithm reduces the error. The camera motion is estimated by the 3D-

3D correspondence which forms the stereo odometry. The map which has started to

generate will be represented through octomap which is proven to be memory efficient
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using the probabilistic occupancy estimation with multi resolution. This octomap gives

the occupancy grid where the position of the obstacle and free space will be obtained.

To identify the collision free path from the octomap three dimensional path planning

and replanning (PRP) algorithm is developed based on the D* lite algorithm. This will

calculate the path every iteration through the graph search, and if the cell cost changes

during the process, it will dynamically recalculate from the current position of the vehi-

cle. This will calculate the shortest path from the current position to the goal position.

The designed algorithm will also dynamically change based on the cost of each cell from

the octomap.

1.5 Contributions

The key contributions of this work are summarized below,

• A first key contribution includes the design and development of a custom made

stereo camera.

• Development and implementation of a graph SLAM with SURF detector extended

by a loop closure detection method.

This contribution consists of development of a graph based SLAM with SURF

detector for feature generation along with Loop Closure Detection using the online

bag-of-words approach. The whole package is tested and analyzed in static as well

as dynamic environments and dense forest like environment to make it robust and

stable.

• Developed D* lite based three dimensional Planning and re-planning method(PRP)

This contribution includes the development of efficient three dimensional path

planning and re-planning technique based on D*lite algorithm in three dimen-

sional environment. The developed package is then implemented in numerous

experiments.

• Combined the Graph SLAM and Dynamic path planning to check the computa-

tional power

This contribution considers the combination of the perception and planner package

in the onboard computer and executing it in parallel to check the computational

power. The combined package is launched and tested through the different ex-

periments. The outcome of the experiments satisfies the memory constraints as

required.
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• The efficiency and accuracy of this combined solution is analyzed from the real

time experimental data and its comparison is highlighted.

1.6 Structure of this document

Following the introduction chapter the remaining of the thesis is structured as below:

• Chapter 2 explains the existing methods and state of the art with respect to the

small UAV where we discuss the techniques used with sensors, Simultaneous Lo-

calization and Mapping(SLAM) algorithms, visual odometry for the localization,

path planning and its various scenario-based techniques and its advantages and

disadvantages.

• Chapter 3 describes the design and development of the custom made stereo cam-

era. Futhermore it gives the brief theoretical background about the stereo vision.

• Chapter 4 shows the graph based mapping and localization algorithm. Besides

it also explains the bag of words approach to create dictionary for the loop clo-

sure detection method. The tested results with four datasets are presented and

discussed in the context of real time processing.

• Chapter 5 includes the three dimensional path planning and replanning (PRP)

algorithm from the octomap. The details include the graph search in the occupancy

grid with cost changes during the online process and dynamic planning.

• Chapter 6 shows the experimental results and analysis of the combined online

mapping and localization along with path planning framework in a real time three

dimensional environment. This gives the details of the computational power, mem-

ory efficiency of the whole framework through flight experiments.

• Chapter 7 concludes the thesis by highlighting the contributions, introduced

approach and the future perspectives of this research.

• Appendix A shows the master-slave configuration, specifications of the camera

model, schematics of the base plates used for the stereo camera.

• Appendix B gives the specifications of the onboard computer.

• Appendix C describes the software and hardware used in this work.

• Appendix D explains the different co-ordinate systems and its transformations.



Chapter 2

Literature Review

This chapter presents the state-of-the art methods provided in the literature for small

UAVs with respect to sensing and estimation, visual mapping and localization, and

finally path planning. The concepts are briefly described and discussed with its advan-

tages and disadvantages for different scenarios.

2.1 Sensors

Autonomous small UAVs navigating in a physical world require sensing capabilities to

explore and model the environment. Sensing is done with the help of a suitable sensor

which depends on the mission or task. When a sensor is used with small UAVs, it is

often sensitive to air flow during hovering and other flight operations. This inturn leads

to problems in data acquisition coming from the onboard sensors such as data ambiguity,

statistical hardware noise, computational constraints, systematic errors etc. These are

some of the key factors to be considered while choosing the suitable sensors.

2.1.1 Sensors for navigation of UAV

The selection of a sensor suitable for a specific mission depends on the factors such

as payload capacity of the vehicle , size, environment (indoor/outdoor), reliability of

available power [3], on-board computational power, endurance, amount of flight opera-

tion time. Nowadays, most of the commercially available small UAVs have an Inertial

Measurement Unit (IMU) for estimation of relative position and velocity. Basically an

IMU consists of three axis gyroscope and accelerometer for the measurement of rotation

and linear acceleration. But the vibration and drifting of the hardware system leads to

erroneous position and velocity estimation over the time. So instead of using an IMU

8
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alone, it can be fused with other sensors based on the task [4]. Furthermore, the Global

Position System (GPS) is also used successfully in outdoor missions for waypoint nav-

igation where map of the environment is provided. However, the reliability of satellite

signals in low altitude cluttered environments are still dubious. To overcome this prob-

lem, there is a need for another kind of sensor for more accuracy and efficiency. For

example sound navigation and ranging (sonar) (Figure 2.1c) is also deployed in [5], [6]

to find the obstacle distance by emitting the acoustic signal and measuring the feedback

of its echoes. The advantage of using sonar is that it is not affected by illumination or

color of the objects and even works in dark environment with dust and high moisture.

While on the other hand, it normally works well with rigid materials and has a limited

detection range. Also the accuracy gets low if the temperature of sonar sensor varies

from 5 to 10 degrees. For example if the sonar is deployed in complex outdoor environ-

ment for autonomous navigation, the measurement accuracy is not enough to complete

the task.

Figure 2.1b shows the kinect sensor [7] which is used in [8] and it is known for its

Figure 2.1: Different kinds of sensor used in UAV. From left to right (a)Lidar,
(b)kinect, (c)ultrasonic, (d)monocular camera, (e)stereo camera

accurate 3D measurements in short range of distance. In case of long distance the data

is ambiguous and not adequate enough to process. Furthermore, the usage of Lidar

sensors (Figure 2.1a) in small UAVs [9] is also increasing because it provides precise 3D

measurements. But the usage of several beams leads to more power consumption. How-

ever, Lidar sensors consumes a higher amount of power which will reduce the total flight

time of the UAV. Vision sensors are widely used in small UAVs which is proven by the
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availability of large number of computer vision techniques for various applications [10]

targeting UAV systems. The visual sensors can also provide the range, color, structure

which are considered to be essential information in autonomous navigation. Besides, it

is light weight and has less power consumption than e.g. a Lidar. Vision sensors can

be divided into monocular camera (Figure 2.1d) and stereo camera (Figure 2.1e). The

advantage of the monocular camera is that it gives impressive results with low power

consumption and light weight. The drawback is that the scale of the environment cannot

be obtained directly which leads to complexity in finding the three dimensional size and

shape of the object in the environment. So in unknown outdoor environment it needs

additional sensors to compute the 3D information. On the other hand stereo camera will

directly give the depth information. The advantages include high resistance to vibration

and shock due to absence of sensitive mirrors when compared to Lidar. Along with that

it has large field of view which then helps in computing the 3D measurement for longer

range [7].

2.1.2 Selection of the sensors

The Table 2.1 categorizes the list of sensors used in small UAVs with its advantages and

disadvantages. In this thesis, as a first step the challenges in the outdoor navigation

of the small UAV in unknown and dynamic environment can be handled by perceiving

robust data through a suitable sensor. For that reason the small UAV should have

adequate spatial information which can be obtained through a suitable sensor. This

information is then later integrated in the form of a map for planning. From the Table

2.1 we can evidently see the reliability of depth information from the stereo camera.

Besides that, the stereo camera provides dense information of the depth in the natural

light with low noise if it is calibrated accurately. This will enable us to detect even

the smaller objects in narrowed space. Here the primary information that needs to be

extracted from the objects are the length, width and height. Since the stereo vision depth

estimate technique is well established it can give more details about the environment.

More specifically, also dynamic objects can be extracted with robustness [11].

According to [12] the sensor along with algorithm and its environment [13] decides the

performance. For effective perception and planning we need dense information with

low noise for fast maneuvering. Due to the above mentioned reasons along with the

performance in real-time navigation, stereo camera is chosen in this thesis as the primary

sensor. We designed our custom made stereo vision system in order to cope with all the

objectives which is elaborately explained in Chapter 3.
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Sensor Pros Cons

Inertial
Navigation
System(INS)

Estimate the 6 dof
position(x, y, z) and
orientation(roll,
pitch, yaw).
It is low cost and
light weight as well
as easy to mount.

Small bias leads
to large error due
to its integration
over the time.

Global
Positioning

System(GPS)

Suitable for outdoor
and works perfect if
more than 5 satellite
signals are available.

Difficult in low
altitude and
cluttered

environment.

Sonar Good in indoor with
limited range.

Not suitable for
large outdoor.

Lidar Accurate 3d
measurements of the
environmental
model.

Large number of
beams lead to
more power
consumption.

Kinect Works for slow and
short range of
measurements.

Not for long
range

measurements.

Monocular
camera

Light weight and
low power
consumption.

Scale ambiguity,
unknown and
unobservable
scale leads to
complex error.

Stereo camera There are no
sensitive mirrors
which makes it
robust to vibration
and shock.
It has large field of
view, simple to
compute range.

Relies on
adequate textures

and lighting.

Table 2.1: Summary of the sensors used in the small UAVs
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2.2 Feature Detection

Detection of the features in the image frame is the preliminary low level processing step

in computer vision. The basic process involves the identification of edges, corners and

the regions with rich information. Extracting the features which are stable and robust

in real time applications is still challenging. The challenges are due to the different

scale, viewpoint, illumination variation. Normally the raw image contains noises. After

filtering the noises, the identification of the position of the pixels can be done through an

efficient feature detection and description method. Based on the information available

in the image, selected parts are extracted to check whether it is a feature or not. The

requirement here is that it should be processed in real time with invariance to rotation

and translational movements. In feature based techniques, textures, color, edges and

corners gives primitive information. The extracted features should be resistant enough

to rotation, translation and illumination invariance in the consecutive images. Tracking

the identified features from one frame of the image to the other can be done through

matching the corresponding features. A detailed survey about visual feature detection

can be found in [14].

In Section 2.2.1 more details about the feature detection methods are explained and the

definition of visual features is introduced first.

Definition 2.1. (Visual features) The primitive pixels in each frame of the images

after the noises are filtered is defined as a visual feature. Generally in image the rich

information can be corner, edges and region with more textures.

2.2.1 Feature detection methods

Followed by the general feature detection method in section 2.2. Different feature detec-

tion methods are briefly discussed here. Scale Invariant Feature Transform (SIFT) [15]

process includes the construction of scale space. As shown in (2.1) scale space is given

as,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

where,

L(x,y,σ) is scale space function.

G(x,y,σ) is the variable scale Gaussian.∗ is convolution operator

I is an image and x, y are the address of the pixels in the camera coordinates.

σ is the scale parameter and

G(x, y, σ) =
1

2πσ2
exp−(x2+y2)2σ2



Chapter 2. Literature Review 13

It is localized by taking maxima and minima. In SIFT algorithm the orientation is

calculated so that it will be rotation invariant, and based on the local image gradient

the feature is identified which is invariant to illumination and distortion changes.

To increase the computational capability and faster detection Speed Up Robust Features

(SURF) [16] was introduced. SURF uses the hessian matrix and the keypoint correspon-

dence between two successive images can be calculated by computing Euclidean distance

between their feature point descriptor. Later, Binary Robust Independent Elementary

Features (BRIEF) [17] was developed using intensity difference between the pixels. How-

ever for real time performance the speed of BRIEF algorithm is not reliable. Followed

by that Features from Accelerated Segment Test (FAST) corner method [18] was imple-

mented by taking 16 pixels around a point and checking whether it is a corner or not.

It uses the intensity difference only around the contiguous circle. It has the advantage

of more reliable matching and resistant to illumination change. But according to [19],

the number of points are not stable which gives less precision measurement. To increase

the precision FAST detector method is fused with BRIEF descriptor with modifications.

Oriented FAST and Rotated BRIEF (ORB) method was developed by using the FAST

corner for scale search in image pyramid and the rotated version of BRIEF [20]. The

modifications in BRIEF descriptor includes rotation invariance by computing intensity

weighted centroid of the corner region. As explained in [20] the moments of a patch can

be defined as,

mpq = ΣxqyqI(x, y) (2.2)

By using these moments the centroid can be found by,

C =
(m10

m00
,
m01

m00

)

(2.3)

Then orientation of the patch region θ will be written as,

θ = atan2(m01,m10) (2.4)

The robustness of ORB is tested in real time [19] in comparison to SURF algorithm.

ORB produces less robustness with more memory consumption when compared to

SURF. SURF is also more robust for scale changes.

Next to that Binary Robust Invariant Scalable Keypoints (BRISK) [21] was developed

with focus on computational reliability by applying the speed in the key point scale

space in the continuous domain. This method works on the binary features of the

corner detection. In this method the scale space is based of n octaves with n value 4

typically. The octaves are formed by half sampling the input image. IN the sampling

process Gaussian sampling σi is applied to avoid blur effects.
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The estimation of the local gradient is done by,

g(Pi, Pj) = (Pj − Pi).
I(Pj , σi)− I(Pi, σi)

|Pj − Pi|2
(2.5)

where,

I(Pj , σi) and I(Pi, σi) are the points where the intensity values are smoothed using gaus-

sian.

Similarly the Fast Retina Keypoint (FREAK) [22] method uses binary features inspired

from the pattern that is used by the retina of the eye. However the FREAK method

uses different kernel size while smoothing the intensities unlike to BRISK and ORB.

According to [22] exponential change in size and overlapping receptive field is compara-

tively different from BRISK. Fro example the overlap receptive field is achieved by using

intensities Ii measured at receptive fields like shown in the equation below,

IA > IB, IB > IC , IA > IC (2.6)

where IA, IB, IC are the intensities measured at receptive fields A, B and C respectively.

Based on the overlap between fields new information will be added. Kaze [23] uses

non linear diffusion filtering to obtain accurate localization of the features like shown in

equation below,
∂L

∂t
= div(c(x, y, t).▽ L) (2.7)

In equation 2.7 div,▽ and c are divergence, gradient operators and conductivity function

(c) respectively where t is the scale parameter. In contrast to gaussian scale space this

can be adaptive to natural boundaries of the features present in the environment. The

drawback is that kaze requires high computational power. Thus in turn affects the real

time performance. It becomes common to combine one feature detector method with

another descriptor. For example Good Features To Track (GFTT) [24] can be combined

with ORB, FREAK, BRIEF. Besides FAST detector can also be combined with FREAK

and BRIEF.

2.2.2 Comparison of feature detectors through real time experiment

To choose the suitable feature detector that can give optimal performance and ro-

bustness, we compared the SIFT, SURF, BRISK, KAZE, ORB, GFTT-ORB, GFTT-

FREAK, GFTT-BRIEF, FAST-FREAK and FAST-BRIEF methods. Here 3676 stereo

images are taken at frame rate of 30 fps. The total duration of the sequence of images

are 122 s. A sample raw stereo image that is used during the feature extraction process

is shown in Figure 2.2.
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(a) Left image (b) Right image

Figure 2.2: One stereo image out of 3676 stereo images taken during the feature
detection process

Figure 2.3 shows the extracted features which are new from the previous image and its

matching between the left and right images using SIFT, SURF, ORB, KAZE algorithms.

As we can see the results of SURF in Figure 2.3a and ORB in Figure 2.3c, there are

35180 (SURF) and 33920 (ORB) number of features which are represented in yellow

circles respectively. The feature that are present in both the left and right images are

around the trees and leaves. The detection regions are in the form of large circles in

Figure 2.3a, 2.3b, 2.3c whereas in Figure 2.3d the detection regions are small. ORB

method has more matching correspondence whereas the SIFT has less matching.

(a) SURF (b) SIFT

(c) ORB (d) KAZE

Figure 2.3: Features extracted by using algorithms SURF, SIFT, ORB, KAZE. The
color red denotes the features found in the previous. Color yellow represents the new
features and pink color represents the features matching between the left image and

right image.

Figure 2.4 shows the extracted features which are new from the previous image and its

matching between the left and right images using GFTT-ORB, GFTT-BRIEF, BRISK,

GFTT-BRIEF algorithms. As seen in Figure 2.5b BRISK algorithm shows more new

features (yellow color) and GFTT-ORB has less new features but it has more matching

as shown in Figure 2.4a. From Figure 2.4b and Figure 2.4c we can see that the detection
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of the features are small as points.

Figure 2.5 shows the FAST-BRIEF and BRISK feature detector output. Figure 2.5a

(a) GFTT-ORB (b) GFTT FREAK

(c) GFTT-BRIEF (d) BRISK

Figure 2.4: Features extracted by using algorithms GFTT-ORB, GFTT-BRIEF,
BRISK, GFTT-BRIEF. The color red denotes the features found in the previous. Color
yellow represents the new features and pink color represents the features matching be-

tween the left image and right image

has more number of features extracted in trees and ground but the same features in left

and right images in less. But in Figure 2.5b the features present in both the images are

more whereas the extracted new features are less.

