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A B S T R A C T

During the last decade, two major technological changes have pro-
foundly changed the way in which users consume and interact with
on-line services and applications. The first of these has been the
success of mobile computing, in particular that of smartphones, the
primary end device used by many users for access to the Internet
and various applications. The other change is the emergence of the
so-called Internet of Things (IoT), denoting a technological transition
in which everyday objects like household appliances that tradition-
ally have been seen as stand-alone devices, are given network con-
nectivity by introducing digital communication capabilities to those
devices. The topic of this dissertation is related to a core challenge
that the emergence of these technologies is introducing: how to effect-
ively manage the security and privacy settings of users and devices in
a user-friendly manner in an environment in which an ever-growing
number of heterogeneous devices live and co-exist with each other?

In particular we study approaches for utilising profiling of contex-
tual parameters and device communications in order to make auton-
omous security decisions with the goal of striking a better balance
between a system’s security on one hand, and, its usability on the
other. We introduce four distinct novel approaches utilising profiling
for this end. First, we introduce ConXsense, a system demonstrating
the use of user-specific longitudinal profiling of contextual inform-
ation for modelling the usage context of mobile computing devices.
Based on this ConXsense can probabilistically automate security policy
decisions affecting security settings of the device. Further we de-
velop an approach utilising the similarity of contextual parameters
observed with on-board sensors of co-located devices to construct
proofs of presence that are resilient to context-guessing attacks by ad-
versaries that seek to fool a device into believing the adversary is
co-located with it, even though it is in reality not. We then extend
this approach to a context-based key evolution approach that allows IoT
devices that are co-present in the same physical environment like the
same room to use passively observed context measurements to iter-
atively authenticate their co-presence and thus gradually establish con-
fidence in the other device being part of the same trust domain, e.g.,
the set of IoT devices in a user’s home. We further analyse the relev-
ant constraints that need to be taken into account to ensure security
and usability of context-based authentication. In the final part of this
dissertation we extend the profiling approach to network communica-
tions of IoT devices and utilise it to realise the design of the IoTSentinel
system for autonomous security policy adaptation in IoT device net-



works. We show that by monitoring the inherent network traffic of
IoT devices during their initial set-up, we can automatically identify
the type of device newly added to the network. The device-type in-
formation is then used by IoTSentinel to adapt traffic filtering rules
automatically to provide isolation of devices that are potentially vul-
nerable to known attacks, thereby protecting the device itself and the
rest of the network from threats arising from possible compromise of
vulnerable devices.



Z U S A M M E N FA S S U N G

In den letzten zehn Jahren haben zwei wichtige technologische Ver-
änderungen die Art mit der digitale Onlineangebote konsumiert und
Onlineservices benutzt werden, grundlegend verändert. Zum einen
hat der große Erfolg von mobilen Endgeräten, insbesondere der von
Smartphones dazu geführt, dass mittlerweile mobile Geräte für vie-
le Nutzer das hauptsächliche Medium sind, mit dem sie sich mit
dem Internet verbinden und verschiedene Anwendungen benutzen.
Die andere große Veränderung ist der anhaltende Siegeszug des so-
genannten Internets der Dinge (Internet of Things, IoT), einem techno-
logischen Trend, bei dem Alltagsgegenstände im Haushalt, die typi-
scherweise bisher nicht vernetzt waren, mit einer Netzwerkverbin-
dung und computergesteuerten intelligenten Funktionalitäten ausge-
stattet werden. Das tragende Thema dieser Dissertation fokussiert
sich auf die Herausforderungen, die durch das Aufkommen dieser
neuen Technologietrends verursacht werden, und zwar der Frage,
wie man die Sicherheits- und Privatheitseinstellungen von Anwen-
dungen und Geräten in einer effizienten und benutzerfreundlichen
Art in einer Umgebung mit immer mehr sehr unterschiedlichen Ge-
räten handhaben kann.

Insbesondere untersuchen wir verschiedene Ansätze zur Profilie-
rung von Kontextparametern und Kommunikationsmustern von Ge-
räten mit deren Hilfe autonome Entscheidungen über Sicherheits-
einstellungen getroffen werden können. Hierbei ist es unser Ziel, eine
bessere Balance zwischen der Sicherheit des Systems einerseits, und
seiner einfachen Handhabung durch Nutzer andererseits zu finden.
Um auf dieses Ziel zuzuarbeiten, stellen wir vier verschiedene neue
Profilierungsansätze vor. Zum einen präsentieren wir ConXsense, ein
System welches demonstriert, wie nutzerspezifische Langzeitprofile
von kontextuellen Informationen die von mobilen Geräten mit ihren
Kontextsensoren erfasst werden, dazu benutzt werden können, um
die Nutzungssituationen, in denen mobile Endgeräte eingesetzt wer-
den, zu modellieren. Darauf basierend kann ConXsense das Treffen
von Entscheidungen über sicherheits- und privatheitsrelevante Ein-
stellungen mithilfe eines probabilistischen Vorhersagemodells auto-
matisieren. Weiterhin entwickeln wir einen Ansatz, der die Ähnlich-
keit von kontextuellen Parametern, die Geräte die in unmittelbarer
Nähe voneinander platziert sind, mit ihren Kontextsensoren erfassen,
ausnutzt, um einen Präsenzbeweis (Proof-of-Presence, PoP) zu erstellen.
Zudem zeigen wir, wie diese Präsenzbeweise erstellt und ausgewer-
tet werden müssen, um widerstandsfähig gegen Angriffe zu sein, in
denen ein Angreifer versucht, durch verfälschte Präsenzbeweise ein
Gerät zu dem Glauben zu verleiten, dass der Angreifer in der un-



mittelbaren Nähe des Geräts ist, obwohl dies in Wirklichkeit nicht
der Fall ist. Im Anschluss erweitern wir diesen Ansatz in einen kon-
textbasierten Schlüsselevolutionsansatz, der es IoT-Geräten, die in der
selben physischen Umgebung wie z. B. im selben Zimmer platziert
sind, erlaubt, ihre passiv erfassten Kontextmessungen zu benutzen,
um iterativ die Präsenz des anderen Gerätes in der selben Umgebung zu
authentifizieren. Hierdurch können Geräte nach und nach die Zugehö-
rigkeit des anderen Gerätes in der selben administrativen Gruppe von
Geräten, z. B. der Gruppe der IoT-Geräte im Smart Home eines Nut-
zers, authentifizieren. Hinsichtlich dieses kontextbasierten Authenti-
fizierungsansatzes analysieren wir relevante Faktoren und Randbe-
dingungen die berücksichtigt werden müssen, um die Sicherheit und
Benutzerfreundlichkeit des Ansatzes sicherzustellen.

Im letzten Abschnitt dieser Dissertation erweitern wir unseren Pro-
filierungsansatz auf die Netzwerkkommunikationen von IoT-Geräten.
Wir benutzen dies um das Design von IoTSentinel, einem System für
die autonome Verwaltung von Sicherheitseinstellungen in IoT-Netz-
werken zu realisieren. Im Rahmen dieser Arbeit können wir zeigen,
dass die charakteristischen Kommunikationsmuster von IoT-Geräten
während ihrer erstmaligen Installation im Netzwerk dazu benutzt
werden können, um den Typ eines IoT-Gerätes automatisch zu identifizie-
ren, sobald es in das Netzwerk hinzugefügt wird. Diese Information
wird wiederum von IoTSentinel dazu benutzt, um automatisch Regeln
zum Filtern von Netzwerkkommunikationen zu erstellen, sodass Ge-
rätetypen, die bekannte Sicherheitsmängel aufweisen und deshalb po-
tenziell für Angriffe anfällig sind, von anderen Geräten im Netzwerk
isoliert werden können. Dies dient zum einen dazu, Angriffen vor-
zubeugen, die versuchen das betroffene Gerät zu kompromittieren,
und zum anderen auch dazu, den Rest des Netzwerks vor möglichen
Gefährdungen durch möglicherweise erfolgreich infizierte Geräte zu
schützen.



T I I V I S T E L M Ä

Kaksi merkittävää teknologista murrosta ovat kuluneen vuosikymme-
nen aikana muuttaneet merkittävästi tapaa, jolla käyttäjät kuluttavat
verkkopalveluita ja käyttävät verkossa olevia järjestelmiä. Mobiilin tie-
tojenkäsittelyn, erityisesti älypuhelimien suuri menestys on johtanut
siihen, että yhä useampi käyttäjä käyttää internetiä ja erilaisia sovel-
luksia pääasiassa älypuhelimen avulla. Toinen merkittävä uudistus
liittyy esineiden internetin (Internet of Things, IoT) yleistymiseen. Tällä
tarkoitetaan arkisten laitteiden kuten kodinkoneiden, jotka perintei-
sesti eivät ole olleet yhdistetty verkkoon, varustamista verkkoyhtey-
dellä ja tietokoneohjatulla älykäällä toiminnallisuudella. Tämän väi-
töskirjan aihe keskittyy erääseen keskeisimmistä haasteista, joka näi-
hin teknologisiin murroksiin liittyy: kysymykseen siitä, kuinka hal-
lita käyttäjien ja laitteiden turva- ja yksityisyysasetuksia ympäristös-
sä, jossa on yhä enemmän erilaisia ja erittäin monipuolisia toistensa
kanssa vuorovaikutuksessa olevia laitteita.

Tässä työssä tutkimme erityisesti lähestymistapoja, jotka hyödyntä-
vät laitteiden ympäristöstään havainnoimien kontekstiparametrien ja
tietoliikenteen profilointia autonomisten tietoturvapäätösten tekemi-
sessä. Tavoitteenamme on löytää parempi tasapaino toisaalta järjestel-
män tietoturvan tason ja toisaalta järjestelmän käytettävyyden ja käyt-
täjäystävällisyyden välillä. Tämän saavuttamiseksi esittelemme neljä
erilaista profilointiin perustuvaa menetelmää. Esittelemme ConXsen-
se-nimisen järjestelmän, joka demonstroi pitkäaikaisen käyttäjäkoh-
taisen kontekstitiedon profiloinnin käyttöä mobiililaitteen käyttökon-
tekstin mallintamisessa. Tämän mallinnuksen perusteella ConXsense-
järjestelmä kykenee probabilistisesti tekemään automaattisia tietotur-
vapolitiikkoihin liittyviä päätöksiä, jotka vaikuttavat mobiililaitteen
tietoturva- ja yksityisyysasetuksiin. Seuraavaksi kehitämme konteks-
tin profilointiin perustuvan menetelmän, joka hyödyntää samassa ti-
lassa sijaitsevien laitteiden kontekstisensoreillaan tekemien mittaus-
ten samankaltaisuutta kontekstiperustaisten läsnäolotodisteiden (Proof-
of-Presence) toteuttamisessa. Osoitamme, kuinka nämä läsnäolotodis-
teet pitää laatia, jotta ne olisivat vastustuskykyisiä sellaisia hyökkäyk-
siä vastaan, joissa hyökkääjä pyrkii harhauttamaan laitetta uskomaan
hyökkääjän olevan läsnä samassa tilassa laitteen kanssa, vaikka tämä
on tosiasiassa muualla. Tämän jälkeen sovellamme samankaltaista
kontekstin profilointimenetelmää kontekstiperustaisessa todennusavain-
ten kehitysmenetelmässä (key evolution approach), jonka avulla samassa
fyysisessä tilassa, kuten esimerkiksi samassa huoneessa, sijaitsevat
IoT-laitteet voivat iteratiivisesti todentaa toistensa läsnäolon samassa
tilassa hyödyntämällä passiivisesti havainnoituja kontekstiparametre-
ja. Näin menettelemällä laitteet voivat asteittain kasvattaa luottamus-



taan siihen, että toinen laite sijaitsee samassa tilassa ja kuuluu siten
samaan luotettujen laitteiden ryhmään, kuten esimerkiksi käyttäjän
kotona sijaitsevien IoT-laitteiden muodostamaan ryhmään. Esittele-
määmme menetelmään liittyen analysoimme relevantteja rajoitteita,
jotka pitää ottaa huomioon varmistaaksemme saavutettavan toden-
nuksen riittävän vastustuskyvyn hyökkäyksiä vastaan sekä käytettä-
vyyden käyttäjien kannalta. Väitöskirjan viimeisessä osiossa laajen-
namme profilointimenetelmien käytön IoT-laitteiden laitekohtaiseen
tietoliikenteeseen. Suunnittelemme IoTSentinel-järjestelmän, jonka tar-
koituksena on mahdollistaa IoT-laitteisiin liittyvien verkkoasetusten
automaattinen mukauttaminen lähiverkoissa. Esitämme kuinka tark-
kailemalla ja profiloimalla IoT-laitteen tietoliikennettä sitä verkkoon
asennettaessa voimme automaattisesti tunnistaa asennettavan laitteen
tyypin. IoTSentinel-järjestelmä hyödyntää tietoa laitteen tyypistä mu-
kauttaakseen automaattisesti laitteeseen sovellettavia tietoliikenteen
suodatussääntöjä. Sääntöjen avulla järjestelmä kykenee muun muas-
sa eristämään sellaiset laitteet, joiden tiedetään olevan haavoittuvaisia
tietoturvahyökkäyksille. Näin menettelemällä pyritään toisaalta suo-
jaamaan haavoittuvaista laitetta laitteen haavoittuvaisuutta hyödyntä-
mään pyrkiviltä tietoturvahyökkäyksiltä ja toisaalta suojaamaan myös
muita verkossa sijaitsevia laitteita siinä tapauksessa, että hyökkää-
jä onnistuu menestyksekkäästi hyökkäämään haavoittuvaista laitetta
vastaan ja kaappaamaan sen hallintaansa käyttääkseen sitä hyökkäyk-
siin muita laitteita vastaan.
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1
I N T R O D U C T I O N

During the past decade the way in which people connect to the In-
ternet has profoundly changed as smartphones have taken over the
role as the most prevalent platform for connecting to and consum-
ing Internet content [136]. Whereas in the first wave of the broader
adoption of Internet connectivity desktop computers with fixed Inter-
net connections played the main role, the advent of smartphones led
to a significant increase in the number of Internet-connected nodes.
Subsequently, a major boost in the increase of network connectivity
is driven by the so-called Internet of Things (IoT). The term IoT de-
notes a recent trend in which devices and appliances that tradition-
ally have not been connected to the Internet are increasingly being
equipped with smart functionalities and wireless and/or wired con-
nectivity, enabling these devices to be connected to IP networks, allow-
ing them to be remotely monitored and controlled. It is forecast that
the adoption of IoT in the forthcoming years will boost the amount of
Internet-connected devices, reaching an estimated total of 20.4 billion
connected IoT devices in the year 2020 [43].

In the era of desktop computers there were only a few Internet-
connected devices with a fairly limited set of application programmes
in a typical household, making management of relevant security and
privacy settings of the systems feasible (although not easy to perform
for regular non-technical persons). Due to this limited connectivity,
also the privacy exposure of users and their home environment to
external on-line threats was much more limited than in a contempor-
ary IoT smart home, where potentially dozens of Internet-connected
devices actively sensing their environment are connected to the local
network of the smart home.

The adoption of IoT has consequently led to a drastic increase in the
exposure of users’ potentially sensitive private information to various
security and privacy threats. Modern households might be equipped
with dozens of devices with network connectivity that have a rich
set of context sensors to sense their surroundings in order to react to
the user’s actions or adapt their behaviour to environmental condi-
tions. In addition, users typically carry with them one or more smart
devices with tens of different applications and apps, each of them
possibly having separate sets of configurable settings and security
policies. The profound changes that the emergence of smartphones
and IoT have had on computing platforms have brought forward new
challenges with regard how these systems can be made easily usable
by users while at the same time making sure they do not compromise
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the security of the system or the privacy of user data being processed
by them.

1.1 challenges

1.1.1 Context-Aware Access Control

To protect the security and privacy of users, effective access control
mechanisms have to be employed in order to limit privacy exposure
according to the preferences of each user. However, as mobile and
IoT systems intensively interact with their surroundings and provide
context-dependent functionalities, also the access control mechanisms
need to take the context into account in their decision-making process.
A number of works have therefore addressed the problem of context-
aware access control [26, 27] and approaches for allowing users to
specify context-dependent access control policies [56, 118, 68]. Ap-
proaches for implementing context-aware access control on mobile
operating systems have also been proposed [5, 24, 117].

While fine-grained access control policies can be used to realize
such controls, their use raises practical usability problems, as the
number of policies to be specified, managed, and updated easily
grows to be very large. The required effort for doing this easily be-
comes unreasonably high so that users are not willing to invest the
time required for setting up and managing their personal policy sets.
In addition, regular users seldom are capable of fully understanding
complex security policies and their full privacy ramifications, thereby
raising the risk that users make errors in configuring their policies,
potentially leading to unwanted privacy compromise. To encounter
this challenge a number of works [115, 53, 47] have therefore started
to seek ways in which instead of defining a multitude of very fine-
grained security and privacy policies, contextual information is used
to learn and automatically adapt, e. g., authentication requirements
based on the context history of the user. This work follows a similar
approach: we want to profile and learn about the contextual factors
pertinent to the particular use case and utilise this information in
adapting security policies or make authentication decisions.

1.1.2 Context-Based Proofs-of-Presence

The prevalence of novel contextual sensors in widely-used smart-
phone models has enabled the introduction of entirely new classes of
applications that utilise context information in various ways. Among
the most used contextual factors is undoubtedly the location of the
user, widely available through the use of Global Positioning Sys-
tem (GPS) sensors, or, network triangulation. This has led to the emer-
gence of numerous Location-Based Services (LBSs). However, as all
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widely-used positioning technologies rely on the mobile client per-
forming the positioning operation, it is not possible for other entities
to verify the correctness of location claims made by clients, opening
up the possibility for a wide range of location cheating attacks. To en-
counter such attacks a number of proximity verification approaches
have been proposed utilising, e. g., WiFi Received Signal Strength In-
dication (RSSI) measurements [143], or observing packet header field
values on WiFi networks [100].

Also context-based approaches for proximity verification utilising
ambient contextual modalities like sound and luminosity sensed dir-
ectly from the environment have been studied [140, 131]. However,
these works consider only a non-adversarial setting related to relay
attack prevention in zero-interaction authentication (ZIA) use cases, in
which both parties, the prover making a location claim and the verifier
verifying it are trusted. This leaves the question open whether con-
textual information can be used for reliable proofs-of-presence also
in settings in which the prover is not trusted.

1.1.3 Context-Based Authentication

As discussed above, the increasing number of devices in IoT envir-
onments like smart homes containing dozens of installed IoT devices
poses challenges with regard to how the security of individual devices
is managed. One particular problem is how to manage the authen-
tication of individual devices while providing effective separation
between the trust domains of individual users. Conventional ap-
proaches like, e. g., PIN code-based Bluetooth authentication relying
on manual authentication between devices faces usability challenges
and is error-prone, as users need to separately perform authentication
with each of the (potentially numerous) IoT devices. Key pre-sharing-
based approaches [35, 23, 76, 139] mainly developed for wireless
sensor networks (WSNs) on the other hand fail to provide effective
separation between the trust domains of adjacent users’ smart homes.

Other approaches seek to utilise the proximity of devices to each
other to enable co-location based authentication by using context-
based information sensed from the ambient environment of the de-
vices as an authenticator. These schemes are based on either sensing
WiFi RSSI values [143] or fluctuations in the Radio Frequency (RF)-en-
vironment [82]. They have, however, the drawback that their security
properties are lacking, or, they are limited to relatively short distances
between to-be-paired devices, making their use in real-world IoT set-
tings impractical.

Other contextual modalities like ambient audio have more desir-
able properties for realising practical context-based authentication, as
it allows authentication over longer distances. To this end, an authen-
tication scheme has been presented [124] that is based on using error-
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correcting codes to enable audio fingerprinting-based key agreement
between two peers located in the same audio environment. However,
this scheme fails to address all relevant factors affecting the security
of the scheme that are needed to quantify the strength of the resulting
authentication secret.

1.1.4 Security Management of IoT Devices

In addition to the security challenges mentioned above, the difficulty
of effective security management in IoT environments is exacerbated
by the fact that the IoT device market has become very fragmented,
as hundreds of new device manufacturers are bringing new devices
to the market. Many of these manufacturers have little experience
in building secure network-connected systems and utilize therefore
flawed security designs in their products. On the other hand, many
manufacturers are also driven by the desire to bring their products
to the market quickly, not leaving enough time to do proper secur-
ity testing of their product implementations. Both aforementioned
reasons lead to a situation in which it is not only possible, but likely
that devices with security vulnerabilities are present in users’ smart
homes. Identifying such devices before they are compromised by po-
tential attackers and taking appropriate countermeasures to contain
the security threat that such devices represent is therefore of high
importance.

1.2 the goal of this dissertation

The goal of this work is to demonstrate how appropriate context
and communications profiling approaches can be used to address the
challenges enumerated above in order to provide building blocks for
realising more autonomous security decision making in end-user sys-
tems. In particular, we target personal mobile devices and IoT devices
in smart home settings. Our aim is to make security and privacy
management of the increasingly complex and diverse computing en-
vironment feasible for regular end-users in the future. In this disser-
tation we demonstrate how by appropriately profiling information
obtained through contextual sensors of devices and their communic-
ation behaviour, many security decisions can be automated in a way
that makes it easier for regular users to handle the vast complexity of
contemporary systems comprising numerous IoT devices and apps.
The concrete solutions proposed in this dissertation are related to
the automated and context-based adaptation of security and privacy
policies of personal mobile devices (Chapter 2), context-based proto-
cols for proximity verification (Chapter 3) and co-presence authentic-
ation (Chapter 4), as well as the use of communications profiling for
identification and management of IoT devices (Chapter 5).
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1.3 overview of contributions

1.3.1 Context-Aware Access Control Framework

We present the design of ConXsense, a novel context-aware frame-
work for dynamic adjustment of security- and privacy-relevant en-
forcement decisions on mobile systems. The framework is based on
profiling contexts and persons with which the mobile device user in-
teracts with regard to their familiarity. It derives from this profile
information features characterising the context which can be used by
a machine learning-based classification model to provide predictions
about security-relevant properties like the privacy sensitivity of the
context and its associated risk of device misuse. Our empirical eval-
uation based on real-world contextual data demonstrates the effect-
iveness of the proposed approach in protecting users against threats
arising from device theft or misuse, and, privacy leakage by so-called
sensory malware.

1.3.2 Resilient Context-Based Proofs-of-Presence

We empirically analyse a scheme for context-based Proofs-of-Presence
(PoPs) that is derived from approaches used in earlier approaches [140,
131] based on real-world context data and demonstrate the feasibil-
ity of so-called context-guessing attacks. In such attacks a malicious
prover uses profiled information about a target context in which the
verifier of a PoP scheme is located to forge PoPs that the verifier will
erroneously accept as genuine Proofs-of-Presence. We then develop
an approach utilising context profiling to estimate the surprisal associ-
ated with individual PoPs and using this information to filter out PoPs

that are at risk of being too easy to guess by an adversarial prover.
Based on our evaluation data we demonstrate the effectiveness of this
surprisal filtering approach in protecting against context-guessing at-
tacks. Finally, we introduce an extension to the PoP approach utilising
longitudinal context measurements based on luminosity and audio
and demonstrate how such measurements can be used to make PoPs

more resilient to context guessing in most cases.

1.3.3 Context-Based Authentication

Based on a context-based key exchange approach presented in earlier
work [124], we develop a context-based key evolution approach that aims
at gradually increasing the confidence of pairing principals in the au-
thenticity of their counterpart. The approach relies on the fact that
only devices that are persistently present in the same context will
be able to successfully complete a number of authentication itera-
tions which is required to establish a sufficiently strong authentica-
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tion between the pairing parties. We also present a rigorous analysis
of the factors that affect the security of context-based authentication.
In particular, we quantify the effects that entropy losses incurred by
the use of error-correcting codes and the inherent entropy rate present
in the context have on the security of the scheme and evaluate it em-
pirically based on contextual measurement data from real-world IoT

settings.

1.3.4 Device Profiling for IoT Security Management

We present the design of IoTSentinel, a framework that aims at provid-
ing a brownfield security management solution for networks contain-
ing IoT devices with security vulnerabilities. IoTSentinel is based on
profiling the communications of IoT devices that are newly added to
the network and using this for identifying their device type. This is
required for identifying devices with known security vulnerabilities
in order to enforce appropriate traffic filtering measures with which
1) compromise of vulnerable devices can be mitigated, and, 2) in case
vulnerable devices are compromised, the rest of the network can be
protected against potential attacks utilising the compromised device.
We evaluate the effectiveness of IoTSentinel based on empirical data
collected from a large set of real-world IoT devices and demonstrate
that it can be successfully used for managing threats arising from
security vulnerabilities present in IoT devices. We also present the
design of a prototype system demonstrating the core functionalities
of IoTSentinel.

1.4 related publications

This dissertation is based on several previously published papers as
listed below. A full list of all published works of the author of this
dissertation is given in chapter 7.

Chapter 2

Markus Miettinen, Stephan Heuser, Wiebke Kronz, Ahmad-Reza
Sadeghi and N. Asokan. ”ConXsense – Context Profiling and Clas-
sification for Context-Aware Access Control”. In: Proceedings of the
9th ACM Symposium on Information, Computer and Communications Se-
curity (ASIACCS 2014). ACM. Kyoto, Japan, June 2014. doi: 10.1145/
2590296.2590337

https://doi.org/10.1145/2590296.2590337
https://doi.org/10.1145/2590296.2590337
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Chapter 3

Markus Miettinen, N. Asokan, Farinaz Koushanfar, Thien Duc
Nguyen, Jon Rios, Ahmad-Reza Sadeghi, Majid Sobhani and Sudha
Yellapantula. ”I know where you are: Proofs of Presence resilient
to malicious provers”. In: 10th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS 2015). Apr. 2015. doi:
10.1145/2714576.2714634
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AZ, USA: ACM, Nov. 2014. doi: 10.1145/2660267.2660334

Markus Miettinen, Thien Duc Nguyen, N. Asokan and Ahmad-Reza
Sadeghi. ”Revisiting Context-Based Pairing in IoT”. in: Proceedings
of the 55th Design Automation Conference (DAC). ACM, June 2018. doi:
10.1145/3195970.3196106

Chapter 5

Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan,
Ahmad-Reza Sadeghi and Sasu Tarkoma. ”IoT Sentinel: Automated
Device-Type Identification for Security Enforcement in IoT”. in: Proc.
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1.5 contributions of the author

The contributions of this dissertation were produced in collaborative
research projects where the author had a central leading role. The
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1.5.1 Context-Aware Access Control Framework

The author led the project and designed the context features used for
the context classification models and co-designed the overall frame-
work with other project participants. He participated in the require-
ments gathering and design of the user survey, which was realised in
practice and evaluated by co-author Wiebke Kronz. The author spe-
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cified the requirements for the data collection software used in col-
lecting evaluation data, organised the data collection campaign and
performed the evaluation of the data. The enforcement framework
for realising dynamic adaptation of locking time-outs and access to
context sensors was contributed by co-author Stephan Heuser. All
co-authors participated in writing the paper manuscript [90].

1.5.2 Resilient Context-Based Proofs-of-Presence

The author led the project and co-designed the ConXPoP framework.
He provided the requirements for the data collection software used
for collecting evaluation data, implemented by co-authors Duc Thien
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laboration with co-authors. The author formalised the concept of
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the data analysis and evaluation of the framework together with Duc
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1.5.3 Context-Based Authentication
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was responsible for authoring a major part of the paper [94].
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1.5.4 Device Profiling for IoT Security Management

The author co-led the project and was responsible for setting up the
data collection infrastructure and planning and conducting data col-
lection experiments on IoT devices. The author co-designed the over-
all architecture with other co-authors. Samuel Marchal designed and
implemented the machine learning components for device identific-
ation. Ibbad Hafeez implemented the SDN-based isolation solution.
All co-authors contributed to the writing of the manuscript [92]. In
addition, Tommaso Frassetto supported the implementation of the
demonstrator solution [93] for IoTSentinel.



2
C O N T E X T P R O F I L I N G F O R A U T O M AT I N G
S E C U R I T Y A N D P R I VA C Y P O L I C Y D E C I S I O N S

The emergence of appified smartphone platforms like Google’s An-
droid, Apple’s iOS and Microsoft’s Windows Phone has led to a rapid
growth in the number and complexity of different security and pri-
vacy settings that are required for controlling smartphones and ap-
plications installed therein. Not only have the smartphones them-
selves numerous settings that need to be configured, but users also
need to consider numerous settings related to the permissions and
data sharing by apps that they have installed on their smartphone.
Predominant solutions for specifying and maintaining security and
privacy settings that reflect the desires of the user are based on manu-
ally pre-defined policies. Due to their increasing number and com-
plexity, it is, however, becoming increasingly difficult for users to
maintain their policy sets in a meaningful way. The goal of this work
is therefore to develop a novel framework for automating security
and privacy policy decision making by utilising contextual informa-
tion that mobile devices can sense with their sensors from the context
in order to allow the system to automatically learn and adjust policies
based on the contextual situation in which the user is located.

2.1 problem description

Configuring and maintaining such large sets of security policies is
laborious and requires a considerable amount of expertise and under-
standing to perform correctly. In many cases, users are not willing to
spend substantial amounts of time required to go through and adjust
security settings to match their personal preferences. This can result
in policies being inadequately configured so that the security and pri-
vacy settings of systems and apps do not reflect the true preferences
of users. Also, in many cases regular users may not fully understand
the detailed consequences of particular policy configurations for their
privacy, resulting in erroneous settings that do not reflect the actual
preferences of the user with regard to their privacy. A study by Sadeh
et al. [118] concerning location sharing policies revealed that users of-
ten have great difficulties in defining accurate access control policies.
In this study, they investigated the ability of users to define policies
for controlling the disclosure of their location to other users and user
groups like friends, colleagues, etc., and found that the accuracy of
location disclosure rules defined by users was initially only 59%. The
accuracy increased to 65% after the users were given the chance to
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modify their rules after reviewing them based on concrete examples
of enforcement decisions resulting from applying the initially-defined
rules. In another study by Bauer et al. [9], in which the user under-
standing of data sharing consent dialogues of popular single-sign on
services like Google, Facebook and Google+ were studied, the au-
thors found that the majority of users did not fully understand which
of their data items would actually be shared with a third-party web-
site by the single-sign-on service when the user used it to log in to the
third-party-website. This was in spite of the fact that the users were
shown an explicit consent dialogue informing them about which data
items would be shared by the service. Both above results show that
defining, maintaining and understanding the meaning of access con-
trol policies is a challenging and likely too laborious and difficult task
to be successfully handled by regular users.

What makes the situation even more challenging is that some policy
enforcement decisions should be dependent on the context, i. e., the
situation and environment in which the user is located at a particular
point in time. Capturing all relevant contexts with pre-defined access
control rules increases the complexity of the policy set and thus the
work required to set up and maintain it even more. It is also question-
able, whether it is even possible to enumerate and define all relevant
contextual settings in which access control decisions need to be made
beforehand.

2.1.1 Challenges with Straightforward Approaches

One way to ease the burden of users is to design systems so that they
use sets of default policies designed by security experts. User involve-
ment would then only be limited to making a selection of what set of
default policies to apply. While being an easy choice to users, this ap-
proach, however, also has its problems. For one, default policies can
never capture the fine-grained personal preferences that users may
have, as they are by necessity generalisations and therefore not able
to capture all concrete contexts and situations of a user’s life. Thus
they are limited to using ‘reasonable defaults’, thereby potentially res-
ulting in settings that do not reflect the true desires of users. On the
other hand, understanding the full implications of particular default
security policies may not be easy for regular users. Security settings
and policies being highly abstract concepts, it is possible that users
do not fully understand the consequences that their selected default
policies may have, e. g., on the privacy of certain user data. This may
result in situations where the actually enforced settings do not corres-
pond to what the users think they do, thereby putting user privacy at
risk. This is particularly problematic if policy settings are not as strict
the user thinks they are, potentially leading to unwanted disclosure
of inappropriate or embarrassing information about the user.
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2.1.2 Goal Setting

Given the above challenges that contemporary approaches for access
control on mobile appified platforms are facing, it is clear that better
methods are required for managing the security and privacy settings
of users. In this work, therefore, we propose ConXsense, a system that
uses profiling of longitudinal observations of the user’s behaviour
and context together with limited user feedback to automatically learn
appropriate policy settings for the user to be used in particular situ-
ations. This allows ConXsense to realise usable, user-friendly but also
accurate access control. In particular, the envisaged system shall be
able to:

• capture relevant features of the users surroundings, i. e., the con-
text that influence the users’ perceptions on desired access con-
trol enforcement decisions,

• autonomously learn relevant places and environments in the
user’s life, so-called Contexts of Interest (CoIs) in order to associate
policy decisions with them,

• learn, using minimal user feedback, the desired access control
policy decisions to be applied in a particular context.

2.1.3 Definition of the Term Context

In this work, we define the term context to mean the combination of
any ambient physical properties of the surrounding environment that
a device can sense with its on-board sensors at a particular point in
time. Context can therefore refer to information about the device’s
position, surrounding other (wireless) devices, as well as direct phys-
ical properties of the environment, like, e. g., illumination, audio ob-
servations, temperature, humidity, etc. In our approach we seek to
utilize information obtained by profiling a device’s context over time
to build a machine-learning based context model that allows a device
to make automated decisions about access control policy enforcement
in particular contexts that the device is in.

2.1.4 User Perceptions of Context

In an on-line user survey [90], we investigated more than one hun-
dred active smartphone users’ perceptions and concerns related to
security and privacy issues arising from their smartphone use. The
survey sought to identify which contextual factors play a role in users’
perceptions with regard to security and privacy. In this survey, two
main concerns could be identified, one related to the threat of device
misuse and the other related to concerns of privacy exposure, i. e., the



2.1 problem description 13

fear that private or sensitive information about the context is dis-
closed to unauthorised parties.

The survey revealed that a number of factors primarily influence
users’ perceptions about these concerns. For one, the presence of
other persons and their familiarity to the user were seen as the main
factors influencing the perceived risk of device misuse, whereas the
familiarity of the place or location as such was the main factor influ-
encing the perceived privacy exposure in particular situations. These
findings motivated our selection of primary use cases for ConXsense
(as detailed below in Sect. 2.1.5) and also informed the design of the
context model by guiding its construction so that it could model both
the familiarity of places users often visited, as well as the presence
and familiarity of other persons in specific situations, as explained in
detail in Sect. 2.3.

2.1.5 Use Cases

Motivated by the results of the survey, we selected two prominent use
cases that are related to the prime concerns of mobile device users:
the fear that their device is misused by third parties, and, the un-
authorised disclosure of potentially sensitive contextual information
about the user by unauthorised, potentially malicious applications on
the user’s mobile device. We selected two concrete use cases focusing
on these concerns.