(a) FAST-BRIEF

(b) BRISK

Figure 2.5: Features extracted by using algorithms FAST-BRIEF and BRISK. The
color red denotes the features found in the previous. Color yellow represents the new
features and pink color represents the features matching between the left image and

right image
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Figure 2.6: Total number of features vs Time (s)

Figure 2.6 shows the total number of features extracted in the time duration of 122 s.

SURF algorithm extracts as much as 35180 features, which is the highest among the

algorithms compared here. At the same time BRISK algorithm extracts the lowest
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number of features which is equal to 3535. Table 2.2 summarizes the total number of

features extracted by different algorithms.

Algorithm Features

SURF 35180

SIFT 33920

ORB 13090

FAST-

FREAK

13420

FAST-

BRIEF

10720

GFTT-

FREAK

12900

GFTT-

ORB

10720

BRISK 3535

KAZE 12920

GFTT-

BRIEF

10640

Table 2.2: Summary of the total number of features extracted.

From the Table 2.2 we can observe that the SURF algorithm detected the maximum

number of features compared against other algorithms implemented here. Even though

the SIFT algorithm has 33920 features which are nearly close to the SURF method, the

SIFT algorithm took maximum time of 562.9 ms, contrary to SURF which took 434 ms.

During the analysis, we observed that the SURF required 43.88 ms of keypoint detection

time on an average. And the total time of 278.315ms for the detection in all the images.

For real time feature detection with a higher number of features, the SURF algorithm

proves to be efficient as well as robust in different illumination condition. Due to these

advantages and testing with different feature detectors, SURF algorithm is taken for

the feature detection. We used the features as input for the Stereo Visual Odometry as

explained in Section 2.3 and also in loop-closure detection, which is discussed in Section

2.4.1.
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2.3 Stereo Visual Odometry (SVO)

The process of estimating the position and orientation of the vehicle using the stereo

images is called stereo visual odometry. Here position and orientation combine together

can be called as pose. Based on the sensor input, either monocular or a stereo image has

to find the 3D motion of the camera. The advantage is that it can be useful in the case

of GPS denied environment. Moreover the stereo image based visual odometry doesn’t

have the scale ambiguity problem because it can get scale of an object directly. However

the challenges include the tracking of the motion affected by factors like sensitive image

conditions or fast maneuvering of the vehicle. Due to the reliability of the features in

the outdoor environments, most of the stereo visual odometry algorithms are feature-

based approaches.

Figurer 2.7 shows the basic process of stereo visual odometry.

Figure 2.7: General stereo visual odmetry framework
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The basic stereo visual odometry process can be explained by considering a vehicle with

stereo camera rigidly attached to it. when vehicle started to move the stereo camera

provides left and right images like in equation 2.8.

I(l,0;n) = I0, ..., InI(r,0;n) = I0, ..., In (2.8)

Let’s assume stereo camera coordinate system is same as vehicle coordinate system.

In stereo camera system left camera is considered to be the origin. The stereo camera

position at each time instants k−1 and k can be related using rigid body transformation

Tk,k−1ǫR
4x4 like shown below

Tk,k−1 =







Rk,k−1 tk,k−1

0 1







(2.9)

In equation 2.9 Rk,k−1ǫSO(3) is the rotation matrix where as tk,k−1ǫR
3x1 represents

translation vector. The subsequent motion of stereo camera will be in set T1:n

T1:n = T1,0, ...Tn,n−1 (2.10)

The set of camera poses shown in equation 2.11 has the camera transformations at k=0

with respect to initial coordinate frame

C0:n = C0, ...Cn (2.11)

The current pose of the camera Cn can be found by using all the transformations Tk,k−1

where (k = 1 ...n ). Here full trajectory of the camera C0:n can be obtained by including

relative transformation of Image Ik and Ik−1. The pose of the camera is incremental

and it can be recovered by computing transformation between all images with respect

to initial position.

According to the [25] stereo based visual Odometery (SVO) has been a popular re-

search. In [26] iterative closest point matching based SVO is presented. More detailed

experimental study of SVO with respect to the UAV can be found in [27]. This study

shows that the images captured at an altitude of 200 meters are sufficient to compute

the Odometry of the vehicle. Similarly [27] also presents SVO based on high altitude

images with a focus on the fixed wing based UAV. In the same direction [28] explains the

performance in high altitude with respect to the viewing angle of stereo camera. Image

gradient based approach is used in [29] where it resists for illumination changes. Even



Chapter 2. Literature Review 21

though these methods are real time it is not concentrating on the urban environment in

low altitudes. In [30] the authors use Iterative Closest Multiple Line method adapted

from Iterative Closest Point (ICP) algorithm for matching the features efficiently in the

consecutive images. In Mars Exploration Rover (MER) project the visual odometry [31]

is performed by using Harris corner for the feature detection and matching which is done

by the pseudo normalized cross correlation. Later this is improved computationally in

[32] which is developed for Mars Science Laboratory (MSL). To reduce the projection

errors, [33] proposes points and line segment features which are then minimized by non-

linear methods. The pose estimation through the feature matching correspondences can

be categorized into 2D-2D, 3D-2D, 3D-3D methods. The reference [34] uses essential

matrix for estimating the pose using 2D-2D correspondence. While 3D-2D correspon-

dence is done in [35] where extrinsic matrix is used for the estimation. Next to that

3D-3D correspondence can be obtained from the point clouds alignment [36].

Figure 2.8 shows the stereo visual odometry of a small UAV in a static environment.

The arrows shown in blue color denotes orientation of the small UAV.

Figure 2.8: Stereo Visual Odometry of the small UAV traveled in the outdoor envi-
ronment

But all these methods don’t addresses the localization problem in dynamic environments.

In dynamic environments the localization can be affected by the dynamic features. As

long as the moving objects are in the field of view, features can be detected and tracked
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in the consecutive frames. For example in this work[11] used optical flow to extract the

moving objects. After the objects moved away from the view, it is not possible to track.

Later in [37] the authors use Iterated Sigma Point Kalman Filter with RANSAC for

feature classification from the moving objects. But this technique is not often consid-

ered for small UAV applications, because matching the features in plane surface as an

assumption does not work for the flying vehicle. To overcome the challenges we proposed

the solution by setting the threshold for the features classification. For minimizing the

re-projection error we used the gauss newton optimization along with RANSAC.

2.4 Simultaneous Localization andMapping (SLAM) meth-

ods

Localization of the small UAV relative to the map of the environment can be achieved by

using the well known technique called Simultaneous Localization and Mapping (SLAM).

SLAM has been extensively used in robotics research community where the history and

its development in the early stage can be found in [38]. Furthermore the implementa-

tion challenges like data association, computation and accuracy in SLAM for the last 20

years are explained elaborately in [39]. Recent developments and advancements include

the real time problems in terms of robustness, scalability, map models, sensors and new

tools are explained in the survey paper [40]. The fundamental idea of SLAM involves

the construction of map using the data perceived by the on-board sensor while localizing

the UAV in that map at the same time. In the early stage it starts with 2d mapping

and localization as shown in Figure 2.9. The 2D mapping techniques made considerable

progress and have available industrial solutions like [41]. They used vision sensor [42]

for slow moving robots [43], which are commercial products now. In the case of 3D map-

ping and localization for small UAV there are still challenges which are yet to be solved.

Particularly for unknown outdoor environments there are fundamental challenges that

need to be addressed. So it requires fundamental research with the combination of sen-

sors with fast sensing of the environment, fast maneuvering and computational power.

These capabilities in exchange reduce the failure rate, increase the robustness and per-

formance which is application oriented. One of the key difficulties with these 3D sensing

technologies is the limitations and reliability of the computational power. But recent

advancements in the computing technology gives the scope for the three dimensional

mapping and localization to be easily applicable to common robotic systems. It is also

more realistic and practical approach for many UAV applications.
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(a) Image showing the scenario

(b) Two dimensional map

Figure 2.9: Image and its two dimensional map where the black , white, grey color
represents the obstacle space, free space and unknown respectively.

In [44] the standard formulation of SLAM as maximum posteriori estimation problem

was discussed. Later it was improved with an efficient optimization process. Let us take

an example to find the trajectory of the small UAV and the pose of the points in the

environment which is represented as unknown variable κ and the set of measurements

Z like in equation

Z = {zn : n = 1, ....m}. (2.12)

Here measurements can be expressed as a function of κ like

zn = hn(κn) + ǫn. (2.13)

where hn is a known function and ǫn is random measurment noise.

Similar to SLAM method, the Parallel Tracing and Mapping (PTAM) presented in [45]

is often used with the monocular camera rather than the stereo camera [46].

Some of the key SLAM methods include Extended Kalman filter based SLAM (EKF-

SLAM), Particle filter and Graphical model based approaches. In [47] it is shown that

the classical EKF-SLAM is inconsistent, however further improvement was done in [48].

But still the EKF-SLAM lacks the accuracy for the large scale mapping [49].
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The particle filter method [50] are well implemented in landmark-based and grid repre-

sentations [51]. According to [52] the particle filter has some basic limitations due to its

bounded number of particles required to estimate the pose and trajectory. This problem

will deteriorate depending on the noise of the sensor and its parameters. In dynamic

environments, the SLAM techniques which depends on the iterative closest point algo-

rithm does not update the moving objects. This in turn the makes the map inconsistent

and it will not help in planning the safe navigation. So here the algorithm requires a

preprocessing step from the point cloud to map. The aforementioned shortcomings are

overcome by graph based SLAM techniques. For example the self correction in online

mapping are done in [53] and [54] [55]

As mentioned in Section 2.1, for the perception system, stereo camera is the primary

sensor. The contribution of computer vision algorithms in the field of UAV is well

known and the recent survey of the vision based navigation techniques are found in

[10]. In this thesis the focus is on the vision based SLAM algorithms to attain accurate

localization and mapping for collision avoidance. An extensive survey on visual SLAM

has been noted in [56]. It has also been addressed in the literature that the accuracy

and robustness depends on the data association (short term: feature tracking, long

term: loop closure) from the vision sensor. The frame update rate should be able to

track the features in the consecutive frames. In this setup feature based SLAM gives

high precision. In the context of SLAM research Visual Inertial odometry algorithms are

presented in [57] [58]. In these algorithms the loop closure detection is not implemented

which means the exploration of the environment is infinite. So by using loop closure

it is possible to get the more accurate topology and also be capable of finding the

shortcuts between locations. Estimating the precise topology is the key factor to achieve

robustness.

2.4.1 Loop Closure Detection

Loop closure detection combined with mapping and localization plays a signification role

in attaining the consistency, accuracy of the information and computational power. The

basic idea of loop closure detection is to identify the data that is already in previous

measurements taken from the same environment. This is challenging due to inherent

noises in the sensor and ambiguities in the environment. Image retrieval from the feature

detector and descriptors act as the main source for identifying the same place in the

environment. Recognizing a place that is already captured using the visual data online

is a complex task due to the variations happening in the real world environment from

time to time. According to the literature, this method can be called “visual place
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recognition” or “loop closure detection”. Further the key questions in the topic of Loop

Closure Detection are as follows:

• How to recognize a place with respect to the visual data generated by the sensor?

• If identified and recognized, whether it is the same one or the wrong identification

due to perceptual aliasing?

• How this will influence the collision avoidance in real time?

The computer vision community have tried to enhance the computational power and

precision in the estimation for large scale outdoor environment by using the loop closure

detection methods [59] [60]. Further detailed state of the art can be found in [61]. From

the literature common approaches for loop closure detection includes voting [62] and bag

of words [63] [64] methods. In voting methods maximum likelihood estimation is used

for matching the current image features with previous one in the database. According

to [62] the maximum likelihood estimator depends on the offline construction of the

dictionary i.e a database. In contrast bag-of-words uses classified image. The bag of

words technique further includes online and offline methods. We focus on the online

methods which can incrementally update the database. This can be categorized into

two. One of them is to retrieve the interest points in the image as explained in Section

2.2 [15][16] and other method uses the whole image instead of using the detection process

inside the image. The advantage of online loop closure detection is that it can be used

without prior information.

2.4.2 Three Dimensional Map: Octomap

Modeling the environment in the form of 3D map will be a useful information for navi-

gation of the small UAV. The main reason to get a 3D map is to retrieve the position of

the obstacles and the information about occupied and free space available. These two

informations are mandatory to make a decision for planning a collision free path. To

model the environment as a 3D map, methods like voxels where the grid is arranged as

cubes [65] are commonly used and developed even for small environments with millime-

ter precision [66]. The drawback in grid volume representation methods are that it needs

large memory to store and compute. Other algorithms include the stored point cloud [67]

methods. The problem with point cloud method is that it does not differentiate between

free space, occupied space and unknown space. In [68], [69] the authors used octrees

for mapping and navigation. Octrees stores information in the form of cubic volumes

and it has hierarchical structure which can be subdivided into eight sub-volumes. The

minimum size gives the resolution of the octree. Based on this octree, popular approach
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called octomap [70] is developed. The octomap uses the probabilistic sensor fusion to

integrate the sensor readings. As provided in [70] the probability P (n|z(z:t)) of node n

occupied can be estimated provided sensors measurements z1:t like in equation below,

P (n|z(z:t)) =

[
1− P (n|zt)

P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1

. (2.14)

The above equation is rewritten as in [70],

L(n|z1:t) = L(n|z1:t−1) + L(n|zt). (2.15)

with,

L(n) = log
P (n)

1− P (n)

In addition to that, octomap uses multiresolution and also a clamping policy for map

compression. One of the advantage is that the octomap can update the occupied space

through raycasting [70]. This technique helps in handling of dynamic objects with

implicit cell update. The Figure 2.10 shows the octomap and its respective image. From

the Figure 2.10b we can see the unstructured trees which are located on the ground.

The same can be observed in the Figure 2.10a. For example the shape of the trees

originating from the ground and the distance between each trees. In Figure 2.10b the

octomap colors red, green and blue represents the x, y and z axis respectively.

(a) Image
(b) Octomap

Figure 2.10: Image and its respective Octomap where the green , red, blue color
represents the x, y and z axis respectively.

From the literature it is evident that graph based SLAM with loop closure detection

and octomap will perform real time under the memory constrains.
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2.5 Path Planning

Path planning for UAV systems [71] [72] is a wide research area with many approaches

and algorithms. The path planning strategies for UAV system focuses on the perfor-

mance optimization, collision avoidance, real- time planning, risk minimization. Most

of the current research focuses on two dimensional path planning [73] as shown in Fig-

ure 2.11 [74] ,[75] but this technique works with static obstacles with terrain navigation

or in the environment which is already known. Classic methods include probabilistic

roadmaps and potential field methods.

Figure 2.11: Two dimensional path planning in the two dimensional map where black
and white color represents the occupied and free space respectively.
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There are three cases when it comes to path planning,

• Case 1: Two dimensional planning in two dimensional map.

• Case 2: Two dimensional planning in three dimensional map.

• Case 3: Three dimensional planning in three dimensional map.

Figure 2.11 shows the 2D path planning in 2D map. Here the white and black color

spaces are considered to be free and occupied space. So planner will search the collision

free path in x and y direction only. In extension to that the same 2D path planning

done in 3D octomap is shown in Figure 2.12. In this example we have two trees in the

form of octomap

The planner doesn’t consider height information for collision free path. So it has the

risk of colliding the obstacles present with different height. This kind of 2D planning

will be implemented in real time application upto certain limit.

Figure 2.12: Two dimensional path planned in three dimensional map.

Typically the real world includes cluttered unstructured environment with static as

well as dynamic objects which introduces lot of uncertainty. Due to the above factors,

optimal three dimensional planning becomes mandatory for the UAV systems in outdoor
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unknown environment. In contrast to the 2D planning, the complexity in 3D planning

is more due to the kinematic constraints. 3D path planning algorithms specifically for

small UAV systems have been investigated in [76]. Recent literature review [77] classifies

the 3D path planning algorithms into five categories such as sampling based, Node based

optimal algorithms, Mathematical model based, Bio-inspired, Multi fusion algorithms.

Sampling based algorithm works with known environment which will be sampled as cells

or nodes. Based on the search technique in the nodes or cells it will find the feasible

path. Probabilistic road Maps [78], Rapidly exploring random trees [79] and Potential

field algorithms [80] are the examples of the sampling based algorithms.

Node based algorithms are based on the decomposed graph [81] and the search will be

based on set of nodes or cells to find the optimal path. Algorithms include Dijkstra[82],

A∗, Lifelong planning A∗[83] and D∗ [84] [85] comes under node based algorithms.

Mathematical model based algorithms work with kinematic and dynamic constraints

to achieve the optimal solution. Mixed-Integer Linear Programming [86], Binary Linear

programming [87], differential flatness [88] are mathematical model based algorithms.

Bio-inspired algorithms use the stochastic approaches to search the near optimal path.

Genetic algorithms [89], Memetic algorithm [90], Ant Colony Optimization[91] are some

of the bio-inspired algorithms.

The Node based optimal algorithm which also includes graph based search method is a

well known technique for finding the shortest path between nodes. While Optimizing

the path as shorts as possible, it often produces a suboptimal solution, but it can still

be deployed in complex mission due to its simplicity. It uses nodes, arc and its weight

information to calculate cost of path. For 2D environments it has less complexity in

finding the cost of path when compare to 3D environments. However when it comes to

re-planning in 3D environments it requires strong computational power.

Potential field algorithm works on the attractive and repulsive forces on the goal point

and the obstacles respectively. But the tendency of generating the local minima is

difficult in complex scenarios. Evolutionary algorithms use optimal solutions but the

computational cost is high. On the contrary graph search algorithms are proven to

be robust and efficient especially when it comes to long term planning in large complex

outdoor environment with dynamic objects. Graph search algorithms along with efficient

optimization can be also used for real-time path planning in 3D environments.

To tailor path planning for the small UAV in urban environment we require fast re-

planning. For example if there is a new obstacle detected in previous valid path, it

needs to re-plan repeatedly from the current position to target position. This re-planning

module opens up different applications.
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To focus on dynamic replanning we modified the classic D* Lite algorithm to do a 3D

search and planning. Since D* Lite is an incremental heuristic search method based on

LPA* used for 2D planning. LPA* uses valid path information that is calculated already

using the previous information to re-plan new path. It repeatedly replan while exploring

the search.

Generating 3D map and searching the collision free 3D path to plan on it would be the

realistic approach. So in this thesis graph search is applied in the 3D grid and based on

that 3D collision-free path planning is done online.
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Design and development of

custom stereo camera

This chapter discusses the design and development aspects of the custom made stereo

camera used in this thesis. Besides that, it describes the challenges specifically related

to outdoor environments. This includes the sensitivity, illumination variation and com-

putational power. First, we provide the overview of the design and development of the

stereo camera that has the potential to be implemented in a small UAV for real time

navigation. Second the fundamental concepts of the stereo geometry, stereo matching

algorithms and its initial experimental results are presented here.

3.1 Motivation and Challenges

Stereo vision gives depth information by using the 2D image scene taken from different

view points of two camera. Since the two cameras are displaced with each other, a

point in the real world appears in each 2D image with displacement. By finding the

corresponding points in the two images with known configuration of two cameras, depth

of a point can be estimated. Moreover, the base length of the two cameras determines

the maximum range at which the stereo camera can compute the depth information.

The range decides the accuracy, robustness of the data. Here we focus on the outdoor

environment sensing from the small UAV, we need base lengths that can be adjustable

according to the scenario. Because the outdoor environment has different kinds of sce-

narios like narrowed buildings and streets or vast open space with few objects or more

cluttered with objects that are placed near to each other. To handle those scenarios we

need a stereo camera setup that can have adjustable base length with easy adaptability.

The available COTS stereo camera products have fixed baseline, we cannot change their

31
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distance between each of the cameras. So we designed custom made stereo camera with

varying base length and adaptable sensitivity. Eventhough the camera setup is custom

made, still there are challenges like inherent ambiguities associated with stereo cam-

era. This will affect the accuracy and fast computation of the depth information. This

can be tackled by the stereo matching algorithms but the complexity in the processing

time does not guarantee the real time implementation. For example the noise in the

image causes blur which impacts the robustness. So the parameters of stereo camera

had chosen appropriately in this thesis.

3.2 Stereo camera setup

Low cost CMOS cameras are widely used in research and the technology is well estab-

lished. It can provide depth information with color data in contrast to the time-of-flight,

structure light cameras [92]. We used two ueye CMOS cameras to develop the stereo

camera setup. First we designed and developed a stereo setup with board level camera

model UI-1221-LE-C-HQ which is shown in Figure 3.1a. Then later we designed an-

other setup using the housed camera model UI-1220-LE-C-HQ with Tamron lens which

is shown in Figure 3.1b.

3.2.1 Camera specifications

In computer vision, the first and foremost work is to decide the type of images required

to achieve the mission. Then it is followed by the design and model that can be helpful

to attain the objective of the work. In our case we need color images which has 24 bits

per pixel where as the grayscale images provide 8 bits per pixel. So color images have

more information to extract the depth data. Moreover, we need global shutter camera

because the camera will be always in motion and it has to handle dynamic objects.

Figure 3.1a and 3.1b show the two camera models which provides color images and

global shutter. Initially, the stereo camera setup is developed using two identical single

board level cameras as shown in Figure 3.1a. Later we developed the second one using

the two identically housed camera model like in Figure 3.1b. The weights of the board

level and the housing camera without lens are 16 grams and 44 grams respectively. The

specifications of both the cameras can be found in Table 3.1. Both of them have the

same specification except the outer housing of the camera and the lens model. The

advantage of the board level camera is that it is light weight and which will be useful

while mounting it on the small UAV. Though the housed camera we have is heavier than

the board level camera, it can provide longer range and its lens has easy adaptability

option for focusing and exposure settings.
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(a) Board level ueye camera- UI-1221LE-C-HQ (b) Housed ueye camera - UI-1220LE-C-HQ

Figure 3.1: Camera models.

Parameters Values

Image width 640

Image height 480

Frame rate 30 fps

Red gain 0

Blue gain 0

Green gain 0

Exposure 1ms

Flash delay 1000 µ s

Flash duration 30000 µ s

Pixel clock 30 MHz

Color mode rgb8

Shutter global shutter

Table 3.1: Specification of the ueye camera model UI1221-LE-C-HQ and UI1220-LE-
C-HQ
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3.2.2 Images and discussion

We have checked different resolutions starting from 376 × 240, 540 × 480, 640 × 480

pixels along with frame rates ranging from 30 fps, 20 fps, 15 fps. We focused on the

outdoor environments, the exposure always need to be adapted according to the lighting

condition. For example the images shown in Figure 3.2a and 3.2b have the resolution

of 376× 240 and 540× 480 respectively. These two images taken using the board level

camera 3.1a. Later the images shown in Figure 3.2c and 3.2d are taken using the housed

camera 3.1b. We can notice the difference in terms of contrast and brightness. The

images produced by both the camera models have advantages and disadvantages. For

instance low image resolution can increase the speed of the computation but it cannot

give more information from longer range. In contrast, higher the image resolution it

will take more computational power, but it will take more measurements to perform

computation. So depending on the environment and lighting condition, we choose the

parameters like image resolution, frame rate and exposure rate.

(a) 376 x 240 pixels

(b) 540 x 480 pixels

(c) 640 x 480 pixels (d) 640 x 480 pixels

Figure 3.2: Images with different resolution taken in outdoor environment.
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3.2.3 Sensitivity

The camera can be sensitive to different operating conditions such as lighting, vibrations,

reliability of the power. During the initial testing we used auto exposure to adapt to

the light available. But it is not constant enough to produce the clear images. So we

adjusted the exposure time according to the environment condition. Figure 3.3a shows

more shadows in the cluttered outdoor environment where the camera was set in the

auto exposure mode. In contrast to that we can observe more light in Figure 3.3b and

it is difficult to find the objects present in that area. The same kind of issue is observed

while the environment is filled with more snow on the ground as shown in Figure 3.3c.

Another scenario where shadows and sunlight are mixed and it is not adapted by the

auto exposure like shown in Figure 3.3d. So we used the constant exposure time varying

from 1ms to 6ms. To avoid blurring in both the cameras, the lens can be adjusted.

Furthermore in the housed camera seen in Figure 3.1b the lens has more options to

adjust and lock it manually.

(a) 376 x 240 pixels

(b) 540 x 480 pixels

(c) 640 x 480 pixels (d) 640 x 480 pixels

Figure 3.3: Images with sensitivity taken in different outdoor environment.
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3.3 Mechanical assembly of the stereo camera

The two identical board level cameras are mechanically assembled as a stereo camera like

shown in Figure 3.4. We used carbon rod to fix it with maximum length of 299.5mm with

outside and inside width of 10.12mm and 8mm respectively. The cameras are initially

fixed with a carbon base plate of width 1.5mm. The dimensions of the plates can be

found in Appendix A. This stereo setup was initially tested and used for the experiments.

Figure 3.5 shows the stereo setup mounted on the small UAV DJI- Matrice 100.

Figure 3.4: Board level stereo camera setup using UI- 1221-LE-C-HQ camera model.

Figure 3.5: Board level stereo camera setup using UI-1221-LE-C-HQ
fixed on the DJI-Matrice 100 UAV
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Later we designed another stereo setup with same specification but with different lens

(CS-type) like shown in Figure 3.6. This gives larger field of view which is beneficial in

the large scale outdoor scenario. The focus and exposure can be adjusted manually in

the Tamron lens. In the outdoor environment the daylight often changes, in that case

this lens set up will be beneficial. This setup is assembled with the hollow carbon rod

of maximum length of 300mm. Each of the camera is clamped using a dedicated plastic

holder.

Figure 3.6: House model stereo camera setup with Tamron lens
using UI- 1220-LE-C-HQ

Figure 3.7: Housed stereo camera using UI- 1220-LE-C-HQ with Tamron lens
setup fixed on the DJI-Matrice 100 UAV
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Table 3.2 shows the weight of both the stereo camera setup with all the materials in-

cluded.

Camera Weight(g)

UI-1221LE-C-HQ -

single camera

14.7

UI-1221LE-C-HQ -

stereo camera setup

91.7

UI-1220LE-C-HQ -

single camera

77.2

UI-1220LE-C-HQ -

stereo camera setup

304.4

Table 3.2: Weight of the single camera as well as stereo camera setup

3.4 Synchronization

Since both the stereo camera setup is made up of two independent cameras. The time

stamps of the two camera are often not identical. This affects the complete process

of calculating the 3D points. To avoid the timestamps varying from each other, the

clocks of the two identical cameras should be synchronized. Otherwise it will lead to

erroneous estimation while extracting the depth information. So we synchronized the

two cameras using master slave configuration. We used cable to form the connection

between the two cameras. The master slave configuration is formed by connecting the

trigger input and flash output of the master camera to the trigger input of the slave

camera. The configuration of the detailed circuit diagram can be found in Appendix A.

This synchronization setup is tested upto 25 fps for identical time stamps.

3.4.1 Tuning

Since the stereo camera setup is connected with the on-board computer during the ex-

periments it requires tuning of the usb bandwidth transfer rate. We performed software

tuning to achieve identical time stamps for both the cameras. We modified the default

parameters of bulk transfer size, Nice value, USBFS memory which are shown in Table

3.3. These parameters are from ueye-camera drivers.
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Parameters Values

Bulk transfer size 512 kb

Usbfs memory 1024 mb

Nice value 43

Table 3.3: Modified parameters to handle usb transfer failures

Using bulk transfer size the behavior of the usb- subsytem can be adjusted whereas the

Usbfs sets the buffer memory. Furthermore Nice value is used in master slave config-

uration for bandwidth. During synchronization the master slave camera configuration

has a polling mechanism that the master camera needs to be triggered before the slave

camera. During the implementation we observed that subscribing both the cameras at

the same time creates failure rate of half of the frame rate.

To avoid this issue we initiate the master camera first upto 10 fps and then the slave

camera will be started to capture the images. In this way we received identical stereo

images constantly during experiments.

3.5 Stereo Camera Fundamentals

This section explains the theoretical aspects of the stereo image geometry and its param-

eters. First we discuss the concepts of the pinhole camera model, epipolar geometry and

the perspective projection which are required to understand the stereo camera model

and its geometric relationship between the sensor and the captured images.

In general pinhole camera is a simple camera which use a mathematical model to relate

the 3D world coordinate system and its 2D projection in image plane. Figure 3.8 shows

the central projective imaging model. In the origin of camera frame the rays converge to

form a non-inverted image which is then projected to image plane at the location of z=f.

Here Xw, Yw, Zw represents 3D points in world coordinate system whereas (xc, yc, zc)

represents camera coordinate system in the image plane. The geometric relation between

3D coordinates to the 2D using the pinhole camera model is called perspective projection.

The distance from the image plane to the optical center is referred as focal length f .

From Figure 3.8 the point in world coordinates P (XW , YW , ZW ) projected on to a image
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plane p =(x,y) can be obtained using similar triangles like in equation below,

x = f
XW

ZW

, y = f
YW
ZW

(3.1)

Figure 3.8: Principle of pinhole camera model

For stereo geometry we need to used two pinhole cameras which basically acquire 2D

images of an object from different positions inorder to construct 3D images. Figure

3.9 shows the two pinhole cameras to form the stereo geometry with camera or optical

centers OL and OR of the left and the right camera. P is a point in the 3D space

where the pl and pr denotes the projection of the point P (x, y, z) in the left and the

right images respectively. Here el and er represents the epipoles which is defined by the

intersection of the point with the line across the optical centers. The epipolar plane is

formed by the points P and the optical centers Ol and Or. The line connecting P −Ol
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Figure 3.9: Epipolar geometry

in the left camera is denoted as pl image. The point in the left image which also needs

to be mapped in the epipolar line of the right image is called epipolar constraint.

With the pixel coordinates of left image pl(xl, yl) and the right image pixel coordinates

pr(xr, yr) the 3D point P (x, y, z) can be calculated with the baseline B formed by the

distance between the optical center Ol and Or. Z is the depth of the object which is the

distance between P and the baseline B.

Essential matrix

The vectors pl and pr lie in the epipolar plane. Co-planarity constraint between the

vectors (Pl −B), B, Pl is given by,

(Pl −B)TBPl = 0

P T
r RBPl = 0 (3.2)
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P T
r RSPl = 0 (3.3)

where, R is the rotation matrix S is the translational matrix

S =











0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0











Here the epipolar geometric constraints are expressed interms of normalized image co-

ordinates,

P T
r EPl = 0 (3.4)

E = RS is the essential matrix. The conjugate points P T
r and Pl are in homogeneous

normalized image coordinates. This essential matrix has 5 degrees of freedom which has

3 rotation and 2 translation parameters. The rank of essential matrix is of two and it

contains two non-zero singular values.

Fundamental matrix

Epipolar line formed in right image can be defined using the fundamental matrix and a

point in the left image. The points in the left image and their corresponding points in

the right image can be related using the fundamental matrix. It is formed by applying

the camera model and the essential matrix as shown below,

XT
RFXl = 0 (3.5)

where XT
R and Xl are image points in homogeneous form and F is 3x3 matrix which is

called fundamental matrix.

XT
R











f11 f12 f13

f21 f22 f23

f31 f32 f33











Xl = 0 (3.6)

The relationship between two corresponding views can be obtained by fundamental

matrix. Like in equation 3.6 fundamental matrix is a 3x3 matrix i.e 9 components with

rank 2 and it has seven degrees of freedom.
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Homography matrix

As shown in Figure 3.9 the set of points in the world captured by the stereo camera are

then projected onto a common plane. Since it is viewed by two cameras, the relationship

between those two points can be defined as 3× 3 matrix as shown below,

pl = Hpr (3.7)

where, H is the homography matrix with rank 3. Using the homography matrices the

stereo images are rectified. Stereo image rectification is an important step for real time

processing. The underlying process is to generate the matrix conversion based on the

calibration parameters i.e intrinsic and extrinsic parameters applied to the images along

with homograph matrix H. This will align the stereo pair of images in a common plane

which in turns align the epipolar lines in common image plane axis. More details about

the calibration procedure is explained in Section 3.6.

The 3D point coordinates P (x, y, z) is computed by the pixel coordinates of the left image

Pl(xl, yl) and the right image PR(xR, yr) along with baseline of the cameras given by the

distance between the center of the left camera Ol and right camera Or. The distance

between the corresponding points in the left and right image defines the disparity d like

shown in equation below,

d = xl − xr (3.8)

From the disparity map, depth map can be obtained by,

x =
Bxl
d

, y =
Byl
d

, z =
Bf

d
(3.9)

where B is the baseline of the stereo camera.

Equation 3.10 ,3.11 and 3.12, 3.13 shows the transformation of original image coordinates

(x,y) to rectified images. Hl and Hr denotes homography matrices for left and right

images respectively. In this rectification step it involves multiplication of inverse 3x3

matrices. This directly related to real time performance which includes software and

hardware. Moreover when left and right images are row aligned it will be easier for

tracking the epipolar line and also it is possible to scan each row.











x′l

y′l

z′l











= Hl
−1











x′′l

y′′l

z′′l











(3.10)











x′r

y′r

z′r











= Hr
−1











x′′r

y′′r

z′′r











(3.11)
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





xl

yl






=







x′

l

z′
l

y′
l

z′
l







(3.12)







xr

yr






=







x′

r

z′r

y′r
z′r







(3.13)

Figure 3.10 shows the disparity map formed by the stereo image. On right side of the

Figure 3.10 we can see the pointcloud of the same stereo image.

Figure 3.10: Disparity map (left) and 3D point clouds (right)

3.6 Calibration

Camera calibration gives the relation between the measurements in pixel and real world

three dimensional points. It is used to find the intrinsic and extrinsic parameters of the

camera.

• Extrinsic parameters are 3D position and orientation of the camera.

• Intrinsic parameters are focal length, image center and distortion parameters of

the lens. size of the pixels.

According to [93] normally focal length of a lens has only 4 percentage of accuracy.

During lens detachment and attachment, the intrinsic parameters will change.