2.1.5.1 Use Case 1: Protection Against Misuse Using a Context-Aware
Device Lock

Mobile devices like smartphones and tablets are increasingly used
for access to sensitive information like financial or banking data, per-
sonal messaging, on-line shopping, etc. However, reports have shown
that many users do not sufficiently protect their devices using protec-
tion mechanisms like device locks [21, 132], even though these are
readily available on most smartphones and provide effective protec-
tion against many threats related to device misuse. This may be due
to the fact that device locks are perceived as relatively inconvenient
to use, as they require the user to type in an unlocking code sev-
eral times a day, and alternative solutions like the use of fingerprint
scanners for user authentication have only recently started to become
widely available on smartphones also in other than the highest price
segments.

To reduce the user burden of using device locking for protecting
their device against misuse, we adopt the approach first introduced
by Gupta et al. [47], in which observed context information is used
to dynamically adapt the locking time-out of the device lock. By
profiling contextual data we develop a model for estimating the risk
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of device misuse and use it to decide on how quickly the device should
lock itself in particular contexts in case it is not used.

2.1.5.2 Protection Against Sensory Malware

The term sensory malware denotes a class of malicious applications for
smartphones. The goal of these malware apps is to use the on-board
sensors of the targeted user’s smartphone to harvest potentially sens-
itive information from the user’s context. This allows an adversary
controlling the sensory malware to aggregate detailed profiles about
the user, her behaviour and the environment she routinely lives in.
Sensory malware are typically Trojans, i. e., applications with hidden
malicious functionality purporting to be a benign app, so that users
can be fooled into installing the application on their smartphone.

Notable examples of sensory malware include applications like
Stealthy Video Capturer [145], (Sp)iPhone [81], Soundcomber [122] and
PlaceRaider [138]. Stealthy Video Capturer utilises the camera on
the victim’s smartphone to capture video images and secretly send
them to the adversary, whereas (Sp)iPhone utilises the smartphone’s
accelerometer to decode vibrations from a nearby keyboard the vic-
tim user is typing on to discover the text entered. Soundcomber on
the other hand monitors the microphone of the victim’s smartphone
and uses audio analysis and speech recognition to recover sensitive
information like PIN codes or credit card numbers from the victim
user’s spoken interactions with, e. g., her bank. PlaceRaider utilises
the smartphone’s gyroscope sensor and camera to harvest sets of im-
ages that the adversary can use in reconstructing a 3D model of the
victim’s surroundings.

In order to protect smartphone users against the threat posed by
sensory malware, we adopt an approach in which we limit the access
of applications to the contextual sensors of the mobile device in such
contexts that are sensitive from a privacy point of view, e. g., a the
user’s home or workplace. We seek to do this without impacting the
legitimate use of the smartphone unnecessarily and therefore do not
limit access to sensors in contexts that are not considered privacy-
sensitive, e. g., in public places.

2.1.6 Adversary Model

In use case 1 concerning protection against device misuse, the ad-
versary is a person in vicinity of the mobile device of the user having
potentially physical access to the user’s device. The adversary may
be malicious, like a thief, honest-but-curious, e. g., a colleague or sib-
ling of the user, or, ‘clueless’ like a small child. The protection goal
in this use case is to minimize the risk that the adversary has access
to applications and data on the mobile device of the user. We do this
by dynamically adjusting the locking time-out based on the risk of
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device misuse in the context. We seek to do so while striking a bal-
ance between maximising protection on one hand, and, minimising
user inconvenience caused by having to frequently enter a device un-
locking PIN or password even in low-risk contexts, on the other hand.

In use case 2 the adversary is an application that is installed on the
user’s mobile device. We assume that the application has obtained all
necessary permissions for access to contextual sensors of the device
during its installation. The application may be a malicious Trojan
Horse, i. e., sensory malware, or, merely a benign but overly intrusive
application. Our goal is to prevent or limit the access of the adversary
to contextual sensors of the device in contexts with high privacy ex-
posure, i. e., contexts containing information that the user would want
to protect from the adversary. This information may be either private,
concerning the user personally, or, confidential, i. e., other sensitive
information not necessarily directly related to the user herself. Typ-
ical examples of contexts with high privacy exposure are the user’s
home containing private information pertaining to the user, or, her
workplace with potentially confidential information in the context.

2.2 system design

The ConXsense system is designed to make context-dependent access
control decisions based on contextual parameters that a mobile device
can observe with its on-board sensors. It utilises machine learning-
based classifiers to make predictions about the risk of device misuse
and the privacy sensitivity of particular contexts. The classification
models are gradually learnt based on ground truth information that
the user provides about her security and privacy preferences in par-
ticular contexts.

The structure of the ConXsense system is shown in Fig. 2.1. Access
control decisions are based on observations of the context obtained by
context sensors. The observations are fed to a Profiler that calculates
features describing the context. Profiler aggregates profiles of relevant
objects (like significant places of the user or other devices that the
user encounters) according to the context model described in detail
in Sect. 2.3. Profiler periodically uses incoming observations and the
aggregated profiles to generate context features representing relevant
properties of the context at each point in time. The definition of the
context features is provided in Sect. 2.3.3.

Context features are forwarded to the Classifier component, which
uses them together with ground truth feedback obtained from the
user to train and update classification models. The user feedback
can be generated either through explicit input like interactions with
the device UI, or, implicitly by monitoring the user’s actions. Once
the classification models have been trained, Classifier uses them to
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Figure 2.1: The structure of the ConXsense system

provide predictions about a context’s security and privacy-relevant
properties based on new incoming features from the current context.

The classifier predictions along with their associated confidence val-
ues are forwarded to the Access Control Layer, which takes them into
account when making decisions about applications’ access requests
to various functionalities of the System API in accordance with its
specific enforcement model.

2.3 context model

The ConXsense context model focuses on modelling the surroundings
of a mobile device in terms of its location or place in which it is
located, as well as the social context, i. e., the persons in proximity,
and their familiarity to the user. This is because these factors were
deemed the most decisive ones influencing the perceptions of users
with regard to the risk of device misuse and privacy exposure (cf.
Sect. 2.1.4). The model is used for profiling the user’s typical contexts
as well as deriving context features used in classifying the current
context with regard to these properties.

2.3.1 Profiling Locations and Places

A core concept of the ConXsense context model are the so-called Con-
texts of Interest (CoIs). They represent places that the user visits of-
ten and spends a considerable amount of time in. Typical CoIs for
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a user could be, e. g., her home, workplace, grocery store, etc. The
ConXsense context model considers two different kinds of CoI: GPS-
based and WiFi-based CoIs. The former correspond to geographical
areas determined by their location co-ordinates, and the latter are
defined by a characteristic set of WiFi access points usually observed
in a specific place. GPS-based CoIs are good in capturing significant
places of the user in outdoor areas, whereas WiFi-based CoIs cover
also urban indoor areas, where typically GPS reception may not be
possible but WiFi access points are available. By using a combination
of both CoI types, most significant places that users typically visit
can be detected and identified. In the following, we provide a formal
definition for both CoI types.

2.3.1.1 GPS-based CoIs

Our concept of GPS-based CoIs is based on the notion of stay points
and stay regions, originally introduced by Zheng et al. [149] and de-
veloped by Montoliu et al. [96]. The identification and detection
of GPS-based CoIs is based on positioning measurements using the
Global Positioning System (GPS). The mobile device measures its
position periodically using its GPS sensor. The sequence of meas-
urements is divided into GPS stay points, i. e., subsequences of posi-
tioning measurements representing the user’s visits to distinct places,
during which the user stays within a specific distance of rsp from the
position of the first GPS measurement in the subsequence. A visit is
considered a stay point, if the visit’s duration is longer than a minimal
duration tminsp and does not contain observation gaps lasting longer
than a specified maximum gap length tgapsp

.

Definition 1 (GPS stay point) A stay point sp = (m0, m1, m2, . . . , mn)

is a longest subsequence of positioning measurements mi = (lati, loni) such
that

∀i ∈ {1, 2, . . . , n} : dist(m0, mi) ≤ rsp,

t(mi)− t(mi−1) ≤ tgapsp
,

t(mn)− t(m0) ≥ tminsp ,

(2.1)

where dist(mi, mj) denotes the geographical distance between positioning
measurements mi and mj, t(m) the time stamp of positioning measurement
m and lati and loni, respectively, the latitude and longitude readings of a
position measurement.

A stay point’s position is defined as the average position of the
measurements belonging to the stay point.

Definition 2 (Position of stay point) The position possp = (latsp, lonsp)

of stay point sp = (m0, m1, m2, . . . , mn) is defined as the average of all
position measurements mi = (lati, loni) belonging to the stay point, i.e.,

∀mi = (lati, loni) ∈ sp : latsp =
∑n

i=0 lati

n
; lonsp =

∑n
i=0 loni

n
(2.2)
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The average positions of stay points are aggregated to form GPS-
based Contexts of Interest (CoIs). These are rectangular geographical
areas of at most gpsmax width and length which the user has visited
at least fminCoI times for a total duration of at least tminCoI minutes.

Definition 3 A GPS-based CoI C = (latmin, lonmin, latmax, lonmax) is
a geographical area delimited by the co-ordinates latmin, lonmin, latmax and
lonmax enclosing a set S = {sp1, sp2, . . . , spn} of observed stay points spi
with associated stay point position posspi

= (lati, loni), such that

∀spi ∈ S : latmin ≤ lati ≤ latmax, lonmin ≤ loni ≤ lonmax,

|S| ≥ fminCoI ,

∑
spi∈S

dur(spi) ≥ tminCoI ,

latmax − latmin ≤ gpsmax, lonmax − lonmin ≤ gpsmax,

(2.3)

where dur(sp) denotes the duration of the stay point.

example . Let us consider a user who regularly commutes between
his workplace and home. He also regularly visits a supermarket for
shopping and a fitness club. He usually always carries his smart-
phone with him, which continuously senses the GPS position of the
user together with other contextual data.

If the user goes to the supermarket and stays there for 15 minutes,
which is longer than tminsp = 10 min and moves there only within a
radius of rsp = 100 m, a stay point sp of duration dur(sp) = 15 min
is generated. The position of the stay point possp will be the average
of all position observations posi recorded during the stay point visit,
most likely located inside or near the supermarket. Waypoints along
the user’s daily commuting route between his workplace and home
will, however, not generate stay points, since the user will not spend
a sufficiently long period of time close to the same geographical loca-
tion.

If the user visits the supermarket ten times and stays there each
time for 15 minutes, ten stay points will be generated. These will
be aggregated to a GPS-based CoI, since the total stay duration of
150 min is longer than the required tminCoI = 30 min and there are
more than the required fminCoI = 5 stay points falling within the area
of the CoI. This corresponds to the smallest rectangular area aligned
with the GPS co-ordinate system that encloses all of the ten generated
stay points, of at most gpsmax = 100 m width and height.

2.3.1.2 WiFi-based CoIs

In order to capture the positions of users better also in urban indoor
contexts, where GPS reception often is not available, we extend the
notion of stay points and CoIs to indirect positioning information
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obtained by monitoring the observable WiFi Service Set Identifiers
(SSIDs) at the user’s location. This is done by continuously performing
WiFi scans that result in snapshots of WiFi SSID observations. Since
an SSID can be observed only within the wireless range of its access
point, the set of observable SSIDs acts as an indirect indication of the
user’s location. In the following, we provide the formal definition of
WiFi-based CoIs.

Definition 4 (WiFi snapshot) A WiFi snapshot S = {w0, w1, . . . , wn} is
defined as a set of WiFi SSID observations wi obtained during a single WiFi
scan of duration tmaxwi f i = 10 sec. t(s) denotes the timestamp associated
with the start of the WiFi scan.

WiFi stay points are sequences of consecutive WiFi snapshots in
which each subsequent snapshot’s Jaccard distance to the first snap-
shot is less than or equal to 1/2. This means that both snapshots must
have at least half of the observed SSIDs in common. For a snapshot se-
quence to be considered a WiFi stay point, the sequence must have a
minimal duration of tminsp and must not have observation gaps longer
than tgapsp .

Definition 5 (WiFi stay point) We denote with sp = (S0, S1, . . . , Sn) a
WiFi staypoint. It is a sequence of WiFi snapshots Si such that

∀Si ∈ sp, i = 1, 2, . . . , n : Jδ(S0, Si) ≤
1
2
∧ t(Si)− t(Si−1) ≤ tgapmax ,

and t(Sn)− t(S0) > tminsp ,
(2.4)

where Jδ denotes the Jaccard distance, which is a measure for the dissimilarity
of sets. It is defined for two sets A and B as

Jδ =
|A ∪ B| − |A ∩ B|

|A ∪ B| (2.5)

The use of the Jaccard distance to distinguish stay points was se-
lected, because it is not uncommon that even SSIDs with good signal
strength are occasionally missed by WiFi scans [32]. The use of Jac-
card distance allows to compensate for this phenomenon.

We denote as the characteristic set of a staypoint a subset of SSIDs
that occur in at least half of the WiFi snapshots belonging to the stay
point.

Definition 6 (Characteristic set) The characteristic set of a WiFi stay
point sp = (S0, S1, . . . , Sn) is denoted with Schar = {w0, w1, . . . , wk} and
it is the set of all SSIDs wi that occur in at least half of the WiFi snapshots
Sj belonging to the stay point, i. e.,

Schar =

wi ∈
⋃

j=0,1,...,n

Sj ∈ sp
∣∣∣∣ |{Sj|wi ∈ Sj}|

n
≥ 1

2

 (2.6)
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Fixed WiFi access points are likely to be observed at a location
each time the user visits it. Reoccurring SSIDs can therefore be used
to identify locations and are used to define CoIs. A set of WiFi SSIDs
is considered a WiFi-based CoI, if the set is a subset of at least fminCoI

WiFi stay points’ characteristic sets, and the total duration of these
stay points is at least tminCoI .

Definition 7 A WiFi-based CoI C = {w0, w1, . . . , wn} is a set of SSIDs
wi, such that∣∣{spi ∈ SP

∣∣C ⊆ Schari

}∣∣ ≥ fminCoI ,

∑
spi∈SP, s.t. C⊆Schari

dur(spi) ≥ tminCoI , (2.7)

where SP denotes the set of all stay points and dur(sp) the duration of the
staypoint sp.

example . Consider the user from the previous example. When he
arrives at his workplace, a series of WiFi snapshots w0, w1, w2, . . . is
recorded. Subsequent snapshots that have a Jaccard distance less than
0.5 to the first snapshot form a WiFi stay point sp given that the time
difference of the first and last snapshot is at least tminsp seconds and
there are no observation gaps longer than tgapmax . The characteristic
set of SSIDs Schar of this stay point contains the SSIDs of typical access
points observed in the workplace. During subsequent visits of the
user to the workplace, more stay points with the same characteristic
set will be generated. This set is considered a WiFi-based CoI, if at
least fminCoI such stay points are observed and the total visit duration
of these stay points is at least tminCoI .

Given the above contexts, we define the location context of the user
to consist of all the CoIs that the user is visiting at the time. We define
visits as follows.

Definition 8 (Visits to GPS-based CoIs) To capture visits of users in
particular frequently-visited places in terms of their geographical position,
we define a visit VC = (pos0, pos1, . . . , posn) to a GPS-based CoI C =

(latmin, lonmin, latmax, lonmax) as a sequence of consecutive position obser-
vations posi falling within the area of C, having a maximum time difference
between observations of at most tgapmax

Definition 9 (Visits to WiFi-based CoIs) To capture visits of users in
particular frequently-visited places in terms of their observed RF environ-
ment, we define a visit VC = (S0, S1, . . . , Sn) to a WiFi-based CoI C =

(w0, w1, . . . , wk) to be a sequence of consecutive WiFi snapshots Si having a
Jaccard distance less than 1

2 to the CoI, i.e., ∀Si ∈ VC : Jδ(C, Si) ≤ 0.5. The
time distance between consecutive observations being at most tgapmax .

We denote the set of all visits VC to context C with VC.

Definition 10 (Location context) The location context Lt of a user at time
point t is the set of all CoIs the user is visiting at time t.
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2.3.2 Profiling the Social Context

For capturing the presence of people in the context, ConXsense con-
siders Bluetooth devices like smartphones which are typically carried
by people and can be sensed remotely up to a range of ca. 30 metres
by scanning the Bluetooth RF environment. Bluetooth has also earlier
been successfully used in ubiquitous computing literature to model
the presence of people in the context (cf., e. g., [99]). We focus on mo-
bile devices that people typically carry with them, e. g., smartphones,
headsets and PDAs by filtering Bluetooth devices by their type, dis-
carding observations of clearly stationary devices like printers.

Bluetooth may not always be able to reliably sense the presence of
all persons in the context, as not all of them are likely to keep the
Bluetooth radios of their devices enabled, or simply don’t carry it
with them. However, ConXsense uses the observations in a probabil-
istic fashion to make predictions about the type of context the user
is in, not to trigger specific actions based on the presence or non-
presence of particular devices in the context. Especially in public
places where many people are present, the likelihood of being able
to observe Bluetooth devices is high and thereby a good factor in
classifying the context.
ConXsense models the social context in terms of Bluetooth devices

that are detected in the user’s context. Social connections are further
profiled using the notion of encounters, i. e., occasions during which
the user’s device has been in proximity of other Bluetooth devices.

Definition 11 (Encounters) An encounter Ed = (b0, b1, b2, . . . , bn) with
a device d is a sequence of Bluetooth observations bi of device d in which
consecutive observations have a time difference of at most tgapenc . Ed denotes
the set of all encounters Ed with device d.

As discussed in Sect. 2.1.4, the familiarity of persons present plays
a role in the user’s perception of the risk of device misuse in a con-
text. We therefore also model the familiarity of observed devices as
follows.

Definition 12 (Familiar devices) A device d is defined to be familiar, if
the device has been encountered at least fminenc times and the total duration
of the encounters is at least tminenc , that is, device d is familiar, if

|Ed| ≥ fminenc , and

∑
Ed∈Ed

dur(Ed) ≥ tminenc ,
(2.8)

where dur(Ed) denotes the duration of encounter Ed.

Definition 13 (Device context) The device context Dt at time point t is
defined as the set of devices d that are encountered during time point t, i. e.,

Dt = {d|∃Ed ∈ Ed (Ed = (b0, b1, . . . , bn) ∧ t(b0) ≤ t ≤ t(bn))} (2.9)
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example . For our example user, familiar devices typically would
be the mobile phones of his family members or colleagues, as it is
likely that these devices will be encountered more often than fminenc =

5 times and the total duration of these encounters is likely to exceed
tminenc = 30 min.

2.3.3 Context Features

Based on the context model we define following features shown in
Tab. 2.1 to be used by the machine learning model for context clas-
sification. The features are calculated by Profiler and labelled based
on ground truth provided by user feedback. The feature values are
forwarded to Classifier, which uses them to train a machine learning-
based classifier for predicting security-relevant properties of the con-
text as described in Sect. 2.4.3.

Features f1 to f4 model the location context of the user, measuring
both the total visit time as well as number of visits the user has paid
to the CoIs of the current location context ( f1 and f2 for GPS-based
and f3 and f4 for WiFi-based CoIs), thus providing a measure for the
familiarity of the place the user is currently located in. Features f5 to
f8 on the other hand aim at providing a characterisation of the social
context of the user. They measure the number of Bluetooth devices
observed in the context and how many out of those are familiar ac-
cording to Def. 12. Features f7 and f8 measure the average encounter
time as well as the average number of encounters the the user has had
with familiar devices in the current context. This aims at modelling
how familiar the persons in the context are to the user.

2.4 evaluation

2.4.1 Data Collection

To evaluate the ConXsense framework on real empirical data capturing
the contexts and perceptions of real smartphone users, we implemen-
ted a Context Collector app for Android that was was installed on the
smartphones of test users. The Context Collector app recorded the pos-
ition and context data once every 60 seconds, which was a reasonable
trade-off between sufficient granularity of context information and
battery lifetime of the used smartphones. Our target was to achieve
a battery lifetime of at least 12 hours (a full working day). The col-
lected context data included the GPS position of the device, nearby
Bluetooth devices and WiFi access points, acceleration sensor read-
ings, as well as information about user actions and her interactions
with apps on the smartphone.

The Context Collector app also provided a GUI shown in Fig. 2.2
for collecting ground truth information about the user’s perceived
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Table 2.1: Context features derived based on the context model

feature description

f1 max total visit time of any GPS-based CoI in Lt

f2
number of visits to GPS-based CoI in Lt with max
total visit time

f3 max total visit time of any WiFi-based CoI in Lt

f4
number of visits to WiFi-based CoI in Lt with max
total visit time

f5 number of Bluetooth devices in Dt

f6 number of familiar Bluetooth devices in Dt

f7 average total encounter time of familiar devices in Dt

f8
average number of total encounters with familiar de-
vices in Dt

Lt: Location context (Def. 10) at time t

Dt: Device context (Def. 13) at time t

risk of device misuse and privacy exposure. The users were asked
to use the Context Collector GUI to regularly label the current con-
text they were in as “safe”, i. e., having a low risk of device misuse,
or, “unsafe”, i. e., having a high risk of device misuse. To capture
the aspect of privacy exposure, users were also asked to label the
current context with one of the labels “home”, “work” or “public”
to capture whether the privacy exposure of the context was due to
private (home) or confidential (work) information in the context, or,
whether the context was not considered to expose privacy-sensitive
information (public). The meanings of these labels and how to ap-
ply them were given to the test participants beforehand in order to
avoid misunderstandings. The users were encouraged to provide
feedback regularly, especially when entering or leaving contexts. To
facilitate a more convenient user interaction for providing feedback,
we provided users also with Near-Field Communication (NFC)-based
context labels labelled ’Private’, ’Work’ and ’Public’ that users could
attach to objects in contexts they frequently visited. By touching the
NFC tag with the user’s NFC-enabled smartphone the GUI of the Con-
text Collector app was automatically brought to the foreground and
the corresponding feedback about the privacy sensitivity level recor-
ded. A prompt as shown in Fig. 2.2b additionally requested the user
to provide feedback about the level of risk of device misuse for the
current context.
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(a) GUI for providing explicit
user feedback using feedback
buttons.

(b) Feedback response dialog
after using a ’Private’ NFC tag
for providing user feedback.
The user is asked to provide
additional information about
the level of risk of device
misuse.

Figure 2.2: GUI of the Context Collector app used for collecting ground
truth information about the risk of device misuse and privacy
sensitivity of the context. ’Safe’ indicates a context with low risk
of device misuse, whereas ’Unsafe’ indicates high risk. ’Private’
and ’Work’ indicate contexts with high privacy sensitivity, and
’Public’ indicates a context not considered sensitive from a pri-
vacy point of view.
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2.4.2 Dataset

We collected context and ground truth data from a set of 15 users com-
ing from technical and non-technical backgrounds. Users provided
data over a period of 68 days, on 56 days per user on average, res-
ulting in a dataset containing data from 844 distinct user days. On
average users provided ground truth feedback labels for contexts on
46 days, resulting in a ground truth dataset containing 3757 labelled
data points. Each user provided at least 50 or more feedback labels.
In a deployment setting, this would roughly correspond to 2-3 feed-
back labels given per day over a period of three weeks, which seems
like a manageable burden for users. After this initial training period
the need for further user feedback would significantly diminish, and
further user interaction could be limited to giving occasional correct-
ive feedback in cases where Classifier would provide incorrect predic-
tions about the security and privacy properties of particular contexts.

2.4.3 Context Classification

To implement the Classifier component for context classification we
used the Weka data mining toolkit [50], and its k-Nearest-Neighbours
(kNN), Naïve Bayes and Random Forest classifier implementations.
The kNN classifier is an instance-based learning algorithm that bases
its prediction on comparing the testing data point to the k nearest
labelled data points in the training dataset. The predicted label is the
most frequently occurring class label in this set. The Naïve Bayes clas-
sifier is a simple probabilistic model that tries to estimate the most
likely class label given a set of input features. Naïve Bayes classi-
fiers have been successfully applied, e. g., in e-mail spam detection,
where the task is to distinguish spam e-mail from benign mails [119].
The Random Forest classifier [16] is an ensemble learning method
based on training a number of different decision trees by randomly
sampling the training data and using voting to determine the most
common prediction result of the decision trees as the output of the
classifier.

For each test participant we trained two binary Classifier instances
using the user’s labelled context data vectors as input. One was used
for for predicting the risk of device misuse in the current context (i. e.,
is the context “safe” or “unsafe”) and the other one for predicting
the sensitivity of the context (i. e., is the current context “sensitive”
or “public”). As we assume that the mobile device by default applies
the most restrictive enforcement mechanisms to protect user data and
privacy by using a very short time-out for the device lock and block-
ing third-party apps’ access to environmental sensors of the device,
the task of the Classifier component therefore is to identify such con-
texts and situations in which these restrictive enforcement measures
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Figure 2.3: Average ROC curves showing performance of classifying contexts
with a low risk of device misuse, considering those users who
provided at least five ground truth feedbacks per context class.

can be relaxed without increasing the risk of device misuse or privacy
compromise too much in order to increase the usability of the device.

Even though it would have been preferable to evaluate the classi-
fication results by directly obtaining user feedback on concrete classi-
fication decisions in real-time, we had to resort to off-line evaluation,
as we wanted to have the opportunity to experiment with different
machine-learning algorithms for context classification, and staging
the experiment separately for each of the algorithms was not possible
due to resource constraints.

2.4.3.1 Device Misuse Protection

The average performance of the classifiers in identifying contexts with
a low risk of device misuse is shown in Fig. 2.3. It shows the true
positive rate (TPR) and false positive rate (FPR) for different confidence
values required for a measurement to be classified as “safe” by the
classifier. The TPR denotes here fraction of measurements in contexts
labelled as “safe” that are correctly classified as “safe”, whereas FPR

denotes the fraction of measurements in contexts labelled as “unsafe”
that are falsely classified as “safe”.

All three classifiers perform reasonably well in identifying “safe”
contexts. The classifiers achieve a TPR or 70 % at a moderate FPR of
10 %. This would mean that our approach could be used to reduce
about 70 % of unnecessary authentication prompts in contexts with
low probability of device misuse, whereas only once in ten cases the
device locking mechanism would be relaxed while the device is in a
context with a high probability of device misuse. This would mean
that, e. g., a potential thief would have a success probability of merely
10 % in finding a device in an unlocked state, in a context with high
device misuse probability. This is significantly better than the cur-
rent situation in which many people choose to use no device lock
at all, due to the usability penalties imposed by the continuous bur-
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Figure 2.4: ROC curves of classifier performance in identifying public con-
texts in which sensory malware protection can be relaxed.

den of having to enter a PIN code or password each time the user
wants to use the device. The TPR of 70 % also clearly outperforms
recent proposals like proposed by Riva et al. [115] utilising progressive
authentication. They report only a reduction of 42 % in the amount
of unnecessary authentication prompts presented to the user when
applying their approach.

2.4.3.2 Protection Against Sensory Malware

In our scenario we assume that access to the ambient context sensors
of the mobile device can be granted to third-party applications in con-
texts that do not contain sensitive information about the user. In our
test setting, such contexts were labelled as “public”, whereas in con-
texts labelled as “sensitive” the access should be denied due to the
potential danger of sensory malware leaking sensitive information
contained in the context to unauthorised external parties. The task
of the classifiers in this scenario is therefore to distinguish between
these two types of contexts. We therefore measure the TPR as the
fraction of measurements labelled as belonging to the “public” class
that are also classified as such. Accordingly, FPR in this setting de-
notes the fraction of measurements performed in “sensitive” contexts
(like home or work) that are incorrectly classified as “public”. The
performance of the classifiers in dependence of the confidence level
required to label a context as “private” is shown in Fig. 2.4.

In this use case, there is a clear difference between the perform-
ance of the classifiers. The Random Forest and k-Nearest-Neighbours
achieve a TPR of approximately 70 % with a very low simultaneous
FPR of 2 % to 3.5 %. This means that access to context sensors would
be (erroneously) relaxed in less than 3.5 % of the cases when the
device is situated in a sensitive context. This would consequently
severely limit the ability of a sensory malware to exfiltrate potentially
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sensitive information about the user from contexts with high privacy
exposure.

The TPR of 70 % implies that in 70 % of the cases when the mo-
bile device is located in a public place with low privacy exposure
the system would automatically relax the privacy protections and
permit access for third-party apps to sensory information, thereby
improving the user experience and utility of such applications. The
remaining 30 % of cases in which the privacy protections are not auto-
matically relaxed by the system, this can be handled by offering the
user a manual override functionality for temporarily granting access
to apps for sensory context information. A significant number of use
cases in which contextual information is used by third-party mobile
apps involves the active involvement of the user, e. g., when a navig-
ation app is used to find directions to a particular location. Override
mechanisms for granting access to sensory data are therefore relat-
ively straightforward to integrate in the application usage flow, as
the attention of the user is already focused on the interaction with
the particular application. In addition, such override events can effect-
ively be used as additional ground truth feedback when re-training
the classification model for improving classification accuracy.

2.5 enforcement

Enforcement of access control decisions made by the ConXsense frame-
work is realised by the FlaskDroid architecture [18], as described in
detail in [90]. FlaskDroid is a fine-grained mandatory access con-
trol framework for the Android mobile operating system. FlaskDroid
works by instrumenting components that provide access to sensitive
resources like the SensorService, which controls access to on-board
sensors, as User Space Object Managers (USOMs). USOMs grant or deny
requests to the resources they protect based on pre-defined access
control rules. However, FlaskDroid supports also conditional access
control rules with the help of ContextProviders that evaluate the current
context at runtime and enable or disable rules according to context-
specific conditions.
ConXsense is integrated with FlaskDroid with a ConXsense-specific

ContextProvider that uses the classification result and associated con-
fidence values provided by the Classifier component of ConXsense (cf.
Fig. 2.1) to activate or deactivate specific access control rules. Such
rules can be used, e. g., to either grant or deny third-party applica-
tions access to environmental sensors in order to protect against the
threat posed by sensory malware.

The activation and deactivation of access control rules can be fine-
tuned by specifying rule-specific thresholds for the confidence of con-
text classification provided by Classifier. The thresholds can be se-
lected, e. g., by specifying an upper acceptable bound for the false
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positive rate of the system (cf. Figs. 2.3 and 2.4) and using the corres-
ponding classification confidence value achieving this FPR perform-
ance as the confidence threshold. It is to be noted that thresholds can
be sensor- or resource-specific. This means that for sensors provid-
ing particularly sensitive information like, e. g., the GPS sensor that
provides information about the detailed position of the user, a higher
threshold on the classification confidence could be applied in order
to protect the privacy of the user, whereas for sensors like a magneto-
meter that provides less sensitive information about the user, a lower
confidence level would be sufficient.

2.6 related work

2.6.1 Use of Contextual Data for User Profiling

Context sensing has been use in numerous tasks for profiling users
and their relevant life circumstances. For example, Madan et al. [78]
investigated the use of context measurements sensed with mobile
devices for predicting the health status of individuals carrying mo-
bile devices. Factors incorporated in their model included nearby
Bluetooth devices, WiFi access points as well as traces about users’
communication behaviour. Eagle and Pentland [33] pioneered a study
using Bluetooth sensing as a means for establish social proximity for
the purpose of allowing users to discover or be introduced to other
users sharing common interests or similar properties in their user
profiles. In a similar way, ConXsense utilises the use of Bluetooth
for proximity sensing of the social situation, with the target of dis-
tinguishing situations in which only well-know persons are present
from presence in public places in which often a number of unknown
users are present.

2.6.2 Context-Aware Access Control

Context awareness has been included in a number of access control
models. Covington et al. [26] introduced CASA (Context-Aware Se-
curity Architecture) which models security-relevant context or state of
the ambient environment with the help of environment roles, which is
a component of the Generalized Role-Based Access Control (GRBAC)
model [98], an extension to the traditional Role-Based Access Con-
trol (RBAC) models [120]. Another extension of RBAC by Damiani et
al. [27], entitled GEO-RBAC, uses spatial roles to model location as a
factor for making access control decision. In contrast to ConXsense,
however, all of these approaches require the user to specify the de-
tails of used policies including contextual parameters defining the
environmental roles or, locations comprising the spatial roles used
for enforcement.
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Hull et al. [56] address the problem of policy specification in their
Houdini framework, in which they propose to use policy templates
to ease the burden of policy definition for regular non-expert users.
However, even in their system the final decision about concrete policy
settings remains with the user. In a similar effort to improve the accur-
acy of policy sets defined by end-users, Sadeh et al. [118] developed
an approach in which the process of specifying user policies is facilit-
ated by allowing users to audit concrete enforcement situations based
on their currently defined policies and allowing them to refine the
policies based on this. However, their results suggest that it is in gen-
eral difficult for regular users to define accurate policies that reflect
the desires of the user beforehand, leading to relative low accuracy
in policy enforcement in concrete contextual situations. To address
this inherent difficulty of defining accurate policies, Kelley et al. [68]
introduce in a follow-up work an approach using user-controllable
policy learning in which the system interacts with the user, providing
audited feedback about concrete enforcement decisions taken with
the user’s policy set and allowing the user to either accept or reject
the changes with the goal of incrementally improving the accuracy of
the user’s policy set. However, this approach requires regular inter-
action of the user with the system and considerable effort to end up
with a policy set that accurately can reflect the user’s policy desires.

In contrast to all of the above systems supporting context-based
access control, the advantage of ConXsense is that it autonomously
learns relevant context definitions used for enforcement without the
need for the user to explicitly define her policies. Ground truth for
training the system is given by the user in terms of concrete contex-
tual situations the user is situated in, whereby the decisions to be
made are intuitive to understand for the user.

2.6.3 Context-Based Access Control Enforcement in Mobile Systems

Bai et al. [5] present a context-aware usage control (ConUCON) model
for the Android Operating System (OS) which is an extension of the
UCON usage control model [105, 106] incorporating the notions of
spatial and temporal contexts in the usage control model. In another
approach, Ongtang et al. [103] present Saint, a framework extending
the system-provided access control model of the Android OS to incor-
porate run-time control over inter-process interactions. Saint includes
also the possibility to use context-based factors for such access control
decisions.

Another context-based access control framework for the Android
mobile OS is CRêPE by Conti et al. [24]. It extends Android’s standard
permission-based usage control model in a way that it allows access
control decisions to be conditioned on contextual factors observed by
sensors of the mobile device or derived from logical inputs includ-
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ing both context sensors and other information about the device’s or
user’s state. Also CRêPE requires the context-based access control
policies to be defined by the user beforehand.

The MOSES system by Russello et al. [117] uses virtualisation to en-
able the separation of applications and data on the same smartphone
through the use of security profiles. To facilitate transitions between
different security profiles, MOSES utilises criteria on distinct context
parameters to trigger the invocation of a particular security profile.
Context criteria can be defined as boolean expressions over measure-
ments and readings of physical context sensors of the mobile device
or values provided by logical sensors providing higher-level inferred
status information about the device’s state based on processing of
raw sensor information, e. g., detecting that the state of the device
user is ’walking’ based on an interpretation of the device’s accelero-
meter readings.