Let’s take a simple pinhole camera model for the basic understanding as shown in Figure

3.8. Normally the camera projects the three dimensional point P (Xw, Yw, Zw) into the
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two dimensional image plane as image (xc, yc) with O as the origin. This is called

projective transformation and it can be written as

C = GP (3.14)

where,

C =











xc

yc

wc











G =











fx 0 cx

0 fy cy

0 0 1











P =











Xw

Yw

Zw











Typically the calibration process is done by a known pattern like chessboard. So that it

can be identifed via different angles and position. Using this information, it is possible

to compute the extrinsic and intrinsic parameters of the camera. Here the projection of

the three dimensional homogeneous world coordinates on the image plane can be written

as,

Cp = AWp (3.15)

where,














Cp1

Cp2

Cp3

Cp4















=















a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





























Xw

Yw

Zw

1















By using known 3D structure, the calibration will determine the 12 elements in the

matrix A. Since the image is only two dimensional there is no need to find the Cp3. The
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Cartesian image coordinates (xc, yc) are,

xc =
Cp1

Cp4

(3.16)

yc =
Cp2

Cp4

(3.17)

Cp1 = a11Xw + a12Yw + a13Zw + a14 = Cp4xc (3.18)

Cp2 = a21Xw + a22Yw + a23Zw + a24 = Cp4yc (3.19)

Cp4 = a41Xw + a42Yw + a43Zw + a44 (3.20)

After simplification, the equation can be formed,





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



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
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The above equation can be written as

DQ = R. (3.21)

By adding transpose on DT on both the sides,

DTDQ = DTR

Q = (DTD)−1DTR

Using the above equation Q can be found. Now the matrix A can be determined using

Q and all the unknowns can be estimated in this camera calibration process. Through

the camera calibration the values of focal length, rotation matrix, translation matrix,

distortion coefficients are estimated. Figure 3.11 shows the chessboard pattern of 9× 7

squares with a scale of 0.0325m set of images used for calibration of our stereo camera.

Figure 3.11: Calibration image samples
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Calibration result

The custom made stereo camera setup is tested with different base length to check the

accuracy and robustness. The general form of the projection matrix consists of the focal

lengths (fx, fy) and the principal points (cx, cy) as shown below,

Projectionmatrix =











fx 0 cx Tx

0 fy cy Ty

0 0 1 0











(3.22)

We showed the project matrix of one of the calibration result. Equation (3.23) and

(3.24) shows the left and right camera projection matrix. In this particular case the

epipolar error is 0.12.

Here the Tx, Ty gives the optical center of the right camera with respect to the left

camera. It can also be explained as the distance between the optical center of left

camera and right camera. For example in equation 3.24 the Ty value is -9.78 which is

the exact distance between the left and right optical center of this stereo camera setup.

Projectionmatrix(leftcamera) =











367.476 0 208.620 0

0 367.476 231.578 0

0 0 1 0











(3.23)

Projectionmatrix(rightcamera) =











367.476 0 208.620 −9.738

0 367.476 231.578 0

0 0 1 0











(3.24)

The accuracy of the camera calibration plays a significant role in the robustness of the

depth calculation. In this thesis we used opencv approach [94] for calibrating the stereo

camera.

3.7 Depth estimation using stereo image processing

The basic steps involved in stereo image processing is shown in Figure 3.12. With the

input of calibrated stereo images, we need to find the correspondence of a point in the
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left to the same point in the right image. This can be done by stereo matching algo-

rithms like global matching, semi global matching methods. Correspondence matching

involves search and matching which will gain computational complexity. Classic ap-

proach includes correlation window to search the points. The search can be constrained

by a limit called disparity range. Basically it is formed by the horizontal scan line in

the search window. Locating the common points in both the images determines the

robustness and precision in the 3D reconstruction. Most of the stereo matching process

involves the matching of the cost computation, cost aggregation from the initial cost,

optimization and refinement. First it starts with cost computation for each pair of pixels

and in the optimization process the best matching or correspondence for every pixel is

determined.

The common cost aggregation methods are sum of square differences(SSD), sum of

Absolute differences (SAD), Normalized cross correlation (NCC). We tested the sum

of square differences (SSD) and sum of Absolute difference(SAD) methods to compute

the disparity. Equation 3.25 shows the sum of square difference approach where the

difference of reference pixels and target pixels and then squares and aggregates.

SSD =
∑

u,v

(Ir(u, v)− It(u+ d, v))2 (3.25)

Equation 3.26 shows the sum of absolute difference approach where it aggregates the

pixel intensity difference between reference and target pixels.

SAD =
∑

u,v

|Ir(u, v)− It(u+ d, v)| (3.26)

Equation 3.27 shows Normalized Cross Correlation. It uses mean values in block to

normalize the cross correlation.

NCC =

∑

u,v Ir(u, v)− Īr.(It(u+ d, v)− Īt)
√

(Ir(u, v)− Īr)2.((It(u+ d, v)− Īt))2
(3.27)

The primary goal is to get more accuracy as well as speed in real time. Once the pixel

coordinates are located on both the images, it will be used to calculate the disparity

map. This disparity map should refined because it may contain ambiguous and noise due

to texture less regions or occlusions. Then by using the triangulation, 3D point clouds

are generated like shown in Figure 3.10. Using the parameters such as base length of the

cameras, focal length obtained from the calibration and disparity map from the stereo

matching, we can estimate the 3D point in the real world using triangulation.
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Figure 3.12: Overview of stereo image processing steps.
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3.8 Concluding Remarks

The custom made stereo camera development and its efficiency in acquiring the depth

of an objects in outdoor environment is explained in detail here. We discussed the

design aspects and hardware implementation of the two custom made stereo camera

models. During the real time experiments the issues like sensitivity, synchronization are

discussed. Then this chapter provided an overview of the stereo camera fundamentals

such as mathematical aspects of the camera calibration, stereo matching and image

rectification and depth estimation method. Further more the design choice suitable for

the primary objective and its quality in calculating the depth estimation influence the

choice of the algorithms in the pipeline is investigated.



Chapter 4

Mapping and Localization

This chapter presents the mapping of the outdoor environment and along with local-

ization necessary for the UAV navigation in this work. First, graph based SLAM is

explained in detail. Second, the Stereo Visual Odometry is described. Results of the

initial experiments conducted in the practical outdoor scenario and its analysis are pre-

sented next.

4.1 Motivation

As explained in the Chapter 2 mapping and localization is one of the primary modules

for autonomous navigation of the small UAV. The motivation is to build a topological

map that will allow to support the mission. An accurate map will be helpful to find

the precise details of the environment including the dynamic objects. In this thesis we

concentrate on mapping of the unknown outdoor environment which means without any

prior information like amount of light available, arrangements of the objects and its size,

color. For example, practical outdoor environment consists of objects like unstructured

trees, buildings and automobiles etc. To deploy a system that can give robust informa-

tion and high level understanding is the motivation for our approach. Later it will act

as a planning guide for the small UAV in real time like shown in Figure 4.1.

Definition 4.1. (Unknown Environment) The conditions and circumstances around the

vehicle are not known except the starting point and goal point.

52
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Figure 4.1: Illustration of the outdoor scenario.

4.1.1 Issues and Challenges

Here we will briefly address the issues and challenges in the mapping and localization

problem for the UAV in outdoor environment. The challenges includes the factor where

the UAV has to map and localize the outdoor environment in real time, while keeping

the on board computing and memory capabilities reliable. Likewise it has also been an

issue for the algorithm to map and discard the information about moving objects. For

example if the environment consists of 3 to 4 moving objects at different speed, mapping

all the moving objects and discard it while it is not present at that position anymore.

If the UAV is deployed in these kind of scenarios, we need a systematic algorithm that

can map and then update the moving object position in real time.

Other challenges include the ability to handle uncertainties and ambiguities in the envi-

ronment and achieve robustness and efficiency in data association. Because in outdoor

environment it is common to have identical objects like trees with same color and struc-

ture. But these objects are seperated with few meters to distinguish between themselves.

This will lead to perceptual aliasing.
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4.2 Graph based SLAM

As mentioned in Chapter 2 SLAM algorithm can be divided into online and full SLAM

[40]. As shown in the equation (4.1) online SLAM estimates the posteriori distribution

of current pose pt and map mt provided the measurements z1:t and u1:t upto the time,

P (pt,m|z1:t, u1:t). (4.1)

The posterior distribution of the entire trajectory can be estimated in full SLAM as,

P (p0:t,m|z1:t, u1:t). (4.2)

where p0:t denotes all poses including current time.

Since we want to implement the algorithm in outdoor unknown environment, graph

based SLAM can be used as it can handle the problem with accuracy and robustness.

The framework of graph based SLAM consists of nodes and edges to represent the pose

as shown in Figure 4.2. Most details about the graph based SLAM can be found in [95]

and [96]

Generally, pose of the UAV is stored in the form of nodes as

p = (p1, p2, p3....pn)
T (4.3)

and the links between the nodes act as relative motion constraints between them. The

main goal is to find the pose and map by maximizing the posterior of the full SLAM as

given below

[p∗,m∗] = argmax
p,m

P (p0:t,m|z1:t, u1:t). (4.4)

The maximum can be found by expanding the posterior in the recursive form [95]as,

P (p0:t,m|z1:t, u1:t) = νP (zt|pt,m)P (pt|pt−1, ut)P (p0:t,m|z1:t, u1:t−1), (4.5)

where ν is the normalizer. Considering it for all times t, we get the closed form as,

P (p0:t,m|z1:t, u1:t = νP (p0,m0)
∏

t

P (pt|pt−1, ut)P (zt|pt,m) (4.6)

P (p0:t,m|z1:t, u1:t = ν[P (p0,m0)
∏

t

P (pt|pt−1, ut)P (zit|pt,m)]. (4.7)

In the above equation (4.6), P (p0,m0) denotes the prior of the initial pose p0 and map

m. Initially there is no prior information about the map. Prior can be factorized into

independent P (p0) and P (m0) and placed with normalizer ν.
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With an assumption that the vehicle motion and measurements have a Normal (gaussian)

distribution, we have the following expressions,

P (pt|pt−1, ut) = νexp

{

−
1

2
(pt − c(pt−1), ut)

TQ−1
t (pt − c(pt−1), ut)

}

(4.8)

P (zit|pt,m) = νexp

{

−
1

2
(zit − l(pt−1,mt))

tRi
t(z

i
t − l(pt−1,mt))

}

(4.9)

P (p0) = νexp

{

−
1

2
pT0 Σ0p0

}

(4.10)

where c and l are the motion model and measurement model respectively. We now

compute the negative logarithm posterior as given below,

− logP (p0:t,m|z1:t, u1:t) = const.+ logP (p0) +
∑

t

logP (zit|pt,m). (4.11)

All the quadratic terms are summed up from equations (4.8) (4.9) (4.10) in

[p∗,m∗] = argmax
p,m

P (p0:t,m|z1:t, u1:t)

to the following maximization,

[p∗,m∗] = argmax
p,m

Σ
ij
eTijΩ

−1
ij eij , (4.12)

where eij is the error vector and Ω−1
ij is the information matrix. The poses are calculated

using the stereo data i.e extracting the interest points in the each image. Depending on

the environment this can be trees, buildings, humans or objects present at that time.

Typically, the constraints are the rigid body transformation and measurements of the

features. For example the movement of the small UAV from one position to another

requires translation and rotation transformation to calculate the pose. These nodes and

edges altogether forms the graph which are referred as “front-end”. The created graph

has a configuration which need to be optimized. The front end forms the constraints by

interpreting the sensor data. The back-end of the graph SLAM finds the configuration

of the nodes by computing the maximum likelihood of the map and optimizes it.
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Figure 4.2: Graph representation as nodes and edges: p1, p2, p3, p4 ... pn in Blue
circle denotes the UAV pose, f1, f2, f3, f4 in color canonical aubergine denotes the rel-
ative features, L0,L1 shows the loop closures, K is the intrinsic calibration parameters,
u1, u2...un denotes the corresponding Odometery constraints and p represents prior
factors,c1, c2, c3, c4, c5, c6, c7 are the variables associated with intrinsic calibration

parameters.

4.2.1 Front-end SLAM

The Front-end of graph based SLAM constructs the nodes and edges from the stereo

images. Besides that the key tasks that are undertaken in this phase includes the feature

extraction and the Loop Closure Detection.
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4.2.1.1 SURF: Feature detection and Generation

As mentioned in Chapter 2 in Section 2.2.2 SURF algorithm performs fast and efficient in

outdoor environment. Due to that reason we implemented SURF algorithm for feature

detection and description. We discuss the further details briefly in this section.

The Speed up robust features (SURF) algorithm process consists of two steps which are

detection of the interest points in the image frame and specifying the description for the

interest points. The descriptors can be matched sequentially at each time step. The

initial step is to calculate the image convolution. After that the features are detected

using the Hessian matrix. To increase the computational speed integral images are

used. According to the SURF algorithm [16] for a chosen point I(x, y) in an image I,

the Hessian is calculated as,

H(X,σ) =

∣
∣
∣
∣
∣
∣
∣
∣

Lxx(X,σ) Lyy(X,σ)

Lxy(X,σ) Lyx(X,σ)

∣
∣
∣
∣
∣
∣
∣
∣

. (4.13)

where,

- Lxx(X,σ) denotes the convolution of the gaussian second order derivative
∂

∂x2 g(σ) in point X. Likewise for Lyy(X,σ), Lxy(X,σ) and Lyx(X,σ).

- Point X = (x, y)

- σ is the scale parameter (amount of blur)

The interest point descriptors are generated by the Haar wavelet response. The cal-

culated interest points are matched in the successive images precisely. For example

the correspondence of the interest points for two images are calculated by measuring

euclidean distance between the respective feature point descriptor estimated in the pre-

vious image, if the measured distance is smaller than 0.6 times to the second nearest

neighborhood. Since the SURF algorithm uses box filter and integral images the filter

can be applied at any size directly.

To generate the feature, a keypoint in the image is internally selected by the algorithm.

Around each keypoint a 16 × 16 window is chosen which will later divided into 4 × 4

size windows. Gradient and orientation are calculated for each point, which will be then

moved to a 8 bin histogram in a 128-dimensional vector as shown in Figure 4.3.
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Figure 4.3: Image gradient and key point descriptor.

Depending on the range of the gradient and orientation, these values are added to the

bin which is 128 dimensional vector. For example, the range of 0 to 44 degrees covers the

first bin and the second bin covers the range of 45-89 degrees. The number of features

included depends on the magnitude of the gradient. The rotation of the keypoints are

subtracted from each orientation. At the end 4 × 4 × 8 = 128 numbers are calculated

and then normalized to generate the ”feature vector”. An example of the implemented

SURF algorithm in stereo images is shown in Figure 4.4. In Figure 4.4 the color yellow

circle represents the new feature and the pink shows corresponding features present in

the left and right images respectively.

Figure 4.4: Example of feature detection in left and right image.
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4.2.1.2 Loop Closure Detection or Visual place recognition

Recognizing a place that is already captured using the visual data is a challenging

problem due to the changes in the real world environment over the time. For example

the appearance of the object in the outdoor environment can vary due to the factors

like the distance at which the object is perceived by the sensor and contrast lighting

(sunlight) as well as shadows projecting on the objects. Our focus is to implement the

online loop closure detection incrementally. The process checks if the current image has

similarity or it is close to the view point of the past images. Here, the challenges are

the computational power, speed, image acquisition time and detection rate. In order to

identify the images with the previous set of images, we need a model that can verify

and ignore already captured images. Here we used Bag of Words methods to model the

dictionary that contains the features detected before.

Bag of Words:

A database of visual words formed by the extraction of features from the stereo images

on-line is referred as visual dictionary. The stereo image features generated are enormous

amount of data which needs to be clustered. For memory and computational reasons,

clustering would be beneficial. Here kd-tree and nearest neighbor distance ratio are

used to find the best possible values. The algorithm records the counts of each term

that appears in the image to create a normalized histogram representing a term vector.

This term vector is the Bag of Features representation of the image. The Advantage of

using the bag of words approach is that it is pose invariant which means a place can

be recognized irrespective of the small UAV current position in the environment. The

challenges in the loop closure detection involves the image retreival task online from the

past images and matching it with the current one. To explain it into details, the process

starts to check with past images the amount of similarity the current image It has or is

close to the view point of the previous images. This problem can be addressed by using

the probability estimation using bayesian framework.

Here Ct is the loop closure hypothesis at time t. The event Ct = i satisfies the event that

current image It detects the loop closure by matching with the past images. If Ct = −1

then there is no loop closure detected. Basically it is a search task from the past images

Is as

s = argmax
i=−1,...,t−n

P (Ct = i|It) (4.14)

where It = I0, I1, I2, ...It, are the n - neighbor images. Since the search in the neighbor

images always had similarity, we are not searching on the neighbor images n. The value
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of n is chosen as 20 images, because the frame rate of our image acquisition is 20 fps.

This can be modified if the speed of the vehicle is more than the image acquisition. The

full posterior can be estimated by Bayesian rule,

P (Ct|I
t) = νP (It|Ct)p(Ct|I

t−1) (4.15)

where ν is the normalization term. The dictionary is formed by the features created by

the SURF which will increment over the time. The state of the dictionary Df formed

by the features with incremental time index i is shown as

(Df )0 ⊆ (Df )1.... ⊆ (Df )t−1 ⊆ (Df )t (4.16)

In the above equation f is the feature space.Since the SURF algorithm uses box filters

it forms several features. The general form to represent the respective feature of the

image in the whole dictionary, we can write df i for the image Ii. Now the full posterior

can be expressed using the features formed in the dictionary,

P (Ct|D
n
t ) = ν(Dn

t |Ct)P (Ct|D
n
t−1) (4.17)

P (Ct|D
n
t ) = ν





n∏

f=0

P ((Df )t|Ct)



P (Ct|(D
n)t−1) (4.18)

P (Ct|D
n
t ) = ν





n∏

f=0

P ((Df )t|Ct)





t−p
∑

ij

P (Ct|Ct−1=j)P (Ct−1 = j)|(Dn)t−1

︸ ︷︷ ︸

belief

(4.19)

In equation (4.19) (Ct|Ct−1) gives time evolution model. The actual estimation of full

posterior is obtained by applying the time evolution model to the previous posterior.