While there have been substantial research activities into frame-
works allowing contextual factors to be taken into account in access
control decisions on mobile device platforms, all of these models re-
quire users to specify relatively detailed context policies in advance.
As discussed in Sect. 2.1, managing such policy sets is a daunting task
for regular users due to the complexity and large number of policies
that need to be configured for capturing accurately the true inten-
tions of users. None of the above-mentioned works on context-based
policy enforcement on mobile devices have yet sufficiently addressed
this problem but have focused more on the technical aspects of access
control enforcement. In contrast, this work seeks to find mechanisms
with which appropriate profiling approaches and learning from the
user’s context history can replace the need for explicit fine-grained
policy definition by the user.

2.6.4 Usable Access Control

Most of the context-based access control frameworks presented above
require users to specify fine-grained rules or policies, which is tedious
and presents many usability challenges for users are guided to specify
their policies. To address this issue a number of frameworks seek to
improve the usability of access control systems by using machine-
learning approaches to learn appropriate settings and make access
control decisions based on dynamic evaluation of situations based on
this.

Riva et al. [115] present an approach called progressive authentica-
tion in which numerous contextual cues are merged and continuously
evaluated in order to determine whether to require re-authentication
of the user on her mobile device or not. The approach is based on
estimating the likelihood of whether the user is still in proximity of
the mobile device and use these estimates to trigger re-authentication
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prompts if required. The goal is to minimise the number of unneces-
sary authentication prompts displayed to the user in order to improve
the usability of the system.

The CASA system by Hayashi et al. [53] uses contextual factors
like the location of a mobile device to probabilistically adapt the
used active authentication measures in order to provide at all times
sufficient confidence in the authenticity of the user. The reasoning
is that in some locations less stringent authentication measures are
required to obtain sufficient evidence about the authenticity of the
device user. While this approach is closely related to the approach
taken in this work, it differs from it in the sense that it merely con-
siders the location as such as a factor and does not use its familiarity
nor the presence of other devices into account when deciding which
active authentication measures to use. However, as our user study
in [90] shows, these factors tend to have significant impact on the way
in which users perceive the security and sensitivity of contexts and
need therefore to be taken into account when evaluating the security
policies to be applied in specific contexts.

2.6.5 Context Identification

Kang et al. [67] introduced an algorithm for identifying places of in-
terest for users. It is based on time-based clustering of location ob-
servations by identifying frequently visited locations at which users
stay for a minimum amount of time. In their scheme, user location
is determined by observing beacon messages from WiFi access points
with known co-ordinates and calculating a location estimate by av-
eraging the locations of observed beacons using a centroid tracking
scheme. A similar time-based clustering approach to identify signific-
ant locations of users was introduced by Zheng et al. [149], however,
utilising GPS location data. Zheng et al. introduced the notion of
a stay point denoting a geographical region within the user stays for
a predetermined minimum amount of time. Montoliu et al. [96] ex-
tend the notion of stay points to stay regions, i. e., geographical areas
encompassing a number of different stay points by aggregating stay
point observations over time and clustering these to determine places
of interest for the user. Our notion of GPS-based contexts of interest
is a slightly adapted version of stay regions.

Our WiFi-based contexts of interest are inspired by the work of
Dousse et al. [32], which introduced the notion of using sets of WiFi
access points observed at a particular point in time and their signal
strengths to represent distinct places. Our approach is a simplified
version of this approach in that it does not consider the actual sig-
nal strengths of observed WiFi access points but focuses on the set
of characteristic access points (APs) that define the WiFi-based CoIs.
This is sufficient for our purposes, as we only need to identify the
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presence of the user in a familiar environment for probabilistically
adjusting the device’s security policies. The exact position of the user
is not required to determine presence, which is why using the set
of observable WiFi access points is good enough as an indicator of
location for our purposes.

2.6.6 Context-Aware Policy Adaptation

The work of Gupta et al. [47] was the first to use context profiling
for the purpose of adjusting security policies. They used the notion
of CoIs and device familiarity to make inferences about the ’safety’
of particular contexts. Their system was based on a simple heuristic
to determine familiarity of devices and places, which would be dis-
counted over time to ’forget’ devices and places that the user does
not encounter actively. The model applied fixed thresholds to distin-
guish different types of contexts, which makes it inflexible to accom-
modating different user behaviours and context types. The present
work is inspired by the basic approach of this work, but is based
on evolved underlying concepts, both in the way contexts of interest
and device familiarity are defined, but also in how the probabilistic
reasoning based on contextual measurements is performed. Whereas
the earlier work relied on absolute thresholds to be defined before-
hand, our approach utilises machine learning-based prediction mod-
els. This allows the system to accommodate habits, the environment
and security and privacy preferences of individual users in a flexible
and user-friendly manner.

2.7 summary and conclusions

In this chapter, we introduced ConXsense, a framework for context-
based adaptation of security and privacy policies on mobile devices.
We targeted two threat scenarios that were identified based on a user
study to reflect the primary concerns of mobile device users: the
threat of device misuse by unauthorised third parties, and, the risk
of privacy exposure of contextual information due to the threat of
sensory malware. We devised an approach that utilises contextual
information that a mobile device senses from its environment to pro-
file significant places of the user, so-called Contexts of Interest (CoIs),
as well as to model encounters with other users and estimate their fa-
miliarity to the user. Based on such contextual factors we developed a
machine learning-based model for estimating security-relevant prop-
erties of the user’s contexts like the risk of device misuse, and, its pri-
vacy sensitivity. By modelling these factors, we seek to mitigate se-
curity and privacy risks. First, the risk that an attacker like a thief
or other unauthorised parties obtain possession of the user’s mobile
device while it is in an unprotected state, thereby providing the at-
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tacker access to private data of the user and functions of the mobile
device. Second, the risk that a new type of malicious software, so-
called sensory malware obtains and exfiltrates privacy-sensitive data
from the surroundings of the user, thereby compromising the privacy
of the user.

In developing our framework we seek to strike a balance between
security and privacy considerations on one side and usability and
user-friendliness of the solution on the other. To protect the user’s
device from misuse we therefore introduce a dynamic device locking
scheme which adjusts the device lock’s locking time out based on
the estimated risk level of device misuse in a particular context. In
high-risk contexts the locking time out is shortened, while in low-risk
contexts like the user’s home the locking time out can be long, so that
the user does not need to enter unlocking credentials when using the
device, thereby improving the usability of the device lock. This is im-
portant, since many users refrain from using a conventional device
locking functionality at all, as it is so cumbersome to use when fre-
quent authentication prompts require the user to repeatedly enter un-
locking passwords to the device, leaving the user’s device constantly
at risk.

Similarly, to protect the user’s privacy we can limit the user’s pri-
vacy exposure by restricting third-party providers’ applications’ ac-
cess to contextual sensors in contexts that contain sensitive informa-
tion from the user’s privacy point of view. This effectively mitigates
the risk that a sensory malware application can harvest sensitive in-
formation from the user’s context. On the other hand, we do not
want to limit the access to contextual information too much, as many
benign applications require it for being useful. Therefore we limit the
access to sensory information to contexts with high privacy exposure,
while allowing it in contexts with low privacy exposure like public
places.

The emergence of mobile devices and IoT is increasing the expos-
ure of users to on-line systems as the number of devices and sensors
gathering information about the user and her surroundings is grow-
ing. This makes it necessary to devise effective measures for con-
trolling how and which information is shared about the user under
which circumstances. As discussed in Sects. 2.6.2 and 2.6.3, a number
of approaches has already been proposed for enabling context-aware
access control. However, all of these approaches have usability chal-
lenges, as it is not realistic to assume that regular users would be
able to or willing to use a considerable amount of time to just specify
and maintain a comprehensive set of policies or access control rules
for controlling the minutiae of how they wish their presence in cyber-
space to be represented and what information is to be shared about
them in particular circumstances. Consequently, systems should be
able to learn from the user’s behaviour patterns what the security and
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privacy preferences of the user are and use this learnt knowledge in
enforcing security policies on behalf of the user.

This work represents a first step towards an autonomous approach
for security and privacy enforcement. Based on the above use cases
we demonstrate how contextual data sensed by the environmental
sensors of a device can be used in realising access control that dynam-
ically adapts to particular user-specific situations and accommodates
users’ perceptions about security-relevant properties of the context.
This approach allows the system to strike a balance between enforce-
ment of enhanced security and privacy for the user and the usability
of the system. As the learning process of the system can be embed-
ded into the normal usage patterns of the device, it is able to capture
the user’s desires without the need to go through a tedious process of
specifying and refining detailed policies and explicitly specifying the
exact circumstances under which particular access control decisions
should be made.

This approach towards security policy definition and enforcement
can find application also in other use cases requiring access control
enforcement. In this work we concentrated on mobile device-related
scenarios, but the presented approach could be extended to novel
application areas like smart home IoT. Contextual factors play an im-
portant role in the assessment and decision making of access control
enforcement in many IoT-related scenarios. Also the abundance of
sensors present in IoT devices can offer entirely new opportunities
for sensing and modelling contextual situations taking the whole en-
semble of IoT devices present in, e. g., a smart home into account.

As the proposed framework is making access control decisions in
an automated fashion on behalf of the user, it is vitally important
for the acceptance of this approach that it communicates its decisions
and the reasons behind its reasoning to the user in a way that is un-
derstandable. It is also important to provide appropriate mechanisms
for the user to override and / or correct inferences that were incorrect
or based on imprecise contextual inputs. How to realise this in the
best way in practice is still an open challenge. It requires the devel-
opment and evaluation of appropriate user interaction methods for
communicating the state of the system in an unobtrusive but easily
accessible way to the user thus enabling her to be in control of her
system at any point in time and make directly necessary adjustments
if required. Further research in this area around concrete use cases is
necessary for addressing this challenge.
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C O N T E X T P R O F I L I N G F O R R E S I L I E N T P R O O F S O F
P R E S E N C E

Contemporary mobile devices like smartphones are equipped with
positioning technologies like the Global Positioning System (GPS) or
network triangulation for enabling devices to determine their geo-
graphical position. This has led to many new services and smart-
phone applications that actively utilize positioning information. On-
line Social Networks (OSNs) like Facebook1 intensively utilise location
“check-ins” to enrich their service, and services like Foursquare2 use
user location to connect users with local businesses like restaurants
and shops. This has prompted a number of business owners to of-
fer concrete benefits like rebates, free vouchers or even cash to the
most active registered users of such services visiting their restaurant
or shop.

The business model of such LBSs is based on the assumption of
trustworthiness of mobile device users. However, as an increasing
number of such LBSs are on the rise, also the incentives for users to
engage in location cheating for obtaining personal benefits are grow-
ing. Misbehaving users may try to obtain unjustified advantages by
repeatedly fabricating false location check-ins. In fact, “fake location”
apps are already available for popular mobile device platforms that
can help users to cheat about their true location.

3.1 problem description

The inherent problem with most currently deployed positioning tech-
nologies is that the determination of location has to be performed by
the client device itself; it is very difficult for external entities to verify
whether a location claim of a client is in fact genuine or not. There-
fore there is a need for location proofs, i. e., methods for verifying the
correctness of location claims that clients present to an LBS. Similarly,
in peer-to-peer settings there may also be a need for location proofs,
e. g., in order to allow clients to control their visibility to others. For
example, in some settings, a device might be willing to reveal its loc-
ation only to such peer devices that are co-located with it in the same
location [100]. To do this, the peer devices need to present a proof of
co-presence to prove that they are in the same location.

1 https://www.facebook.com

2 https://www.foursquare.com

https://www.facebook.com
https://www.foursquare.com
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Venue
(Verifier V)

Client

(Prover P)
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1. PoP

2. Presence acknowledgement

3. Location check-in + Presence acknowledgement

Figure 3.1: Verification of check-ins in location-based services (LBS)

3.1.1 Proofs-of-Presence

In both the case of LBSs and in peer-to-peer scenarios, we can model
the situation as follows: a prover P (e. g., an LBS client or peer device
in a peer-to-peer setting) provides a PoP to a verifier V (a venue or a
peer device) that they co-located, i. e., present in the same proximate
environment.

Figure 3.1 shows an example of how PoPs can be used to verify
the location check-ins of a client of an LBS. In this scenario, the client
acts as the prover P and the venue at which the client wants to check
in is the verifier V. First, the client provides a PoP to the venue
(Step 1). After evaluating the PoP, the venue determines whether the
client is co-located with it or not. If the client is determined to be co-
located, the venue will sign a presence acknowledgement and return
this to the client (Step 2). It can then use this acknowledgement to
authenticate its presence at the venue when performing a location
check-in with the LBS (Step 3) (In a variation of this scheme, the
venue could also provide the presence acknowledgement directly to
the LBS).

Prior works have proposed two main approaches for constructing
PoPs: beaconing- (e. g., [121, 80]) and context-based (e. g., [143, 100])
PoPs, which we shall briefly describe in the following.

3.1.1.1 Beaconing-Based PoPs

In beaconing-based PoPs, verifier V emits a beacon signal b into its
proximate environment, which prover P needs to capture with its on-
board sensors (e.g., WiFi or Bluetooth). The beaconed information
b is then either used directly by P as a proof of presence towards
V, or, it is used in a proof-of-knowledge protocol between P and V
to mutually establish their co-presence. The underlying assumption
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with beaconing-based PoPs is that only a device actually co-located
in the proximity of V will be able to accurately capture the beaconed
information b. In peer-to-peer settings the beaconing-based approach
has the drawback that verifier V inevitably has to reveal its presence
in the context by emitting b which might not be desired in order to
protect the privacy of verifier V. For example, if beaconing is per-
formed by, e. g., the verifier emitting packets over WiFi or Bluetooth,
the Bluetooth or WiFi MAC address of V will be exposed to anyone
within wireless range of V.

3.1.1.2 Context-Based PoPs

In this work, we focus on context-based PoPs. These are based on V
and P simultaneously sensing their ambient contextual environment.
As in the previous chapter (cf. Sect 2.1.3), we define here context to
mean any information about physical properties of the ambient sur-
roundings that the devices involved can sense with the help of their
on-board sensors like luminosity or audio sensors (i. e., microphones).
The proof builds on the assumption that transient incidental fluctu-
ations in the sensed contextual parameters can’t be exactly sensed
nor predicted by an external attacker A that is not located in the
same context as V and P.

Earlier works have proposed a number of approaches for perform-
ing context-based PoPs [49, 100, 131, 140, 143]. In these approaches,
the contextual measurements are either used directly to generate a
shared key (e. g., [143]), or, prover P sends its measurements to V,
that compares them to its own measurements. It often happens that
due to sensing errors or timing jitter, measurements are not always
identical between V and P. However, if the measurements are similar
enough, they constitute a valid context-based Proof-of-Presence (PoP).

3.1.2 Context Guessing Attacks

Earlier works on context-based PoPs have not considered what we in
this work call context guessing attacks. In a context guessing attack,
an adversary A that is not co-located with V uses information it has
about V’s context to guess probable parameter values that V is likely
to observe. In related work, such attacks have either been considered
to be out of scope [143, 140], or, they have simply assumed that the
used context measurements b have sufficient entropy to resist guess-
ing attacks [100]. However, in this work we show that for typical
proximity sensing techniques like the use of WiFi or Bluetooth, con-
text guessing is a relevant problem that needs to be appropriately
taken into account in order to obtain proofs-of-presence that are resi-
lient to guessing adversaries that have profiled information about the
targeted context.
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3.1.3 Goals and Contributions

We empirically analyse commonly used context modalities like Blue-
tooth and WiFi and show that the entropy of individual context ob-
servations needs to be taken into account to obtain reliable PoPs that
can’t be easily forged by a context-guessing adversary. To defend
against such adversaries we propose two complementary approaches:
surprisal filtering and utilising longitudinal ambient context observations
for constructing resilient PoPs.

3.1.3.1 Surprisal Filtering

We develop the concept of surprisal filtering which is based on estim-
ating the entropy of individual context measurements and filtering
them in a way that only measurements having sufficient entropy are
admitted as valid PoPs. The approach uses context profiling and
a data mining algorithm for identifying frequent itemsets in order
to estimate occurrence probabilities of particular context parameter
combinations and use this information to rule out combinations that
are easy to guess for the adversary.

3.1.3.2 Longitudinal Ambient Context Observations

Another approach for making context-based PoPs that are more resi-
lient against guessing is to utilise longitudinal measurements of the
ambient context like the luminosity or the audio environment. We
show that by appropriately profiling such context modalities, suffi-
cient inherent entropy from the context can be extracted to construct
PoPs that are in most cases impractical to guess. This is due to the
fact that contrary to earlier works (e. g., [49, 140]) that consider only
momentary snapshots of the context, we monitor the context for a
longer time and utilize short-term changes in the observed paramet-
ers to extract sufficient entropy for a reliable PoP.

3.2 background

A number of approaches for context-based PoPs have been proposed.
In the following we will review relevant aspects of related work that
we have adapted for our own approach.

3.2.1 Use of WiFi for Proximity Verification

Varshavsky et al. developed Amigo [143], which is a system for co-
location verification of mobile devices. It is based on observing the
Received Signal Strength Indications (RSSIs) of a number of WiFi pack-
ets originating from a WiFi access point that two co-located mobile
devices can observe. If the RSSI values that both devices observe
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are similar, they can be considered to be near to each other (i. e., ’co-
located’), as correlations between fluctuations in the RF environment
are locally limited. They will be observed in a similar way only by
devices that are located close to each other. On the other hand, such
fluctuations occur randomly, making them difficult to be guessed by
an external adversary that is not in proximity. Using this approach
for proofs-of-presence, however, requires both P and V to be located
relatively close to each other, limiting the practicality of the proposed
approach. For typical proof-of-presence applications, in which a mo-
bile device user needs to prove their presence at a venue (e. g., a
restaurant), or, in the same location as another user, where the peers
are in the same room but not in immediate proximity, this approach
is difficult to realise in practice.

Narayanan et al. [100] utilize the concept of location tags (first intro-
duced by Qiu et al. [109]), i. e., small pieces of information that can
be harvested from the ambient context. They construct protocols that
utilise private set intersection [41] to allow two peers observing location
tags to compare them in a way that does not leak information about
their privately observed tags to the counterpart. Narayanan et al. dis-
cuss a number of different contextual modalities like GPS, Bluetooth,
and GSM signals, audio and even local concentrations of atmospheric
gases as potential sources of location tags. However, they evaluate
only their WiFi broadcast packet-based location tag solution. Based
on evaluation data originating from the WiFi network of a university
campus, they estimate that approximately 10 bits of entropy could
be harvested from distinct protocols of WiFi broadcast packets when
using them as location tags.

Their approach has, however, the drawback that for harvesting loc-
ation tags, both peers need to connect to the same WiFi access point.
Access points using encryption protocols like WiFi Protected Access
2 (WPA2) [60] to protect their communications can’t be used for har-
vesting location tags unless both peers are able to authenticate with
it, limiting the practicality of the proposed approach. The ability to
generate location tags is also heavily dependent on the traffic pat-
terns of the used WiFi network. Low-traffic networks like residential
home WiFi networks with only few users may display at times so low
traffic rates that obtaining a sufficient number of location tags in a
reasonable amount of time may be challenging.

3.2.2 Multi-Modal Proximity Verification

Our work is inspired by earlier proximity verification approaches
presented by Truong et al. [140] and Shrestha et al. [131]. They utilise
a number of different contextual parameters obtained by monitoring
the context to verify the co-location of two trusted devices like the
smartphone and laptop computer of a user, or, the smartphone and
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an automated teller machine (ATM). These approaches focus on the
problem of relay attacks in which adversary A uses a ’ghost-and-leech’
set-up [69] to relay messages of the proximity verification protocol
between prover P and verifier V that are not co-located, over a fast
long-distance link. The goal of A is to make V believe that P is in its
vicinity even though it is not. This scenario is relevant to use cases
utilising zero-interaction authentication, e. g., in key-less entry systems
for cars, or, contactless payment cards.

In the scenarios they consider, however, they assume that both
peers performing the proximity verification are trusted. In our proof-
of-presence scenario, however, the scenario is different. We need to
take into account the possibility that the adversary Amay assume the
role of the prover in the proximity verification protocol with verifier
V. In contrast to the zero-interaction authentication use case, we must
therefore also take into account the entropy of the proof-of-presence
in order to make them resilient against guessing attacks, as discussed
in Sect. 3.1.2.

3.3 context-based proofs-of-presence

The basic concept of context-based PoPs is shown in Fig. 3.2. Prover
P initiates the process by placing a PoP_REQ request along with a
timestamp t to synchronise on to verifier V. Both prover P and verifier
V then record at time point t context measurements CP(t) and CV(t),
respectively. Prover P sends its measurement CP(t) to V, which com-
pares it to its own measurement CV(t). If P’s measurement is similar
enough to its own, i. e., if

dist(CV(t), CP(t)) ≤ ∆thr, (3.1)

verifier V will accept P’s PoP. Here, dist(·, ·) denotes a suitable dis-
tance function used to determine the similarity between context meas-
urements and ∆thr a predefined similarity threshold determining how
much deviation between measurements is acceptable for them still to
be considered coming from the same context.

In practice, we will implement the context measurement compar-
ison with the help of a binary classifier that is trained to distinguish
between co-located and non-co-located context measurements. For
training this classifier, we use a number of context features based on
the to-be-compared context measurements.

3.3.1 Context Features

Earlier works have investigated a number of different context features
in various modalities for constructing context-based PoPs. Used mod-
alities include, e. g., audio [49, 140], luminosity [49], concentrations
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Verifier V Prover P
PoP_REQ‖t

CP(t)

PoP_ACCEPT
verify: dist(CV(t), CP(t)) < ∆thr

Figure 3.2: Context-based proof-of-presence

Table 3.1: Features used for context-based PoPs

feature name definition

f1 Jaccard distance 1− ‖CV∩CP‖
‖CV∪CP‖

f2 Hamming distance ∑n
i=1 |mP

i −mV
i |

n

f3 Euclidean distance
√

∑n
i=1 (mP

i −mV
i )

2

f4 Exponential of difference ∑n
i=1 e|m

P
i −mV

i |

n

f5 Squared rank differences ∑|CV∩CP|
i=1 (rank(mP

i )− rank(mV
i ))

2

mV
i ∈ CV , mP

i ∈ CP: signal strength measurements of individual elements
(WiFi APs or Bluetooth devices) in the context measurements CV and CP of
the verifier V and prover P, respectively.
rank(mV

i ), rank(mP
i ): rank of mV

i or mP
i in CV or CP, respectively, sorted in

ascending order.

of atmospheric gases, ambient temperature, humidity and air pres-
sure [131], WiFi [143], Bluetooth and GPS [140]. As Truong et al. [140]
have concluded that Bluetooth and WiFi are effective modalities for
constructing context-based PoPs, and these are readily available on
contemporary mobile devices, we will focus on these modalities for
constructing context-based PoPs and adopt five of the features used
by Truong et al. which are based on the context measurements CP

and CV of prover P and verifier V, respectively, as shown in Tab. 3.1.

3.4 context guessing attacks

Our main focus is on developing countermeasures against context-
guessing attacks in which an adversary A attempts to fake its presence
in the proximity of a verifier V. In the following we will describe the
attack scenario and our assumptions about the adversary in detail.
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Figure 3.3: Adversary model

3.4.1 Adversary Model

As discussed in Sect. 3.1, our adversarial model is motivated by two
scenarios in which PoPs are applied: peer-to-peer applications utiliz-
ing location information of users, and, location-based services.

We model both scenarios as shown in Fig. 3.3: A prover P wants to
prove to a verifier V that it is co-located with it, i. e., in the proximity
of V, by presenting a Proof-of-Presence (PoP) which V will evaluate to
determine whether the PoP is valid or not. The adversary A is a
node not in the proximity of V. The goal of A is to fabricate a fake
PoP which V will erroneously accept as a valid proof-of-presence.

3.4.1.1 Adversary in Peer-to-Peer Use Case

An exemplary peer-to-peer use case is provided by a friend finder
app that notifies users if they are located in the proximity of their
friends as determined by the location check-ins of users. Adversary
A is an intrusive user of such an application who wants to engage
in cyber stalking of other users by doing fake location check-ins in
a number of different places in order to learn the presence of other
users in those locations.

3.4.1.2 Adversary in Location-Based Services Use Case

In the LBS scenario, adversary A is a malicious user of the the LBS
that wants to gain unjustified benefits like discounts or rebate cards
at specific venues like restaurants or shops by performing numerous
fake location check-ins in those venues, even though A hasn’t visited
the locations in reality.

3.4.2 Context Guessing

As discussed in Sect. 3.1.2, a strategy of adversary A can be to try to
fabricate an adversarial measurement C∗A that is similar enough with
the measurement CV(t) of the verifier at the current time point t, i. e.,
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dist(CV(t), C∗A) ≤ ∆thr, so that verifier V will be fooled into accepting
it as a valid PoP.

example . Considering the LBS use case, adversary A could be a
user visiting a venue V. During its visit at the venue, at time point t,
A will perform a context measurement C∗A(t). Later, at time point t +
k, adversary A can use this measurement as a proof of presence to try
to convince venue V—now acting as a verifier—that it is co-located
with it. If the context information has not changed significantly since
when A was visiting the venue, i. e., if dist(CV(t + k), C∗A(t)) ≤ ∆thr,
V will accept A’s measurement erroneously as a genuine PoP and
issue to it an acknowledgement of A’s presence at V at time point
t + k. �

3.4.3 Susceptibility of PoPs to Context-Guessing Attacks

To evaluate the susceptibility of context-based PoPs to such context-
guessing attacks, we simulate an adversary A that uses context meas-
urements CA it has obtained earlier from the context of verifier V as
PoPs towards the verifier. We evaluate the effectiveness of the attack
in terms of false positive rate (FPR), i. e., the rate at which adversarial
context measurements CA that were made at the same location but not
at the same time as the verifier’s measurement CV are erroneously ac-
cepted by V as genuine PoPs. We selected this attack model, as it is
one of the simplest and most straightforward strategies that an ad-
versary might play. Nevertheless it can be used to demonstrate the
basic problem that context guessing attacks in general represent.

3.4.3.1 Evaluation Datasets

zia dataset. The authors of [140] kindly provided us their data-
set for evaluating the possibility of context guessing attacks, enabling
us to directly compare our approach with their results. Note, how-
ever, that their use case is concerned with zero-interaction authentic-
ation (ZIA) and the adversary model is therefore different from ours.
Their scenario is concerned with protection against relay attacks and
both prover P and verifier V are assumed to be trusted, whereas we
investigate the possibility of context-guessing attacks, where attacker
A takes the role of a malicious prover. Nevertheless their dataset is
very useful in examining the susceptibility of context-based PoPs to
context-guessing attacks, as their dataset contains samples of context
measurements of co-located and non-co-located devices.

The (benign) ZIA dataset contains measurements of visible WiFi
access points and Bluetooth devices and their signal strengths collec-
ted simultaneously by two different smartphones. The dataset con-
tains in total 2302 such context sample pairs. Out of these samples
1140 measurement pairs are from co-located devices, while in 1162
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samples, the measuring devices were not-co-located when the con-
text measurements were taken.

Based on the benign ZIA dataset we constructed an attack dataset
simulating context guessing attacks by re-mapping context measure-
ments. The re-mapping of measurements was done by combining
pairs of context measurements that were recorded in the same loca-
tion, but at clearly different times, i. e., 6 to 24 hour apart. The ZIA
dataset contains ground truth labels for measurement pairs indicat-
ing whether the measurement devices were co-located or not, but no
information about where the measurements were actually performed.
Therefore we utilised the set of observed WiFi access points contained
in each measurement as an indicator for the location in which the
measurement was done. To determine a criterion on which to de-
termine whether measurements at different times were performed in
the same location or not, we compared co-located measurement pairs
to non-co-located measurements in the benign ZIA dataset. We cal-
culated the Jaccard distance (feature f1 in Tab. 3.1) for the sets of
observed WiFi access points for these measurement pairs, and could
observe that a Jaccard distance threshold of 0.9 provided good separ-
ation between co-located and non-co-located measurement pairs.

We therefore selected this threshold as a criterion for determining
locations and assumed that any measurements for which the Jaccard
distance of the associated sets of observed WiFi access points is below
0.9 have been made at the same location. Using this decision criterion
we then paired all measurements with other measurements that were
made in the same location but at a different time.

conxpop dataset. In addition to the ZIA dataset, we also col-
lected an additional dataset that incorporated also other contextual
features than Bluetooth and WiFi measurements. The data collec-
tion was done with the help of a data collection application that was
given to a number of test users who installed the application onto
their Android smartphones. The app continuously measured contex-
tual parameters and periodically uploaded the measurements onto
our data collection server for off-line analysis. Tab. 3.2 shows the
context parameters collected by the data collection app.

The test users collecting the ConXPoP dataset included volunteered
members of the research lab sharing nearby offices and visiting the
same lunchtime restaurants. This allowed the test users to aggregate
a rich collection of co-located context measurements related to nor-
mal everyday situations. All participants were provided in writing
an explanation about purpose and goals of the data collection exper-
iment and a description of the context parameters collected by the
data collection app. Participants were free to stop or interrupt data
collection at any point in time by disabling the data collection app.
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Table 3.2: Measured context parameters in the ConXPoP dataset

param description sampling frequency

1 WiFi AP MAC addresses 1/min

2 WiFi AP RSSIs 1/min

3 BT device MAC addresses 1/min

4 BT device RSSIs 1/min

5 Ambient noise level continuous

6 Ambient luminosity continuous

Participants had also the possibility to revoke their participation in
the experiment at any time and demand their data to be deleted.

In the process of the data collection all participants were asked to
provide through the UI of the data collector app information about
the contexts they often visited (e. g., home, office, lunch restaurant,
etc.) and to indicate, which other test participant devices were co-
located with the user’s own context collector device at a particular
point in time. Devices of other test participants were hereby identified
with easily recognisable nicknames. Participants were asked to mark
only such devices to be co-located with the participant’s device that
were likely to remain in proximity for the following two minutes, so
that a significant fraction of the subsequent noise level and luminosity
measurements would be from co-located devices.

In order to obtain context measurements from such contexts in
which test participants typically are alone, each participant used two
context measurement devices: their primary smartphone and an “al-
ter ego” device. By taking the alter ego device also to such contexts
that no other test participant visited, test participants were able to
provide context measurement pairs also from such contexts.

During a data collection period of 10 days, participants provided
a total of 5602 labelled co-located context measurement pairs. Us-
ing these data, we constructed for each participant a benign and an
attack dataset. Each benign dataset was constructed by pairing con-
text measurements that were marked as being co-located by the par-
ticipant or some other participant. A roughly equal amount of meas-
urement pairs were generated by pairing measurements that were not
marked to be co-located.

The attack dataset was generated by letting each participant at a
time act as verifier V. Each context observation CV(t) of the par-
ticipant originating from a specific frequently-visited target context
X ∈ {“Home”, “Office”, “Restaurant”} was paired with potential ad-
versarial context observations CA(t− k) made in the same context X,
where all participants were allowed to assume the role of A, and the
value of k was varied between 6 to 24 hours.
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Table 3.3: Co-location classifier FPR on benign datasets

dataset bluetooth features wifi features

ZIA 2.5% 1.6%

ConXPoP 14.2% 11.0%

3.4.3.2 Evaluation Results

To evaluate the effectiveness of the context guessing attack, we first
evaluated the performance of benign co-location classification in both
datasets and then compared this to the performance of the classific-
ation for the attack datasets. We used false positive rate (FPR) as the
measure of fitness, as it is an indicator of the adversary’s ability to
fabricate PoPs that will be erroneously accepted as valid proofs-of-
presence. We used Multiboost as the classification algorithm using
J48Graft as the base learner and used the Weka data mining suite [50]
to evaluate our experiments.

benign co-location classification The samples in the ZIA
dataset were used to train a classifier for verifier V, using both co-
located and non-co-located measurement pairs. We evaluated the
classifier’s performance on the benign dataset using 10-fold cross-
validation. As shown in Tab. 3.3, we were able to corroborate the
results of Truong et al. [140], as we obtained an FPR of 2.5% for Blue-
tooth features and and 1.6% for WiFi features of the ZIA dataset.

For the ConXPoP dataset, the performance was somewhat worse,
as the FPR was 14.2% for Bluetooth features and 11.0% for WiFi-
based features. Combining both features brings the FPR down to
9.3%. This difference in performance is due to the more challen-
ging experimental set-up in the ConXPoP experiment. Whereas in
the ZIA dataset co-located and non-co-located measurements can be
more clearly separated, the ConXPoP data collection set-up was unfor-
tunately more ambiguous. The criterion for co-location was that any
devices located in the same room were considered to be co-located,
and other devices not. This criterion was selected in order to allow
test users to visually observe which other participants and their de-
vices they could see present in the same room at a particular point
in time. However, as the test participants were office mates using
rooms located next to each other, their devices partially shared the
same WiFi and Bluetooth environment, even though they were not
co-located according to the above criterion. This ambiguity makes
it more difficult for the classifier to clearly distinguish between co-
located and non-co-located measurements, resulting in a higher false
positive rate.
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Table 3.4: FPR of the co-location classifier in view of context-guessing at-
tacks

dataset bluetooth wifi bluetooth + wifi

ZIA attack 35.1%

ConXPoP attack 21.9% 26.0% 23.5%

context guessing success To evaluate the performance of the
classifier in view of a context guessing attack, we trained the co-
location classifier using the benign datasets as training data and the
attack datasets for testing. The results are shown in Tab. 3.4

As can be seen, the FPR of the co-location classifier significantly de-
teriorates when confronted with adversarial context measurements
related to context replay attacks. For both attack datasets, the false
positive rate lies between roughly 22 and 35 per cent, meaning that
the adversary would have a chance of at least one out of five in suc-
ceeding in a context-guessing attack. This shows clearly that in a
scenario in which the prover P can’t be fully trusted by the verifier
V, context measurements alone do not guarantee reliable proofs-of-
presence. In practice this means that verifier V also needs to take into
account the risk of possible context-guessing attacks when assessing
the validity of context-based PoPs.

3.5 hardening context-based proofs-of-presence

In order to defend context-based PoPs against context-guessing at-
tacks, we introduce two countermeasures, surprisal filtering, and, in-
creasing the entropy of PoPs by using longitudinal ambient context mod-
alities.

The first countermeasure, surprisal filtering, discussed in Sect. 3.5.1,
aims at identifying and filtering out such PoPs that are easy to guess
for the adversary. This is done by estimating the entropy of individual
PoPs and dismissing such PoPs that would be too easy to guess. This
estimate is based on the notion of surprisal, i. e., the self-information
associated with the context observation CV(t) of the verifier at time
point t. The notion of surprisal is closely related to entropy, however,
with a slight difference. Whereas entropy refers to the average un-
certainty associated with a random variable, the term surprisal refers
to the uncertainty associated with a particular outcome of the random
variable.