This will update the sequence of the features Dn
f generating over time. Conditions for

the loop closure detection includes the following:

• No loop closure is detected at time t:

P (Dt = −1|Dt−1 = −1) = 0.9

• Low probability of loop closure not detected at time t:

P (Dt = i|Dt−1 = −1) =
0.1

(t− p) + 1

with i ∈ [0; t− p].
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• Loop closure at time t− 1 with no loop closure at time t:

P (Dt = −1|Dt−1 = j) = 0.1withjǫ[0; t− p]

With j ∈ [0; t− p].

• with i, j ∈ [0; t− p]

P (Dt = i|Dt−1 = j)

the standard deviation is non-zero for i = j − 2 . . . j + 2.

For the image retrieval we used the bag of words model as shown in equation (4.5).

We modified the significant parameters like speckle range, uniqueness ratio, number of

iterations for computational and memory efficiency. While detecting the features in the

image, we designed an adaptable threshold value of 30 to 70 to ignore the image in the

dictionary. So that the image with less features doesn’t create memory burden. To

speed up and make it more efficient the detection rate of 20 hz is set and it can be

adjusted according to the available power. Specifically when the UAV is moving we

consider the loop closure detected with nearest one location. This will reduce the search

in the dictionary which in turn reduces computation burden. So that it will satisfy the

online requirements of the onboard computerB mounted on small UAV for processing

the complete software pipeline.

Figure 4.5 shows an example of loop closure detected (denoted as L and C in green and

brown color letter respectively) between node number 47 and 122, 127 and 96.

Figure 4.5: Loop closure detection between nodes
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The Figure 4.6 shows the overview of the process of loop closure detection implemented

here.

Figure 4.6: Schematic process of the loop closure detection

4.2.2 Back-end SLAM

As explained in the Section 4.2.1 front-end of the SLAM creates the graph with nodes

and edges. The main objective of the back end SLAM is to find the configuration of

the nodes by optimizing it. Because of the non-linear measurements in SLAM, this

optimization problem is non-convex. Here the general graph optimization g2o is used.

The error function eij(p) between the two nodes i and j can be obtained as the difference

between the observed measurement zij and the expected measurement ẑ(pi, pj) as

eij(p) = ẑ(pi, pj)− zij (4.20)
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But the measurements ẑ and pose p are not in euclidean space. To perform this opera-

tion in non-euclidean space, new operator ⊞ is defined in [97] to compute the difference

in variables from different domain,

ẽij(p) = ẑ(pi, pj)⊞ zij (4.21)

The measurement function ẑ depends on the stereo image data setup. If two nodes

has poses then the constraints are the transformation between the poses. For the pose

to features correspondence we have to minimize the re-projection error of the observed

feature in the frame of observed pose. The error minimization function is written as

p∗ = argmin
p

∑

ij

eij(p)
TΩ−1

ij eij(p) (4.22)

where,

• Ωij is the covariance matrix

• Ω−1
ij is the information matrix between the nodes pi and pj

• p∗ is the optimal configuration of the nodes with minimum error

For 3D slam the translation vector and quaternion can be used to represent the incre-

ments of △pi to pi by an operator ⊕ defined in [98]

p̆⊞△pi
∗ def.

= p̆i ⊕△pi
∗ (4.23)

The error function using the new operator can be defined as,

eij(△pi,△pj)
def.
= eij(p̆i ⊞△pi, p̆j ⊞△pj) = eij(p̆⊞△p) ≃ Jij△p (4.24)

where the Jacobian Jij ,

Jij =
∂eij(p̆ +△p)

∂△p
|△p=0 (4.25)

is the approximate cost function in a quadratic form. The minimum of this quadratic

form can be obtained by solving,

H△p∗ = −b (4.26)

where,

• H =
∑

ij J
T
ijΩ

−1
ij Jij

• b =
∑

ij Jij(p)
TΩ−1

ij eij
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4.3 Stereo Odometery

The Odometery of the small UAV is estimated using the sequence of the stereo images

as input. Since the stereo camera model is derived using the multi-view geometry, the

intrinsic and extrinsic parameters are retrieved. Using this knowledge of the rotation

and translation matrix i.e R,t should be estimated between each stereo pair. Now this

will give the motion of the small UAV.

Algorithm 1 Stereo Visual Odometry

1: procedure Stereo Visual Odometry

2: Itl , I
t
r ← ImageAcquistion

3: Image Rectification ← this step projects the left and right image in a common

plane. This will be useful to get the corresponding points

4: Extract the features using SURF algorithm ← Quantize the features

5: compute disparity by using the sum of square differences(ssd)← Form the nearest

neighbor index

6: Point cloud generation ← Possible number of features

7: Estimate the rotation R and translation t

Here we used the library LIBVISO2 [99] for ego motion estimation. Typically the input

for the odometry are the consistent features from the stereo images. The features are

already computed as explained in Section 4.2.1.1. By using that we estimate the ego

motion of the detected features in the left and right images. These features will be

matched and 3D points are computed using camera model. Since SURF uses the integral

images which in turn gives you blob detection, this library uses non-maximum and non-

minimum suppression [100] which categorize the features based on the size of the blob

like maximum, minimum. Assuming squared pixels and zero skew, the reprojection into

the current image is given by
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(4.27)

where,
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– (u v 1)T represents the homogeneous image coordinates

– f - focal length

– (cu,cv) - principal point

– (Rx(rx)Ry(ry)Rz(rz)) - Rotation matrix R(r)

– (tx, ty, tz) - Translation vector t

– (x y z)T - 3D point coordinates.

Now considering Gauss Newton optimization to minimize re-projection errors

N∑

i=1

||(xli − πl(Xi; r, t))||
2 + ||(xri − πr(Xi; r, t))||

2 (4.28)

where, xli, x
r
i are the feature positions in the left image and right image respectively,

the minimization is performed with respect to the transformation parameters (r, t). The

Jacobian J l
π Jr

π can be derived from equation (4.27). Since the resolution of the image is

640× 480 pixels, it produces more features. To increase the robustness of the system by

rejecting potential outliers it used the Random Sample Consensus (RANSAC) method.

A Standard kalman filter is used for the estimation by assuming constant acceleration.

Here the velocity vector v obtained like shown in equation

v = (rt)t/∆t (4.29)

1

∆t







v

a






=

[

I 0

]







v

a







t

+ υ (4.30)

where υ is the measurement noise.
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The measured covariance value of the pose is shown in equation (4.3)
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In the current process we applied the frame to frame matching. During the initial

experiments we observed odometry was lost in environment with less feature. To tackle

this we used odometry reset where the odometry will start from the last frame the value

was estimated. This strategy helped fast movement of the camera with frame rate of 20

hz. Also it depends on the orientation changes of the stereo camera.

4.4 Analysis and observation of the experiment

Real time experiments are conducted to evaluate and analyse the performance, accuracy

and robustness of the algorithm. All the experiments are conducted in practical outdoor

scenario. In most of the experiments we consider the trees present in the environment as

an valid obstacle for the small UAV navigation. Even though the scenarios are complex

with uneven and unstructured objects present, it helps to check the frequent update of

the map with respect to the movement of the stereo camera.

Initial testing are done using hand-held stereo camera movements and 16 data sets are

collected in the form of rosbagC . Out of 16, 4 datasets results are presented here.

These datasets are some of the complex test case scenarios suitable for analysis and

discussion. All the data are taken in the outdoor environment with the complex dataset

which includes unstructured trees, branches with different illumination condition as

well as open space with large iron structure. In the cluttered environment walking

humans are introduced in the data to check the moving object detection and update.

To understand the complex behavior of the moving object, slow movements as well as

average movements of the camera are handled. The important reason for choosing this

kind of environment is to interpret the distance accuracy between the structures so that

safety distance can be estimated later for complex maneuvering without uncertainty.
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Next to that, shape and size of the structure generated are compared manually to the

original physical structure. Three dimensional octomap for mapping and Stereo Visual

Odometry for localization are shown in this section.

Figure 4.7 shows sample the 2D grid which is used for visualization of the 3D octomap.

Each square in this 2D grid is 1m of size in x and y scale. The octomap generated from

each experiment is placed on the top of this type of grid.

Figure 4.7: 2D Grid used for visualization

4.4.1 Input images

The stereo input images are taken using the custom stereo camera setup with different

resolution ranging from 640× 480, 540× 480, 320× 240 with different frame rates like

60, 30, 20 frames per second (fps). Here 15 frames per second (fps) provides reasonable

matching between the left and right images features. Because the stereo camera is

not doing fast maneuvering. The frame rate has an impact in the data association as

explained in front end SLAM in Section 4.2.1. The Figures 4.8a and 4.8b show the 10

left images and 10 right images with resolution of 540× 480 at the frame rate of 15 fps.

From the Figures 4.8a and 4.8b we can infer the difference in the position of the tree

with respect to the previous frame. Since the camera is in motion we want to check the

minimum distance the algorithm needs for the feature detection.
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(a) Left Images (b) Right Images

(c) Detected features in Left Images (d) Detected features in Right Images

(e) Feature matching correspondence in left and right images.

Figure 4.8: Left and Right image feature detection and correspondence between them.

4.4.2 Detection and matching of the features

Once the input images are taken, SURF algorithm is applied to detect the interest

points i.e features. As shown in Figures 4.8c and 4.8d, the features are detected which

are shown in yellow and red circles. Yellow color denotes the features that are unique

(new) and pink color denotes the stable features found in the both the left and right

images. The size of the blob descriptor starts from 13 to 132. Here the size of blob

directly influence the Stereo Visual Odometry.
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x y Hessian Size Octave

56.4404 271.756 1335.27 83 2

197.934 93.726 2579.61 83 2

121.912 246.09 2164.07 115 3

160.583 302.449 1721.61 62 2

212.164 367.051 7455 132 3

321.772 354.212 6504.61 115 3

240.505 398.811 6439.72 14 2

203.184 398.811 9800.04 27 1

360.888 384.173 4726.63 82 2

346.929 151.803 8214 84 2

366.38 189.198 1913.45 82 2

184.489 48.9825 5055.95 31 1

194.412 282.131 4697.53 86 2

Table 4.1: Values obtained for the features in terms of x, y, hessian, size and Octave.

The detected key points are matched in the left and right image as shown in Figure

4.8e. The green line in the images shows the matching between two images. The stable

features in red are matched accurately when compared to the other features. Since the

environment has identical objects like trees, leaves and grasses feature matching works

much faster in tracking in the consecutive frames.

As shown in the Table 4.1, if the hessian matrix has higher value, the features will

have greater stability. Also we can observe the size ranging from 14 to 132 with octave

starting from 1 to 3. The distinguished features are taken for the visual dictionary for

the loop closure detection using the bag of words approach.
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4.4.3 Dataset 1 (Iron Structure and Bin): Map and graph

This experiment is conducted in a scenario where a big iron tank and a bin is present as

shown in Figure 4.9a. The bottom of the iron tank structure has rectangle shape with

wing like pattern on the top of it. The octomap generated has the same structure and

shape with little speckles due to the sunlight as shown in Figure 4.9b. The Figure 4.9c

shows the position of the stereo camera while moving in the environment. The dust bin

which is located besides is also captured with the grass on the ground with spurious data

behind. This spurious data and speckles are considered as noises which will be ignored

while calculating the free and occupied space. Since the baseline of the stereo camera is

23.05 cm, it can capture up to 12m approximately. To distinguish the objects we limit

the maximum range up to 7m for the octomap to check the precision.

(a) Scenario Image (b) 3D Octomap

(c) Stereo Visual Odometry
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Figure 4.9: Image showing the scenario and its equivalent 3D Octomap with Stereo
Visual Odometry.
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Figure 4.10: Plot showing the total time taken to compute, keypoint descriptor,
keypoint detection, occupancy grid, signature vs total number of nodes generated and

the Graph shows the nodes and edges.
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The Figure 4.10a shows the total time to compute each node starting from 0 to 106.

Maximum time occurred at node number 64 with 2148ms. This occurred when the cam-

era is near i.e less than 0.5m to the dust bin with wall behind of it. The high matching

correspondences between the left and the right images influences the computation in

terms of time. Because the stereo camera is near to object, both the left and images

overlap with more than 70 percentage of similarity.

This increases the point cloud processing time for the 3D points calculation. The total

feature size takes 1446.912 kb of memory. In Figure 4.10b we can observe the time

taken for descriptors extraction at the same node 64 is high i.e 962ms. While the

occupancy grid took an average of 186ms to generate the 3D map. The total length

of the odometry is about 32.6886m. While moving the stereo camera, the drifts and

fast movements results in odometry loss. We estimate the odometry from the previous

images where the odometry loss occurs. In this case it can use the last 2 to 3 frames

approximately to get back the odometry.

As shown in Figure 4.10c the graph shows the nodes generated. Initially the nodes

starting from 0 to 14 are generated around a particular place like in Figure 4.11a. While

moving it generates nodes in the direction of the stereo camera.

From these experiments, we inferred that the noises due to the long range of the baseline

can be adjusted by setting the maximum range for taking the point clouds into account.

The shape of the structure shown in the octomap is nearly similar. Since we focus

towards the collision avoidance for the small UAV the position of the obstacle is more

important than the finest shape of the obstacle.

(a) Nodes formed at the beginning.

(b) Nodes formed at the end.

Figure 4.11: Graph nodes in the starting and end time.
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4.4.4 Dataset 2 (Set of Trees): Map and graph

This data is taken by moving the stereo camera along the trees where the structures

are not closely arranged with respect to one another. As shown in Figure 4.12a we can

see the set of unstructured trees all over the place. Figure 4.12b shows the octomap

where the trees position and its distance from other trees can be seen clearly. The total

distance covered in this experiment is about 29.0571m and the Stereo Visual Odometry

shows the position of the camera as in Figure 4.12c. The generated graph includes 54

nodes and shape of the graph itself denotes that there are no nodes visited again. The

total visual features comprises the size of 1434.880 kb pf memory. As shown in Figure

4.13a the maximum total time occurred at node 54 with 725.4ms. Here the average

total time is about 282.6ms. Likewise Figure 4.13b shows the time taken to compute

the descriptor extraction, keypoint detection, occupancy grid, signature creation. More

details about the time to compute the feature, total time to generate the graph nodes

are discussed in Table 4.2 and 4.3.

(a) Scenario Image (b) 3D Octomap

(c) Graph
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Figure 4.12: Image showing the scenario and its equivalent 3D Octomap with Stereo
Visual Odometry.
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Figure 4.13: Plot showing the total time taken to compute, keypoint descriptor,
keypoint detection, occupancy grid, signature vs total number of nodes generated and

the Graph shows the nodes and edges.
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4.4.5 Dataset 3 (Cluttered Environment): Map and graph

This experiment is conducted in a cluttered environment. In the beginning when there is

no considerable movement of the stereo camera, the graph generates lot of nodes from 1

to 18 as shown in Figure 4.15c. In this data lot of speckles are observed due to sporadic

points of the leaves in the environment. As shown in Figure 4.14a the environment

contains large trees and small trees. Figure 4.14b and 4.14c shows the octomap and

Stereo Visual Odometry. The small speckles are from the unstructured branches and

leaves of the trees. The total distance traveled for this experiment is about 56.1779m.

(a) Scenario Image
(b) 3D Octomap

(c) Stereo Visual Odometry
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Figure 4.14: Image showing the scenario and its equivalent 3D Octomap with Stereo
Visual Odometry.
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Figure 4.15: Plot showing the total time taken to compute, keypoint descriptor,
keypoint detection, occupancy grid, signature vs total number of nodes generated and

the Graph shows the nodes and edges.

The Plot shown in Figure 4.15a gives the total time to generate the nodes. Here the

maximum time is taken at node number 78 with 916.138ms. Likewise the Figure 4.15b

gives the details of time taken for descriptor extraction, key point detection, occupancy

grid and signature creation. The total size of the features took 4208.640 kb of memory.

More details about the time to compute the feature, total time to generate the graph

and visual words are discussed in Table 4.2 and 4.3
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Figure 4.16: Graph nodes formed in the beginning.

Figure 4.17: Graph nodes formed at the end.
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4.4.6 Dataset 4 (Moving Object): Map and graph

This experiment is conducted in an environment where moving objects are introduced

twice during the process. We covered a total distance of 38.950m. The generated graph

contains 214 nodes processed. 7884 visual words are taken to find the loop closure

detection. As shown in Figure 4.19a initially there are only trees (static objects) where

we received the map at time 12ms. Later at time 26.946ms the moving object (human)

is introduced, which is captured by the map like in Figure 4.19c. Then the moving

object got updated at time 36.044ms. Totally it took 6 ms to update the map which is

shown in Figure 4.19f.

After the camera position is changed with new viewing angle, a new moving object

(human) entered in the frame to check the update frequency of the map. Figure 4.20b,

4.20e shows the map with movements of the person captured at time 93.256ms. This

got updated like in Figure 4.20f at time 128.03ms. Now it took 11 ms to completely

clear the cells to update. Again we tested the moving object while moving along the

trees to observe the map update. On an average the moving object is about 8 to 11 ms.