The second countermeasure aims at increasing the entropy of con-
text-based PoPs inasmuch as to make successful context guessing im-
practical for the adversary. In contrast to earlier context-based co-
location verification methods (e. g., [49, 124, 140, 143]) that use only
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momentary snapshots of the context, our approach uses a longitud-
inal approach, in which we monitor the ambient properties over a
longer time and use observed changes in values like luminosity or
sound energy level to extract sufficient entropy from the context. This
approach is described in Sect. 3.5.2.

3.5.1 Surprisal Filtering

Surprisal filtering is based on estimating how likely it is that ad-
versary A could successfully fabricate an adversarial measurement
C∗A that is similar enough to verifier V’s context measurement CV to
be accepted as genuine. The estimate is based on profiling each of V’s
contexts and using these profiles to estimate the occurrence probabil-
ity of a measurement CV in a context X. Our intuition is that if the
occurrence probability of CV in X is low, it is also more difficult for
the adversary to fabricate a measurement that is similar with it, even
if A has monitored context X earlier. Based on the probability estim-
ates of each context-based PoP, verifier V can reject any proofs for
which the occurrence probability is high, i. e., that have a significant
risk of being fabricated.

Formally, we consider an observable context X of verifier V as a
random variable OX taking concrete context measurements CV as its
value. The surprisal of a context measurements CV is therefore a
measure of the uncertainty of that particular outcome in view of the
distribution of OX. In practice, even in the most favourable case for
adversary A, it will have only partial information about the distribu-
tion of OX, since according to our adversary model, the adversary
will not be permanently present in the verifier’s context X. However,
since V does not know how much A knows about the distribution
of OX, we make the conservative assumption that A has the same
information about the distribution of OX as V.

Definition 14 (Surprisal filtering) We define surprisal filtering to be a
function ς : C × X → {accept, reject} where C denotes the domain of con-
text measurements and X the set of V’s known contexts. The surprisal
filtering function ς maps a context measurement CV observed by V in con-
text X ∈ X to an acceptance decision accept or reject based on the surprisal
value IX(C) as follows

ς(CV , X) =

{
accept, if IX(CV) ≥ Ithr

reject, otherwise
(3.2)

The evaluation of the surprisal value IX(CV) is described in de-
tail in Sect. 3.5.1.1. The rationale for using it for hardening PoPs is
that static context information like, e. g., the observable link layer ad-
dresses of WiFi access points in an office, are not likely to change
very quickly over time. Therefore an adversary A who has visited
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the target context earlier can use his earlier measurements of the
WiFi environment to fabricate context measurements even when it
is not located in the target context. Dynamic context information,
on the other hand, like the Bluetooth Medium Access Control (MAC)
addresses of the smartphones of customers in a shop are likely to be
much more volatile over time and therefore a much better basis for re-
liable context-based PoPs, as they are much harder to predict. In the
following we show how the notion of surprisal can be used to meas-
ure the dynamicity of context information in a specific context and
how it can be used to harden context-based PoPs to be more difficult
to predict by the adversary.

3.5.1.1 Surprisal of Context Measurements

To identify context measurements C that are at risk of being easy to
guess by adversary A, we measure the how difficult it would be for it
to guess it given the history of context observations HX in context X.
As discussed above in Sect. 3.5.1, we assume a strong adversary who
has the same access to the context history data of X as verifier V. We
have therefore to assume that A can use the full history HX to try to
fabricate context measurements CA that are likely to be observed in
X. As discussed in 3.5.1, we model the occurrence of context meas-
urements in context X with the random variable OX. The probability
that a particular context measurement C is observed in X is therefore
P(OX = C). The surprisal of measurement C is the self-information of
this outcome.

Definition 15 The surprisal IX(C) of a context measurement C in con-
text X is the self-information of this measurement in view of the context
history HX of the context. Formally, it is defined as

IX(C) = log2

(
1

P(OX = C)

)
= − log2 (P(OX = C)) (3.3)

and is measured in bits.

In general, to calculate the probability of a context measurement C
in context X, we adopt a frequentist interpretation of probability and
calculate P(OX = C) as the fraction of times that C has been observed
in X. Given a context measurement C = {d1, d2, . . . , dn} in context X,
its occurrence probability is therefore calculated as

P(OX = C) =
‖{Ci ∈ HX|C ⊆ Ci}‖

‖HX‖
(3.4)

example . Let us consider the surprisal of Bluetooth device meas-
urements. Let us assume the context history database HX of context
X contains a total of n = 100 context measurements. In this history,
device A has been observed a total of 55 times and device B has been
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observed in 35 measurements. Out of these measurements, 15 are
such that both A and B occur in the same measurement. For observa-
tions containing individual measurements we obtain following prob-
ability estimates: P(OX = {A}) = 55

100 = 0.55 and P(OX = {B}) =
35
100 = 0.35. For a measurement containing both devices the estimate
is P(OX = {A, B}) = 15

100 = 0.15. The corresponding surprisal values
are correspondingly: IX({A}) = − log2(0.55) ≈ 0.86 bits, IX({B}) =
− log2(0.35) ≈ 1.51 bits and IX({A, B}) = − log2(0.15) ≈ 2.74 bits. �

To calculate the occurrence probability of a context measurement
C = {d1, d2, . . . , dn} in context X in practice, we need to calculate
how many times that combination occurs in the context history HX.
In case it is a frequently occurring combination, we need to reject it
as a context-based PoP, as the surprisal of the measurement is low.
Identifying frequently occurring element combinations in databases
is a problem that has been extensively studied in data mining liter-
ature in the context of frequent itemset mining. One of the most well-
known algorithms for this task is Apriori [2], which, given a frequency
threshold, finds all frequent itemsets, i. e., combinations of items oc-
curring more often than the given frequency threshold in the database
along with their occurrence counts. We therefore utilize the Apriori
algorithm to find any frequent WiFi access point combinations in the
context history HX.

3.5.2 Longitudinal Ambient Modalities

In some contexts like the home of the user the WiFi and Bluetooth
environment tend to be rather static, as the set of devices in such
contexts typically doesn’t change much. This means that the WiFi and
Bluetooth environments can’t be used for reliable context-based PoPs,
as the context would be relatively easy to guess for the adversary.

To be able to do reliable context-based PoPs also in contexts in
which the entropy of the WiFi and Bluetooth environments is low,
we introduce a complementary approach for generating PoPs that is
based on longitudinal monitoring of ambient physical context modal-
ities like luminosity and audio.

3.5.2.1 Ambient Light

Modern smartphones are nowadays typically equipped with lumin-
osity sensors, e. g., for the purpose of adjusting the device’s screen
brightness according to the surrounding lighting conditions. Obtain-
ing luminosity measurements is therefore easy and, as the luminosity
sensor doesn’t consume much energy, continuous tracking of the am-
bient luminosity is feasible.

Halevi et al. have investigated the use of ambient light for co-
presence verification [49]. However, their approach merely compares
the average luminosity level of a short context snapshot to determine
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whether the two devices performing the measurement are co-located
or not. If the average luminosity measurements do not deviate much,
the devices are deemed to be co-located. This scheme is therefore easy
to overcome by a malicious prover A who has the opportunity to pro-
file the context of verifier V beforehand. It just needs to fabricate a
context measurement by replaying the observed average luminosity
value to the verifier in order to succeed with high likelihood.

We therefore adopt a more sophisticated approach. Instead of util-
ising only momentary snapshots, we monitor the ambient luminosity
continuously over a slightly longer time period, e. g., one minute, and
derive a context fingerprint from the relative changes of the luminosity
over time. Our intuition is that such changes often are caused by ran-
dom events like human activity in the context and are therefore very
difficult to predict by adversary A, making them an amenable source
of entropy for context-based PoPs.

3.5.2.2 Audio

A number of approaches have been investigated for using ambient
audio for co-location verification. Halevi et al. [49] used time- and
time-frequency based similarity measures between audio samples for
co-location verification, whereas Truong et al. [140] used 10-second
samples with similar similarity measures. We, however, we take a
slightly different approach and sample the ambient acoustic environ-
ment for a longer period, i. e., one minute, and monitor for changes in
the ambient sound level. Also here our intuition is that such changes
are caused by, e. g., user actions that are difficult to predict by the
adversary, thus providing more robustness against guessing attacks.

3.5.2.3 Ambient Context Sampling

To construct the PoP based on the above ambient context modalities,
prover P and verifier V will monitor sequences of context measure-
ments M = (m1, m2, . . . , mn), where each measurement mi is the aver-
age context parameter reading during a time window w. In practice,
we propose to use one-minute (i. e., n = 60) measurement sequences
with windows of w = 1 s.

We chose one minute as the measurement length, as we think this
to be a sufficiently long time period to capture enough changes in the
environment for effective PoPs, while at the same time keeping the
time required for the PoPs short enough to be practical. A one-minute
delay should not represent a problem in most application scenarios,
as in many cases the context sampling can happen in the background.
For example, PoPs for location check-ins in OSNs can be performed
in the background after the user has checked in, without the user
having to wait for it to complete. Only in the case that the PoP fails
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Table 3.5: Additional feature for luminosity and audio measurements

feature feature name definition

f6 Maximum cross-correlation argmax
τ

RVP(τ)

Where RVP(τ) denotes the cross-correlation between MV and MP at
displacement τ

or is rejected might the user receive an error message notifying him
about it.

The placement of devices in the context may have a significant
impact on the signal levels of audio and luminosity measurements
that the devices record. Our scheme can, however cope with this as
it focuses on the observable changes in the readings and not on ab-
solute observed signal values. Before processing the measurement
sequences, we therefore apply min-max scaling on them so that all
measurements in the sequence assume values between 0 and 100.

3.5.2.4 Ambient Context Features

Similar to the WiFi and Bluetooth-based context modalities, we cal-
culate also the mean Hamming distance, the Euclidean distance, the
mean exponential of difference and the sum of squared rank differ-
ences between the measurements MV and MP of verifier V and prover
P as features for co-location classification. These correspond to fea-
tures f2 to f5 in Tab. 3.1. In addition to these features we introduce
also maximum cross-correlation shown in Tab. 3.5 as a feature for
luminosity and audio measurements.

3.6 evaluation

To evaluate the performance of our hardening approaches, we apply
our hardening measures on the collected datasets and evaluate the
changes performance of the context-based PoPs in terms of false pos-
itive rate (FPR) and false negative rate (FNR). Here, false negative rate
refers to the rate at which co-located measurements will be rejected
by the system as valid PoPs.

3.6.1 Performance of Surprisal Filtering

To evaluate the effectiveness of surprisal filtering, we used the Apriori
algorithm to identify the frequently occurring combinations of ob-
served Bluetooth or WiFi devices in various contexts in the ConXPoP
benign dataset. As frequency thresholds we used values correspond-
ing to surprisal values Ithr = 2 bits and Ithr = 4 bits. We then applied
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Table 3.6: Improvement in FPR when surprisal filtering is applied on the
ConXPoP attack datasets

fpr improvement for Ithr = n bits

n = 2 n = 4

user
unfiltered

fpr

bt wifi bt wifi

A 13.0 % −6.1 % −2.0 % −8.9 % −2.8 %

B 37.8 % −27.2 % −5.4 % −31.1 % −5.6 %

C 37.2 % −0.3 % −4.9 % −0.3 % −5.3 %

D 21.4 % −17.4 % 0.0 % −19.4 % 0.0 %

E 16.2 % −11.6 % −7.6 % −13.8 % −10.0 %

F 40.5 % −23.8 % −7.7 % −26.8 % −9.5 %

Avg 27.7 % −14.4 % −4.6 % −16.7 % −5.5 %

Relative change −52.0 % −16.6 % −60.4 % −20.0 %

the identified frequent device combinations on the ConXPoP attack
dataset to reject any PoPs with insufficient surprisal value and ob-
served the resulting FPR. The results are shown in Tab. 3.6.

Using surprisal filtering for PoPs reduces the FPR for Bluetooth-
based context measurements by 52 to 60 per cent and by 16 to 20 per
cent for WiFi-based PoPs, significantly reducing the adversary’s odds
for successful context-guessing attacks.

3.6.1.1 PoPs Utilising Longitudinal Ambient Context

For evaluating context-based PoPs using the longitudinal ambient
context, we utilised the luminosity and audio measurements included
in the ConXPoP dataset (the ZIA dataset did not contain measure-
ments in these context modalities). We extracted for these measure-
ments features f2 to f6 and augmented the WiFi and Bluetooth-based
features of the basic PoP scheme with them for training hardened
co-location classifiers. We experimented with different combinations
of feature sets to assess their impact on classification performance in
terms of FPR and FNR. The results are shown in Tab. 3.7.

As can be seen from the results, augmenting the WiFi and Blue-
tooth-based context features with longitudinal features based on am-
bient audio and luminosity significantly reduces both FPR and FNR.
When comparing to a combination of Bluetooth and WiFi features,
adding luminosity and audio-based features reduces the FPR by more
than a half from 9.3% to 4.2%. Also the probability of false rejections,
i. e., the FNR goes down from 6.2% to 2.4%. The inclusion of longit-
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Table 3.7: Performance of PoPs utilizing audio and luminosity modalities

benign attack

classifier features fpr fnr fpr fnr

Luminosity 20.1 % 14.3 % 1.1 % 0.0 %

Audio 19.2 % 16.0 % 0.4 % 0.0 %

Luminosity+Audio 9.3 % 9.2 % 0.4 % 0.0 %

BT 16.1 % 9.8 % 21.9 % 0.0 %

WiFi 11.0 % 9.9 % 26.0 % 0.0 %

BT + WiFi 9.3 % 6.4 % 23.5 % 0.0 %

Luminosity+Audio+BT+WiFi 4.2 % 2.4 % 3.6 % 0.0 %

udinal ambient context features provides therefore a more than 50%
improvement in both the security (less falsely accepted PoPs) and
usability (less falsely rejected PoPs).

3.7 discussion

As our results in Sect. 3.1.2 show, context guessing is a serious problem
for context-based PoPs in scenarios in which the prover can’t be trus-
ted, as an adversary A can utilise profiled information it has possibly
obtained earlier about the context of verifier V to fabricate context
measurements and present these as its PoP towards V. Depending on
the context, modalities like Bluetooth and WiFi are especially prone
to such attacks. However, by profiling the relevant contexts of the
verifier V it can evaluate the surprisal of each PoP in view of the his-
tory of context measurements in the particular context. Surprisal is
a measure for estimating how easy it would be for the adversary to
guess the context measurement presented as a PoP based on the con-
text history. Since our adversary model assumes a strong attacker (cf.
Sect. 3.4.1), we have to assume that it has similar access to the context
history as the verifier. Based on the surprisal value, verifier V can
reject such PoPs that would be too easy to guess by A.

3.7.1 Impact of Context Entropy

In some contexts like the home of a user, the WiFi and Bluetooth envir-
onments can be relatively static, as the set of observable WiFi access
points and Bluetooth devices typically does not change much over
time, because the set of persons and consequently their Bluetooth de-
vices present in the context stays more or less the same. This can
have the effect that there is not much entropy in WiFi and Bluetooth
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measurements, making it difficult to construct PoPs with sufficient
surprisal to be accepted as valid.

However, especially in LBS-related scenarios (cf. Sect. 3.4.1) the
main target contexts are public venues like shops and restaurants that
typically contain a lot of entropy, as the persons present in the con-
text are constantly changing and mostly unpredictable. In contexts
in which the surprisal of PoPs in a particular modality is not suffi-
cient, the PoPs can be augmented by including also features based on
longitudinal ambient context modalities like luminosity and audio in
the PoPs. As the results in Sect. 3.6 show, this significantly helps to
improve both the resilience of PoPs against context guessing attacks,
and, helps to improve the accuracy and usability of our scheme by
reducing the rate of falsely rejected PoPs.

3.7.2 Privacy Considerations

In contrast to earlier works that utilise audio measurements for co-
presence verification [49, 140], our approach provides privacy advant-
ages, as it does not require prover P to send actual fine-grained au-
dio data to the verifier, but uses only the average noise level and its
changes in constructing the PoP. This reduces significantly the risk of
possible (unintended) exposure of sensitive information.

3.7.2.1 Limitations

A fundamental problem for all context-based co-location verification
schemes is given by so-called relay attacks, in which a remote ad-
versary A collaborates with an accomplice that is located in the prox-
imity of verifier V and who forwards actual measurements of V’s
context to A to be used as context-based PoPs. To the best of our
knowledge, only distance bounding-based techniques (e.g., [55]) can
provide effective protection against such attacks. The drawback of
distance-bounding approaches is however, that they require dedic-
ated special hardware capabilities that are typically not available on
regular smartphones.

However, in our application scenarios relay attacks would not seem
to play a significant threat, as it would be prohibitively complex and
costly for an adversary to deploy accomplices in all possible contexts
that a targeted user could visit. The threat would therefore be limited
to a few specific contexts. However, also in these cases the use of
several different longitudinal context modalities would make imple-
mentation and execution of the attack more complex as it is not any
more sufficient to merely relay protocol messages between the veri-
fier V and the adversary A, but accomplices would need to actively
participate in sensing the context of the verifier in all used context
modalities.
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3.8 related work

As discussed in Sect. 3.2.2, our work is closely related to the works
of Truong et al. [140] and Shrestha et al. [131]. These works focus,
however, on a different scenario, i. e., co-location verification methods
for mitigating external relay attacks against proof-of-presence proto-
cols in a zero-interaction authentication setting. They utilise a wide
range of different context modalities like WiFi, Bluetooth, ambient
audio and luminosity, and evaluate their suitability for verifying co-
presence of devices.

In their scenario, however, both peers can assumed to be benign
and trusted. This rules out the need to consider context-guessing
attacks. This is fundamentally different in our scenario, in which
the prover can be malicious and therefore engage in context-guessing
attacks. In fact, our work shows that such attacks play a significant
role in the security of context-based PoPs.

3.8.1 Beaconing-Based approaches

Several works have proposed approaches in which location proofs are
built based on information that is beaconed into the proximity of a
venue using a distance-limited protocol that is observable only in the
vicinity of the venue. One of the first works proposing this approach
was presented by Saroiu and Wolman et al. [121]. They discuss six
scenarios concerning LBSs in which users of the LBS may have incent-
ives to engage in location cheating. To address this they propose a
system in which location proofs are based on beaconing information
over the SSID of a dedicated AP installed at the venue. The rationale
is that only devices within wireless range of the access point are able
to receive these beaconed signals. A drawback of their scheme is
that it requires the installation of such dedicated APs and is therefore
applicable only in venues where such APs are available. Generic mo-
bile scenarios related to, e. g., OSNs can’t therefore be covered by their
scheme.

Another approach for verifying device co-location is the SMILE
framework by Manweiler et al. [80], which is based on a scheme in
which mobile devices beacon cryptographic keys into their proxim-
ity and simultaneously record keys beaconed by other devices. This
beaconing is done, e. g., over Bluetooth or some other proximity com-
munication protocol. The SMILE framework consequently allows
users to establish proofs of co-location after the fact by comparing the
sets of keys with the help of a third-party server. Their scheme has,
however the major security drawback that individual users’ devices
are required to continuously broadcast their keys into their environ-
ment, thus making them potentially traceable over all the contexts
they visit.
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Carbunar et al. [22] present a scheme for privacy-preserving check-
ins in so-called Geo-Social Networks, i. e., OSNs explicitly involving the
physical location of users. Their construction is called GeoBadges, and
it utilises mix networks and a protocol involving blind signatures to
provide anonymous proofs of repeated visits to specific venues. Their
scheme relies on dedicated hardware installed at the venue to display,
e. g., changing Quick Response (QR) codes which users need to scan
with their smartphones in order to construct the proof of presence at
the venue at a particular point in time.

Polakis et al. [108] present a similar scheme for verifying check-ins
at particular venues. Their scheme is based on temporary codes that
can be verified by the LBS. These codes need to be scanned by the
client devices using dynamic NFC tags which the user needs to scan
with his device. In this scheme, location-verification is based on the
transferral of the code over NFC, as its range is limited to a very
short distance. However, also this implementation requires the use of
dedicated hardware and is therefore not applicable in generic mobile
scenarios.

3.8.2 Proofs-of-Presence Based on Context

As discussed in Sect. 3.2.1, Varshavsky et al. proposed a PoP scheme
called AMIGO in which two peer devices first establish a security
association using Diffie-Hellman key agreement and then verify their
co-location by comparing the RSSI values of data packets observed
by both using a WiFi access point which both devices can connect
to. If the observed RSSI values are similar enough, the peers are
determined to be co-located. The security of the scheme is based
on the observation that fluctuations in the RSSI values are spatially
limited and can therefore be used to verify co-presence of devices in
each other’s proximity. Later work, however, has shown [82] that as
RSSI is an aggregate value over several individual measurements, it
can be predictable or even influenced by a remote adversary [63]. A
practical limitation of the AMIGO approach is also that peers need
to be located relatively close (less than one metre) to each other in
order for the verification to work. This limits the applicability of
their approach as peer devices in many cases are located in the same
room but farther away from one another than the required distance
for pairing.

The co-location verification method by Narayanan et al. [100] uses
the notion of location tags, i. e., information items obtained by peers
from their ambient context. As mentioned in Sect. 3.2.1, they discuss
diverse possible context modalities for constructing location tags, but
analyse only location tags based on the header information of WiFi-
packets observed on a WiFi access point commonly observed by the
peers seeking to verify co-location. This limits the applicability of
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their approach to such scenarios in which both peers can have access
to the same access point in vicinity. The practicality of their scheme is
also dependent on how much traffic the WiFi access point used gen-
erates, as low-traffic WiFi APs may not generate a sufficient amount
of packets for establishing proofs of presence in a timely manner.

3.8.3 Distance-Bounding Approaches

The notion of distance bounding was introduced by Hu et al. as a
defence against wormhole attacks in mobile ad-hoc networks [55].
Distance bounding utilises the fact that the speed of light is limited
and uses highly accurate timing measurements of message round trip
times to establish an upper limit on the distance of peers involved in
the distance bounding protocol. This requires from the peers the abil-
ity to make such high-accuracy measurements and is usually not pos-
sible without specialised hardware that is suitable for this purpose,
limiting its usability on regular smartphones that do not have such
hardware support.

3.9 summary and conclusion

In this chapter we discussed Proofs-of-Presence (PoPs) based on con-
text for co-location verification in the setting of On-line Social Net-
works (OSNs) and Location-Based Services (LBSs). In Sect. 3.1.2 we
showed that commonly used context modalities for context-based
PoPs are vulnerable to so-called context guessing attacks. In these at-
tacks an adversary utilises information it has gathered from a target
context ahead of time to construct fabricated PoPs to fool the verifier
to accept it as a proof of the adversary’s presence in its proximity.
We then discussed two countermeasures against such context guess-
ing attacks: surprisal filtering and the use of longitudinal ambient
context modalities for constructing more robust PoPs that are more
difficult to successfully guess for the adversary.

Surprisal filtering is based on profiling the context(s) of the veri-
fier and using this profiled information for estimating the probability
with which the adversary could have successfully guessed the partic-
ular context values used in the PoP. Such PoPs that are deemed too
easy to guess by the adversary can then be rejected to reduce the risk
of accepting adversarial PoPs as genuine.

The use of longitudinal ambient context modalities like ambient lu-
minosity and audio is complementary to surprisal filtering and serves
to increase the entropy of context-based PoPs. In contrast to many
previous works on context-based PoPs, their use is not bound to spe-
cific infrastructure and therefore widely usable also in a variety of
different mobile use cases. As for longitudinal context-based PoPs
the context is monitored for a modestly longer period of time and en-
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tropy extraction is based on observable changes in the monitored con-
text modalities, our approach is able to extract sufficient entropy from
the context to provide for usable but robust context-based proofs of
presence.



4
C O N T E X T- B A S E D A U T H E N T I C AT I O N O F I O T
D E V I C E S

Currently deployed mechanisms for device pairing, i. e., the process
of establishing an authenticated security association between devices
typically rely on active involvement of the user. In these approaches,
the user needs to either enter a code on the to-be-paired devices, com-
pare authentication strings displayed by the devices, or, demonstrat-
ively identify [6] the devices by bringing them close to each other so
that they can perform an exchange of security keys over a location-
limited channel like NFC. The involvement of the user is required
to eliminate man-in-the-middle attacks. Requiring the user to be in-
volved in this process is, however, tedious and error-prone, as users
easily make mistakes or do not pay sufficient attention to ensure a
correct outcome of the authentication process (e. g., by not checking
that displayed authentication codes actually match, but just ’clicking
through’ authentication prompts displayed by devices). Especially
when the amount of devices that need to be paired grows, traditional
approaches requiring user involvement in pairing become quickly im-
practical. What would therefore be desirable is a device pairing ap-
proach requiring no explicit interaction from the user.

The importance of reliable and user-friendly device pairing meth-
ods is at the same time gaining in importance since the amount
of individual devices that need to be connected is constantly grow-
ing due to the emergence of the so-called Internet of Things (IoT).
More and more manufacturers are bringing new kinds of devices
on the market with which users can monitor and control many as-
pects of their ’smart homes’. Examples of IoT devices include, e. g.,
smart power plugs, smart light bulbs, motion sensors, window/door
sensors, smart thermostats, weather monitoring stations, smart cof-
fee makers and many more household appliances with added net-
work connectivity. Another important device group that is gaining
in importance are wearables, i. e., devices like fitness trackers, smart
watches and other similar devices that are worn by users. IoT de-
vices and wearables are likely to play a significant role in the com-
puting infrastructures of smart homes or small offices in the future
and therefore having secure but usable methods requiring no explicit
interaction by the user for pairing them with the user’s trust domain
are increasingly important. This is particularly important as many
IoT devices and wearables do not have traditional user interfaces or
even displays for facilitating traditional pairing approaches.
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The goal of this work is to devise a context-based authentication
approach for pairing IoT devices and wearables that does not require
explicit interaction of the user to function. Our authentication ap-
proach is based on profiling the ambient context of devices that are
located in the same physical space like a room by performing context
measurements from which context fingerprints are extracted. Since
these fingerprints are likely to be similar if the devices are co-located,
they can be used together with appropriate error-correcting codes to
establish a shared authentication secret with which the involved de-
vices can authenticate the presence of the pairing counterpart in the
same physical environment and thereby confirm membership in the
same trust domain like, e. g., the set of the user’s IoT devices.

4.1 background

Approaches for device pairing that do not require explicit user in-
teraction can be divided into three broad categories: key pre-sharing-
based approaches, demonstrative authentication via proximity and impli-
cit context-based pairing. In the following, we will review most prom-
inent approaches belonging to these categories.

4.1.1 Key Pre-Sharing

Key pre-sharing based approaches (e. g., [35, 23, 76, 139]) are based
on distributing key material on devices before their deployment in
the field. These mechanisms target mainly devices acting as nodes in
WSNs. The basic key agreement mechanism introduced by Eschenauer
and Gligor [35] is based on randomly assigning a number of keys
from a common key pool to individual devices before their deploy-
ment in the field. The objective of their scheme is to allow deployed
nodes to autonomously form secure link keys, as it is in most deploy-
ment scenarios impossible (or at least very inconvenient) for the user
to be actively involved in the pairing of individual devices.

The scheme relies on the birthday paradox, due to which adjacent
nodes share with high likelihood common keys and can subsequently
use these to establish link keys. The scheme by Eschenauer and
Gligor has been subsequently extended by various aspects improv-
ing WSN key agreement [23, 76, 139].

Key pre-sharing-based approaches for key agreement have, how-
ever, limitations which prohibit their use in IoT scenarios for prac-
tical reasons. A major obstacle it that establishing sufficiently large
key pools covering all device vendors would be a daunting task due
to the ever-growing number and heterogeneity of device manufactur-
ers. Different vendors have vastly varying practices regarding secur-
ity design, implementation and operational security. It is unlikely
that a unified trust framework covering all manufacturers that would
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be needed to control and administer the common key pool could real-
istically be established.

However, even if single IoT device vendors were to decide to es-
tablish a joint or vendor-specific key pool for pre-sharing-based key
agreement for devices they produce, this would still fail to provide an
adequate solution for separating devices according to their respect-
ive trust domains. As it is likely that neighbouring trust domains
(like the smart homes of two users living in neighbouring apartments
with overlapping wireless range of their smart devices) may contain
devices from the same device manufacturer, key pre-sharing based
approaches could not be used to provide separation between devices
having pre-shared keys drawn from a joint key pool but belonging to
different trust domains.

4.1.2 Demonstrative Authentication

An initial paper by Stajano [135] introduced the so-called resurrecting
duckling security model that discusses establishing device-to-device
security associations between a ’controller device’ and a newly pur-
chased device that is introduced to the user’s trust domain. Stajano’s
paper predates the era of smartphones, so in more recent set-ups a
smartphone or a tablet would typically assume the role of this ’con-
troller device’.

To establish device-to-device security associations, the model in-
troduces the notion of imprinting. This refers to a process in which
the unprovisioned device is ’imprinted’ on the controller device by
performing a key exchange and establishing a shared secret between
them. The original scheme proposed to use a physical ’touch’ with
direct electrical contact between the devices for performing this initial
key agreement constituting the imprinting step.

A similar approach for establishing security associations has been
adopted by recent pairing schemes that require the user to demonstrat-
ively authenticate [6] devices that shall establish a security association.
This is achieved by requiring devices to be placed very near to one
another for pairing to succeed. A number of approaches for realizing
such demonstrative authentication have been proposed.

One approach utilizes communication interfaces like NFC that have
a very limited communication range, allowing peer devices to ex-
change keys in plaintext over the NFC channel. The NFC channel
provides a certain level of protection against eavesdropping attackers
as the used radio technology has a very short range and is therefore
challenging to observe by external adversaries.

Other proposed approaches utilize contextual features, i. e., prop-
erties of the ambient environment like WiFi or Bluetooth beacons, lu-
minosity or audio that can be sensed with devices’ sensors. A scheme
proposed by Varshavsky et al. [143] uses observed fluctuations in the
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RSSI values of WiFi access points within wireless range for authentic-
ating key agreement between co-located peer devices. The security
of this scheme is based on the fact that these fluctuations are correl-
ated only between devices that are located in close proximity of one
another, thereby allowing only such devices to pair successfully that
are located next to each other.

In subsequent work it became clear, however, that since RSSI val-
ues are a highly aggregate measure over an entire frequency band,
they may be predictable or even influenced by a remote (but within
wireless range) adversary who has information about the position-
ing of the devices involved in the pairing [63]. The security of RSSI
value-based schemes remains therefore questionable. This is why Ma-
thur et al. [82] improved the scheme by focusing on random fluctu-
ations in the RF field of, e. g., frequency modulation (FM) radio or
television broadcasts for extracting random bits for the authentica-
tion secret. These fluctuations are, due to the physical properties of
the RF field, correlated only within a distance corresponding to half
of the wavelength of the used RF signal and can therefore not be pre-
dicted by adversaries located farther away. In practice this distance
is relatively short (ca. 15-35 cm for FM radio and television broad-
casts), which limits the applicability of this approach in typical IoT
scenarios, as IoT devices are usually placed farther away from each
other.

4.1.3 Context-Based Pairing Approaches

In contrast to demonstrative authentication, context-based authentic-
ation approaches do not require devices to be placed close to one an-
other for pairing to succeed. These approaches utilize the contextual
information that devices can sense from from their ambient environ-
ment utilizing their on-board context sensors. By comparing these
measurements, devices can verify that they are are co-located. The
underlying assumption is that devices that can observe the same con-
text belong to the same trust domain, e. g., the set of IoT devices in
the smart home of the device owner. The main advantage of context-
based pairing is given by its usability, as it provides a way to establish
security associations between devices without the need for explicit
user involvement. For establishing pairings between devices it is suf-
ficient that the devices are placed in the same physical perimeter, e. g.,
in the same room. This provides a convenient way to separate devices
belonging to different trust domains, as the context measurements of
devices not located in the same room will be too different from one
another, so that context-based authentication will not succeed. We
will analyse the impact of contextual separation on the security of
context-based pairing schemes in detail in Sect. 4.6.
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4.1.3.1 Context-Based Zero-Interaction-Authentication

As discussed in Sect. 3.2.2, Truong et al. [140] and Shrestha et al. [131]
have introduced schemes for device co-location verification in zero-
interaction authentication (ZIA) scenarios. In such settings, peer de-
vices already have established a security association and the main
target of co-location verification is to prevent relay attacks against the
ZIA protocol. These approaches use contextual modalities like lumin-
osity, audio and other directly observable properties of the context for
verifying co-presence of devices in the same context during session
authentication.

The setting in typical IoT on-boarding use cases is, however, dif-
ferent. There devices typically do not have a pre-existing trust rela-
tionship and therefore need to establish an initial security association
with other devices in the same trust domain. The schemes of Truong
et al. and Shrestha et al. therefore aren’t directly applicable to IoT
device pairing, as they assume the peers to be mutually trusted. In
IoT scenarios we can’t assume devices initially to be trusted, but must
first use context-based authentication to establish the authenticity in
terms of trust domain membership of the involved devices.

4.1.3.2 Context-Based Key Agreement

The first practical scheme for key agreement utilizing contextual in-
formation was presented by Schürmann and Sigg [124]. They used
measurements of the surrounding audio environment to allow two co-
located devices A and B to establish a shared secret. In their scheme,
information about sound energy level changes in different frequency
bands in the surrounding audio environment is encoded into a con-
text fingerprint f which is then used as a secret for hiding a randomly
selected secret key a into a fuzzy vault [64]. They utilize a code-offset
construction in which peer A selects a secret a and first encodes it as
a codeword c using a Reed-Solomon code, i. e.,

a Encode−−−→ c (4.1)

The resulting codeword c is then subtracted from the context finger-
print f of the peer A to obtain an opening value δ that allows peer
device B to retrieve the secret.

δ = f 	 c (4.2)

A then transmits δ to B. Using it and its own fingerprint f ′, the other
peer B will be able to retrieve the secret by subtracting δ from f ′ and
decoding the resulting codeword c′ to recover a, i. e.

c′ = f ′ 	 δ (4.3)

c′ Decode−−−→ a′ (4.4)
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User’s devices
Outsider devices

Figure 4.1: IoT device pairing scenario

Due to the error-correcting capability of the used Reed-Solomon code,
a′ = a only if the Hamming distance dist( f , f ′) of the fingerprints f
and f ′ is less than the error-correcting capability t of the used Reed-
Solomon code, i. e.,

a = a′ ⇐⇒ dist( f , f ′) ≤ t (4.5)

Using the fuzzy vault, the Schürmann and Sigg scheme allows two
devices that are able to make sufficiently similar audio observations
to agree on a common secret. Other devices that are not in the same
context will not be able to retrieve the secret, as their fingerprints will
not be sufficiently similar to be able to successfully retrieve the secret
from the fuzzy vault.

4.1.4 Problem Description

In this work we focus on the problem of how to use contextual in-
formation observed by devices in the same physical environment like
a room to establish a secure pairing between the devices. We consider
two possible application scenarios: pairing of stationary IoT devices
and pairing of wearables.

4.1.5 IoT Device Pairing Scenario

The typical IoT device pairing scenario is shown in Fig. 4.1. The user’s
IoT devices are located in the user’s home, which is enclosed by walls
and windows, and form a trust domain. The devices use their on-
board contextual sensors to make measurements about their ambient
context in order to authenticate their mutual presence in the same
environment and establish a security association between them. The
pairing must be, however, performed in a way that outsider devices
outside the user’s home (e. g., in a neighbouring apartment) are not
able to establish a successful pairing with any of the devices in the
user’s trust domain.
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4.1.6 Wearable Device On-Boarding Scenario

The second scenario we consider is related to the on-boarding of wear-
able devices like smart watches, fitness trackers, etc. that are typically
constantly worn by the user for most of the time. The goal here is
to allow a wearable device to use ambient context measurements to
authenticate a security association with the smartphone of the user.
In this scenario we assume that the user regularly carries his smart-
phone with him, so that the wearable device and the smartphone are
co-located in the same context most of the time. The goal of the pair-
ing process is that after a specific gestation period, the smartphone and
wearable device can successfully verify that both devices belong to
the same user and thus the same trust domain.

4.2 adversary model

4.2.1 Adversaries in IoT Pairing

In the IoT device pairing scenario, adversary A is an IoT device
within wireless range of the user’s IoT devices, however, located out-
side the user’s home, e. g., in a neighbouring apartment.

4.2.1.1 Benign Adversaries

In the benign case, A is an un-configured IoT device, merely trying
to establish a pairing with other devices within wireless range. This
class of adversaries have no malicious intent toward the user’s trust
domain, but should nevertheless not be allowed to establish authen-
ticated security associations with devices in it in order to avoid, e. g.,
unintended disclosure of sensitive user information to outsiders.

4.2.1.2 Malicious Adversaries

Recently, a novel class of malware specifically targeting IoT devices
has emerged, infecting IoT devices like IP cameras to form IoT botnets.
For example, the Mirai IoT malware has been reported to have infec-
ted large numbers of IoT devices for using them as bots in a botnet
for launching massive distributed denial of service (DDoS) attacks [3].
Adversary A can therefore be an IoT device that has been comprom-
ised with malware and intentionally attempts to pair with devices in
the user’s home domain. The adversary’s target is to infiltrate the
trust domain in order to expose sensitive information about the user
or compromise devices in the user’s trust domain and use them for
nefarious purposes.
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4.2.1.3 Assumptions

While we assume that A is not able to directly observe the context
of the user’s devices, there may be external sources like the outdoor
lighting conditions that influence the observable context of both the
user’s devices and A. We do therefore not assume that there would
be a complete contextual separation between A and the user’s de-
vices.

We also assume that A does not have the capabilities to mount tar-
geted attacks against the user’s trust domain, i. e., using special equip-
ment like directional high-fidelity microphones or telescopes to re-
motely measure the contextual parameters in the user’s home, e. g.,
through a window. As we assume A to be a regular IoT device, it
does not have the hardware and software capabilities for realizing
such attacks.

It is possible that from time to time there are visitors to the user’s
smart home, carrying possible wearable devices with them. There-
fore we have to assume that adversary A (both benign and mali-
cious) might be intermittently present in the user’s home for lim-
ited amounts of time. During this time, it will be able to observe
the context in the same way as the user’s IoT devices. However, the
amount of time that A can spend in the user’s home is limited and
significantly less than what legitimate IoT devices spend in the user’s
context.

4.2.2 Adversaries in Wearable Device On-Boarding

4.2.2.1 Benign Adversaries

In this scenario, benign adversaries are wearable devices that have not
been paired yet with a smartphone trying opportunistically to find a
smartphone to pair with. They have no further motivation than to
find a host smartphone for themselves.

4.2.2.2 Malicious Adversaries

In the wearable scenario, a malicious adversary A is an attacker try-
ing to play a man-in-the-middle or impersonation attack on the user’s
smartphone and his wearable device in order to obtain sensitive in-
formation exchanged between the wearable device and the smart-
phone.

4.2.2.3 Assumptions

We assume that adversary A can be occasionally present in the same
context as the user’s smartphone or wearable, e. g., when the user
and his devices are visiting the same place where A is located, and
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can hence observe the same contextual parameters as the user’s de-
vices. However, A is not able to continuously follow the user, so
that the amount of time that A spends co-located with the user’s de-
vices is limited and significantly smaller than the amount of time the
user’s smartphone and his wearables are co-located in the same con-
text. During the time that A is not in the same context as the user’s
devices (i. e., not in the same room) it is not able to observe the same
contextual parameters.

4.3 system design

In this section we lay out the goals, requirements and design of our
context-based authentication approach for IoT devices and wearables en-
titled ConXPair, which is based on utilising sensed observations from
the shared context of two devices A and B to allow these devices to
gradually authenticate their mutual membership in the same trust
domain.

4.3.1 Goals and Requirements

As mentioned in the beginning of this chapter, there is a need for a
device-to-device authentication approach which would allow devices
belonging to the same trust domain to establish pairings without the
need for explicit interaction from the user, as this provides clear usabil-
ity benefits, especially in emerging IoT environments, in which there
might be dozens if not hundreds of different IoT devices in the trust
domain and setting up security associations manually would require
significant effort. We envisage therefore a context-based authentica-
tion approach, which does not require direct user intervention.

Earlier context-based pairing solutions (e. g., [124]) are one-time au-
thentication schemes, i. e., they are executed only once, based on con-
text data aggregated during a relatively short period of time. The
security of these schemes relies on the assumption that adversary
A is not present in the same context and can not observe the same
contextual parameters as the pairing peers A and B during the pair-
ing process. This assumption, however, does not apply in general in
the IoT and wearable scenarios referred to above in Sects. 4.1.5 and
4.1.6, as we assume adversary A to be intermittently present in the
same context as devices A or B. Device A can therefore not verify
the authenticity of device B instantaneously by merely verifying B’s
presence in the same context at a particular point in time. Instead, to
verify membership of B in the same trust domain as A, it needs to
verify the sustained co-presence of B in A’s context.
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4.3.2 Solution Intuition

To realize the verification of sustained co-presence, we propose an
iterative key evolution scheme in which A and B repeatedly perform
context-based authentications to verify co-presence during particular
time periods. The idea behind this scheme is, that initially, devices
establish unauthenticated security associations with any peers within
wireless communication range, including devices in the same trust
domain as well as possible adversarial devices. Each of these security
associations is assigned an authenticity rating that is initially zero, in-
dicating that the membership of the counterpart in the same trust do-
main has not been verified yet. Using the key evolution approach, the
authenticity rating is incremented with each successful authentication
iteration. Since devices A and B on average have a significantly higher
probability of succeeding in the context-based authentication (by vir-
tue of the fact that they spend significantly more time co-located in
the same context than any adversary A), over time the mutual au-
thenticity ratings of A and B will diverge from that of adversary A,
so that the security association between A and B can be accepted as
genuine and associations with A are rejected and discarded. In the
following, we will discuss the details of our proposed key evolution
approach.

4.3.3 Context-Based Key Evolution

The context-based key evolution is based on the assumption that two
co-located peer devices A and B can utilize the common informa-
tion contained in measurements of their ambient context to verify
co-presence. By iteratively repeating the co-presence verification, A
and B can with each successful iteration evolve their mutual pairing
key and increase their belief in the authenticity of the peering coun-
terpart. Here, authenticity refers to membership in the same trust
domain.

The approach is based on context fingerprints w and w′ that A and
B, respectively, extract from their context measurements. Context
fingerprints can be based on a number of contextual modalities like
measurements of the ambient luminosity, audio, etc. We will discuss
context fingerprints in detail in Sect. 4.4.

The context-based authentication approach consists of three dis-
tinct phases: initialisation, key evolution and key acceptance.

4.3.3.1 Initialisation

In the initialisation phase, devices A and B use Diffie-Hellman key
exchange [29] to establish an unauthenticated shared secret K0

AB. After
establishing this shared secret the purpose of the key evolution is to
gradually increment the belief in the authenticity of the counterpart
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by repeatedly evolving the shared secret by performing context-based
authentications.

4.3.3.2 Key Evolution

As mentioned above, A and B have established a shared key. This
key at iteration i is denoted with Ki

AB. The goal of each iteration is to
evolve key Ki

AB to an evolved key Ki+1
AB utilizing context fingerprints

w and w′ extracted from the ambient context of devices A and B, re-
spectively. Inherent differences in the way involved devices observe
their ambient context and possible sensing errors cause their finger-
prints to be similar but not identical. However, for evolving the key a
unique shared secret is required.

To agree on a unique shared secret, A uses a secure sketch as in-
troduced by Dodis et al. [31] to transfer error-correcting information P
about its fingerprint w to B, which allows B to eliminate possible
sensing errors causing deviations between the fingerprints. A secure
sketch is a pair of algorithms SS(·) and SRec(·, ·) that are based on
an error-correcting code (ECC). The secure sketching operation SS(w)

outputs error-correcting information P that can be used to reconstruct
w together with a value that is sufficiently similar to w, i. e.,

SS(w) = P (4.6)

For reconstructing the original value w, the operation SRec is used. It
is able to reconstruct w given the error-correcting information P and
any value that is sufficiently similar to w, i. e., for which the Hamming
distance to w is below the error-correcting capability t of the ECC, i. e.,

SRec(w′, P) = w ⇐⇒ dist(w, w′) ≤ t (4.7)

After B has reconstructed the context fingerprint w of A the key
evolution process proceeds by evolving the shared key Ki

AB → Ki+1
AB .

In our approach we utilise a password-based key exchange (PAKE)
protocol in this step, using a key evolution key K′ derived from Ki

AB
and the fingerprint w as the shared secret in the key exchange. K′ is
derived from w using a keyed hash h with the shared key Ki

AB as the
key:

K′ = hKi
AB
(w) (4.8)

We have to employ a PAKE protocol for key evolution because the
entropy of context fingerprints w used for authentication purposes
may not be sufficient to resist off-line brute-force attacks. If we were,
e. g., to use K′ directly as the evolved key, i. e., if we were to set
Ki+1

AB = K′, an adversary A masquerading as legitimate peer device
B could potentially retrieve K′ even without knowledge of w simply
by performing a brute-force attack by enumerating likely values of w,
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deriving corresponding key candidates and testing whether the key
candidate will decrypt subsequent messages correctly. Since PAKE

protocols are resilient against brute-forcing attacks, we use PAKE to
derive the evolved key Ki+1

AB as detailed below. Concretely, we take
use of the Encrypted Key Exchange (EKE) protocol using exponential
key exchange of Bellovin and Merrit [10] to perform the key exchange
for obtaining the evolved key. One iteration of the key evolution ap-
proach is shown in Fig. 4.2.

1. Both A and B monitor their contexts and extract context finger-
prints w and w′ from their respective measurements.

2. A utilises the secure sketching operation P = SS(w) to extract
error-correcting information P from its fingerprint and sends
this to B (message ¬).

3. B uses its fingerprint w′ and the error-correcting information
P in the operation w∗ = SRec(w′, P) to eliminate deviations
between its fingerprint w′ and A’s fingerprint w to obtain a
reconstructed fingerprint w∗. If A’s and B’s fingerprints are
sufficiently similar, i. e., if dist(w, w′) ≤ t, the reconstructed
fingerprint w∗ will be identical to A’s original fingerprint, i. e.,
w∗ = w, otherwise not.

4. To determine whether the context authentication was successful,
and, if so, to evolve the shared key, A and B derive key evolution
keys K′A and K′B, respectively, using a keyed hash function, as
indicated in (4.8), i. e.

K′A = hKi
AB
(w) K′B = hKi

AB
(w∗) (4.9)

If the original fingerprints of A and B were sufficiently similar
w = w∗, and consequently also the key evolution keys will be
identical.

5. Devices A and B will then both separately generate random ex-
ponents RA and RB, respectively, and calculate corresponding
residuals (αRA mod β) and (αRB mod β), where α and β de-
note the public generator and modulus of the scheme.

6. Devices A and B will then encrypt their respective residuals as
EK′A

(αRA mod β) and EK′B
(αRB mod β) using their correspond-

ing key evolution keys K′A and K′B.

7. A sends then a message (­) to B containing its identifier A, and
the encrypted residual.

8. Device B calculates a candidate key K+
B as

K+
B = αRARB mod β (4.10)
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9. B sends to A (message ®) its encrypted residual and a random
challenge nB encrypted with the candidate key K+

B .

10. A decrypts B’s encrypted residual with its key evolution key
K′A as

(αRB mod β) = E−1
K′A

(
EK′B

(αRB mod β)
)

(4.11)

and calculates a candidate key K+
A as

K+
A = αRARB mod β (4.12)

11. Device A then retrieves B’s challenge by decrypting it with its
candidate key K+

Aas

nB = E−1
K+

A

(
EK+

B
(nB)

)
(4.13)

and sends a message (¯) containing a random challenge nA and
B’s challenge nB encrypted with A’s candidate key K+

A .

12. Device B decrypts message ¯ with its candidate key K+
B as

nA, nB = E−1
K′B

(
EK+

A
(nA, nB)

)
(4.14)

and verifies that the challenge nB decrypts correctly.

13. B then encrypts A’s challenge with its candidate key K+
B and

sends it to A (message °).

14. A decrypts B’s reply to its challenge as

nA = E−1
K+

A

(
EK+

B
(nA)

)
(4.15)

and verifies that it decrypts correctly.

15. If at any point in the execution of the protocol any of the re-
sponses to the challenges can’t be successfully verified, the veri-
fying party will abort the protocol and notify the peer of the
failure. Otherwise the protocol is successful and both devices
will use their candidate keys as the new evolved shared key
Ki+1

AB , i. e.

DeviceA : Ki+1
AB = K+

A DeviceB : Ki+1
AB = K+

B (4.16)

4.3.3.3 Key Acceptance

With each iteration of the key evolution approach, the belief in the
authenticity of the counterpart (i. e., belief that the counterpart is sus-
tainedly present in the same context and thus member of the same
trust domain) is increased. To determine how many evolution itera-
tions are required for attaining a trusted pairing is dependent on the
desired authentication strength and the probability of success of the
adversary A.
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Figure 4.2: Context-Based Key Evolution

required authentication strength The required strength
of the authentication is a security parameter that determines how
difficult it should be for adversary A to (falsely) authenticate with
peers in the user’s trust domain. This requirement should be determ-
ined based on the use case at hand. In our scenarios, we take an
industry-standard solution like Bluetooth pairing with a six-digit au-
thentication PIN as the baseline, as this is a widely used and accepted
set-up for device-to-device pairing solutions. In this pairing approach
the adversary has at most a one-in-a-million chance of succeeding in
pairing by random guessing of the authentication PIN. This is roughly
equal to an entropy of 20 bits from the viewpoint of A. We will adopt
this requirement also for our solution, so that the adversary A shall
have a probability Pmax of at most 2−20 for falsely succeeding in the
context-based authentication process.

adversarial success probability As we will discuss in more
detail in Sect. 4.5, adversary A will in most settings have a non-
negligible average probability Psucc in succeeding in a single iteration
of the context authentication. The value of Psucc is dependent on the
contextual setting of each particular deployment environment and
has to be estimated empirically using conservative estimates before
deployment of the context-based authentication scheme in practice.

Using the above parameters we can now formulate a condition for
the minimum amount of required authentication iterations for obtain-
ing a secure pairing. If the success probability Psucc of adversary A
is higher than the required authentication strength Pmax, the context-
based key evolution has to be repeated at least k times so that the
aggregate success probability (Pacc)

k of A falls below Pmax, i. e.,

k = arg min
i

(
(Pacc)

i
)
≤ Pmax (4.17)
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Here, we can assume A’s success probability to be the product of
individual iterations’ probabilities, as the probabilities of individual
iteration trials are independent from each other.

intermittently co-located adversaries While k denotes
the minimum required number of successful authentication iterations
for adversaries outside the context in which A and B are located, an
additional requirement needs to be taken into account, if it is pos-
sible that adversary A may pay occasional visits to the target context,
or, if in the wearable device scenario, the user (and consequently, his
wearable devices) may spend time in a context in which A is present.
The success probability for fingerprints that A generates during such
periods is significantly higher than Psucc, approximately equal to the
success probability of the user’s legitimate devices. We need there-
fore to discount any fingerprints that A generates during such peri-
ods of co-location with the user by increasing the minimum required
number of successful authentication iterations by l iterations, where
l denotes the maximum number of fingerprints that A can be expec-
ted to observe during its visits to the user’s context. The parameter
l therefore depends on the assumed longest aggregated duration of
A’s visits as well as the duration of sampling a distinct fingerprint
and their distribution over time.

4.4 context fingerprinting

Our context fingerprinting approach is designed for two prominent
contextual modalities applicable for context-based pairing: ambient
audio and luminosity. The fingerprinting scheme is inspired by Schür-
mann and Sigg [124], but differs from it in several aspects. Whereas
the scheme in [124] requires tight time synchronization, our scheme
does not, due to the more longitudinal approach taken by our fin-
gerprinting scheme. Similarly, the Schürmann and Sigg scheme is
intended to extract a significant amount of entropy within a short
time period in order to be used as a cryptographic key, whereas our
fingerprints use their longitudinal orientation to cover the aspect of
sustained presence over extended periods of time. The resulting fin-
gerprints will thus typically capture effects in the respective modal-
ities that originate from the user’s actions in the target context (e. g.,
switching lights on and off, talking, walking, etc.). User actions are in-
herently random events and therefore difficult to predict by adversar-
ies, even for advanced attackers utilising profiled information about
users.

The longitudinal nature of our fingerprinting and key evolution
approach has also the advantage that it provides the possibility take
also adversaries into account that are occasionally co-located with the
user’s devices, i. e., visiting adversaries. This is a clear benefit over
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earlier approaches, where pairing is performed during a short period
of time and the security of the pairing relies on the assumption that
the adversary is not present in the context of the user’s devices at
the time of pairing [143, 124]. This might be a difficult assumption
to fulfil, especially in scenarios related to wearable devices, where
one can’t always assume devices to be located in a protected private
space like the home of the user. In contrast, the longitudinal approach
can gracefully also handle situations in which the adversary pays
occasional visits to the user’s context.

4.4.1 Context Measurements

To derive longitudinal context fingerprints, devices A and B continu-
ously measure their context, yielding a sequence of context measure-
ments m1, m2, . . . of the monitored context modality like, e. g., ambi-
ent luminosity or sound energy level. Each measurement mi is asso-
ciated with a timestamp, denoted t(mi).

4.4.2 Context Quantisation

To derive the context fingerprint w, the context measurements can be
quantised in a number of different ways. In this work, we have exper-
imented with two distinct approaches, encoding of level changes, as
well as peak-based list encoding. The advantage of the former is that
it provides a steady stream of fingerprint bits. However, the relation
of ’1’ and ’0’ bits in the resulting fingerprint using this approach is
imbalanced, leading to a lower entropy per fingerprint bit from the
viewpoint of the adversary. The peak detection approach can provide
fingerprints with a balanced distribution of ’1’ and ’0’ bits, but may
take longer to generate fingerprint bits, as explained below.

4.4.2.1 Level-Change Encoding

In this context quantisation approach, fingerprint bits are generated
based on significant changes in the average value of the monitored
context modality. For this, the sequence of context measurements
m1, m2, . . . is divided into windows of length d. For each window, the
average context parameter value ci is calculated as the average of the
measurements falling inside the window:

ci =
∑(i+1)d

j=id+1 mj

d
(4.18)

Based on the sequence of context parameter averages c0, c1, . . ., a
corresponding fingerprint bit sequence b1, b2, . . . is generated as fol-
lows. A fingerprint bit bi is set to ’1’ if there is a significant change
in the value of value ci in comparison to its predecessor ci−1, i. e., if
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their relative difference is larger than threshold ∆rel and the absolute
difference larger than threshold ∆abs, i. e.,

bi =

 1,
∣∣∣ ci

ci−1
− 1
∣∣∣ ≥ ∆rel ∧ |ci − ci−1| ≥ ∆abs,

0, otherwise.
(4.19)

The resulting fingerprint bit sequence is then divided into discrete
fingerprints wi, i. e., subsequences of length l bits.

4.4.2.2 Peak-Based List Encoding

An alternative context quantisation approach is a variation of the list
encoding scheme proposed by Mathur et al. [82]. In this scheme, device
A first detects significant peaks in its monitored context parameter
values and then uses these to encode a randomly chosen fingerprint
w by encoding it with the help of the time of time offsets t(mi) of
measurements mi representing peaks in the parameter value. In the
Mathur et al. scheme, ’1’ bits are are encoded with peaks represent-
ing local maxima, while ’0’ bits are represented by downward peaks
representing local minima in the monitored context modality (they
used the amplitude of the temporal channel variations of RF channels
as the context modality). However, since context modalities like au-
dio often do not contain clear local minima, we modify their scheme
slightly. To encode ’0’ bits we randomly pick a roughly equal amount
of non-peak observations from the observed measurements and use
these to encode zero bits. The encoded fingerprint consists therefore
of the time offsets of measurements corresponding to peaks (local
maxima) representing one bits and to non-peaks representing zero
bits.

For the context-based key evolution scheme (cf. Fig. 4.2) this means
that device A will send in addition to the error-correcting information
P also the time offsets of the encoded fingerprint to B, who will then
also first perform peak detection on its own context measurements
and use the time offsets to decode its fingerprint w′. Offsets corres-
ponding to identified peaks in B’s measurements will be encoded as
’1’ bits and as ’0’ bits otherwise.

The rationale for these context quantisation approaches is the fol-
lowing. Two devices present in the same context for a longer period
of time will likely also observe changes in context parameters in a sim-
ilar way. If the user, e. g., switches on the lights in the room where the
devices are located, the increased in luminosity will be sensed by all
devices located inside the room, whereas devices outside the room
will not be able to observe it. Fingerprint bits generated this way
will therefore be similar only between co-located devices. This reas-
oning applies also to fingerprints based on audio. Alternating sound
levels caused by chatter, silence and other ambient sounds will lead
to fingerprint bits being generated in a pattern that is similar between
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devices in the same audio context (e.g., the same room), whereas out-
sider devices will not be able to observe nor replicate these patterns.

Similar reasoning is applicable also to wearable devices and smart-
phones that are usually carried together. The context in which the
devices are simultaneously located changes constantly as the user
moves, but these changes will be sensed in parallel in a similar way
by all devices being worn by the user.

4.5 evaluation

To analyse the feasibility of the presented context-based authentic-
ation approach we performed a number of experiments in various
settings to investigate the similarity of context fingerprints extracted
from ambient luminosity and audio in real-world contextual settings.

4.5.1 Evaluation Metrics

We evaluated the context fingerprinting approaches with regard to
factors that affect the security and practicality of our context-based
authentication approach, namely fingerprint similarity and entropy
of obtained fingerprints.

4.5.1.1 Fingerprint Similarity

Fingerprint similarity plays a role for our scheme in two aspects: for
one, the fingerprints of co-located user devices A and B need to be
sufficiently similar that a secure sketch with error-correcting capabil-
ity of t bits can be used to eliminate differences between the observed
context fingerprints of A and B so that the context-based authentica-
tion can succeed. This means that due to (4.7) the Hamming distance
of A’s and B’s fingerprints needs to be less than t. On the other
hand, we need also to verify that the similarity of the fingerprints of
either A or B is sufficiently different from adversary A’s fingerprint
so that it can’t succeed in context-based authentication with either of
the user’s devices.

4.5.1.2 Fingerprint Entropy

As we will show in Sect. 4.6, the entropy of the context fingerprints
affects the resilience of the authentication result against guessing at-
tacks by the adversary. The used fingerprint needs to have sufficient
entropy to ensure the security of the authentication result. On the
other hand, also the entropy rate, i. e., the number of entropy bits per
fingerprint bit plays a role for the practicality of the authentication
scheme, as higher entropy rates allow to aggregate sufficient entropy
faster, so that shorter fingerprints can be used and consequently less
time is required for performing individual authentication iterations.
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4.5.2 Experiment Set-Up

In our study we used smartphones running the Android operating
system equipped with dedicated context data collection software as
surrogates for IoT and wearable devices. This approach was selected,
since smartphones provided the necessary programmable facilities
for implementing adjustable and flexible sensing of ambient context
parameters and storing these data. The context data collection app
on each device continuously measured the ambient luminosity and
sound energy levels and sent the collected data regularly to a back-
end server for off-line data analysis.

In these experiments the test devices were placed in different do-
mestic and office environments to simulate IoT device pairing scen-
arios, whereas for the wearable device pairing scenarios test persons
carried two different data collection devices with them during which
contextual data were collected.

4.5.2.1 IoT Pairing Scenario

The target of our evaluation in the IoT device pairing scenario was
to investigate whether IoT devices located in the same room can suc-
cessfully observe sufficiently similar context fingerprints for success-
ful context-based key evolution. We also wanted to verify that there
is a sufficient difference in the similarity of fingerprints between co-
located devices and adversaries so that only co-located peers will be
able to successfully pair in the analysed settings.

The IoT pairing scenario was tested in two separate experiments
utilising different approaches for context quantisation. In these ex-
periments the relative placement of the devices and their position
within the target rooms were varied and different context quantisa-
tion methods were tested for fingerprint extraction. Table 4.1 shows
an overview of the placement of the used data collection devices in
both experiments.

In the office setting, devices A and B were placed on the wall of
an office room in three metres distance from each other. Devices Ai
simulating adversaries were placed in nearby rooms having no direct
visibility to the room of the target office. In the home setting, devices
A and B were located in the living room of the test user’s home. The
devices Ai simulating adversaries in a neighbouring apartment were
placed in another room of the house, either on a different floor or
separated by a light-weight door from the living room.

In Experiment 1, also adversary devices A1 were placed on the
window of the target room, with the luminosity sensor facing towards
the outside in order to collect luminosity measurements about the
outdoor luminosity affecting also the ambient lighting in the target
room. To have consistency on how external sources may affect indoor
lighting conditions, such rooms were selected that had large windows
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Table 4.1: Set-up of IoT scenario experiments

exp. quantisation setting device placement

1 level-change Office Device A User’s office

Device B User’s office

A1 Outdoor light

A2 Adjacent office

A3 Coffee room

1 level-change Home Device A Living room

Device B Living room

A1 Outdoor light

A2 Studio, 2
nd floor

2 peak-based Office Device A User’s office

Device B User’s office

Device C1 Adjacent room 1

Device D1 Adjacent room 1

Device E1 Adjacent room 1

A1 Adjacent room 2

2 peak-based Home Device A1 Living room

Device B1 Living room

Device C1 Living room

Device A2 Kitchen

Device B2 Kitchen

A1 Storage room

1 Devices C, D and E were used in the evaluation also as adversaries
A2 . . .A4 for devices A and B, and vice versa.



4.5 evaluation 81

facing the same direction, allowing outdoor lighting to illuminate all
rooms used in the experiment in a similar way during daytime hours.

4.5.2.2 Wearable Device Scenario

For this scenario we simulated the ambient contextual environment
of typical wearable devices. Test users were equipped with smart-
phones simulating wearables that users carry with them or wear on
their body. Two distinct settings were considered: a ’smart watch’
scenario, where device one device simulates a smart watch, and the
other device takes the role of a regular smartphone, and a ’cycling’
scenario to simulate use cases related to wearable fitness trackers.

In the ’smart watch’ scenario users were equipped with two smart-
phones which they carried with them continuously. Device A took
the role of a smart watch that is worn on the user’s wrist. It was
placed in a translucent carrying pouch so to allow it to be constantly
exposed to the ambient light in the same way a wrist-worn device
would be. Device B on the other hand, was used like a regular smart-
phone.

In the ’cycling’ scenario the smartphones were used to simulate fit-
ness trackers, a highly popular class of wearable devices. There are
currently dozens of different vendors offering wearable fitness track-
ing products for measuring physical characteristics like heart rate,
steps taken, activity hours etc. In our scenario, we consider a cyc-
list using fitness tracking devices to record and monitor his physical
performance during his workout. One smartphone was attached on
the side of the test user’s bicycle helmet with the light sensor facing
outwards, while the other device playing the role of, e. g., a heart rate
sensor, was placed in a translucent carrying pouch on the chest of
the cyclist, also facing outward. In the cycling scenario, ambient light
and audio measurements were made during the workouts of the cyc-
list typically covering a distance of approximately 15 kilometres and
lasting for roughly one hour at a time.

4.5.3 Datasets

In experiment 1 of the IoT device pairing scenario luminosity and
audio measurements were collected during several weeks, sampling
the context once every 1 s. From the collected data we extracted
context fingerprints using the level-change encoding approach (cf.
Sect. 4.4.2.1) and a time window of d = 120 s (cf. (4.18)) for gener-
ating fingerprint bits. We then compared the average bit differences
of the resulting fingerprints between co-located devices A and B as
well as between A and B and the adversary devices Ai.

Experiment 2 focused on the peak-based list encoding approach
for context quantisation (cf. Sect. 4.4.2.2) and therefore utilised only
measurements in the audio modality. This is because luminosity
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changes in the context typically occur gradually over time, making
identification of distinct peaks in the luminosity measurements very
challenging. In this experiment, the ambient sound energy level was
recorded every 100 ms to allow for accurate detection of peaks. The
data collection encompassed in total 12 different devices over a period
of 30 days, resulting in more than 8000 hours of context measure-
ments.

In the wearable device scenario, data traces were collected from co-
located devices carried by test persons in various dynamic and static
contexts, e. g., while walking, or commuting with public transport, as
well as during stays in the home and office contexts. In the ’cycling’
scenario, 10 traces of back-and-forth journeys on a fixed route of ap-
proximately 15 kilometres were recorded. The traces covered a period
of several weeks, with varying road and weather conditions. Since the
context changes in the wearable scenarios typically much faster than
in more static scenarios, we applied a shorter time window of d = 5 s
for the luminosity data and a slightly longer time window of d = 6 s
for audio, resulting in fingerprints of 665 to 784 bits per exercise trace
for luminosity and 501 to 551 bits for audio data.

4.5.4 Fingerprint Similarity

In the first part of our evaluation we examined the fingerprint similar-
ities between co-located and adversarial devices in our experimental
settings.

4.5.4.1 IoT Device Pairing Scenario

As we will show in Sect. 4.5.5, night time context measurements con-
tain too little contextual events to be useful in generating fingerprints
with sufficient entropy, as user activity and changes in illumination
are very scarce. Night time data are therefore not well suited to be
used for context-based authentication. We focus our analysis there-
fore on the most active times in the day, equalling roughly to the
business hours between 8 a.m. and 6 p.m. in the office setting and
6 a.m. and 10 p.m. in the home setting. The fingerprint similarities
during those times in experiment 1 are shown in Tab. 4.2.

In the office setting, co-located devices clearly have more similar
fingerprints in comparison to adversaries Ai, being on average 95.0 %
for luminosity-based and 91.8 % for audio-based fingerprints. How-
ever, for luminosity-based fingerprints the similarity of adversary
device A2 located in the adjacent office is also relatively high, 88.7 %.
This is likely due to the fact that light conditions outside affect the
rooms’ illumination in the same way and the impact of daylight typ-
ically dominates during business hours. In view of this fact it is in-
teresting that adversary A1 observing the outdoor light nevertheless
has a lower fingerprint similarity than A2. This is explained by the
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Table 4.2: Average fingerprint similarity between the co-located and ad-
versary devices in the IoT scenario experiment 1

Office setting, 8 a.m. to 6 p.m. luminosity audio

A and B 95.0 % 91.8 %

A1 70.0 % -

A2 88.7 % 71.7 %

A3 68.3 % 62.6 %

Home setting, 6 a.m. to 10 p.m. luminosity audio

A and B 82.9 % 87.5 %

A1 70.8 % -

A2 70.6 % 77.0 %

placement of the adversary device on the outside window where its
light sensor has a very wide angle of view on outside lighting condi-
tions but won’t observe the effects that building-related factors like
the shadows it casts cause on indoor luminosity.

For audio-based fingerprints the difference between the similarity
of co-located devices and adversaries Ai is clearer. Adversary A2

located in the adjacent office of devices A and B reaches an aver-
age fingerprint similarity of merely 71.7 % in comparison to 91.8 %
for the co-located devices. This difference exists even though both
rooms connect to a common hallway to which the doors were often
kept open so that the acoustic isolation of the rooms was not perfect.
The impact of acoustic isolation can also be seen from the average fin-
gerprint similarity of adversary device A3 that was located in a coffee
room that was farther away from the target room, so that it was acous-
tically better isolated from the co-located devices. The similarity of
its fingerprints with the co-located devices is significantly lower, i. e.,
62.6 %.

In the home setting, the fingerprint similarities between co-located
devices were comparable, on the average 82.9 % for luminosity-based
and 87.5 % for audio-based fingerprints. This was clearly better than
for the fingerprints of the adversary devices A1 and A2, which could
achieve at best bit similarity values of merely 70.8 % for luminosity-
based and 77.0 % for audio-based fingerprints.

The results for experiment 2 were similar, however, limited to the
audio modality. There, the similarity of co-located devices was on av-
erage 93.2 % in the home setting and 95.2 % in the office setting. The
fingerprint similarity of adversary devices was in both settings lower,
86.1 % in the home setting and 67.9 % in the office setting. As with
adversary A2 in experiment 1, the cause for the higher similarity of
the adversary in the home setting is caused by insufficient acoustic
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isolation of the adversary from the target room. This was caused by
practical constraints of the experiment set-up, due to which the stor-
age room in which adversarial device A1 was placed was separated
from the other devices only by a light-weight door that had to be
opened from time to time. However, as we will discuss in detail in
Sect. 4.6, this allowed us to analyse the impact of contextual separa-
tion on the security of the context-based authentication.

In summary we can state that in all examined contextual settings
there is a clear difference in the average bit similarities of co-located
and adversarial devices. In all scenarios it would therefore be pos-
sible to use a secure sketch based on an ECC with an error-correcting
capability corresponding to ca. 10 % to 13 % of the used fingerprint
length. This would allow co-located devices according to (4.7) to suc-
ceed in context-based authentication, while adversary devices would
fail to do so.

4.5.4.2 Wearable Device Scenario

In the ’wearable’ scenario the observed fingerprint similarity of co-
located devices was on average 92.6 % (ranging from 87.3 % to 96.7 %).
This would mean that an ECC with error-correcting capability corres-
ponding to ca. 10 % of the fingerprint length could be used to realise
context-based authentication for devices in the wearable scenario.

In the ’cycling’ scenario the similarity of fingerprints of co-located
devices was on average 68.6 % (ranging from 62.8 % to 74.5 %) for
luminosity-based fingerprints while for audio-based fingerprints it
was 65.9 % (ranging from 63.6 % to 67.1 %). This suggests that in the
set-up of the ’cycling’ scenario, movements of the test person’s body
may introduce a significant amount audio-visual artefacts that are
potentially sensed differently by devices attached on different parts of
the body. This manifests itself in lower fingerprint similarity between
the wearable devices, requiring the use of an ECC with a higher error-
correction capability for context-based authentication to succeed.