(a) Human as moving object (b) Second Human as moving object

Totally 4670 left and 4670 right images are processed with a frame rate of 30 frames

per second. Figure 4.22c shows the structure of the graph where the cluster of nodes

are formed in the beginning of the process. In this experiment totally 214 nodes are

formed. From node number 52 to 69 we can see the loop pattern which denotes that

these nodes are visited again. Since the information comes from nearby images, it is not

considered as loop closure. The loop closure is detected between the nodes 45 and 96,

47 and 122, 46 and 131, 46 and 129 respectively. Here the structure of the trees can

be seen from the picture showing the scenario in Figure 4.21a. More details about the
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maximum and minimum time to compute the feature, total time to generate the graph

and visual words are discussed in Table 4.5.

(a) At starting time

(b) Map generated at time 12 ms

(c) Moving Object entering into frame
(d) Map recognize moving object

(e) Moving Object update

(f) Map with Moving Object updated

Figure 4.19: Octomap capturing the moving object and update over the time.
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(a) Moving Object entering into frame

(b) Map generated at time

(c) Map generated at time
(d) Moving Object entering into frame

(e) Moving Object update

(f) Moving Object update

Figure 4.20: Octomap capturing the moving object and update over the time.
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(a) Scenario Image
(b) 3D Octomap

(c) Stereo Visual Odometry
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Figure 4.21: Image showing the scenario and its equivalent 3D Octomap with Stereo
Visual Odometry.

The Figure 4.21a shows the trees with the illumination condition. As we can see in

Figure 4.21b the octomap shows the structure of the different trees located near to each

other. Especially one of the tree is not vertical when compared to the other trees. The

same can be seen in the octomap.

The Figure 4.22a gives the total time taken by the algorithm to compute the octomap,

stereo odometry and feature extraction as well as loop closure detection. The maximum

time is taken by the node number 222 with 1121.86ms, whereas the signature also takes
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the maximum time of 1113.85ms in the same node. Here the occupancy grid takes an

average of 39.08ms.

(a) Total time
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(b) Analysis plot
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Figure 4.22: Plot showing the total time taken to compute, keypoint descriptor,
keypoint detection, occupancy grid, signature vs total number of nodes generated and

the Graph shows the nodes and edges.
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Figure 4.23: Graph nodes formed in the beginning.

4.5 Comparison of the results

The experimental results of all the 4 datasets are compared and presented in the Table

4.2 and 4.3 here. The major difference of computation can be noticed in dataset 1 when

compared to the other experiments conducted. Besides that the total time in dataset 4

shows that the total time is more than the dataset 2 and 3.
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Data

Total time(ms) Signature(ms) Occupancy grid(ms)

max min max min max min

Dataset 1 2148 547.667 2144 499.5 397.4 67.17

Dataset 2 725.4 149.24 390.5 148.9 48.88 19.62

Dataset 3 916.1 164 601.5 163.5 56.55 12.85

Dataset 4 1122 162.5 1114 61.9 87.07 17.68

Table 4.2: Comparison of the experimental results obtained from 4 datasets in terms
of Total time, Time to create the signature, Occupancygrid.

Data

Keypoint detection(ms) Descriptor extraction(ms)

max min max min

Dataset 1 653.1 118.2 962 179.8

Dataset 2 73.07 34.46 109.2 36.99

Dataset 3 157.6 27.63 221.5 39.2

Dataset 4 249.6 26.99 303.9 43.45

Table 4.3: Comparison of the results obtained from 4 datasets in terms of keypoint
detection and descriptor extraction.

As we can see in the Table 4.2 the open environment with distinguished objects takes

maximum time when compared to the other 3 experiments. While in cluttered envi-

ronment with moving object took the minimum time with 214 nodes processed. But in

cluttered environment the speckles are caused by unstructured leaves and its movements

initiated by the wind.

Again signature creation needed for the loop closure detection in dataset 1 takes more

time than other experiments conducted. For the occupancy grid dataset 2, 3, 4 takes an

average of 186.22ms, 30.66ms, 25.27ms and 39.08ms respectively. The graph SLAM

generates a maximum of 214 nodes in dataset 4 while the least number is in the dataset

2 with 54 nodes. For feature extraction and detection the lighting condition in the

outdoor influences the algorithm. As we can see from Table 4.3 the descriptor extractor

takes maximum time of 962ms for the dataset 1. From the comparison the solution we

proposed, works on the sparse as well as in the open environment. While at the same

time the environment condition requires some field tuning to have a precise map and



Chapter 4. Mapping and Localization 85

odometry. For example the exposure setting of the stereo camera needs to be tuned

according to the lighting condition.

4.6 Concluding Remarks

Overall the three dimensional mapping and localization using graph based SLAM is

described in detail here. Our approach consists of 3D mapping with online loop closure

detection. Using our approach several outdoor experiments are conducted for initial

analysis and inference are summarized in detail. We inferred that the scenario with more

textures provides precise localization and mapping. The 3D octomap with speckles are

always due to the clear textures even in longer distances.

Through the experiments we demonstrated that the graph SLAM can be incorporated

with the octomap with memory efficient in real time. Four dataset presented and the

results are compared at the end. In those obtained experiment results the proposed

approach can find the potential obstacles and free space in the outdoor environment.

Next to that, the run time performance our approach interms of memory and total time

to compute the 3D octomap also shown in results.
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Path planning

This chapter describes the proposed path planning algorithm and its implementation

in the small UAV. We used the path planner to calculate the collision free path among

static as well as dynamic obstacles estimated from the real time mapping (Octomap).

Here we explained the general D* lite and its modifications made in order to suit the

unknown 3D dynamic environments. Besides that, the expansion of the D* lite to 3D

space and its optimal path planning in real time is presented here. Specifically the

discussion of the planning and re-planning cost with respect to the cost of the 3D map

is addressed. Evaluation and analysis is done through the initial experiments conducted

in outdoor and its results are presented here.

5.1 Path Planning

An autonomous small UAV operating in a known or unknown environment requires a

safe collision free plan from the initial point to the goal point. Moreover, Real time path

planning requires map which provides the details of the obstacles so that it can avoid

the obstacles that exist in the environment. Based on the map details the starting point

and goal point are given to the path planing algorithm. However, the tasks depends

on factors such as environment, shape of the obstacles, position and arrangement of

the objects which creates the amount of complexity. Next the idea of path planning is

defined [77] immediately,

Definition 5.1. (Path Planning) Assume a function P : [0, T ] → R
3 where P [0] =

(xinit, yinit, zinit) and P [T ] = (xgoal, ygoal, zgoal). Between P [0] and P [T ], if there is

continuous process χ with the condition P (γ) ∈ wfree where γ ∈ [0, T ], then the process

χ is called path planning.

86
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Figure 5.1: Static path planning with known environment

Figure 5.2: Path planning in one of the outdoor scenario

For known environment the workspace configuration is already given to the UAV system.

With this information of free space and obstacle position, the collision free path can be

calculated. For example Figure 5.1 shows the generated path from A to C by avoiding

the obstacle B with as assumption that the positions of A, B, C are given already. The

mission is to reach the point C from the point A while at the same time, it has to avoid

the point B position. But practical scenario consists of static objects such as buildings,

trees and dynamic objects like human, automotive vehicle as shown in Figure 5.2. In

unknown environment more realistic approach will be creating the path from the initial

point to goal point and then change it according to the update of the obstacles with

respect to the current position. We focus on generating the collision free path in an

unknown environment. Generating the collision free path on-line in real time is one of

the complex tasks for the autonomous navigation. The complexity gets higher especially

if there are any dynamic environments along with the uncertainties associated with it.
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5.1.1 Motivation

To navigate a small UAV in an unknown environment where both the static and dynamic

objects are present, we need a dynamic path planning and re-planning. Since the sensing

radius of the vehicle is about 7 to 10 meters, the map can be generated only to that limit.

So initially a complete path can be planned with an assumption that the unknown space

is obstacle free. Once the map of the unknown space got updated with any obstacle in it,

the plan has to change accordingly. The change should adapt the previous plan instead of

generating a completely new path. Since the small UAV keeps changing its position, we

need a collision free path dynamically from its current position. This basically requires

frequent updates of the map and faster search technique for the planning in real time.

5.1.2 Problem formulation

We store the map information in the form of a 3D grid as shown in Figure 5.3. The

color red, green, blue represents the x, y and z axis respectively. We use this three

dimensional grid to search the free and occupied space to plan the collision free path.

Each grid consists of set of cells that has a cost value in it, as depicted in Figure

5.4. In this Figure 5.4 the values ranging from 0.1 to 1 denotes the cost value of the

cell. These cost values will change according to the update of the map. So we need a

search algorithm that efficiently avoids the untraversable cells and finds the optimum

traversable cell in real time.

Figure 5.3: Three dimensional grid with map coordinate system
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Figure 5.4: Three dimensional grid with values from minimum value of 0.1 to maxi-
mum of 1

5.1.3 Challenges

The challenge for a dynamic real time path planning in an unknown environment is

to have fast and robust re-planning. In our case the vehicle position keeps changing,

so the initial path will not be valid after the position changes and we always need

re-planning from the current position. But this re-planning should not be far away

from the previous plan to ensure smoothness and practical approach. To implement in

real time here, the primary input is the occupancy grid. So the path planning module

completely depends in the 3D occupancy. Synchronizing both at the same time in

unknown environment is a challenging task. The frequent update of the map and fast re-

planning process in onboard computerB mounted on the small UAV are challenges that

need to be accomplished. For instance the signal bandwidth of the onboard computerB

is connected via wireless with external computer in ground to launch the algorithm.
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While performing the processing in real time this signal gets lost from time to time

which forms the complexity in monitoring the parameters for verification.

The Section 5.2 explains the general path replanning in a three dimensional grid.

5.2 Path Re-Planning(PRP)

In this section we explained the path re-planning with an example. In general Figure

5.5a shows the 3D grid with cost value Cv of the each cell. The unknown cells are

represented as ∞.

Here the conditions for the occupied and free space of the cell is defined as,

Oc = Cv > 0.5

fc = Cv < 0.5. (5.1)

Since the whole grid is not expanded at the initial point which is also expensive, the

search proceeds as the graph is expanding its successors. This is done by tracking the

edges of the cell where the change in cost occurs. So the previous plan should be adjusted

according to the cost update of the cell as shown in Figure 5.5a. In this Figure 5.5a

a collision free path is planned from the start vertex of value 0.3 to the goal vertex of

value 0.2. In the next time step the cost value is updated in z axis which is highlighted

in light blue color with value of 0.8 and 0.9. So these cells are not traversable. Due to

the cost update, initial path plan as well as the start vertex are adjusted as shown in

Figure 5.5b. Again the cells are updating and the previous plan is adjusted to the cells

where the values of the cell is below 0.5. In Figure 5.5d the start vertex is very near to

goal vertex but still the planner searches for the traversable to reach the goal vertex.

This approach can handle both the static and dynamic environment. As long as the mov-

ing object is mapped in the grid the planner will not consider those cells as traversable.

For example if the object is moving at an average of 1.4m/s and it appears in the gen-

erated collision free path, the re-planner can handle such situation because our stereo

camera setup can map the objects at a range of 8m to 10m.
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(a) Initial plan at time t=0
(b) After the first move the start vertex has

changed

(c) After the update of the map and current
position keeps changing

(d) After new obstacle is updated and change
in the plan

Figure 5.5: Path planning and its updated plan in the unknown environment when
the cost of the cells are updating over the time
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5.3 Generic D* Lite

D* Lite is a graph based path planning algorithm. The D* Lite principle is based on

incremental heuristic search method [101] which continuously finds the shortest distance

between the current vertex to the goal vertex. According to the cost change in the

transition between vertex, it will calculate the path. It can work without any prior

information for the search. This will perfectly suit in our case. Because the small UAV

moves along the current vertex i.e current position always changes with respect to the

goal vertex . Instead of calculating the shortest path from the initial point, it uses the

previous information of the search as well as considers the start vertex that are only

relevant to calculate the shortest path towards the goal vertex. With the update of the

start vertex and distance to the goal that are relevant for re-planning, the shortest path

will be estimated. The detailed procedure of the D* Lite algorithm is explained in [85].

Given set of vertices V , the function Succ(v) will give the set of vertices V that are

connected to each vertex v and v ∈ V . Transition from one vertex v to the next

connected vertex v′ is given by the cost function c(v, v′). Here the function Pred(v)

represents the predecessors of the vertex v. It maintains the cost of the path g(s) as

well as rhs(v). Here rhs(v) is also a cost estimate with a step ahead of g(v) like shown

below,

rhs(v) =







0 if v = vstart

minv′ ∈ Pred(v)(g(v′) + c(v, v′)) otherwise

(5.2)

If two of the cost estimates for vertices v are equal g(v) = rhs(v) then v is consistent. On

contrary if g(v) 6= rhs(v) then it is locally inconsistent. Because the cost of the vertex is

not optimal towards the goal, search will be reversed from goal vertex to start vertex.

Here the heuristic (v, v′) is used on the search. Condition for the heuristic is that it

should satisfy the conditions,

h(vgoal, v
′
goal) = 0 (5.3)

h(v, vend) ≦ c(v, v′) + h(v′, vgoal) for all vertices v ∈ V and v′ ∈ Succ(v) (5.4)

The inconsistent vertices are stored in the priority queue Q. All the vertices in the

priority queue will be categorized by their key values like shown below,

k1(v) = min(g(v), rhs(v)) + h(v, vgoal)

k2(v) = min(g(v), rhs(v))

(5.5)
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During the search process the vertices are processed according to the priority queue. For

the example vertex v started before v′, if k1(v) < k1(v
′) or k1(v) = k1(v

′) then it will

take order the priority queue for the search.

g(v) > rhs(v) (5.6)

g(v) < rhs(v) (5.7)

Equation 5.6 and 5.7 denotes the over consistent and under consistent vertex. In the case

of overconsistent vertex, it can be changed to consistent vertex by making g(v) = rhs(v).

So all the predecessors of the rhs values will be recomputed

For under consistent vertex v, the g(v) will be set to ∞ so that in the priority queue

it will be as overconsistent vertex. Again the rhs values are recomputed. Here if start

vertex is consistent and no vertex in priority queue is less than the start vertex, we can

get a optimal path. This implies the process should be continued until the start vertex

is consistent.

In our case while sensing the small UAV moving which obviously changes the start vertex

and the map update changes the cost of the vertex. So rhs values will recompute to

attain the consistent start vertex. This will be efficient to plan from the current position

to the goal position. At the same time typically it will not give optimal paths for all

scenario. For example in 2D environment which is represented in 2D discretized grid,

it has only eight connected vertices for a vertex v. So it will have only eight directions

to plan a path. This will limit the optimal path planning which results in suboptimal

solution.

Expanding to 3D

Here we are using the 3D octomap which is based on occupany grid to store the map

information. We define our three dimensional grid to search the collision free path.

In this grid the vertices are connected by 26 neighborhood vertices [102]. Inside the

grid, cells are not uniform. This non-uniform grid generated with the minimum and

maximum boundaries of the grid. This forms the graph structure with vertex calculating

the incoming and outgoing edges. The objective is to compute the path between the

starting point and goal point.

vgoal = (vx, vy, vz). (5.8)
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Algorithm 2 D* Lite - Procedure

1: procedure D*Lite

calckey(v)
2: return [min(g(v), rhs(v)) + h(vstart, v) + km; min(g(v), rhs(v))];

Initialize()
3: Q = ∅; km = 0;
4:5: for all vertices v ∈ V rhs(v) = g(v) =∞ ;
6: rhs(vgoal) = 0;
7: Q.Insert (vgoal, calckey(vgoal));

Update Vertex(e)
8: if (g(e) 6= rhs(e) AND e ∈ Q Q.Update(e,calckey(e));
9: else if (g(e) 6= rhs(e) AND e /∈ Q) Q.Insert(e, calckey(e));

10: else if (g(e) = rhs(e) AND e ∈ Q) Q.Remove(e);
ComputeShortestpath()

11: while (Q.Topkey()< calckey(vstart) or rhs(vstart > g(vstart));
12: e = Q.Top();
13: kold = Q.Topkey();
14: knew = Calckey(e);
15: if(kold<Knew

)
16: Q.Update(e,knew);
17: else if (g(e) > rhs(e));
18: g(e) = rhs(e)
19: Q.remove(e);
20: for all v ∈ Pred(e); rhs(v) = min(rhs(v),c(v,e)+ g(e));

21:22: Updatevertex(e);
23: else
24: gold = g(e);
25: g(e) = ∞; forallv∈ Pred(e) ∪ e
26:27: if (rhs(e) = c(v,e)+gold)
28: if(v 6=vgoal rhs(v) = minv′ǫSuc(v)()c(v, v

′) + g(v′))
29: Update vertex()

Main()
30: vlast = vstart
31: Initialize();
32: Computeshortestpath();
33: while(vstart 6= vend)
34: vstart = argminv′∈suc(vstart) c(vstart), v

′ + g(v′);
35: Move to vstart;
36: Scan graph for changed edge costs;
37: if any edge costs changed
38: km = km + h(vend, vstart);
39: vlast = vstart
40: cold = c(e, v);
41: Update the edge cost c(e, v);
42: if(cold > c(e, v))
43: rhs(e) = min (rhs(e),c(e,v)+g(v));
44: else if (rhs(e) = cold + g(v))
45: if (e 6=vgoal)rhs(e) = minv′∈suc(e)(c(e, v

′) + g(v′));
46: Updatevertex(e);
47: Computeshortestpath();
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5.4 Modified 3D D*Lite

To achieve the fast and dynamic planning we applied the D* Lite algorithm [85] and

expanded it to 3D space while optimizing the extraction process in real time. Because

the main objective here is to generate the collision free path with dynamic objects in

unknown environment, the obvious requirement is efficient re-planning. D* Lite is taken

here to develop the online fast re-planner by doing the re-planning not from the scratch

but only where the cost change occurs.