As discussed in Sect. 4.2.2.3, we assume that in the wearable scen-
ario the adversary A is occasionally present in the same context as
the user’s wearable devices. During this time it is able to observe the
same contextual features and can therefore generate fingerprints that
are equally similar to the user devices’ fingerprints. The adversary
therefore has an equal chance of succeeding in context-based authen-
tication than legitimate devices. However, we also assume that the
adversary is not able to constantly follow the user and therefore the
time that A is able to observe the user’s context is limited. To dis-
count for these periods, the minimum number of required successful
context-based authentication iterations k according to (4.17) needs to
be increased by l which corresponds to the maximum amount of fin-
gerprints an adversary A is expected to be able to generate based on
data generated during these periods, as discussed in Sect. 4.3.3.3.
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4.5.5 Fingerprint Entropy

In this work we denote with fingerprint entropy the amount of un-
certainty that adversary A has about the fingerprints of co-located
devices A or B. In this sense, fingerprint entropy is a measure of
how difficult it is for the adversary to correctly guess a fingerprint
wA that is sufficiently similar to the user’s device’s fingerprint w (or
w′) to allow it to successfully authenticate with it.

Fingerprint extraction is dependent on observed contextual activity.
Therefore the amount of entropy bits that can be obtained from the
context typically varies depending on the hour of day. During periods
with a lot of activity in the context, more entropy can be extracted,
whereas during more inactive times like during the night, only little
contextual entropy is available. Since the used context quantisation
methods generate fingerprints in a different way, we shall analyse the
entropy of the resulting fingerprints separately.

4.5.5.1 Fingerprint Surprisal

The level-change encoding-based context quantisation approach (cf.
Sect. 4.4.2.1) generates fingerprint bits at a steady rate, as, according
to (4.18), context measurements mi are averaged to context parameter
values ci over windows of d measurements and for each such win-
dow a fingerprint bit is generated. However, as according to (4.19)
the fingerprint bit values are dependent on the presence of significant
changes in the monitored contextual parameter values ci, the distri-
bution of ’1’ and ’0’ bits is highly dependent on the amount of contex-
tual activity during the measurement period. Therefore, e. g., during
night time, as the context typically is silent and without user-related
activity, ’0’ bits dominate in the generated fingerprints, leading to a
very skewed distribution between ’0’ and ’1’ bits.

We have to assume that adversary A has knowledge of the typical
distribution of ’0’ and ’1’ bits during particular times of day and need
to take this into account when estimating the entropy of fingerprints.
We do this by evaluating the surprisal, i. e., the self-information of dis-
tinct fingerprint bit values during a particular time of day. Surprisal
is calculated by evaluating the occurrence probability of a particular
bit value b in the fingerprint during a specific time of day, using a fre-
quentist interpretation of probability. The probability of a particular
bit value (i. e., ’1’ or ’0’) equals to the fraction of that bit’s occurrences
in context fingerprints during that time of the day. The surprisal of
individual bit values is therefore defined as follows.

Definition 16 (Surprisal of fingerprint bits) If B is a random variable
modelling the occurrences of bit values in fingerprint w, then the surprisal
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σ(b) associated with the occurrence of a fingerprint bit b ∈ {0, 1} is the
self-information of this value, i. e.

σ(b) = I(b) = log
(

1
P(B = b)

)
= −log (P(B = b)) , (4.20)

and is measured in bits.

Definition 17 (Surprisal of a fingerprint)
The surprisal σ(w) of a fingerprint w is the sum of the surprisal values of
its individual bits, i.e.,

σ(w) = ∑
b∈w

σ(b). (4.21)

Whereas fingerprint surprisal refers to the unpredictability of a par-
ticular outcome, i. e., a concrete fingerprint instance, the entropy as-
sociated with a fingerprint of particular length is defined as the ex-
pected value of the surprisal a fingerprint of that length during the
particular time of day. Formally, if Wl is a random variable over the
values of possible fingerprints of length l bits during a particular time
of day, then we can define the entropy of an l-bit fingerprint as fol-
lows.

Definition 18 (Entropy of fingerprints) If Wl is a random variable mod-
elling the possible values of fingerprints w of length |w| = l, we define the
entropy H(Wl) of an l-bit fingerprint as the expected value of the surprisal
of fingerprints of that size, i. e.

H(Wl) = E(σ(Wl)) (4.22)

To exemplify this, Fig. 4.3 shows the relation of 1-bits in the finger-
print and the associated fingerprint entropy of fingerprints of 60 bits
with a window length d = 120 s during different times of the day
in the Office setting of experiment 1. As can be seen, the average
fingerprint entropy varies significantly during the day. During night
time, there are hardly any changes in the observed context measure-
ments, resulting in only very few ’1’ bits being generated during this
time of the day. Consequently also the entropy of fingerprints during
night time is very low, only a few bits. During the day when there
is significant activity in the context, numerous ’1’ bits are generated,
resulting in a more balanced distribution of ’0’ and ’1’ bits and con-
sequently also significantly more (> 50) entropy bits, corresponding
to an entropy rate of ca. 0.9 bits or more of entropy per fingerprint
bit.

For fingerprints extracted using the peak-based quantisation ap-
proach, the surprisal of fingerprint bits is constant, as encoded finger-
print bits (cf. Sect 4.4.2.2) are randomly selected and the distribution
of ’1’ and ’0’ bits is roughly equal, leading to an average surprisal of
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Figure 4.3: Fraction of 1-bits in and entropy of 60-bit fingerprints with win-
dow size d = 120 s in the office setting of experiment 1 during
different times of day
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Figure 4.4: Bitrate of fingerprint extraction during different times of day in
experiment 2 utilising peak-based list encoding

one bit per fingerprint bit. However, even though the level of contex-
tual activity does not directly impact the surprisal of the fingerprint
bits, it does have an effect on the amount of fingerprint bits gener-
ated per time unit, in contrast to the level-change-based quantisation
approach in which the fingerprint bit generation pace is static.

The effect of the differences in contextual activity during different
times of day on the rate at which fingerprint bits can be extracted
from the context is shown in Fig 4.4. It shows the average rate of fin-
gerprint bits extracted from the audio observations obtained during
experiment 2 in dependence of the time of day. As can be seen, the
more contextual activity there is in the context, the more bits are gen-
erated. This means that during the night when there is hardly any
activity, only very few bits are generated. Significant amounts of bits
are generated between 6 a.m. and 9 p.m. in the home setting and
between 9 a.m. and 6 p.m. (on workdays) in the office environment.
The average bit rates during these periods of time were 309 bits per
hour in the home setting and 368 bits per hour in the office setting.
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4.5.5.2 Impact of Partial Information

The above discussion about surprisal of fingerprints applies to ad-
versaries that have knowledge of the typical distribution of finger-
print bits during the course of a day but do not have access to actual
context measurements from the vicinity of the user’s context in which
devices A and B are located. However, as discussed in Sect. 4.5.4.1, en-
vironmental factors like, e. g., changes in outdoor lighting may affect
the generated fingerprints in both the user’s context and the contexts
of nearby adversaries. Therefore the fingerprint wA of an adversary
located in a nearby room has in many cases in practice partial inform-
ation about the fingerprint w of the user’s device, which is reflected
in a higher mutual similarity between these fingerprints.

The effective entropy of the fingerprint w can therefore be estim-
ated by looking at the probability that a bit in adversary A’s finger-
print’s wA is equal to the corresponding bit in the user’s fingerprint
w. As can be seen from Tab. 4.2, there is a 68.3 % to 88.7 % prob-
ability that a bit of a luminosity-based adversarial fingerprint wA is
equal to the corresponding bit in user’s fingerprint w. This means
that the average entropy rate of such fingerprints is 0.17 to 0.55 bits
per fingerprint bit in the office setting from the adversary’s point
of view. In the home setting, the adversary’s fingerprint similarity
for luminosity-based fingerprints is 70.6 % to 70.8 %, equalling to an
entropy rate of ca. 0.50 bits per fingerprint bit. For audio-based fin-
gerprints, the corresponding similarity values are 62.6 % to 71.7 % in
the office setting and 77.0 % in the home setting. These values cor-
respond to an entropy rate of 0.48 to 0.68 bits per fingerprint bit in
the office setting and 0.38 bits per fingerprint bit in the home setting.
We will discuss in Sect. 4.6 how these entropy rates affect the security
and practicality of the context-based authentication scheme.

In experiment 2, the results were similar, as the average fingerprint
similarity of adversary A was 67.1 % in the office setting and 86.1 %
in the home setting during the active times of a day. This corresponds
to an average entropy rate of 0.32 bits per fingerprint bit in the office
and 0.24 bits per fingerprint bit in the home setting.

4.6 security analysis

As discussed in Sect. 4.1, a number of schemes like ProxiMate of Ma-
thur et al. [82] or the audio-based scheme of Schürmann and Sigg [124]
utilise error-correcting codes for deriving authentication secrets for
verifying the proximity of peers engaged in the authentication pro-
tocol. However, none of these works provide a systematic quantit-
ative analysis on the security of these schemes under realistic real-
world conditions. In the following we will analyse which factors
need to be taken into account when evaluating the security of context-
based authentication schemes based on error-correcting codes. We
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will use the secure sketch-based construction presented in Sect. 4.3.3
as a basis for our discussion.

4.6.1 Entropy Analysis

The strength of the context-based authentication, i. e., the probability
that adversary A is able to successfully authenticate with device A is
dependent on the entropy of A’s fingerprints from the point of view
of A. It is measured in terms of the min-entropy H̃∞(W|P), where
W denotes the probability distribution of A’s fingerprints w and P
denotes the error-correcting information for fingerprint w published
by A.

Min-entropy is a ’worst-case’ measure, i. e., it quantifies the entropy
associated with those values of w ∈ W that are easiest to be guessed
by A. It is an appropriate measure for the strength of the authen-
tication scheme, as it specifically considers those outcomes that are
the most favourable for the adversary A and therefore represents the
minimal level of security that the scheme can provide.

4.6.1.1 Entropy Loss due to Information Reconciliation

As discussed in Sect. 4.3.3.2, devices A and B utilise a secure sketch
based on an error-correcting code (ECC) like a Golay or Reed-Solomon
code to perform information reconciliation [14] to eliminate deviations
between their fingerprints w and w′. In this process, device A derives
according to (4.6) error-correcting information P that enables B to loc-
alise and ’correct’ deviating bits between w and its own fingerprint
w′, if the fingerprints are sufficiently similar, i. e., their Hamming dis-
tance is less or equal to the error-correcting capability t of the used
ECC (cf. (4.7)). However, in this process, the error-correcting inform-
ation P will inevitably also leak some information about A’s finger-
print w, reducing thereby the entropy of w as an authentication secret.
The amount of information leakage is bounded by the number of
error-correcting bits, i. e., the bit length of P. For an [n, k, 2t− 1] ECC,
where n denotes the length, k the dimension and t the error-correcting
capability, this equals to (n− k) bits of entropy loss [31]. This means
that the higher the error-correcting capability of the used ECC is, the
higher also the entropy loss caused by information reconciliation will
be.

In terms of entropy loss, Reed-Solomon (RS) codes [114] provide
an optimal trade-off between error-correction capability and entropy
loss, as the code will incur for each symbol of error-correction capab-
ility an entropy loss of two symbols. In practice, using an approach
as employed, e. g., by Schürmann and Sigg [124], in which fingerprint
bits are encoded with the help of symbols of the RS-code, a code with
error-correction capability of t bits will incur 2t bits of entropy loss.
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Table 4.3 shows the required error-correction levels and associated
minimum min-entropy for fingerprints in the examined experimental
settings. As can be seen, the average required error-correction level
varies between 5 % to 18 % for luminosity-based and between 6 % to
13 % for audio-based fingerprints. Taking into consideration the en-
tropy loss incurred by information reconciliation this means that to
reach sufficient authentication strength Pmax = 2−20 (cf. Sect. 4.3.3.3),
the fingerprints w used in the context-based authentication need to
have sufficient min-entropy H̃∞(w) that their leftover entropy taking
the entropy loss due to information reconciliation into account is at
least 20 bits.

Consider, e. g., luminosity-based fingerprints in the office setting
of experiment 1. As the average similarity of the fingerprints of co-
located devices is 95 %, an error-correcting code with at least 5 % of
error-correction capability has to be used, resulting in an entropy loss
of at least 10 % of the bit length of w. To compensate for this entropy
loss the used fingerprint w therefore has to have a min-entropy of at
least 22.2 bits to reach a leftover entropy of at least 20 bits after in-
formation reconciliation. As the average entropy rate of fingerprints
in this setting is 0.17 bits per fingerprint bit (owing to the fact that
the similarity of adversary A2 is as high as 88.7 %), the minimum
bit length required for fingerprint w is 131 bits. In contrast, in the
home setting of experiment 1, luminosity-based fingerprints need to
be only 61 bits long as the entropy rate of fingerprints in this set-
ting is much higher, 0.51 bits per fingerprint bit, even though an
error-correcting code with a significantly larger error-correcting cap-
ability (18 %) needs to be used and the entropy loss and required
min-entropy are therefore considerably larger.

We can see that both the required amount of error-correction as
well as the entropy rate of the used fingerprints play an important
role for the required minimum length of the used fingerprints and
consequently the time required for extracting sufficiently strong fin-
gerprints for context-based authentication. Table 4.4 shows the re-
quired duration for extracting sufficiently long fingerprints in the
examined experimental settings. In experiment 1, the required fin-
gerprint extraction time is relatively long, due to the use of a large
window of 120 seconds to generate fingerprint bits, resulting in a
static bit rate of 30 fingerprint bits per hour. Generating sufficiently
strong fingerprints takes therefore 100 to 262 minutes in the different
experimental settings.

For experiment 2, which used the peak-based quantisation method
for fingerprint generation, the bit rate is much higher, as more than
ten times more fingerprint bits are generated on average per hour.
This results in both experimental settings to a significantly shorter
duration, i. e., 12 to 20 minutes, for aggregating the required finger-
print bits.
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Table 4.3: Error-correction levels and minimum required min-entropy
H̃∞(W) of used fingerprints w to obtain H̃∞(W|P) ≥ 20 bits
needed for an authentication strength of Pmax = 2−20 in differ-
ent experimental settings. The last two colums show the average
entropy rates of fingerprints and the corresponding minimum bit
length |w| of fingerprint w to reach Pmax.

exp. error

correction

H̃∞(W)
entropy

rate

fingerprint

length |w|

luminosity

Exp. 1 Home 18 % 31.3 0.50 61

Exp. 1 Office 5 % 22.2 0.17 131

audio

Exp. 1 Home 13 % 27.0 0.38 71

Exp. 1 Office 8 % 23.8 0.48 50

Exp. 2 Home 8 % 23.8 0.24 100

Exp. 2 Office 6 % 22.7 0.32 72

Table 4.4: Required time to extract required minimum-length fingerprints
during active times of the day

exp.
required

fingerprint

length

avg . hourly

bit rate

required

duration

(min)

luminosity

Exp. 1 Home 61 30 122

Exp. 1 Office 131 30 262

audio

Exp. 1 Home 71 30 142

Exp. 1 Office 50 30 100

Exp. 2 Home 100 309 20

Exp. 2 Office 72 368 12
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4.6.1.2 Privacy Amplification

In our scheme, as discussed in 4.3.3, we assume that devices A and
B establish an unauthenticated security association, e. g., using Diffie-
Hellman key agreement, obtaining a shared secret key. However, as
this key is unauthenticated, the purpose of the context-based key evolu-
tion process is to establish the authenticity of the pairing counterpart.

In some other approaches like, e. g., the work by Schürmann and
Sigg [124], the context fingerprint w is used to exchange a secret key
between the pairing devices A and B. The secrecy of the key is there-
fore dependent on the entropy of the used fingerprint w. This implies
that the leftover entropy H̃∞(W|P) of fingerprints after information
reconciliation needs to be sufficient to resist off-line known-plaintext
attacks, e. g., 128 bits.

However, as the error-correcting information P leaks information
about w, the adversary will obtain partial information about the ex-
changed secret key. To obtain a cryptographic key over which the
adversary does not have even partial information, so-called privacy amp-
lification has to be performed. This can be done, e. g., by applying a
universal hash function h(·) to obtain a close-to uniformly distributed
shared secret over which A does not have even partial information.
According to the Leftover Hash Lemma (LHL) [7], this privacy amp-
lification step will incur an additional entropy loss of log ε−1 bits,
where ε is a security parameter determining how indistinguishable
the distribution of the resulting secret keys is from the uniform dis-
tribution.

4.6.2 Authentication Performance

To evaluate the performance of our context-based authentication ap-
proach we consider two measures reflecting the security and usability
of the proposed scheme: the false accept rate (FAR) and the false reject
rate (FRR). FAR measures the rate at which adversary A’s fingerprints
wA will falsely lead to a successful context-based authentication with
A. This will happen if the Hamming distance of wA to A’s finger-
print w is less than the used ECC’s error-correcting capability t, i. e.,
if dist(w, wA) ≤ t. For the security of the scheme FAR is the most
important measure, as a low FAR implies a low probability for ad-
versary A being incorrectly authenticated as co-located with A.

FRR is a measure for the usability of the scheme in practice. It
measures the rate at which a benign co-located device B fails to suc-
cessfully perform a context-based authentication with its peer A. This
is the case if the Hamming distance of B’s fingerprint w′ to A’s finger-
print w is larger than the error-correcting capability of the ECC, i. e.,
if dist(w, w′) > t. A high FRR implies that benign co-located peers
often will fail to successfully authenticate, decreasing the usability
and usefulness of the approach. Therefore, in order to be successful
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in terms of security and usability, the context-based authentication
scheme must seek to minimize both FAR and FRR.

In Sects. 4.5.4 and 4.5.5, we analysed the average similarities of fin-
gerprints of co-located and adversarial devices in the different exper-
imental scenarios and their impact on the amount of required error-
correction and fingerprint length. We considered in this analysis only
the average case. However, our evaluation revealed another factor
that has not been explicitly taken into account in earlier works util-
ising contextual data for co-location authentication [82, 124]. It turns
out that also the inherent variation in the similarity of context finger-
prints needs to be taken into account, as this plays a significant role
for the FAR and FRR of the context-based authentication scheme, as
we will show below.

As the similarity values between co-located and adversarial finger-
prints fluctuate around the average value, it happens incidentally that
the fingerprint wA of adversary A is in some cases sufficiently sim-
ilar to the fingerprint w of A, i. e., dist(w, wA) ≤ t, thus allowing A
to falsely succeed in the authentication with A.

There are two main factors impacting adversary A’s success prob-
ability:

error-correction level Using an ECC with a lower error-cor-
recting capability t decreases the probability thatA’s fingerprint
wA is sufficiently similar with A’s fingerprint w, therefore mak-
ing it more difficult for A to succeed in authentication and and
consequently a lower FAR. However, reducing t makes it also
more difficult for benign co-located devices to succeed in con-
text authentication and thereby increases FRR.

fingerprint length |w| Using longer fingerprints has the effect
of averaging out short-term fluctuations in the similarities of
the used fingerprints, thus reducing the occurrence frequency of
fingerprints that incidentally have higher similarity between the
adversary’s fingerprint wA and A’s fingerprint w, consequently
reducing FAR.

Figure 4.5 shows the impact of these factors on the FAR and FRR
values for different error-correction levels (5 %, 8 %, 10 %, 12 % and
15 %) in the office and home settings of experiment 2. From Fig. 4.5a
we can see that best performance for the scheme is achieved for fin-
gerprints with bit length 512. At an error-correction level of 10 % this
set-up achieves an FAR of 0.2 % with an FRR of 0.8 %, meaning that
only ca. two authentication attempts out of one thousand will be suc-
cessful for the adversary, while less than one authentication attempt
by benign co-located devices in a hundred will be falsely rejected.

In the home setting, shown in Fig. 4.5b, the performance of the
scheme is clearly worse, especially with regard to FAR. With the same
parameters, i. e., for 512-bit fingerprints with a 10 % error-correction
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level, the scheme achieves an FAR of as much as 33.5 % at an FRR of
9.2 %. The reason for this is given by the limitations of the experi-
mental set-up, as discussed in Sect. 4.5.4.1, as the acoustic isolation
of the adversarial device was for practical reasons not sufficient. This
shows that insufficient contextual separation has a very significant
impact on the security of the context-based authentication scheme,
since even with extremely long fingerprint lengths of, e. g., 4096 bits,
the scheme can achieve in this setting an FAR of only 16.7 % at an
error-correction level of 10 %.

These results show that even under favourable conditions as in the
office setting of experiment 2 (cf. Fig. 4.5a), the adversary neverthe-
less has a non-negligible success probability (Psucc ≈ 0.2 % even in the
optimal case) emphasizing the necessity to use key evolution over sev-
eral authentication iterations as discussed in Sect. 4.3.3.2. The number
of required authentication iterations according to (4.17) for different
error-correction levels and fingerprint lengths is shown in Fig. 4.6.
From Fig. 4.6a we can see that at 10 % error-correction level in the
office setting, at least k > 2 authentication iterations are necessary for
all fingerprint lengths to ensure that adversary A’s success probab-
ility falls below Pmax = 2−20, which is required to reach the desired
authentication strength comparable to, e. g., six-digit PIN-based pair-
ing in Bluetooth.

The effect of the insufficient contextual separation in the experi-
mental set-up in the home setting is also visible in the amount of
required authentication iterations, as shown in Fig. 4.6b. As can be
seen, at the same 10 % error-correction level, 10 to 16 iterations would
be necessary to reach a sufficient authentication strength for the pair-
ing in this setting.

4.7 related work

A number of schemes have been introduced for establishing secur-
ity associations between devices in different scenarios. These can be
roughly divided based on the way the key is established into key
pre-sharing-based and context-based schemes.

4.7.1 Key Pre-Sharing Schemes

As mentioned in Sect. 4.1.1, Eschenauer and Gligor [35] were the
first to introduce a scheme for key distribution in wireless sensor net-
works (WSNs) which was based on pre-distributing key material that
was randomly sampled from a common key pool to sensor nodes be-
fore their deployment in the field. Owing to the birthday paradox, each
sensor node would share with high likelihood one or more common
keys with one or more neighbouring sensor nodes after their deploy-
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Figure 4.5: FAR vs. FRR for error-correction levels 5 %, 8 %, 10 %, 12 % and
15 % for different fingerprint lengths
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Figure 4.6: Number of required authentication iterations to reach authen-
tication strength corresponding to adversary success probability
Pmax = 2−20
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ment, allowing the nodes to use these keys in establishing a secure
link key between them.

Chan et al. [23] extend the basic approach of Eschenauer and Gligor
with three enhanced schemes, namely the q-composite random key pre-
distribution scheme, the multipath reinforcement scheme, and, the ran-
dom pairwise key pre-distribution scheme, providing improved resilience
against various kinds of attacks and increasing the security of the key
agreement, as well as providing robustness against the presence of
compromised nodes in the network.

Traynor et al. [139] presented a variation of the scheme for settings
in which one does not need to assume a fully homogeneous sensor
node population, allowing unbalanced probabilistic key distribution.
They also extended this approach to hybrid settings in which the
approach can make use of special nodes acting as key distribution
centres (KDCs).

Key pre-distribution-based schemes are mainly targeted at sensor
nodes in WSNs, which are provisioned by a single organisation be-
fore their deployment in the field. Due to the reasons outlined in
Sect. 4.1.1, these approaches are not well suited to scenarios involving
IoT devices and wearables, as these typically originate from a very
heterogeneous set of device manufacturers, lacking the organisational
set-up and trust infrastructure required for key pre-distribution. The
context-based authentication approach presented in this work does
not have any such requirements regarding pre-distribution of keys
and is therefore better suited for the targeted usage scenarios.

4.7.2 Context-Based Schemes

Varshavsky et al. [143] presented a scheme called AMIGO that uses
the Received Signal Strength Indication (RSSI) of WiFi broadcast pack-
ets observed in the environment for allowing two devices to verify
their proximity to each other. In this approach the peer devices meas-
ure and compare the signal strength fluctuations of observed WiFi
packets to determine whether they are co-located or not and thereby
authenticate a previously established secret key. The security of the
scheme stems from the fact that variations in the observed RSSI values
are correlated only if devices are located close to each other, thereby
allowing to distinguish between devices that are located near to each
other and other devices that are farther away.

The scheme was later extended by Kalamandeen et al. Their sys-
tem, named Ensemble [65] utilises not only observations about incom-
ing packets, but also active wireless transmissions of an ensemble of
trusted wearable devices, increasing the reliability of proximity veri-
fication. However, subsequent works have shown that RSSI values are
potentially vulnerable to manipulation of inference by a remote ad-
versary [63], due to the highly aggregate nature of RSSI as a measure.
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To overcome this vulnerability, Mathur et al. [82] therefore improved
the approach in the ProxiMate system that uses the fluctuations in
the RF-field of TV and FM radio transmissions for proximity verifica-
tion. As discussed in Sect. 4.1.2, these approaches are only applicable
for demonstrative identification scenarios in which the user has to
place the devices close to each other (typically 15 cm to 35 cm) for the
authentication to succeed. This limits, however, the applicability of
these approaches in IoT device pairing scenarios in, e. g., Smart Home
environments, due to the significant effort it imposes on the user to
manually establish pairings between all of his potentially numerous
IoT devices.

The work of Varshavsky et al., Kalamandeen et al. and Mathur et al.
was evaluated by Zenger et al. [148], who provide a thorough empir-
ical evaluation and implementation of a proximity-based authentica-
tion scheme exploiting location-based channel randomness between
an access point and two IoT devices, of which one is a trusted ’loaded’
device used to authenticate the other ’unloaded’ resource-constrained
device. Their scheme improves security by removing dependence
from external environmental sources that could potentially be influ-
enced by the adversary.

Narayanan et al. [100] proposed another WiFi-based co-location
verification approach, in which devices monitor WiFi broadcast pack-
ets and derive location tags from them. The peers will then compare
these tags to determine whether they are co-located or not. This solu-
tion is, however, targeted at a scenario in which the goal of the par-
ticipating devices is merely to establish evidence of co-location in a
privacy-preserving manner. Consequently Narayanan et al. do not
discuss pairing as such but assume the existence of appropriate pre-
existing security associations between the participating peer devices.

Truong et al. and Shrestha et al. developed solutions for using
rich context measurements for protecting zero-interaction authentic-
ation (ZIA) against relay attacks. Their approaches make use of con-
textual modalities to allow two devices to verify their presence in
the same context. In this scenario, however, the involved devices are
assumed to be trusted and have already established a security asso-
ciation. Their schemes are therefore not applicable in our scenario,
where devices initially cannot make any assumptions about the trust-
worthiness or authenticity of the pairing counterpart.

Schürmann and Sigg [124] presented the first context-based au-
thentication scheme that used context measurements in the key ex-
change process. Their scheme uses context fingerprints derived from
measurements of the ambient sound energy level in several different
frequency bands for exchanging a secret key between peer devices
located in the same audio context. The scheme uses a fuzzy vault
as introduced by Dodis et al. [64] that is based on a Reed-Solomon
error-correcting code to allow devices with sufficiently similar con-
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text fingerprints to successfully exchange a common secret key, while
keeping adversary devices from doing so, as these will not be able to
generate sufficiently similar context fingerprints.

However, Schürmann and Sigg did not provide a quantitative ana-
lysis of the security of their scheme. They do not consider that the
secrecy of the exchanged secret key is dependent on the min-entropy
of the used context fingerprints and that the adversary obtains par-
tial information about the key due to the error-correcting information
used in the key exchange. This increases the requirements towards
the entropy of the fingerprint as well as makes it necessary to use
privacy amplification to make sure the adversary doesn’t have even
partial information about the exchanged cryptographic key.

4.8 summary and conclusion

In this chapter we have discussed solutions that have been proposed
for establishing security associations between devices. Traditional
approaches rely on active involvement of the user, requiring the user
to manually pair involved devices, e. g., by entering authentication
codes or confirming them when displayed on the screen of a device.
This process is in many cases tedious and error-prone, making it an
unsuitable solution in the long run, as smart homes are expected to
have more and more devices (dozens if not hundreds) that would
need to be set up by the user.

Alternative solutions for key agreement like the ones proposed for
WSNs [35, 23, 139] that use pre-shared keys drawn from a common
random key pool, have practical limitations. It is very unlikely that
IoT device vendors would be able or willing to set up a common key
pool from which to sample required keys to be provisioned to devices
before their deployment. On the other hand, these approaches do also
not provide the possibility to separate trust domains of individual
users in an effective and convenient way.

Other proposed approaches for device authentication seek to util-
ise contextual measurements like WiFi RSSI [143], RF field fluctu-
ations [82] and audio [124] to establish the co-presence of the de-
vices in the same context and use this as an authenticator of the
fact that devices belong to the same trust domain. However, these
works either have problems with regard to the security guarantees
they provide [143], work only over a very short distance [82], or, do
not adequately consider all factors that impact the security of the
authentication scheme. Other schemes, on the other hand, address
scenarios in which they already assume the existence of a security
association between the involved devices [140, 131, 100].

To the best of our knowledge, this work is the first one to sys-
tematically analyse and quantify the factors that affect the security
of context-based authentication schemes. Building and extending
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on previous approaches, we present a context-based authentication
framework that is based on context fingerprinting. The scheme util-
ises secure sketches that are based on error-correcting codes to allow
peer devices present in the same context to evolve their unauthentic-
ated pairing key and thereby gradually increase the confidence in the
authenticity of the counterpart. In particular, our work takes into ac-
count the entropy loss introduced by the use of error correction to
quantify the security of the authentication scheme in practice based
on empirical evaluation data from real-world scenarios involving IoT
device pairing and wearable devices.

The results highlight the importance of proper understanding of
the properties of the context before deployment of the scheme in prac-
tice, as, e. g., the level of contextual separation between devices in the
trust domain and outsiders plays a crucial role for the security of the
scheme. However, by taking these factors into account, we show that
using the iterative authentication approach it is possible to achieve re-
liable authentication and trust domain separation requiring no active
involvement of the user in the process.



5
S E C U R I T Y M A N A G E M E N T I N I O T B A S E D O N
D E V I C E P R O F I L I N G

During the last years, the proliferation of the so-called Internet of
Things (IoT) has been an emerging megatrend in the development
of computing and communication systems. IoT encompasses a wide
spectrum of different environments and contexts ranging from smart
homes, buildings and smart city infrastructures to the industrial Inter-
net. Recent forecasts predict that the number of connected IoT devices
will globally grow to more than 20 billion devices by the year 2020 [45,
43].

Especially in the smart home setting IoT devices are enjoying grow-
ing popularity, as consumers install increasing numbers of internet-
connected appliances in their homes in order to be able to monitor,
control and automate aspects of their living environment. Examples
of typical smart home IoT devices include smart power plugs, heating
and air conditioning systems, security and surveillance systems, in-
telligent lighting, traditional kitchen appliances with added wireless
connectivity and many other new and emerging device types.

Due to the increasing popularity of IoT devices, many new device
manufacturers are entering the IoT market in order to benefit from
the business opportunities provided by this rapidly growing market.
Many of these entrants are new players who may not have significant
previous experience in engineering products with internet connectiv-
ity and consequently lack the necessary expertise to apply good se-
curity designs and implementations in their products.

This has led to the situation that many devices being installed in
user’s homes have inherent security vulnerabilities. There is con-
sequently an increasing amount of reports in the media about vul-
nerabilities in IoT devices that can be exploited by attackers (e. g., [25,
77]). Some software components are also widely reused in imple-
mentations of a wide variety of different types of IoT devices, so
that a single flaw in the software implementation has the potential
to be exploited in a very large number of different devices [127]. Ac-
cording to a recent report, many IoT devices are also using publicly-
known private keys for authentication, rendering them susceptible to
be compromised by adversaries taking advantage of this vulnerabil-
ity [126]. Recently, also an entirely new class of malicious software
specifically targeting IoT devices, so-called IoT malware has emerged.
Some of the recent Internet-wide distributed denial of service (DDoS)
attacks have been attributed to IoT malware like the infamous Mirai
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botnet [51]. IoT malware typically utilise compromised IoT devices
as bots in large distributed botnets for launching attacks.

All of the above developments have led to a situation in which
an increasing number of IoT devices with exploitable security vul-
nerabilities are present in end-users’ home networks, providing ma-
licious adversaries entirely new opportunities to infiltrate and attack
against users’ networks and use the users’ devices for other nefarious
purposes. What are therefore needed are novel solutions for protect-
ing users’ local networks against threats posed by such vulnerable
devices in order to stop devices from being compromised and pro-
actively protect other devices in the network in case an adversary
successfully manages to compromise a vulnerable device.

5.1 problem description

The rapid development of the IoT device market has led to a situ-
ation in which new device manufacturers are bringing products to the
market without having appropriate expertise about security designs
nor skills for creating secure implementations. Many manufacturers
are driven by a desire to bring their products quickly to the market
in order to secure market share. This leaves often only little time
for proper security designs and testing of products with security in
mind. In addition, especially simpler devices are planned with a very
limited budget, leaving virtually no resources for extensive security
testing of the product. As a result, a significant number of products
brought to the market have security vulnerabilities stemming from
insecure design or flawed implementation at the time the devices are
shipped.

5.1.1 Insufficience of Software Patching

The preferred way to deal with flawed implementations would be to
fix them by applying appropriate security patches that eliminate soft-
ware or design errors present in the device. However, in many cases
device vendors do not provide such security patches in a timely man-
ner. This can be either because they are unable to do so due to end-
users not registering their products, so that manufacturers are unable
to notify them about the availability of patches to their product. In
other cases manufacturers may merely lack motivation for provid-
ing such updates in a timely manner, as this will not generate any
immediate additional revenue to cover the costs of developing and
distributing the patches.

Many device manufacturers also do not design their products with
with software updates in mind, so that many products lack facilities
for applying software updates automatically, leaving the responsib-
ility for keeping their devices up-to-date with the end-users. Many
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regular users, however, lack the necessary skills and motivation to
make sure their devices are updated with the latest security patches.

5.1.2 Need for Brownfield Solutions

All of these factors lead to a situation in which there often are vul-
nerable IoT devices present in the users’ home networks. Security
solutions will need to take this into account and therefore be able
to operate in situations in which one needs to assume that vulner-
able devices with exploitable vulnerabilities are likely to be present
in the network. Solutions need to enable such vulnerable devices to
co-exist with other devices in the network during the whole lifetime
of these devices. This setting mandates the security design to follow
a brownfield1 development approach, i. e., the developed mechanisms
must be able to co-exist with devices that are inherently vulnerable to
compromise as well as with other legacy devices and software com-
ponents that users already have or are going to deploy in their home
networks.

5.1.3 Goal and Contributions

We address the problem of vulnerable devices that are present in the
user’s home network through IoTSentinel, a system that is able to
automatically identify the device types of devices that the user installs
in his home network by fingerprinting the communication behaviour
of each device and using machine-learning based classification mod-
els to match these fingerprints to known device types. After identi-
fying the type of a device, IoTSentinel enforces mitigation measures
for such devices that are known to have security vulnerabilities. This
is done by applying appropriate traffic flow filtering in order to pro-
tect vulnerable devices from being compromised and preventing data
leakage as well as protecting other devices in the network in cases
where compromise of a vulnerable device cannot be prevented.

In this work we make following contributions:

• We present the design of IoTSentinel, a system for automatically
identifying IoT devices when they are installed to the system
and managing their security.

1 In software engineering, brownfield development refers to a setting in which a de-
veloped software system must co-exist in the immediate presence of legacy systems
and therefore needs to take this into account in its architecture. The term is bor-
rowed from civil engineering, where brown field land refers to a construction site
where pre-existing buildings and infrastructure need to be taken into account when
designing and erecting new buildings, in contrast to green field land, where no
earlier structures exist.
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Figure 5.1: The IoTSentinel adversary model

• A framework for using traffic flow filtering to limit traffic flows
of vulnerable IoT devices to protect them from compromise and
protect other devices from potentially compromised devices.

We evaluate the performance of IoTSentinel based on a dataset of
27 real-world IoT devices and show its feasibility for effective security
management of end-user home networks.

5.2 adversary model

Our adversary model is shown in Fig. 5.1, showing a typical set-up
in a local network in a home or a small office, in which IoT devices
are connected to the home gateway router over WiFi or an Ethernet
connection. We consider both local and remote adversaries.

A local adversary is located within the wireless range of the user’s
IoT devices or has possibly also intermittent physical access to them.
A local adversary seeks to utilises vulnerabilities in the wireless in-
terface of the IoT device to intrude and compromise the targeted
device. Remote adversaries seek to attack against the user’s IoT de-
vices remotely over the network. While typical Small Office, Home
Office (SOHO) routers do usually not allow external entities to directly
contact devices in the internal network, it has been demonstrated that,
e. g., malware on the smartphone of the user can be used to locate po-
tentially vulnerable devices in the local network and use ’NAT hole
punching’ to allow the adversary to remotely connect to the vulner-
able device for mounting attacks against it [134].

5.2.1 Adversary Goals

The goal of either local or remote adversaries is to compromise IoT
devices in the user’s network utilising exploitable security vulnerab-
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ilities of devices. The target of the adversary is to exploit devices in
order to either

• exfiltrate sensitive user data, security credentials or encryption
keys,

• use compromised IoT devices for scanning for other vulnerable
devices in the user’s network,

• using compromised devices for launching attacks against other
vulnerable devices in the local network or remote targets on the
Internet, or,

• inject false or tampered information into the user’s network in
order to provoke desired reactions from the user.

5.2.2 Assumptions

We assume that IoT devices that the user installs in his network can
have security vulnerabilities, but are initially uncompromised, i. e.,
benign. Therefore it will take some time until the adversary will loc-
ate a newly installed vulnerable device and identify and execute an
appropriate exploit against the device. We therefore assume that the
initial behaviour of the device when introduced to the user’s network
is benign for a sufficiently long period of time in order to allow IoT-
Sentinel to collect sufficient genuine data about its communication
behaviour to correctly identify the device’s device type.

We also assume that the components of the IoTSentinel system are
sufficiently well protected against targeted attacks against the IoT-
Sentinel system itself. We therefore do not consider such attack scen-
arios in the context of this dissertation.

5.3 system design

To protect the IoT devices in the local network of the user, IoTSentinel
will perform following actions: it will use the communication beha-
viour of devices that are newly introduced into the system to finger-
print them and identify each device’s device type. In this work, the
notion of device type is defined to be the unique combination of a
device’s make, model and software version. Based on the identified type,
it will then make a vulnerability assessment of the device, which is
based on a repository of know vulnerabilities linked to particular
device types. According to the result of the vulnerability assessment,
IoTSentinel will enforce appropriate traffic filtering to protect devices
from being infected and constrain potential damage in case devices
do get infected by the adversary.
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Figure 5.2: IoTSentinel system design

5.3.1 System Components

The system design of IoTSentinel is shown in Fig. 5.2. It consists of two
main components: the Security Gateway (SGW) and the IoT Security
Service (IoTSS).

5.3.1.1 Security Gateway

The Security Gateway takes the role of an ordinary SOHO WiFi router
providing internet connectivity to all devices in the local network.
The SGW can be realised in the form of a dedicated hardware device,
replacing the WiFi router in the target environment, or, it could be
installed to legacy routers in the form of a firmware update, if the
hardware resources of the router are sufficient to support the addi-
tional functionality required by SGW. IoT devices in the user’s home
or office connect to SGW using WiFi or a wired Ethernet connection
(For instance, many hub devices acting as gateways for devices like
smart light bulbs using other wireless protocols than WiFi often are
connected to the router over wired Ethernet).

The SGW monitors and fingerprints all devices in the local network
connected to it. It sends the obtained device fingerprints to IoTSS who
will identify each device’s corresponding type and return it along
with a security policy to be applied on the device type in question
to SGW. It is the task of SGW then to enforce the security policy by
applying appropriate traffic filtering on the traffic of IoT devices, as
discussed in detail in Sect. 5.3.5.

The fingerprinting is based on monitoring the initial packets com-
ing from an IoT device that is being installed in the user’s network
for a short period of time (e. g., 2 min) and deriving characteristic
features that describe the communication behaviour of the device



5.3 system design 107

during the set-up process. The rationale here is that the behaviour
during this initial phase of device induction is relatively static allow-
ing for reliable identification of each device’s device type. As our
evaluation in Sect. 5.4 shows, this communication behaviour is suffi-
ciently characteristic for device types, allowing IoTSentinel to distin-
guish between them. The fingerprinting process is described in more
detail in Sect. 5.3.2.

5.3.1.2 IoT Security Service

The IoT Security Service is a cloud-based server component operated
by a specialised IoT Security Service Provider (IoTSSP). IoTSS aggreg-
ates fingerprinting information about known device types from all
SGWs connected to it and performs device-type identification based
on the device fingerprints that each SGW sends to it. It also maintains
a repository of security policies for each device type that is known
to have security vulnerabilities. Each policy determines an isolation
level to be applied for the particular device type, along with possible
fine-grained traffic filtering rules, e. g., denying access to particular
ports on the device in question that are known to have exploitable
vulnerabilities. We will discuss in more detail in Sect. 5.3.4 how the
security policies are determined.

Based on the identified device type, IoTSS will retrieve the corres-
ponding security policy from its repository and return the identifier
of the device type along with the policy back to the SGW that reques-
ted the identification of the corresponding device fingerprint.

5.3.2 Device Fingerprinting

When IoT devices are first installed into a network, they typically un-
dergo a set of configuration steps, during which they typically com-
municate with the device vendor’s back-end system (e. g., to check
for device firmware updates), or, perform service discovery to locate
other devices and services in the local network. The pattern and
semantics of these interactions are often vendor- and device-type-
specific and can therefore be used to determine the type of each
device. The goal of the fingerprinting approach is therefore to cap-
ture the characteristic patterns of these initial communications in a
way that makes it possible to identify the type of each device.

The SGW acts as the WiFi router for the local devices and is there-
fore the endpoint of WPA2-encrypted connections over WiFi, allow-
ing it to see all data frames sent over WiFi in plaintext. However,
in many cases IoT devices use transport or application layer proto-
cols like TLS or HTTPS to protect their communication with, e. g., the
vendor’s cloud service, so that actual packet payloads will often be
encrypted. This mandates that the fingerprinting approach can util-
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ise only packet header information that will be available in plaintext
regardless of the presence of payload encryption.

Device fingerprinting is initiated when the SGW discovers that a
device with a previously unknown MAC address is connecting to
the local network. After this, SGW starts recording packets p1, p2, . . .
originating from the device. From each packet pi, a feature vector
( f1,i, f2,i, . . . , f23,i) of 23 distinct features is extracted based on the
header information of pi. The features encode specific properties of
the packet like used protocols, header flags, packet size as well as
source and destination ports, as described in detail in [92]. The n first
feature vectors are then combined to form device fingerprint F.

After observing a device’s communications for k seconds, the SGW

will extract the fingerprint (if necessary, padding it with zeros, if less
than n packets were observed) and send it to IoTSS for device-type
identification.

5.3.3 Device-Type Identification

Device-type identification is performed by IoTSS using a two-step ap-
proach [92]: in the first phase, the device fingerprint F is tested
against a set of device-type-specific classification models. Each of
them is pre-trained by IoTSS using labelled fingerprints originating
from the specific device type. Each classifier provides a binary pre-
diction whether fingerprint F represents the classifier’s device type
or not. The device-type-specific classifiers are implemented using the
Random Forest classification algorithm [16]. The testing of a device
fingerprint against a Random Forest classifier is a relatively efficient
operation, which allows fingerprint F to be quickly tested against a
very large number of classifiers. The effectiveness of classification is
important since also the number of distinct device types will likely
grow to be very large.

Since it is possible that several classification models will provide
a positive prediction, a second step is required, in which the edit
distance of fingerprint F to a set of representative fingerprints from
those device types for which the corresponding classifier provided a
positive prediction [92] is compared. The device type with the lowest
aggregate edit distance is then output as the predicted device type.

The two-step classification approach described above allows IoT-
Sentinel to operate efficiently even if there are a large number of
known device types. The first classification step acts as a quick pre-
screening phase for determining a potential subset of device types,
thereby reducing the number of required edit distance calculations
between the tested fingerprint and each device type’s prototype fin-
gerprints, which are significantly more time-consuming than the test-
ing of a fingerprint against a Random Forest classifier [92].
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5.3.4 Vulnerability Assessment

For each device type that is known to the IoTSentinel system the IoTSS

will periodically perform vulnerability assessments to evaluate the
potential threat level that is connected to individual device types. In
performing the vulnerability assessment, IoTSS can utilise a number
of complementary sources for vulnerability information.

5.3.4.1 Vulnerability Repositories

A straightforward way for identifying potential vulnerabilities of spe-
cific device types is to cross-check relevant records from publicly ac-
cessible vulnerability repositories like Common Vulnerabilities and
Exposures (CVE) [95] or National Institute of Standards and Techno-
logy (NIST) National Vulnerability Database (NVD) [101] based on the
device model information of each device type. Such vulnerability
databases provide an automated and searchable way for the IoTSSP

to find reported vulnerabilities for specific device types and evaluate
their severity for deciding which mitigation measures to apply for
particular device types.

5.3.4.2 Penetration Testing

In some cases, especially for particularly popular IoT device types,
the IoTSSP may also employ automated or manual penetration testing
in trying to identify security issues with popular device types. Due to
the relatively high cost of this approach, however, penetration testing
is not likely to be applicable to all device types in general. The ad-
vantage of this approach is that it provides relatively accurate inform-
ation about found vulnerabilities, allowing an accurate assessment of
related threats and required mitigation policies.

Penetration testing can be augmented with recent approaches for
automated bug search in firmware binaries of devices [37], in cases
where the firmware images of devices are available, e. g., from the
device vendor’s website.

5.3.4.3 Vulnerability Crowdsourcing

Another approach for aggregating vulnerability information about
IoT devices is to crowdsource it from various sources like security ad-
visories from device vendors, computer emergency response teams
(CERTs), or, even security-oriented developer mailing lists like, e. g.,
BugTraq [19]. While crowdsourcing vulnerabilities from such sources
provides a fast and up-to-date way of aggregating security informa-
tion, it involves a high degree of manual work required to be done
by security experts, therefore making it a very costly way of generat-
ing vulnerability assessments for device types. This would, however,
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provide a business model for IoTSSPs as they could sell their expert-
ise in aggregating vulnerability information for IoT devices, e. g., as
a subscription-based service to customers, very much in the same
way as anti-virus vendors sell subscriptions to their computer secur-
ity products for workstations, desktops and laptops, where a core
aspect of the products are regular updates to the malware signature
databases required by these products.

5.3.5 Enforcement

The enforcement of device-type-specific security policies is realised
by the SGW. Based on the security policy provided by the IoTSS, SGW

generates software-defined networking (SDN)-based traffic flow rules
that logically partitions the local networks into two virtual subnet-
works, a trusted and an untrusted network. The traffic flow rules are
enforced by a virtual switch like Open vSwitch (OVS) [107] running
on SGW. The traffic filtering rules realise different isolation levels for
devices based on the security assessment of the device’s type. We
envisage at least following isolation levels for IoTSentinel, shown in
Fig. 5.3:

strict This isolation level limits the communication of devices to
the untrusted group only. No Internet access is allowed for de-
vices in this isolation level.

restricted In this isolation level, communication of devices is lim-
ited to the untrusted group as well as to a limited set of des-
tination addresses on the Internet (e. g., the cloud sevice of the
device vendor).

trusted In this isolation level, communication with any devices in
the trusted group as well as full internet access is permitted.

The security policies for device types in the restricted isolation level
include also a list of IP addresses or Domain Name System (DNS)
names identifying the remote entities with which devices of this type
are allowed to communicate with. Typically this set of endpoints
would include the addresses to cloud-based back-end services of the
device type’s manufacturer.

In addition to the aforementioned isolation levels, and division of
the network to an untrusted and trusted subnetwork, there is also a
quarantine network in which newly installed devices are placed be-
fore their device type has been identified and an isolation level has
been determined. In the quarantine network devices have Internet
access but can’t communicate with any other devices in either the
trusted nor untrusted networks, with the exception of dedicated mas-
ter devices like the smartphone or laptop of the user which is used to
perform the device installation into the user’s network.
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Figure 5.3: Security policy enforcement with IoTSentinel isolation levels

The target of using enforcement rules and isolation levels is primar-
ily to mitigate the risk of device compromise by external adversaries
by limiting the communications of potentially vulnerable IoT devices.
On the other hand this also mitigates the risk of leaking sensitive
user data to an external adversary even if a device in the untrusted
group should be compromised, as it is not allowed to communicate
with hosts located outside the untrusted virtual network. However, in
order to preserve the utility of the device for the user, it may be neces-
sary to allow strictly controlled communications with known benign
entities like the IoT device vendor’s back-end systems. This is real-
ised through the restricted isolation level that enables such dedicated
communications.

By isolating potentially vulnerable devices from other devices in
the trusted group, we can also protect devices in the trusted group in
case a vulnerable device is compromised, e. g., by a local adversary.
This way, compromised devices in the untrusted group cannot be
used to attack devices in the trusted group and use them to leak
sensitive user data or attack targets on the Internet.

In cases in which a device fingerprint F cannot be associated with
any known device type, the associated device is assigned the strict
isolation level. Fingerprints associated with such unknown device
types can be stored by the IoTSS and re-evaluated when new device-
type classifiers are added to the system. If the stored fingerprint
matches a new device type, the isolation level of the associated device
is updated accordingly and the SGW notified, which will then update
the isolation profile of the device. Also, if a new vulnerability associ-
ated with a device type is discovered that mandates a change in the
device type’s assigned isolation level, the IoTSS will notify all SGWs

hosting devices of the affected device type. The SGW will then update
the isolation profiles of all devices of this type according to the new
isolation level.
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5.4 evaluation

To evaluate the device identification performance of the IoTSentinel
framework we developed a experiment set-up to test our approach
on real-world IoT devices. We purchased a set of 27 IoT devices and
repeated the set-up process in our laboratory network mimicking a
typical SOHO network setting typically present in a smart home en-
vironment. During the set-up process of each device we collected the
data packets emitted by the devices and derived device fingerprints
as discussed in Sect. 5.3.2 from them. Using the fingerprints as train-
ing data, we then trained the machine-learning models as discussed
in Sect. 5.3.3 and tested their performance in identifying the device
types of individual devices using classification accuracy as the meas-
ure of fitness.

5.4.1 Experiment Set-Up

Our evaluation was performed in a lab environment in which an SGW

was used tp collect the communication data from tested IoT devices.
In our evaluation set-up, we implemented the functionality of the
SGW for IoT device measurement collection on a laptop running Kali
Linux [66]. We used the hostapd software package [79] to set up
a WiFi AP simulating the WiFi interface of the SGW. An additional
external Ethernet interface was connected to the laptop to simulate
the Ethernet ports typically present in SOHO WiFi routers.

5.4.1.1 Data Collection

The communication packets of the tested IoT devices were captured
by running tcpdump [137] on the monitored WiFi and Ethernet in-
terfaces. This allowed us to collect all communication packets on
both wireless and wired interfaces of the SGW. The data collection
was facilitated with the help of a scripted experimentation user inter-
face (UI), providing step-by-step instructions to the test person setting
up the device into the laboratory network. These instructions were
compiled manually based on the hardcopy manual or on-line instruc-
tions provided for the tested devices.

The typical set-up process involves the use of a device- or vendor-
specific app, which was installed on a smartphone used to perform
the tests. In a few cases the set-up process required the use of a PC

application that was installed on a laptop computer used in the tests.
The set-up process, shown in Fig. 5.4, usually involves performing

a factory reset (also called hard reset) of the tested device to erase any
settings and bringing it to a state identical to when it had not been
configured yet. In most cases the device will then set up a WiFi ac-
cess point to which the user needs to connect the smartphone (1) with
the help of the companion app. After this the companion app would
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Figure 5.4: Typical set-up process of WiFi-based wireless IoT devices

request the user to provide access credentials to the user’s WiFi net-
work (or use credentials previously stored in the companion app) and
transmit these to the device being set up. The IoT device will then
disconnect from the smartphone and use the provided credentials to
connect to the user’s WiFi access point (i. e., the Security Gateway
in our test set-up) (2). Upon successful connection, the IoT device
will typically connect to its manufacturer’s cloud service (3), e. g., to
check for firmware updates, after which the companion app on the
smartphone also is able to monitor and control the device with the
help of the cloud-based service (4). During the entire set-up proced-
ure the data packets transmitted by the IoT device were captured and
recorded by the SGW for off-line fingerprint extraction and evaluation.

5.4.1.2 Dataset

We selected a representative set of IoT devices that were available in
the European market in the first quarter of the year 2016 for our ex-
periments. They covered a broad range of functionalities ranging
from smart lighting, home automation, and health monitoring to
household appliances and IP cameras. Most of the selected devices
used WiFi or Ethernet to connect to the user’s smart home network.
Some devices, particularly such devices that needed to operate on
battery power without connection to a power outlet used low-energy
protocols like, e. g., ZigBee [150], Z-Wave [147] or Bluetooth Low En-
ergy (BLE) [133]. These devices connected indirectly to the network
using a gateway or hub device that was connected via WiFi or Ether-
net to the test network. For these devices we focused on monitoring
the indirect traffic originating from the hub device when forwarding
data from the IoT device to the user’s network. A detailed overview
of the tested devices and the communication protocols they used is
given in Tab. 5.1.
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Table 5.1: IoT devices and their connectivity technologies

device model w
i
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i

z
i
g

b
e
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e
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v

e

o
t

h
e

r

smart

lighting

Osram Lightify Gateway • • ◦ ◦ ◦
Philips Hue Bridge 3241312018 ◦ • • ◦ ◦
Philips Hue Switch PTM 215Z ◦ • ◦ ◦ ◦
WeMo Link Bridge F7C031vf • • ◦ ◦ ◦

smart home

automation

Homematic switch HMIP-PS ◦ ◦ ◦ ◦ •

MAX! Cube LAN Gateway ◦ ◦ • ◦ •

D-Link Hub DCH-G020 • ◦ • • ◦
D-Link Door & Window sensor ◦ ◦ ◦ • ◦
D-Link Siren DCH-S220 • ◦ ◦ ◦ ◦
D-Link Smart plug DSP-W215 • ◦ ◦ ◦ ◦
D-Link Water sensor DCH-S160 • ◦ ◦ ◦ ◦
D-Link Motion sensor DCH-S150 • ◦ ◦ ◦ ◦
Edimax SP-1101W Smart Plug • ◦ ◦ ◦ ◦
Edimax SP-2101W Smart Plug • ◦ ◦ ◦ ◦
Ednet.living power Gateway • ◦ ◦ ◦ •

TP-Link Smart plug HS100 • ◦ ◦ ◦ ◦
TP-Link Smart plug HS110 • ◦ ◦ ◦ ◦
WeMo Insight Switch F7C029de • ◦ ◦ ◦ ◦
WeMo Switch F7C027de • ◦ ◦ ◦ ◦

health

monitoring

Withings Wireless Scale WS-30 • ◦ ◦ ◦ ◦
Fitbit Aria WiFi-enabled scale • ◦ ◦ ◦ ◦

household

appliances

Smarter iKettle 2.0 SMK20-EU • ◦ ◦ ◦ ◦
SmarterCoffee SMC10-EU • ◦ ◦ ◦ ◦

ip cameras

D-Link Camera DCS-930L • ◦ • ◦ ◦
D-Link Camera DCH-935L • ◦ ◦ ◦ ◦
Ednet IP camera Cube • ◦ • ◦ ◦
Edimax IC-3115W • ◦ • ◦ ◦
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The device set-up experiment was repeated n = 20 times for each
device to acquire sufficient data to train the device-type-specific clas-
sification models used for device identification. From the communic-
ation trace of each experiment one device fingerprint was extracted,
resulting in a database of 540 fingerprints from 27 different device
types.

5.4.1.3 Results

The performance of the device identification approach described in
Sect. 5.3.3 was evaluated using stratified 10-fold cross-validation, in
which the database was divided into 10 equal parts, so-called folds.
In each iteration, 9 folds were used as training data to train the
device-type classifiers and one fold was used for testing. The cross-
validation was repeated 10 times.

The results show very good performance for most IoT device types.
For 17 device types the classification accuracy is above 0.95, most of
them reaching 1, indicating perfect classification accuracy. However,
the average overall classification accuracy is only 0.82, as for 10 de-
vices the classification performance is lower, around 0.5. However,
this is still significantly better than a random class assignment which
would yield an accuracy of merely 1/27 ≈ 0.037.

Closer analysis of the classification results of the worse-performing
10 device types reveals that the misclassifications of these devices
are exclusively occurring between similar devices of the same device
vendor. For instance, the smart water cooker (iKettle) and coffee maker
(SmarterCoffee) of the device manufacturer Smarter2 receive lower ac-
curacy scores only due to the fact that the device identification ap-
proach tends to be confused between these two products. This is
caused by the fact that even though these products look very differ-
ent from the outside, they use an identical hardware and software set-
up for realising WiFi connectivity and intelligent functionality. Their
communication behaviour is therefore very similar, making it diffi-
cult for the identification approach to distinguish between these two
device models.

The same applies to the smart power plug devices from Edimax and
TP-Link. Our set of tested devices contains two different smart WiFi
power plug models each from both manufacturers: the SP-1101W
and SP-2101W from Edimax and the HS100 and HS110 from TP-Link.
Also for these device types, misclassification occurs due to a confu-
sion between the particular device models from the same manufac-
turer. This is easily explained, as the respective power plug models
from the same manufacturer are nearly identical devices with very
similar form factors: their only difference is that one of the models
(SP-2101W from Edimax and HS110 from TP-Link) offers the addi-
tional feature of providing real-time measurements about the current

2 https://smarter.am/

https://smarter.am/
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flowing through the power plug. It is therefore likely that also for
these devices the reason for confusion between the closely related
device models is caused by nearly identical hardware and software
implementations causing the related device models to display a very
similar communication behaviour which is difficult to distinguish by
the device identification method.

Also four devices from D-Link get confused by the device identi-
fication approach: the Siren DCH-S220, Smart plug DSP-W215, Water
sensor DCH-S160 and Motion sensor DCH-S150. A closer look at the
firmware versions provide a likely reason for the confusion between
devices: by inspecting configuration information of the devices in
question we could verify that at least the sensor devices (DCH-S150,
DCH-S160 and DCH-S220) indicated to have the same firmware ver-
sion number. This suggests that the device manufacturer in question
likely builds its products based on a generic software platform with
only minor device-type-specific modifications to accommodate spe-
cific features of the device. This is also supported by recent reports
about IoT-specific security vulnerabilities [127] affecting a wide range
of different IoT products because they are built using a common soft-
ware platform with a number of re-used components.

For device identification this means that even though there may be
obvious and apparent differences in the features and functionality of
some IoT devices, some groups of devices share a large part of their
code base in common with other device models in the group. Be-
cause of this, their communication behaviour is very similar, making
reliable differentiation of devices’ types within such groups challen-
ging. This applies especially to communication behaviour during the
installation of the device, which IoTSentinel uses for device identifica-
tion, as the function-specific behaviour of the device is initiated only
after the device has been successfully installed in the user’s home
network. As we will discuss in more detail in Sect. 6.2, this could
be, however, remedied by extending the device identification process
also to the communication behaviour that the devices display after
they have been successfully installed in their target environments.

5.4.2 Prototype Implementation

We implemented a prototype of IoTSentinel consisting of a Raspberry
Pi 2 [112] development board realising the Security Gateway func-
tionality and an IoT Security Service running on a remote server. The
system design of the prototype is shown in Fig. 5.5.

The SGW was realised using a modified version of the open-source-
based Floodlight SDN controller [12] supporting the Open vSwitch
virtual switch. The Raspberry Pi was configured to provide a wireless
AP using the hostapd [79] software package.
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Figure 5.5: Overview of the IoTSentinel prototype design

5.4.2.1 Device Monitoring

The device monitoring component is realised as an extension to the
SDN controller functionality. This component is responsible for mon-
itoring the MAC addresses of devices connecting to the SGW and ini-
tiating fingerprinting if new devices that have previously not been
observed join the user’s network. This is done by invoking the finger-
printing module and providing to it the MAC address of the device to
be identified.

5.4.2.2 Fingerpinting

The fingerprinting component uses tcpdump [137] to capture pack-
ets from the wlan0 and eth1 interfaces of the SGW. When receiv-
ing a fingerprinting request for a particular MAC address from the
device monitoring component, the fingerprinting module will filter
packets originating from the given MAC address for a duration of k
seconds and initiate feature extraction on the sequence of received
packets during this time. As discussed in 5.3.2, the first n packets
p1, p2, . . . , pn will then be used to derive a device fingerprint F which
is then sent to the IoTSS for identification. To reduce the required com-
munication overhead, the fingerprinting component would also first
compress the fingerprint before transmitting it to the IoTSS.

In our prototype implementation we used k = 120 s, to allow for
sufficient time for all considered device types’ set-up processes to
complete within the monitoring period. Based on the evaluation of
the collected data, n = 12 was determined to be a sufficient number
of packets included in fingerprint extraction to provide good classi-
fication accuracy.
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5.4.2.3 Device-Type Identification

The device identification module is implemented on a Linux-based
application server using the scikit-learn Python library [125] to im-
plement the Random Forest classifiers used in the device-type identi-
fication. The identification process as discussed in Sect. 5.3.3 proceeds
as follows. After receiving the fingerprint F for the to-be identified
device from the fingerprinting component, the fingerprint is tested
against all Random Forest classifiers (altogether 27 classifiers in our
prototype set-up). Each classifier provides a binary prediction indic-
ating whether fingerprint F is considered to belong to the device type
associated with the classifier in question.

In case more than one classifier provides a positive classification
result, edit distance tie-break as discussed in Sect. 5.3.3 is used to de-
termine the final prediction of the device type for fingerprint F. The
resulting device-type identity is then forwarded to the vulnerability
assessment component.

5.4.2.4 Vulnerability Assessment

In the prototype implementation, vulnerability assessment is realised
with the help of a look-up table associating each device-type identi-
fier with an associated isolation level of strict, restricted or trusted as
discussed in Sect. 5.3.5 along with a possible whitelist of IP addresses
with which devices are allowed to communicate if they are assigned
to the restricted isolation level. After retrieving these security policy
settings associated with the device type in question the IoTSS will com-
bine these into an isolation profile in the form of a JSON file [61] and
send it to the enforcement component of the SGW.

5.4.2.5 Enforcement

The enforcement component receives the device type associated with
the MAC for which the fingerprinting and device identification was
initiated along with the isolation profile from the IoTSS. It parses
the profile file and generates necessary traffic flow rules for the SDN

controller to realise the intended isolation level for the device. The
flow rules are then enforced by the virtual switch controlled by the
SDN controller.

5.4.2.6 Performance Evaluation

We evaluated the performance of the prototype implementation of
IoTSentinel by repeating device-set up experiments ten times each
for six different devices representing distinct device types, totalling
n = 60 different device set-up experiments. In each set-up experi-
ment, data packets from the tested IoT device were collected during
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Figure 5.6: Time required for fingerprint extraction, compression and
device-type identification for different device types (1: Fitbit Aria,
2: Edimax Plug 1101W, 3: Edimax Plug 2101W, 4: Ednet Gateway,
5: TP-Link Plug HS100, 6: TP-Link Plug HS110)

k = 120 s. We then measured the time required by the prototype sys-
tem to perform the individual steps of the device-identification pro-
cess, namely feature extraction, feature compression and device-type
classification. The performance of the prototype is shown in Fig. 5.6.

As shown in Fig. 5.6a, the duration for SGW to extract device fin-
gerprints for all device types is 2770 ms to 11 690 ms. The average fin-
gerprinting duration is (4894± 1559)ms. Fingerprint compression,
shown in Fig. 5.6b, takes on average (4101± 627)ms.

For evaluating the device-type identification task we measured the
round trip time it takes from the SGW sending the fingerprint F to the
IoTSS and receiving a classification reply. In this evaluation the IoTSS

was located in a different country, in more than 1500 km distance.
As can be seen from Fig. 5.6c, this nevertheless does not introduce
significant delays, as classification takes 2075 ms to 4723 ms, the aver-
age time required for the classification step, including communication
overheads being (3301± 806)ms.

In conclusion, we can say that the performance of the prototype set-
up is sufficient to support real-world deployment of the IoTSentinel
framework. Feature extraction and device-type classification are suc-
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cessfully completed in a matter of a few seconds. In comparison to
this, the set-up time of an IoT device is typically much longer, ran-
ging up to a few minutes. As the prototype evaluation shows, IoT-
Sentinel allows device-type identification to happen very quickly after
a device joins the network of the user, leaving only a very small win-
dow of opportunity (≈ 10 s) for an adversary to compromise a vul-
nerable device before IoTSentinel will apply an appropriate isolation
profile to protect it. It can therefore be said that in comparison to the
status quo IoTSentinel provides significant benefits in making users’
networks more resilient against adversarial threats arising from the
presence of vulnerable IoT devices in the network.

5.5 security analysis

5.5.1 Masquerading Adversary

One of our assumptions outlined in Sect. 5.2.2 was that when IoT
devices are initially installed in the user’s network they are not com-
promised, i. e., benign. This is a reasonable assumption, as devices
typically are in their factory-default state when people purchase them
and install them for the first time. Even for repurposed or resold de-
vices the standard practice is to perform a ’hard reset’ or ’factory reset’
to erase the device’s previous state information and settings like ac-
cess credentials to the device’s previous owner’s WiFi network and
bring the device into a state in which it can be configured to join the
new owner’s network.

All known major IoT malware so far like Mirai [51], Hajime [34] or
Persirai [146] operate in the volatile memory of their host device and
do not perform persistent modifications of the installed firmware of
IoT devices they infect. As soon as an infected device is restarted or
a factory reset is performed, the malicious functionality is removed.
The only IoT malware known so far to leave permanent traces of
itself is BrickerBot [111], which performs a permanent denial of ser-
vice (PDoS) on its host device by removing or corrupting system files
and discontinuing network connectivity. This effectively renders the
affected device permanently dysfunctional.

It is therefore highly unlikely that an IoT device that is newly in-
stalled into a user network would carry malicious functionality at the
time of installation. It will therefore always take some time for the
adversary to discover and infect the affected vulnerable device. This
should leave sufficient time for IoTSentinel to identify the device in
question to take protective measures to mitigate the risk of device
compromise as discussed in Sect. 5.3.5.

Should the adversary, however, manage to get the user to install
an IoT device it has already compromised, the adversary can try to
change the way the IoT device behaves during the device-identifi-
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cation process so that it is not identified as belonging to a vulner-
able device type and assigned to the strict or restricted isolation levels,
which would make it impossible or very difficult to communicate
with the device from the outside and exfiltrate data from it. There
are a number of ways the adversary can try to modify the device’s
behaviour.

5.5.1.1 Blocking Communications

The adversary can try to avoid identification of the compromised
device by blocking communications with the SGW altogether. How-
ever, on the wireless interface, this will also pre-empt the device from
joining the network altogether and therefore render the device use-
less for the adversary. If the adversary allows the device to engage
in just enough communications to join the user’s network (essentially
limiting communications to the WPA2 handshake messages), this will
result in a mostly blank device fingerprint F that cannot be associ-
ated with any known device type (Recall from Sect. 5.3.2 that F will
be padded with zeros, if less than n packets are observed during the
observation period of k seconds). On the wired Ethernet interface, the
device identification process will be triggered as soon as the device
sends its first data packet. If the device does after that not send any
packets during the following k seconds during which the SGW ex-
tracts the device fingerprint, the outcome will also be a mostly blank
fingerprint that cannot be mapped to any known device type.

In both cases, as discussed in Sect. 5.3.5, the device is treated to
be of an unknown device type and will consequently be assigned the
strict isolation level, making it impossible for the adversary to com-
municate with the compromised device or exfiltrate sensitive data
from it.

5.5.1.2 Spoofing MAC Address

If the adversary manages to compromise a vulnerable device, it can
try to spoof the device’s MAC address in order to masquerade as an-
other device in the network. This has, however, the prerequisite that
the network interface card (NIC) of the device must support the modi-
fication of the MAC address. For wired devices connected to the SGW

over Ethernet MAC spoofing can be easily mitigated, as the device is
connected to a dedicated port on the SGW and a change in the MAC
address of the connected device can be detected in a straightforward
way. For devices connected over WiFi, the adversary can choose two
options: spoofing an unknown MAC address, or, spoofing an existing
MAC address of a device belonging to the trusted isolation level.

If the adversary spoofs a MAC address that is previously unknown
to the SGW, this will trigger the device identification process to be ini-
tiated for the device. The adversary must then be able to masquerade
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as a legitimate device of a device type associated with the trusted
isolation level as discussed in Sect. 5.5.1.3 by mimicking the set-up
process of this device. This is necessary to get the spoofed MAC ad-
dress assigned to the trusted isolation level. Until the identification
process is completed the device will remain in the quarantine network
and will thus be unable to communicate with other devices in the
user’s network.

The adversary can also spoof a MAC address that is already known
to the SGW and belongs to the trusted isolation level. Such spoofing
can, however, be detected by the SGW if there is an association with
the genuine device owning this MAC address that is still valid and
in use. As each association using WPA2 is characterised by a unique
Pairwise Transient Key (PTK) [60], it is possible for the SGW to notice
the presence of two different devices attempting to use the same MAC
address at the same time.