Since the underlying structure is based on the graph, we used the fibonnaci heap ex-

traction process along with lattice graph. Besides that in our implementation it has the

ability to remove or add edges at anytime. Because of using the past search information,

it saves the computational power as well. Besides the start vertex is directly given by

stereo odometry of the small UAV.

The steps of our approach is given below,

Algorithm 3 Collision free path planning process

1: procedure Online 3D path planning

2: 3D Grid G →l, w, h,occupancymap,sx, sy, sz, costscale, maxcost

3: Connectivity → 26cellmooreneighbourhoodconnectivity Gridcost →

Euclideandistance

4:5: Cell cost → occupancymap Search→ ThreedimensionalD ∗ Lite

6:7: Path → Sequenceoftraversablecells−

Where we have l, w, h are the length, width and height of the grid. Similarly sx, sy, sz

are the x, y and z scale of each grid cell. A 3D grid G has n number of cells where

the size of the cells are unknown. Now we have to find a sequence of cells that can be

traversable to reach the mission with minimum distance. This 3D grid connectivity is

done by 26 moore neighbourhood connectivity [102]. Here the maximum cost will add

the cell if it is less than the maximum cost. The cost of the cell will be given by the

octomap. Depends on the amount of occupancy in the defined cell and the maximum

cost provides the cost of the each cell. Now the grid cost to move from one cell to the

another cell is defined by,

Cost =
√

(x− x1)2 + (y − y1)2 + (z − z1)2 + average cell cost (5.9)
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5.4.1 Three dimensional grid search

Here the graph structure is directed with vertices and edges which are added during

the process. Since it is based on the graph structure it will expand while the search

proceeds. The search is initialized with graph and cost interface.

Algorithm 4 Online three dimensional grid search

1: procedure Three dimensional grid search

2: Get the graph.

3: Get the cost interface of the cells and each cell cost

4: Get the Stereo Visual Odometry for start vertex (x, y, z)

5: Set goal vertex (vx(goal), vy(goal), vz(goal))

6: follow the generated path until some changes in the graph are observed

7: ChangeCost( ) – for every changed cost

8: Iterate steps 1-4 for replanning

For the planning we have the input as three dimensional grid and its connectivity. The

transition between one cell to the other cell is based on the cost of the cell like in equation

5.9. Plan the path from the start vertex to the goal vertex with an assumption that

the unknown cells are traversable. Based on the specific application the cost interface

should be provided. Because it does not define a real distance or the heuristic distance

between the vertices, implementing the D* lite in 3D requires several optimizations.

First of all the graph is restructured to reduce the heap and edge iterations. For faster

planning the Fibonacci heap is applied instead of having the priority queue. For complex

environments the focused D* is proven to be more effective for heap extraction. The

search is initialized with a graph and cost interface between the vertices. The nodes

in the graph will be modified by the parameters used in the search process which are

then stored in the nodes. The initial plan is made from the start vertex to the goal

vertex. This path is valid until the cost change is detected. If there is a cost change

then it re-plans. In our case the vertex always expands the predecessors and successors,

because this is implemented in unknown environment. This is not the case for known

environment where the graph is already built. To plan from the start to the goal point,

the successors need to be expanded. So the planning can be extended forward. Otherwise

it will plan from the goal point to the start point, if the predecessors are expanded. The

edges can be tracked through the cell to keep the list of edges. This will be used to

adjust according to the change in the cost. A 3D grid path is calculated by the list of

cells that are traversable with the total cost of the path.
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5.5 Experiments

To validate the 3D path planning and re-planning algorithm in real time experiments

are conducted in the outdoor practical environment. Initial testing were done in Intel

processor laptop and later the same is tested in ARM processor (onboard computerB)

mounted in the small UAV.

Several datasets are collected and three of them are presented here. In every experiment

the initial position (0, 0, 0) is considered to be the point where the map and stereo

odometry started to generate. When a target point is given the collision free path will

be calculated from the current position. Since there is continuous movement of the

stereo camera throughout the experiment, the stereo odometry will provide the present

position of the small UAV. Initially the occupancy grid is not expanded completely. It

will expand its successors and the graph search will be done in the forward direction.

Based on the cost update the search will be restructured for the heap extraction. The

original collision free path is smoothened by the spline function here. In this section

three datasets results are presented taken in outdoor scenario.

5.5.1 Dataset 1: 3D path planning

This dataset is taken in outdoor scenario with two trees, one big iron tank, one iron pole.

The path is planned based on the update of the 3D occupancy grid values. Since it is

a non-uniform grid, the grid bound values keep changing. In this experiment it ranges

from (100, 120, 100) to (320, 240, 200). At each time instance the planner checks the cost

of the cell through the graph search and if there is no change the same path remains

valid. The goal here is to reach (20.5, 2.5, 4.5) and plan a collision free path. The Path is

planned to reach the target from the current position. The three dimensional octomap

updates its grid with the known, unknown and occupied cells. Since the trees have

uneven branches with leaves, the speckles are observed in the map. The map is built in

meter unit and the size of the small UAV is 0.7m. To avoid the collision, double the size

of the UAV dimension would be good enough to navigate. In that case, 1.4m of space

between the object and small UAV is always considered as a valid path. The reason for

sporadic map points are that leaves in the trees and grass on the ground are too little

and are scattered uneven. Totally 87 paths are planned at different time intervals with a

total duration of 76 s. Here the paths which remains valid in the next consecutive steps

are not shown. The path which change their starting position compared to the previous

one as well with cost change in the previously planned edges are presented here.
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Figure 5.6 shows the outdoor environment scenario where this particular experiment is

conducted. The arrangement of the two trees and the iron tank can be noticed from

this Figure 5.6.

As shown in Figure 5.7a the initial collision free path is planned between the two trees.

This path is valid until the edge cost are changed. In Figure 5.7b the starting position

and the edge cost of the previous path is changed. So it adapted a new path to the goal

point. We can clearly notice the difference between the initial plan and next plan in

Figure 5.7a and Figure 5.7b. After that the search updated the edge cost of the previous

plan with a new plan that has a curve like form as shown in Figure 5.7c. At the end we

can see the complete environment with two trees, one pole and an iron tank. Here the

path is planned above the objects as shown in Figure 5.7d.

Figure 5.6: Outdoor Scenario with trees and an iron tank

The Figure 5.7 shows the 3D path planned at different time steps. In Figure 5.8a the

initial path planned values are shown. After the odometry changes the starting position

is adjusted to the present position as shown in Figure 5.8b. Followed by that, in Figure

5.8c the shortest path plan is estimated by changing the direction. The same plan

continues with change in the starting position as shown in Figure 5.8d. But in Figure

5.8f the plan again adapted like it is in the second step.
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(a) Initial plan

(b) New path from the current position

(c) New path from the current position

(d) Obstacle update and new plan

Figure 5.7: Three dimensional path planning among trees and iron tank in outdoor
environment
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(a) Initial path
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Figure 5.8: Three dimensional path planned from at time 1 s to 55 s
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5.5.2 Dataset 2: 3D path planning

This dataset is taken only with four trees to check the collision free planning in the

congested confined space. The total duration of this experiment is 1min 10 s and it

produced 27 full octomap messages in ROS. From that 27 messages totally 71 collision

free paths are planned in 49.5 s with total memory of 1.1 mb. We can see that the shape

of the trees are not even. The changes against the initial plan is observed at each time

step provided the new update of the three dimensional grid values. In Figure 5.10a the

initial plan is computed based on the cost of the map where only two trees were present,

because the cost of the edge at the initial point has position of the first two trees. Now

the probability of the hit has increased at the same time when the current position is

also changed as shown in Figure 5.10b. In the third Figure 5.10b again the re-planning

is computed based on the graph search. In the Figure 5.10d we can see all the four trees.

Now the current position is changed again but the goal vertex is the same. We can

evidently see all the path planned are reaching the goal vertex. At the same time, it is

robustly adapting the previous path relative to the current position. So with the initial

information of traversable, the cells are later adapted smoothly during the expansion of

the vertex.

Figure 5.9: Outdoor Scenario with four trees.
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(a) Initial plan with only two trees at 6 s 8ms (b) Replan after change in cost and position 7 s
3ms

(c) New plan after the introduction of new ob-
stacle 17 s 30ms

(d) Replanning among four two trees 34 s 12ms

Figure 5.10: Path planning and re-planning among the static obstacles

The Figure 5.11 shows the path planned values among the four trees. The Figure 5.11a

is the the initial plan from the start vertex to the goal vertex. From Figure 5.11b it

started to adjust based on the cost change. For example in Figure 5.11d and 5.11e the

difference is only the starting position. While at the same time in Figure 5.11f and 5.11g

we can see the starting position as well as the path adjusted to avoid the obstacles.
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(a) Initial path at the beginning
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Figure 5.11: Experiment among four trees: 3D Path planning values with different
starting position and change in edge cost
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5.5.3 Dataset 3: 3D path planning

This dataset is taken in front of the big iron tank metal structure. The reason is that to

analyze the planning with single obstacle of non-uniform structure on top of it. Here the

octomap shows the size and structure of the object. Totally 11 figures are presented here

to show the difference in path with respect to the current position as well as to the cost

of each grid cell. In addition to that the values of the path at the time instances when

the change occurs are presented here. The path that remains same at the consecutive

time steps are not shown here. Totally 128 collision free paths are planned with a total

duration of 48.3 s. Here the goal point is (9.5, 2.5, 2.5) from the starting point. As shown

in Figure 5.13a the planning is done with no obstacles infront initially. In the next step

5.13b previous plan edge costs are updated, so the new plan is adapted to the change.

After 8 s 44ms the change in the altitude i.e in z-axis of the previous path is observed. In

Figure 5.13d the starting position is adjusted but the rest of the path is almost the same.

On the other hand we can see in Figure 5.13e the edge costs are completely updated and

a new plan is immediately planned. The same is continued again as shown in Figure

5.14a, where we can clearly see the map update from the ground. But in the Figure

5.14b, almost the complete front portion of the structure can be observed with little

scattered points. Still the search and planner adapts quickly. From Figures 5.14c, 5.14d,

5.14e, 5.14f we can see that the map updates are fast and the planner keeps changing

the plan dynamically.

Figure 5.12: Outdoor Scenario with big iron structure.
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(a) Initial plan

(b) New starting position

(c) Orientation Change
(d) Cost change and new current position

(e) Cost change and shortest path

Figure 5.13: Three dimensional planning with single obstacle



Chapter 5. Path Planning 106

(a) Same position and cost change
(b) Cost Change and new spline path

(c) Cost change (d) Cost Change and new position

(e) Cost Change (f) Cost Change

Figure 5.14: Three dimensional planning with single obstacle

Figure 5.15 shows the 3D path planned values of first 11 paths that changes the edge

cost and starting position. Figure 5.15a is the initial plan with no knowledge about the

map. From there the plan is adapted to avoid the occupied space and also the starting

point as shown in Figure 5.15b. The same process continues in Figure 5.15c as well as

in Fugure 5.15d. Again we are coming back to the initial point to see how the planning

works as shown in Figures 5.15e, 5.15f, 5.15g, 5.15h, 5.16a.

Figure 5.16 shows the remaining path planning values. Figures 5.16b, 5.16c, 5.16d,

5.16e, 5.16f, 5.16g, 5.16h, 5.16i show the difference between the adapted path compared

to previous one as well as the starting position change.
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(a) Initial plan graph
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Figure 5.15: Three dimensional planning with single obstacle
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(a) Cost change
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(i) Cost change
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Figure 5.16: Three dimensional planning with single obstacle
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5.6 Concluding remarks

This chapter investigated the 3D path planning algorithm developed using modified D*

lite algorithm for the small UAV. First, we explained about the generic D* lite and

its extension to 3D. Later the method for three grid search based on the 3D D*lite is

described. Our approach is implemented through the real time experiments. We have

inferred that the re-planning as well as generating spline using the original path would

be more realistic solution for the real time autonomous navigation of the small UAV.



Chapter 6

Experiments and Analysis

This Chapter presents the experiment results of the whole approach conducted by com-

bining the 3D Mapping, Localization and Path Planning in the onboard computerB.

The Outcome of the experimental results are presented and discussed elaborately here.

6.1 Experiment setup

We used small UAV DJI matrice 100 for all the experiments conducted here. Figure 6.1

shows the experimental setup with the stereo camera mounted on the small UAV in the

forward direction. The main objective of these experiments is to check the efficiency,

accuracy of our combined approach which includes the online three dimensional mapping

and the collision free path in the onboard computerB.

Figure 6.1: Experiment setup

110
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6.2 Experiment 1

These experiments are conducted in a static outdoor environment which consist of trees,

direction pole, radar (big obstacle made of iron structure), light stand fixed on the grass.

We fly the small UAV using remote pilot around the obstacles with an altitude between

0m to 2m. We choose this base length due to the outdoor scenario where the small

UAV will navigate.

The main objective is to check the performance of our complete approach which includes

graph SLAM for mapping and three dimensional modified D* lite for collision free path

planning. First the graph SLAM and visual stereo odometry algorithms are launched

together. Once the Odometry starts to compute, we started our three dimensional

path planning algorithm to find the collision free path. All the algorithms (mapping,

localization and collision free planning) are computed in the on-board computer. During

the experiments sensitivity to light was observed when the camera was directly exposed

to sunlight. Eventhough the exposure is kept to minimum of 1ms still it spread more

light on the raw images.

Figure 6.2a shows the initial position of the small UAV in the outdoor environment. At

this position, we started our mapping and localization algorithm to check the quality

of the odometry. Once the mapping started, we received the minimum and maximum

occupancy grid bounds. Now the goal in world coordinate system is to reach 19m in x

direction, 9m in y direction, 5.5m in z direction from the initial position (0,0,0) of the

vehicle. While starting the path planning algorithm the current position of the vehicle is

at (1, 1, 0.5). As we can see from (Figure 6.2b) the collision free path to the goal point

(19, 9, 5.5) is generated with the initial map. Now after the vehicle take off Figure 6.2c

the current position of the path is changed and the rest of the previous plan remains

the same like in (Figure 6.2d). Figure 6.2h shows the updated map with iron structure

as well as the updated collision free path. Here the previous paths are not valid because

the cost of the cells and the current position is entirely new. The same path is adapted

with the new current position and orientation like in Figure 6.3d, 6.3f, 6.3h. Here the

main obstacle is the iron structure which has a non uniform structure. Based on the

cost update the mapping and collision free planning is amended. The total flight time

is 163ms. During this flight our method computed 88 octomap messages and 808 stereo

visual odometry messages (ROS format). For collision free path we have generated 58

paths. Out of 58 paths, 16 paths are shown here. These 16 paths show changes either

in the starting point of the previous paths or in the cost of the cell where the previous

paths are planned. If the cost of the cell reaches the maximum then previous paths are

not valid for collision free. So it has to change and find the collision free path.
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(a) Outdoor scenario and Small UAV’s initial
position

(b) Initial map at time 1 s and collision free
path

(c) Small UAV take off
(d) At time 6 s updated map and its collision

free path

(e) Image showing the iron structure and the
small UAV (left side)

(f) At time 99 s updated map and its collision
free path

(g) Small UAV navigating around the iron
structure (h) At time 115 s updated map and its collision

free path

(i) Small UAV navigating around the iron struc-
ture

(j) At time 102 s updated map and its collision
free path

Figure 6.2: Outdoor experiment with mapping, localization, 3D path planning
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(a) Small UAV navigating around the iron
structure

(b) Updated map and collision free path gener-
ated at time 121 s

(c) Small UAV navigating near to the iron
structure (d) Updated map and collision free path gener-

ated at time 127 s

(e) Small UAV navigating around the iron
structure

(f) Updated map and collision free path gener-
ated at time 129 s

(g) Small UAV navigating around the iron
structure (h) Updated map and collision free path gener-

ated at time 140 s

(i) Small UAV navigating around the iron struc-
ture

(j) Updated map and collision free path gener-
ated at time 156 s

Figure 6.3: Small UAV in the Outdoor scenario with three dimensional octomap and
3D collision free path.
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Figure 6.4a shows the initial plan which is adapted according to the map update at time

6 s. Then it is updating the current position of the vehicle in Figure 6.4c. Later it is

modified due to the obstacle (iron structure) in Figure 6.4d. Figure 6.5a and Figure

6.5b gives the updated current position as well the path. Now the vehicle altitude is

increased to 1.62m at time 46 s. From this position the obstacle is not infront of the

vehicle, the collision free path is just straight forward like in Figure 6.5c. The same plan

continues until time 83 s with current position changing at time 72 s and 81 s and 84 s.

Now the vehicle is on the other side of the iron structure and the goal point is above

the vehicle like shown in Figure 6.6b. Later it is changed at time 129 s which is shown

in Figure 6.6c.

(a) Initial plan
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(b) Updated plan at time instance 6 s
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(c) Updated plan at time instance 13 s
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(d) Updated plan at time instance 28 s
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Figure 6.4: Online three dimensional collison free path planned in the outdoor envi-
ronment from time 0 to 28 s
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(a) Updated plan at time instance 33 s
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(b) Updated plan at time instance 36 s
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(c) Updated plan at time instance 46 s
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(d) Updated plan at time instance 72 s
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(e) Updated plan at time instance 81 s
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(f) Updated plan at time instance 84 s
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Figure 6.5: Online three dimensional collison free path planned in the outdoor envi-
ronment from time 33 s to 84 s
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(a) Updated plan at time instance 102 s

0
10

20

0

5

10

0

5

x[m]y[m]

z[
m
]

(b) Updated plan at time instance 108 s
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(c) Updated plan at time instance 129 s
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Figure 6.6: Online three dimensional collison free path planned in the outdoor envi-
ronment from time 102 s to 129 s

Figure 6.7a shows the whole 3D octomap obtained at the end of this experiment. Here

the stereo visual odometry is shown with the position as well as the orientation of the

stereo camera like in Figure 6.7b.

As shown in Figure 6.8c overall 192 nodes are formed. Of that the maximum time of

676.967 s is taken by the node 192 whereas the minimum time of 2.645 s is taken by the

node 32. During the experiments the computation varies for the same configuration.

This is due to the continuous usage of the processor. For example if process starts while

the CPU was not in use for long hours then we observed speed pickup in the process

while on the other hand, if it used after couple of experiments then there is a lag in the

processing power.
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In Figure 6.8b we can observe the time taken to detect the keypoints in the stereo

images. On an average, 2.61ms is taken for the keypoint detection. At the same time

the descriptor extraction is increased linearly with respect to the nodes. This implied

that the features are tracked in each frame of the images continuously. The average

time for descriptor extraction is 1.43ms. Along with that the signature creation took a

minimum time of 6.76ms. Here the occupancy grid took an average of 6.15ms. With

this performance real time collision free path planning is achieved in real time with an

average of 28ms. Also this average applies only to this particular experiment conditions

like 3d map update, memory availability and computational power. The advantage here

is that it adapts to the previous path instead of creating entirely new path in comparison

to the previous plan. This will help in realistic precise navigation.

(a) 3D Octomap

(b) Stereo Visual Odometry

Figure 6.7: Final Octomap and the Stereo Visual Odometry
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(a) Total time
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(b) Analysis plot
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Figure 6.8: Plot showing the total time taken to compute, keypoint descriptor, key-
point detection, occupancy grid, signature vs total number of nodes generated and the

Graph shows the nodes and edges.
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Figure 6.9: Graph nodes formed in the beginning.

Figure 6.10: Graph nodes formed at the end.
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6.3 Experiment 2

This experiment was also conducted in the same outdoor environment. But in contrast to

the previous experiment the initial and final position are reversed to the other direction

and the obstacles are viewed in from different position. Since the range of the camera

is limited to 8m, we have reduced the speckles generated from long range objects. Like

in the previous experiment we focus on the time taken to compute realistic collision free

path in the onboard computer.

Figure 6.11a shows the initial position of the small UAV on the ground. On the right side

there are few green plants cluttered around. Now the goal in world coordinate system

is to reach 17m in x-direction, 9m in y-direction, 6.5m in z-direction by avoiding the

obstacles coming on the way. The reason to choose this goal point is that it is directly

in a collision course with the big iron structure like shown in Figure 6.11a.

We started the mapping and stereo visual odometry to generate the occupancy grid.

Then 3D planning started at time instance 1 s. The complete collision free plan without

all the information about the obstacles is shown in Figure 6.11b. The same path is valid

until 3 s except the current position is adapted in the plan. Later at time instance 5 s it

is beyond the iron structure like shown in Figure 6.11h. It finds the shortest path since

there are no obstacles around.

Next the vehicle moved near the iron structure and now the plan avoids the obstacle

and generates a collision free path like in Figure 6.12d. In the same Figure 6.12d the

upper part of the map is updated, which can be noticed. The updated plan mainly

shows the difference in the z direction which is beneficial in terms of short path. Figure

6.12h shows the collision free path where the vehicle is before the wall. Here the ground

map is shown because it is not taken into account for the planning.

The total flight time for the current experiment is 118 s. During this experiment we

generated 55 octomap messages and 753 stereo odometry messages (ROS format). While

at the same time our 3D path planning approach generated 69 realistic collision free path.

With this performance real time collision free path planning is achieved in real time with

an average of 39ms.Out of 69 collision free path we presented 10 paths in terms of images

for explanation purpose. Similarly 13 messages which show change either in the starting

position or cell cost update coming from the online map are also presented as graphs in

Figure 6.13 and Figure 6.14.
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(a) Scenario and small UAV initial position

(b) At time 1 s map and the collision free path

(c) Scenario and small UAV near to iron struc-
ture

(d) At time 2 s map and the collision free path

(e) Scenario and small UAV around the iron
structure

(f) At time 3 s map and the collision free path

(g) Scenario and small UAV around the iron
structure

(h) At time 21 s map and the collision free path

(i) Scenario and small UAV behind the iron
structure

(j) At time 32 s map and the collision free path
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(a) Scenario and small UAV near to the rion
structure

(b) At time 43 s map and the collision free path

(c) Scenario and small UAV around the iron
structure (d) At time 74s updated map and path

(e) Scenario and small UAV around the iron
structure

(f) At time 85 s updated map and the path

(g) Scenario and small UAV around the iron
structure

(h) At time 112 s updated map and the path

Figure 6.12: Outdoor experiment with mapping, localization, 3D path planning
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Figure 6.13a shows the initial plan which is adapted and changed at time instance 3 s

like in Figure 6.13b. The same plan is valid until 21 s. At time instance 32 s to 43 s there

is considerable online map cost update for the planner. But later at time instance 46 s

there are no objects infront of the vehicle. The obstacle is upated in the map at time

instance 52 s and it is avoided by the planner like in Figure 6.14a. From time instance

53 s to 73 s the vehicle doesn’t make considerable movements so the previous plan is

valid for the collision free path. The current position is updated at 74 s and a new path

is also generated as seen in Figure 6.14b.

(a) Initial plan at time instance 1 s
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(c) Updated plan at time instance 21 s
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(d) Updated plan at time instance 32 s
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(e) Updated plan at time instance 43 s
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(f) Updated plan at time instance 46 s

0
10

20

0
5

10

0

5

x[m]y[m]

z[
m
]

Figure 6.13: Online three dimensional collision free path planned in the outdoor
environment from time 1 s to 46 s
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(a) Updated plan at time instance 52 s
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(b) Updated plan at time instance 74 s
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(c) Updated plan at time instance 85 s
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(d) Updated plan at time instance 112 s
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Figure 6.14: Online three dimensional collison free path planned in the outdoor
environment from time 52 s to 112 s

The final octomap and stereo visual odometry is shown in Figure 6.15. The two main

objects that can be noticed in the map: iron structure and the wall. Totally 215 nodes

are formed in the form of graph which is shown in Figure 6.16c. The time taken by

each node to compute the detection of the Keypoint, , descriptor extraction, occupancy

grid and signature creation is shown in Figure 6.16b. On an average all the nodes took

1.9ms to extract the descriptors where as to detect the keypoints it took 3.25ms. There

is no loop closure detected in this experiment because of the path we travelled. More

specifically no places visited again with a frame difference of more than 10 frames. As

we can see in Figure the 6.16b the same pattern like previous experiment forms here.

Again it is due to arrangement of objects (which provide features) in the environment.
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The average total time for processing the complete approach to generate occupancy grid

and stereo visual odometry is about 16.69ms.

(a) 3D Octomap

(b) Stereo Visual Odometry

Figure 6.15: Final Octomap and the Stereo Visual Odometry
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(a) Total time

0 50 100 150 200 250
500

1,000

1,500

2,000

2,500

3,000

3,500

Total number of nodes

t[
m
s]

Total time

(b) Analysis plot
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Figure 6.16: Plot showing the total time taken to compute, keypoint descriptor,
keypoint detection, occupancy grid, signature vs total number of nodes generated and

the Graph shows the nodes and edges.
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Figure 6.17: Graph nodes formed in the beginning.

Figure 6.18: Graph nodes formed at the end.
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6.4 Concluding remarks

We conducted two experiments on the small UAV combined with 3D mapping, localiza-

tion and 3D collision free planning in the onboard computer. The presented experimental

results showed that the generated collision free path has a minimum distance of atleast

1m to 1.5m from the obstacle. Since both the experiment conducted in the similar

outdoor environment the starting point for the both the experiments are different from

each other. we can see how the light variation created an impact in the feature extrac-

tion process. Though the speckles were formed in both the octomaps obtained through

experiments, it doesn’t affect the collision free planning generation in the real time.



Chapter 7

Conclusion

This chapter summarizes the investigations as well as the developed solution for small

UAVs collision avoidance in unknown outdoor environment. The goal of this work is

to develop real time collision avoidance for small UAV that can be deployed in outdoor

environment. By conducting outdoor experiments regularly with our developed solution

we have presented the detailed results obtained. In extension to that we are also giving

a perspective for the future work here.

7.1 Summary

For stereo vision based navigation, we developed our own custom made stereo cam-

era in Chapter 3. First the design issues and hardware implementation was addressed

through two custom made stereo camera models. Similarly the problem of sensitivity

and synchronization were discussed. Then further in the context of stereo camera the

fundamental aspects pertaining to camera calibration, depth estimation, stereo matching

and image rectification is addressed. Through our experiments, our approach handled

the challenges in generating 3D point clouds in different outdoor condition by the stereo

camera. Besides that we have explained the necessity and advantage of the custom

stereo camera instead of using the COTS product. Further more we have demonstrated

the adjustable baselength can be an option to reduce the noises and speckles.

Next to that, we used graph based SLAM for real time 3D mapping and Localization.

The 3D mapping method considered here also includes an online loop closure detection

method to identify the previously visited areas and optimize the nodes in parallel. It is

proven in our experiments that no artificially created landmarks or known objects are

required for the 3D mapping. Besides, the proposed solution can also handle the moving
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objects by overwriting the point clouds when the object is moving from the field of the

view of the stereo camera. The proposed approach for 3D mapping is executed alone

and later it is combined with our 3D path planning in various scenarios. The memory

and time to compute the map are under the constraints of the onboard computer. In our

experiments we also observed the influence of available image textures on the precision

of localization and mapping. Similalry the 3D octomap with speckles are often due to

clear textures.

Then, the three dimensional path planning in real time is developed using the modified

D* Lite algorithm for online to use the octomap to calculate the cost of th cell in real

time. Taking practical scenario into consideration we implemented the path smoothing

using the spline generation in addition to the original path. In all the experiments we

have tested the cost calculation of the cells, optimal path and realistic path (spline curve)

using the spline function. Since we used our own custom stereo camera we can adjust the

sensor range so that the distance refinement will not be an issue for 3D path planning.

This significantly helped in calculating the safety distance between the obstacle and

the small UAV. The efficiency of the re-planning is tested through the several real time

experiments. This 3D path planning is combined with online 3D mapping and executed

in the same onboard computer. The combined experimental results proved the collision

free navigation in the outdoor environment. Here the main criteria are time, memory

and speed which are considered during the implementation. Our approach achieved the

collision free planning online at an average of 28ms to 39ms on an online octomap.

7.2 Future work

We consider the insights of proposed solution from this thesis to suggest how this can be

improved and extended in appropriate research direction. First of all the proposed 3D

mapping and collision free planning can be combined with suitable real time controller

for autonomous navigation.

We already designed in a way that the 3D path planning can be easily integrated with a

controller for real time experiments. For practical implementation the controller should

consume less computational power. The simplest of algorithms which fall under this

category includes Proportional Integral Derivative (PID) methods and other algorithms

where the controller gains are precomputed offline such as Linear Quadratic Gaussian

(LQG), Linear Quadratic Regulator (LQR), H2, H ∞.But these methods (LQG, LQR,

H2, H∞) also require precise system models for computing the gains. Similarly methods

such as direct adaptive controls can also be used provided the adaptation of controller

gains is fast and convergence can be assured in closed loop. Due to the advancements
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of technology this can be tested step by step by considering the constraints of the

environment.

Later the 3D mapping approach can be improved with more than one dynamic object in

the environment and the same scenario can be implemented with proposed 3D collision

free planner. Though the combined approach is tested with small UAV (quadrotor)

platform, a complete validation of the approach would give the option to use it with

other platforms.



Appendix A

Camera Configuration

The custom made stereo camera used in this thesis is designed using the two ueye camera.

The connections of this stereo camera is done through master slave configuration which

can be found in Figure A.1

Figure A.1: Master slave configuration with pin and its wiring connection settings.

Table A.1 and Table A.2 shows the specification of the ueye camera model 1221LE-C-HQ

and 1220LE-C-HQ respectively.

132



Camera Configuration. Master Slave Configuration 133

Color mode rgb8

Sensor type CMOS color

Shutter Global shutter

Resolution 752 x 480

Gain (master/RGB) 4x/5x

Exposure

time(min-max)

0.080 -5580ms

Frame rate trigger

(max)

83

Pixel size 6 ➭m

Pixel clock range 5 - 40 MHz

Sensor Model MT9V032C12STC

Power consumption 0.4 W - 1 W

Interface connector USB 2.0 mini-B

Power supply USB cable

Lens Mount S-Mount

Dimensions H/W/L 36 x 36 x 20.2 (mm)

Mass 16g

Device temperature

(operation)

0 ◦C-55 ◦C

Table A.1: Specification of ueye-1221LE-C-HQ model
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Color mode rgb8

Sensor type CMOS color

Shutter Global shutter

Resolution 752 x 480

Gain (master/RGB) 4x/5x

Exposure

time(min-max)

80 ➭m-5580ms

Frame rate trigger

(max)

83

Pixel size 6 ➭m

Pixel clock range 5 - 40 MHz

Sensor Model MT9V032STM /

MT9V032STC

Power consumption 0.4 W - 1 W

Interface connector USB 2.0 mini-B

Power supply USB cable

Lens Mount CS-Mount

Dimensions H/W/L 44 x 44 x 25.4 (mm)

Mass 41g

Table A.2: Specification of ueye-1220LE model
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Figure A.2: Tamaron lens model 13FM22IR

Table A.3 shows the specification of the tamaron lens used with the ueye-camera model

1220 LE.

Focal length 2.2mm

Aperture Range 1.2 Close

Angle of view 118.6 ◦C x 90 ◦C

Focusing Range 0.2 ∞

Operating Temperature −20 ◦C - 60 ◦C

Table A.3: Specification of Tamaron lens 13FM22IR model



Camera Configuration. Master Slave Configuration 136

The custom stereo camera explained in Chapter 3 (Figure 3.4) shows one of the custom

stereo camera used in this thesis. This stereo setup is clamped on the carbon rod using

the carbon plates which is shown in Figure A.3

(a) Baseplate 1 (b) Baseplate 2

Figure A.3: Baseplates used to clamp the camera
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Onboard computer

The Onboard computer which is used for the experiments is shown in the Figure B.1.

The specifications of the onboard computer can be found in Table [103]. It has Quad-

core, 4-plus-1 ARM Cortex-A15 MPcore Processor with Neon technology.

Figure B.1: Manilfold(Onboard computer)
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Weight 197g

Dimension 110m x 110m x 26 mm

Memory 2GB DDR3L system

RAM 16GB eMMC

4.51 storage

Processors Quadcore, 4-plus-1 arm

cortex

Input Voltage 14v to 26v

Power Consumption 5w to 15w

Operating Temperature −10 ◦C 45 ◦C

Table B.1: Manifold specification (onboard computer) used to implement all the
algorithms
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Software

The hardware and software used in this thesis are explained below,

Software:

• Ubuntu 14.04 Operating system

• Kernel version:4.4.0-131-generic

• Robotics Operating System (ROS) Indigo (version)

• MATLAB R2016b

The terminology used in this thesis in the context of ROS are explained here,

• rosbag : Tool for recording and playing the wanted topics.

• messages: Simple file contains the data of the particular topic that is already

defined.

Hardware platform:

• Laptop Platform:Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, 8GB RAM @

1600MHz

• Onboard computer : Quad-core, 4-plus-1 ARM Cortex-A15 MPcore Processor

with Neon technology.

• kernel on the onboard computer: Debian kernel 3.1.0
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Preliminaries

This chapter gives on overview of the coordinate transformations used in this work.

D.1 Coordinate systems

A point in the space and its displacement can be represented through the coordinate

system . Since this work deals with the real time data collection from the environment

through stereo camera mounted on the small UAV. Hence the transformation of the one

coordinate system to the other coordinate systems have been done here.

D.2 Coordinate frames transformations

In general the position and orientation of the real world points are represented in the

global frame i.e world coordinate frame W . Camera frame is represented as C. Besides,

that the odometry of the camera is denoted in the odometry frame O. We have used the

transformation library [104] in ROS. Detailed information about the conventions and

notions of the coordinate system can be found in [105].

Combination of both the translation and rotation forms the transformation of one coor-

dinate frame to the other.
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Figure D.1: Overview of the all the coordinate frame tree starting from stereo camera,
UAV, odom, Map
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