5.5.1.3 Masquerading as Another Device Type

The adversary may attempt to masquerade a compromised IoT device
as a different device belonging to a device type belonging to the trus-
ted isolation level in order to circumvent the traffic restrictions im-
posed on the device by the SGW. In order to succeed in this, the
adversary must mimic the communication behaviour of this device
during its set-up phase.

To do this the adversary must know the exact behaviour of the in-
tended device beforehand and program the vulnerable device to com-
municate according to this behaviour profile. However, this brings a
practical difficulty to the adversary, as the typical set-up process of
an IoT device in many cases requires the direct involvement of the
user and the use of a device-type-specific set-up application on the
smartphone of the user. In order to be able to mimic the communic-
ation behaviour of a different device type, the adversary would need
to fool the user into using the set-up app of the spoofed device type
instead of the real device’s set-up app in order to maintain the com-
munication semantics between the IoT device and the smartphone
used to set it up.

It is in principle possible that the adversary could try to fool the
system by merely replaying a set of data packets mimicking a set-up
session with an imaginary, non-existent set-up app, i. e., by replaying
only messages originating from the IoT device. However, this can
be easily detected by the SGW. Since the adversary can spoof only
messages originating from the compromised IoT device, but is not
able to spoof the corresponding messages coming from the set-up app
on the user’s smartphone, it is relatively easy for the SGW to notice
that these messages are missing and raise an alarm by notifying the
user. In the meantime the concerned device would be placed in the
strict isolation level.
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5.5.1.4 Unknown Vulnerabilities

It is possible that an IoT device has a vulnerability that is not yet
known to the IoTSS when the device is added to the user’s network
and its device type is identified by IoTSentinel, resulting in the device
being—incorrectly—placed into the trusted isolation level. During
this time an adversary may be able to exploit the vulnerability and
compromise the device. However, as soon as the vulnerability of this
device type is discovered and published, e. g., in a public vulnerab-
ility repository, IoTSS will update the isolation level for the affected
device type and push this update to all SGWs that host devices of this
type, resulting in devices of this type to be moved into the strict or
restricted isolation level.

This can even happen before the actual vulnerability is discovered,
e. g., when security incident reports start showing a significant correl-
ation with the device type in question. As a pro-active measure, the
affected device type can therefore be moved to the strict or restricted
isolation level until IoTSS manages to resolve whether the security in-
cidents are caused by a vulnerability in the affected device type or not.
Should the determined reason prove to be not related to vulnerabilit-
ies in the device type, IoTSS can simply revoke the pro-active measure
by assigning the device type back to the trusted isolation level.

The window of opportunity for the adversary to exploit previously
unknown vulnerabilities is therefore relatively small, and requires
the adversary to be aware of a vulnerability that is not yet gener-
ally known. Also, massive exploitation of such vulnerabilities can be
quickly counteracted by the IoTSS by distributing the updated isola-
tion profile for the affected device type as a pro-active measure, as
discussed above.

5.5.2 Impact of Device Mis-Classification

As discussed in Sect. 5.4.1.3, for most IoT device types the classific-
ation results are very accurate. However, within particular groups
of device types from the same manufacturer, devices are confused
within said groups, leading to lower nominal classification accuracy.
This seems to be caused by the fact that devices within the group
are based on a common code base with shared software components,
causing their communication behaviour especially during the installa-
tion to be very similar and making distinguishing between individual
device types within the group difficult.

However, as recent incidents show [127], security vulnerabilities of-
ten impact all devices that share the code containing the vulnerability.
From a security point of view, it is therefore not necessary to identify
the exact make and model of each device, but it is sufficient to identify
whether the device belongs to a group of devices that is known to
share a vulnerability. As we discuss in more detail in Sect. 6.2, it



5.5 security analysis 124

might therefore in the future be more useful to focus device identi-
fication on such clusters of device types showing identical behaviour
instead of trying to pinpoint the exact device-type label given to a
device by the manufacturer.

5.5.3 Attacks Against IoTSentinel Components

As discussed in Sect. 5.2.2, our adversary model makes the specific
assumption that the components of the IoTSentinel system are trust-
worthy, i. e., not compromised by the adversary. However, it is think-
able that an adversary would attempt to utilise parts of the IoTSentinel
system it has access to for attacking the system itself. In order to do
this the adversary has a number of options.

5.5.3.1 Physical Attacks Against Security Gateways

The Security Gateway (SGW) is typically located within the premises
of user households. Therefore it is thinkable that a malicious user
could physically compromise it in order to take it under its control.
Unless the SGW is equipped with specific tamper-resistant hardware
capable of verifying the integrity of the SGW using, for instance, re-
mote attestation (e.g., [28]), we need to assume that an adversary with
physical access to the SGW will be able to modify the functionality of
it at will. Since this type of attack requires physical access to each
SGW it wants to compromise, it is very difficult to scale to large num-
bers of SGWs. If we denote the total number of SGWs in the system
with n and the number of SGWs compromised by the adversary with
k, we can assume that in the case of physical attacks k� n.

5.5.3.2 Software Attacks

In a software attack, a remote adversary uses possible vulnerabilities
in the implementation of the SGW itself to infiltrate and take over
control over it. This type of attack is potentially more scalable, as the
adversary does not need physical access to the SGW in order to be
able to compromise it. Thereby the number k of compromised SGW in
relation to the total number n of SGWs is higher. However, we assume
that an adversary will not be able to compromise a majority of the
overall security gateway population, i. e., k < n

2 .

5.5.3.3 Attack Impact

In both aforementioned attacks, the adversary can gain the possibility
to disable or manipulate the operation of the SGW. By doing this, it
can render any IoT devices protected by the SGW vulnerable to attacks.
However, the impact of the attack is limited to each local network
associated with the SGW.
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In case of physical attacks this means that it is a malicious user
himself attacking his network, whereby rendering his devices unpro-
tected is something the user is deliberately causing, a case equivalent
to a user on purpose disabling his firewall or virus scanner, whose
purpose is to protect the user’s devices. From the system point of
view, such attacks are therefore causing harm mostly to the attacker
itself. The only motivation for an attacker to engage in such attacks
is therefore limited to cases in which the adversary tries to use a
compromised SGW against the IoTSentinel system itself, as outlined in
Sect. 5.5.4 below.

To remedy attacks, the system can employ remote attestation tech-
niques, as mentioned above, to ensure that the operational status of
the software executing on the SGWs is as specified. This requires,
however, trusted hardware support on the SGW, which may not be
available in practice. In such cases the system can be equipped with
extensive self-monitoring components that would regularly inspect
the operating state of individual SGWs and sample their reported op-
erational characteristics. Potentially malfunctioning SGWs could then
be identified by detecting deviating behaviour of the affected SGWs.
While this approach does in the absence of remote attestation tech-
niques not provide absolute assurance of detecting malicious nodes,
it does, however, raise the bar for successful attacks, as the adversary
would need to be able to mimic the normal operational characteristics
of the SGW in order to remain undetected, thereby raising the cost of
the attack.

5.5.4 Data Poisoning Attacks

An adversary may attack against the IoTSentinel system by trying to
manipulate the device identification process. It can attempt to do this
with the help of data poisoning, i. e., by influencing the inputs based on
which the IoT Security Service (IoTSS) builds the classification mod-
els used in device-type identification. The adversary has two ways
how to achieve this: providing manipulated communication patterns
to the SGW, or, compromising the SGW and providing manipulated
device fingerprints to the IoTSS.

5.5.4.1 Manipulating IoT Device Communication Patterns

To manipulate the communication patterns associated with an IoT
device, the adversary needs to compromise the device and modify its
communication behaviour. However, as discussed in Sect. 5.2.2, we
assume that new device models, when entering the market and being
deployed, are initially benign. It will take considerable time by ad-
versaries to compromise the device and invoke their malicious func-
tionality. The initial device fingerprinting performed by IoTSentinel is
relatively short, i. e., 2 min. This leaves in practice too little time for
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the adversary to compromise the device before its device fingerprint
is extracted and used to build the device identification model for the
device-type.

Another hindrance for the adversary is that in order to influence
the training of the device-type identification model, it needs to be
able to manipulate a sufficiently large number of device fingerprints
in order to influence the resulting identification model. This means
that after the initial introduction of a new IoT device type the ad-
versary needs to be able to very quickly compromise a significant
fraction of these devices before the SGWs hosting these devices have a
chance to extract benign device fingerprints for these devices. Since
this happens within a very limited time frame (2 min), it is very diffi-
cult for an external adversary to locate and compromise a significant
fraction of the devices being introduced to various local networks all
over the Internet during such a short period of time.

5.5.4.2 Manipulating Device Fingerprints

If the adversary is able to compromise the SGW as discussed above in
Sects. 5.5.3.1 and 5.5.3.2, it can produce entirely fabricated fingerprints
to the IoTSS in order to corrupt the training of the device identification
model. As in the case of manipulating fingerprints, the adversary
needs to be able to inject a sufficiently large number of fabricated
fingerprints in order to corrupt the learnt model. In this case the ad-
versary has a larger time window during which it can act, as it is not
limited by the 2-minute time window during which SGWs aggregate
the device fingerprint, but can fabricate the fingerprint at a time of
its choosing. Nevertheless it must do so before a sufficient number
of benign device fingerprints of a newly introduced device model
are provided by benign SGWs, and the device identification model is
trained by IoTSS. The effectiveness of this attack is therefore highly
dependent on how many SGWs the adversary is able to bring under
its control.

In the case of physical attacks against the SGW, as discussed above
in Sect. 5.5.3.1, the number k of SGWs that the adversary can com-
promise in relation to the overall number n of SGWs in the system
does not easily scale to substantial numbers, i. e., k � n, limiting the
impact that the adversary can have. It will therefore be challenging
for any adversary to stage effective fingerprint manipulation attacks
that utilise attacks based on physical compromise of SGW.

Software attacks, as discussed in Sect. 5.5.3.2, however, can poten-
tially be more scalable, as the adversary doesn’t require physical ac-
cess to the targeted SGW, but can stage the attack remotely, thereby
being able to simultaneously target a larger population of SGWs. By
compromising a large subset of SGWs, the adversary could fabricate a
sufficiently large number of device fingerprints to effectively corrupt
the trained device-type identification model. However, the more SGWs
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the adversary compromises, the higher is also the likelihood that ma-
licious actions of the adversary are detected and countermeasures
initiated, e. g., by identifying the vulnerabilities leading to SGW com-
promise and issuing security patches to the SGWs, thereby eliminating
adversary control and making them resilient against attacks targeting
the vulnerabilities in question.

5.5.4.3 Organisational Measures Against Poisoning Attacks

The above discussion about data poisoning attacks is valid under the
assumption that all SGWs contribute device fingerprints to the train-
ing process of new device-type classification models in the same way.
However, additional organisational measures can be taken to improve
the resilience of the system against data poisoning attacks.

One possible approach could be to apply pre-screening of data con-
tributing to the training dataset. This could be achieved by admitting
only such fingerprints to the training dataset that have been gener-
ated from communication traces collected under controlled settings,
e. g., in a dedicated testing laboratory of the IoTSS itself.

While such controlled fingerprint collection would most likely not
be feasible for all IoT devices in general due to the enormous number
of different IoT device models on the market, it could nevertheless be
performed for the most popular devices. This would allow to cover
a major fraction of devices with trusted and reliable detection mod-
els. The utility of less prevalent IoT device types for which trusted
detection models may be unavailable is from the point of view of an
adversary much more limited, as such devices are fewer in number
and therefore more difficult localise and exploit by attacks.

5.5.4.4 Poisoning Mitigation Measures

Defences against adversarial machine learning attacks like data pois-
oning is currently a lively research topic. Approaches to mitigating
such attacks rely, e. g., on eliminating the effect of outlier (i. e., ma-
licious) data points from the training dataset [116], or, identifying
data clients providing manipulated training data [129] in a distrib-
uted learning setting.

In IoTSentinel, such mitigation measures need to be applied at the
IoTSS, as SGWs do initially not have any information about the distri-
bution of raw input data concerning a specific device type, since the
device type is at training time new to the whole system. Applying
outlier elimination at the SGW is therefore not possible. Moreover,
detecting device fingerprints provided by potentially compromised
SGWs will in any case be possible only at the IoTSS. In the IoTSentinel
setting, therefore, the focus of poisoning mitigation measures needs
to be in identifying manipulated device fingerprints (generated either
by IoT device communication manipulation (Sect. 5.5.4.1), or, dir-
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ect manipulation (Sect. 5.5.4.2)) before they are used in training the
device classification model.

Detecting manipulated device fingerprints can be performed by ad-
opting the approach presented by Shen et al. [129]: device fingerprints
provided by different SGWs are first collected and clustered into two
clusters. As long as the adversary won’t be able to compromise a
majority of the SGWs, or compromise more than half of the devices
of a particular device type (which is a reasonable assumption), we
can assume that the cluster with the majority of device fingerprints
represents benign fingerprints, i. e., fingerprints that have not been
manipulated by the adversary. The learning of the classification of
the device type can then be limited to device fingerprints belonging
to this majority cluster in order to eliminate manipulated device fin-
gerprints from the learning process.

Adversarial machine learning is a research area that is currently the
target of lively research activities looking at ways to attack machine
learning models used, e. g., for speech and image recognition. In line
of these activities, our future research will explore further the prob-
lem of data poisoning in systems like IoTSentinel and develop and
evaluate concrete defence mechanisms for mitigating such attacks.

5.6 related work

5.6.1 Device Fingerprinting

A number of device fingerprinting approaches for identifying devices
based on their communication characteristics have been proposed.

5.6.1.1 Protocol-Based Approaches

Bratus et al. [15] propose an approach in which the the combination
of WiFi chipset and driver of a 802.11 wireless device can be determ-
ined through active probing of the device’s wireless interface using
specially crafted 802.11 protocol frames. As the responses of differ-
ent devices to particular probe frames will differ, their solution uses
a decision tree to identify the WiFi chipset and driver of the device
(Bratus et al. consider primarily WiFi APs) based on the observed
responses to a specific sequence of probe frames sent to the device.
Cache presented a passive fingerprinting approach [20] that is based
on examining the duration field in 802.11 frames to identify the WiFi
driver implementation in question. The rationale for using this fea-
ture as the basis for device fingerprints is based on the observation
that the duration field assumes only a few distinct values for different
packet types depending on the driver implementation, allowing it to
be used for identifying the particular driver. For the purpose of device-
type identification the approaches above are, however, not suitable, as
the same chipset and driver may be shared among many different
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kinds of device types, making distinction between individual devices
or device types impossible.

To enable identification of individual devices sharing identical wire-
less chipset hardware and drivers, Maurice et al. [83] therefore in-
troduced an extension to Cache’s fingerprinting scheme. The exten-
sion is based on injecting a limited number of raw 802.11 frames
with randomly-selected duration fields in order to make distinction
between individual devices feasible. Their approach requires, how-
ever, installation of a daemon on all devices to be identified, as it
relies on active injection of frames by the end-devices and is there-
fore not applicable to IoT scenarios in general. It can also not be
used for device-type identification, as it only allows to distinguish
individual devices with the same wireless chipset and driver, giving
no information as to the type of device in question.

5.6.1.2 Packet Timing-Based Approaches

Another approach employed by Franklin et al. [40] used observations
related to the time intervals between 802.11 probing frames emitted
by wireless interfaces of a device to identify the wireless device driver
used by the device. The identification is based on the observation
that WiFi drivers implement different scanning algorithms, resulting
in measurable differences in the timing patterns of probing frames,
which in turn can be used for identifying the device driver in ques-
tion.

5.6.1.3 Clock Skew-Based Approaches

Other works like the ones by Kohno, Broido and Claffy [70] pro-
pose to use a hardware-specific property like clock skew for identi-
fying individual devices. The advantage here is that clock skew is
a property that is specific to the individual hardware instantiation
of the device and it is observable from the communication trace of
the device in question. Whereas the approach by Kohno et al. util-
ised the Transmission Control Protocol (TCP) timestamp option and
Internet Control Message Protocol (ICMP) timestamp requests to ob-
tain measurements for clock skew evaluation, Jana et al. [62] apply
the approach using Time Synchronization Function (TSF) time stamps
of WiFi beacon and response packets in a local setting. In a follow-
up work, Arackaparambil et al. [4] identified potential vulnerabilities
in the way Kohno et al. and Jana et al. measure clock drift and pro-
posed countermeasures to detect adversarial APs attempting to spoof
the clock drift of other, legitimate APs.

5.6.1.4 RF-Fingerprinting-Based Approaches

Other approaches for device identification have proposed to use Ra-
dio Frequency (RF) fingerprinting. Ureten and Serinken [141] invest-
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igated the use of amplitude profiles of RF signals for device iden-
tification, being able to distinguish individual devices even having
identical wireless transmitter hardware. Another approach taken by
Brik et al. [17] utilises radiometric measurements based on modula-
tion errors caused by inherent physical imperfections of network in-
terface cards (NICs) to identify individual wireless devices. The main
application area for the proposed hardware-based device-identifica-
tion methods is the possibility to identify possible adversarial rogue
APs without the need to support cryptographic protocols for AP au-
thentication.

5.6.1.5 Software-Based Approaches

Also software-based approaches for device identification have been
proposed. A study by Pang et al. [104] showed that in many cases
characteristics of WiFi traffic like sets of network destinations, SSID

probes, broadcast packet sizes and MAC protocol fields can be used
to uniquely identify the users of devices emitting the traffic. Kurtz
et al. [72] used configuration information about device settings to
identify mobile devices and their users.

5.6.1.6 Sensor-Based Approaches

Bojinov et al. [13] demonstrated how device-specific sensing artefacts
in measurements made by sensors on mobile devices could be used
used to derive device-specific fingerprints for identifying individual
mobile devices. Bertini et al. [11] present an approach for using the in-
herent noise pattern generated by the imaging sensor of smartphone
cameras to distinguish the origin device of images taken with the
camera. Van Goethem et al. [142] demonstrated that characteristic fea-
tures of accelerometer readings on mobile devices could also be used
to uniquely distinguish between individual mobile devices. Sharaf-
Dabbagh and Saad [128] introduced a framework for using statistical
modelling of context fingerprint values provided by IoT devices for
identifying whether the values originate from a legitimate device or
a masquerading attacker.

5.6.2 Device-Type Fingerprinting

One of the very few approaches addressing the problem of device-
type identification instead of identifying individual devices has been
presented by Gao et al. [42]. In their approach they seek to identify
the type of an AP by performing black-box testing on it by observing
how it processes a large sequence of network packets. The character-
istic fingerprint of the AP is based on observing the time shifts in the
inter-arrival time (IAT) of individual packets. These are influenced
by how the packet sequence is processed by the internal implementa-
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tion of the AP and can therefore be used as characteristic features for
identifying the type of AP. However, the approach of Gao et al. is
limited to router-type devices performing packet-forwarding. Their
approach is therefore not applicable to the vast majority of IoT de-
vices in general.

Another approach for device-type identification (along with device
identification) is GTID by Radhakrishnan et al. [110]. Their finger-
printing approach is based on feature vectors derived from the IAT of
observed packets of particular traffic types, e. g., ping, scp, or Skype.
In contrast to IoTSentinel, GTID uses only a single artificial neural net-
work (ANN) based multi-class classification model to identify devices
and device types. It requires also a significant amount of observed
packets to construct feature vectors for model training and device-
type and device identification. In the GTID scenario this is not much
of a problem as it addresses primarily general-purpose computing
devices like laptops, tablets and smartphones that naturally gener-
ate significant amounts of data traffic. In many IoT scenarios, how-
ever, IoT devices generate only very little network communications,
making it challenging to apply a similar approach on IoT devices.
Also, the use of only one single classification model accommodating
all device types poses practical challenges towards re-training of the
model when new device types emerge, in contrast to the multiple
classifiers-approach taken by IoTSentinel.

5.6.3 Device Authentication in IoT

A number of schemes for device authentication in IoT have been
proposed taking the specific requirements related to the resource-
constrained nature of many IoT devices into account. For example,
Hernández-Ramos et al. [54] present and extension of the EAPOL
standard authentication framework tailored that specifically considers
the resource constraints related to IoT devices. In addition to the
context-based authentication work presented in Chap. 4, Zenger et
al. [148] present a scheme for proximity-based authentication of de-
vices which is based on measurements of the location-based channel
randomness between an access point and two IoT devices. Other ap-
proaches like the one presented by Mora-Afonso et al. [97] propose
to use a location-limited channel like NFC and Identity-Based Crypto-
graphy (IBC) for secure authentication of devices.

While all of these approaches provide solutions for secure authen-
tication, they do not directly address the problem of device-type iden-
tification, which is a core requirement for proactive security solutions
proposed by IoTSentinel in the form of network isolation of known
vulnerable devices. These approaches are also not suited for our scen-
ario involving a brownfield landscape of legacy IoT devices, as all of



5.6 related work 132

them require dedicated components to be installed on the involved
devices.

5.6.4 Run-Time Security Enforcement

To assure the security of the run-time behaviour of IoT devices a
number of approaches have been proposed. The SIFT framework
of Liang et al. [75] seeks to achieve this by providing a safety-centric
programming framework for assuring that conflicts or safety policy
violations do not occur between applications run on IoT devices. This
approach is, however, only applicable to the development of new IoT
applications, not already-deployed IoT systems.

One of the first works to address intrusion detection specifically
in IoT systems is the SVELTE by Raza et al. [113]. Their system tar-
gets low-energy nodes on IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPAN) using a hybrid approach utilising both
signature- and anomaly detection-based for detecting intrusions. At
the time of writing, however, the majority of IoT devices on the mar-
ket utilise other networking technologies than 6LoWPAN, therefore lim-
iting the practical applicability of their approach.

Another approach presented by Gisdakis et al. [44] is targeted at
participatory sensing applications. Their system, entitled SHIELD,
uses data verification techniques to identify and eliminate malicious
participants in a participatory sensing system. While such approaches
could be used to validate information in a network of IoT devices, it is
applicable only to individual applications with a well-defined scope
and semantics. Its applicability to IoT devices and applications in
general is, however, limited due to the vast heterogeneity of IoT de-
vices and their supported functionalities.

In comparison to these systems the approach taken by IoTSentinel
is somewhat different. While the aforementioned approaches seek
to identify malicious behaviour or falsified data during the system’s
operation, IoTSentinel follows a pre-emptive strategy, seeking to mit-
igate security threats posed by the presence of vulnerable devices
in the network by limiting permissible network communications of
these devices so that the adversary is not able to exploit the vulner-
abilities potentially present in targeted IoT devices and compromise
them.

5.6.5 Commercial IoT Security Solutions

Recently Internet security firm F-Secure3 introduced a commercial
product called F-Secure SENSE [36] which is an ’intelligent router’
aiming at protecting end-users’ home networks against IoT-related
threats. SENSE focuses, however, on traditional protection vectors

3 https://www.f-secure.com
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like anti-virus capabilities, blocking botnet traffic and malicious web-
sites [144]. It does not seem to have capabilities for identifying arbit-
rary IoT devices based on their communication behaviour.

5.7 summary and conclusion

In course of the rapid expansion of the so-called Internet of Things
many new device manufacturers are bringing novel network-enabled
products to the market. In many cases, the focus of these players
is on fast deployment of their products, leaving only little time and
resources to design and implement sound security architectures for
their products. Often, manufacturers are also not able to publish
adequate security updates for their products in a timely manner, or,
appropriate facilities for automatic application of security patches are
lacking. This often leads to a situation in which IoT devices with
security vulnerabilities are present in users’ home networks, leaving
them susceptible against attacks for significant amounts of time. The
recent emergence of so-called IoT malware is exacerbating the threat
posed by vulnerable devices to the whole IoT ecosystem.

To encounter the threat of vulnerable IoT devices, we presented
IoTSentinel, a security framework for identifying vulnerable IoT de-
vices and enforcing appropriate network isolation policies in order to
protect vulnerable devices from being compromised, and, in case de-
vices are compromised, limit the amount of damage they can inflict
on other devices in the user’s network. IoTSentinel does so by identi-
fying the types of devices newly added to the user’s network and
enforcing network traffic filtering for devices known to have security
vulnerabilities. In contrast to earlier work on device identification,
the focus of IoTSentinel is on identifying device types, as security vul-
nerabilities typically affect whole classes of devices and not only in-
dividual devices. The device identification mechanism in IoTSentinel
is tailored to the requirements of IoT networks, where many devices
typically do not emit significant quantities of network traffic, making
the use of previous device-type identification approaches difficult, if
not impossible.
IoTSentinel therefore employs a device fingerprinting approach that

extracts characteristic fingerprints from the first packets an IoT device
sends during its set-up process in the network. Since communication
behaviour of a device during its set-up is quite characteristic, it can
be used to distinguish device types, as our evaluation in Sect. 5.4
shows. Based on the information of a device’s type, IoTSentinel will
employ device-specific isolation policies limiting network traffic to
devices that are known to have vulnerabilities. This mitigates the risk
of external adversaries exploiting these vulnerabilities to compromise
the device and use it for attacks against other devices in the user’s
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network or the Internet, or, exfiltrate sensitive user information from
the device.

A major benefit of the approach followed in IoTSentinel is that it is
applicable to so-called brownfield scenarios, i. e., it can be deployed in
environments with legacy devices that do not offer the possibility to
update device software or instrument the behaviour of devices. IoT-
Sentinel does not have specific requirements towards the IoT devices
installed in the network and is therefore applicable to a large majority
of IoT devices available on the market today.
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D I S C U S S I O N A N D C O N C L U S I O N

6.1 summary of dissertation

In this dissertation we have investigated approaches utilising context
and communications profiling for the purpose of security and privacy
management in mobile and IoT environments. The main motivation
for our work has been the observation that the ever-increasing num-
ber and complexity of applications and devices that need to be con-
figured to protect the privacy of users and the integrity and confid-
entiality of sensitive information is rapidly growing, mandating the
development of new approaches for managing them. In particular,
conventional approaches in which security and privacy management
is based on pre-defined settings or policy configurations is quickly
coming to its limits. On one hand, the sheer number of settings that
needs to be managed by users is becoming so large that it is not
realistic to assume that users would be willing to invest the required
effort and time for setting up, refining and continuously managing
their policies. On the other hand, the currently ongoing rapid growth
of the IoT device market makes it in practice impossible to base secur-
ity management on pre-defined security settings, as there are new IoT

devices being brought to the market by a myriad of different device
manufacturers. This makes it very challenging to obtain and maintain
a comprehensive set of security settings for all possible IoT devices, as
there are constantly new, previously unknown device types coming
to the market.

To encounter these challenges we advocate the use of an approach
in which profiling and machine learning-based techniques are used to
model the relevant environment and entities and automatically learn
appropriate settings to be applied in particular situations or for partic-
ular entities. In this dissertation, we investigate the use of profiling-
based approaches in four distinct use cases applying profiling ap-
proaches on both contextual information and communication behaviour.

6.1.1 Context Profiling for Policy Adaptation

In chapter 2, we investigated the use of context profiling approaches
to adjust the security and privacy policy settings of a mobile device
dynamically based on the particular context in which the user (and
consequently her mobile device) are located in. We showed that by
utilising contextual measurements obtained with a mobile device’s
context sensors about the location, surrounding WiFi access points, as



6.1 summary of dissertation 136

well as Bluetooth devices, we could profile the familiarity of locations
and the persons present. We developed an approach in which we util-
ised profiled information about the user’s contexts together with lim-
ited user feedback about the perceived security- and privacy-relevant
properties of the context to train a machine-learning based model that
is capable of making predictions about the security and privacy risks
pertinent to particular contexts. In our use cases we then utilise these
predictions to adjust the device locking time out as well as third-party
applications’ access to sensor information of the mobile device in or-
der to protect the user from threats arising from the misuse of her
device by unauthorised parties, or, infection by so-called sensory mal-
ware. We demonstrated that by applying such a context-profiling ap-
proach, we can successfully strike a balance between improved user
experience due to reduced need for explicit user involvement in mak-
ing enforcement decisions and sufficient protection against security
risks.

6.1.2 Context-Based Proofs-of-Presence

We further showed in chapter 3, how a context-profiling approach can
be used to provide dynamic proofs of presence in use cases related
to Location-Based Service (LBS) and presence sharing. The approach
utilises the fact that devices present in the same context can use mu-
tual measurements of their ambient context as a proof for presence
in the same ambient environment. By sending its context measure-
ments to a verifier a prover can prove to the verifier that it is actu-
ally located in the same context as the prover. Proofs-of-presence are
required to encounter the risk of location cheating attacks, in which
a dishonest adversary wants to make an LBS or another peer to be-
lieve it is present in a specific location, while it in reality is not. We
showed also that a straightforward use of context measurements is
susceptible to context guessing attacks particularly in contexts in which
the context is mostly static and therefore does not contain sufficient
entropy, so that it is relatively easy for an adversary having histor-
ical information about the context to fabricate context measurements
that will with high likelihood be accepted by the verifier as genuine.
To mitigate such context-guessing attacks, we therefore introduced
an approach utilising the surprisal of context measurements to filter
out such context-based proofs-of-presence that are too easily guessed
by an adversary and thereby providing improved resilience against
context-guessing attacks.

6.1.3 Context-Based Authentication

We discussed a related but different application for measurements of
the ambient context in chapter 4, in which we discussed the use of
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context measurements for device authentication. We developed an
iterative approach in which pairing counterparts present in the same
contextual environment, e. g., in the same room gradually increase
their belief in the counterpart’s authenticity by repeatedly perform-
ing context-based authentications based on context fingerprints that
both devices observe. The context authentication is based on extract-
ing fingerprint bits from changes in observed quantities of particu-
lar context modalities like the ambient noise level. Using an error-
correcting code a device can enable a pairing counterpart that is in
possession of a fingerprint that is similar to the device’s fingerprint to
retrieve a shared pairing secret that is needed for successful context
authentication. However, any counterpart that is not in possession
of a sufficiently similar fingerprint will not be able to retrieve the
secret. Contrary to previous approaches proposing similar schemes
utilising error-correcting codes, we present a thorough security ana-
lysis of such schemes, taking relevant factors like the entropy loss
incurred by the used error-correction code and the inherent entropy
rate of the context into account.

6.1.4 IoT Security Management Based on Communications Profiling

Finally, we introduced a framework for automated device-type iden-
tification for IoT for the purpose of security management of local IoT

networks in chapter 5. The approach is based on monitoring the com-
munications of IoT devices that are newly introduced in the network
and deriving a device fingerprint from it, describing the communica-
tion behaviour of each device. Utilising a machine-learning based ap-
proach the fingerprints are classified into the respective device type
that the device belongs to. The rationale for this is that by identify-
ing the device’s type, appropriate mitigation measures can be taken
for such devices that belong to a device type with known security
vulnerabilities. Such mitigations can comprise, e. g., isolating devices
that are known to be vulnerable in order to protect them from being
compromised, and, to protect other devices in the network from ad-
verse effects in the case that the affected device should be successfully
compromised. We evaluate the presented device-type identification
approach based on real-world data and show that since typical IoT de-
vices are single-use appliances, their behaviour is limited and follows
characteristic behaviour patterns that allows for accurate identifica-
tion of specific device-types in most cases.
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6.2 future research directions

6.2.1 Communicating Inferred Security and Privacy Settings to Users

As mentioned in Sect. 2.7, the ConXsense framework introduced in
chapter 2 aims at automating policy decisions in order to make se-
curity policy management easier and more user-friendly for regular
users who are not willing to spend a lot of time in defining and main-
taining their policies. While this approach carries with it the promise
of making policy management significantly more convenient for the
user, it also bears the risk that the perception of the user of what she
thinks the system is doing and the actual decision making of the the
system drift apart, leading to situations in which the system behaves
in (from the user’s point of view) unexpected ways, potentially lead-
ing to undesired outcomes. It is therefore very important to develop
in parallel with the deployment of automated reasoning systems like
ConXsense also approaches for communicating internal state and the
reasons why the automated policy decision making system is taking
particular decisions and based on which information. Only by openly
communicating about the decision making process does it become un-
derstandable to the user and allows her also to take possible correct-
ive actions in an informed way. Developing and rigorously evaluating
such measures for user interaction and visualisation of the system’s
internal state remains an interesting future research challenge.

6.2.2 Practical Considerations for Context-Based Authentication

In chapter 4 we outlined the theoretical constraints that need to be
taken into account when evaluating the security of context-based au-
thentication. These constraints relate to the inherent entropy rate
provided by the context as well as the level of contextual separation
present in the deployment environment. Both of these factors affect
the selection of the error-correction level of the used ECC as well as the
required duration of pairing. In our evaluation we determined these
factors through empirical measurements in the experimental setting.

For the practical deployment of the presented approach, however,
a comprehensive framework for estimating and measuring these con-
textual constraints is required. This framework needs to be based on
the analysis of large-scale empirical measurements in a wide range
of typical deployment settings of IoT devices in different environ-
ments. The result would be a set of practical guidelines assisting
implementers of context-based authentication approaches to select
appropriate parameters so that the resulting authentication solution
is secure while providing maximal utility in terms of time needed for
pairing and computational and communication overhead.
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6.2.3 Extension of Device-Type Identification to On-Line Device Behaviour

The device-type identification approach presented in chapter 5 relies
on monitoring device behaviour during the install time of each new
IoT device being introduced to the system. While having been demon-
strated to be effective, this approach has the drawback that it is not
applicable to legacy installations with devices already present in the
target network. An obvious extension to the work of this disserta-
tion is therefore to augment the device-type identification approach
to consider not only the install-time behaviour of devices, but also
their on-line behaviour during normal device operations after they
have been installed to the network. This new aspect to device-type
identification is part of our ongoing research work.

6.2.4 Enhanced Notions of Device Types

The evaluation of our device-type identification approach in Sect. 5.4
shows that some device types are easily confused by the identification
approach. This happens primarily between devices of the same man-
ufacturer with very similar hardware and software configurations.
This raises therefore the question, whether a straightforward defini-
tion of device type targeted at identifying the exact model name given
to the device by its manufacturer is actually useful when security
management is the main target for device-type identification. Indeed,
in our ongoing research work we intend to adopt a more abstract no-
tion of device type. As security vulnerabilities are closely linked to
specific hardware and software configurations, from a security man-
agement point of view it is sufficient to identify a device type at the
level of such configurations, and not at the level of manufacturer-
provided model names. In our ongoing research we have embraced
this approach and are thus able to achieve better accuracy with re-
gards to device-type identification.

6.2.5 Augmenting Proactive with Reactive Defences

The primary goal of the IoTSentinel system is to provide proactive
defence mechanisms for protecting networks with vulnerable IoT de-
vices. A natural extension of this approach is to augment these de-
fences with reactive measures like intrusion detection. We believe
intrusion detection approaches can greatly benefit from the capabil-
ity to automatically identify the type of devices, as it allows to tailor
detection models aimed at detecting changes in communication beha-
viour caused by adversarial compromise to each device’s identified
type. This has the promise of making the detection process more ac-
curate and avoid false alarms. Initial results from our ongoing work
suggest this to be the case.
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