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ABSTRACT: In this work, SiO2 nanoparticles (NPs) were integrated into the
mesoporous TiO2 layer of a perovskite solar cell to investigate their effect on
cell performance. Different concentrations of SiO2/ethanol have been
combined in TiO2/ethanol to prepare pastes for the fabrication of the
mesoporous layer with which perovskite solar cells have been fabricated.
Addition of SiO2 NPs of 50 and 100 nm sizes produces an enhancement of cell
performance mainly because of an improvement of the photocurrent. This
increment is in good agreement with the theoretical predictions based on light
scattering induced by dielectric SiO2 NPs. The samples using modified
scaffolds with NPs also present a significant lower current−potential hysteresis
indicating that NP incorporation also affects the ion accumulation at the
perovskite interface, providing an additional beneficial effect. The results stress
the importance of the appropriated management of the optical properties on
further optimization of perovskite solar cell technology.

1. INTRODUCTION

Ever since the seminal reports in sensitized1,2 and in all-solid
solar cell configurations,3,4 halide perovskites have been widely
investigated as light harvesters in solar cells because of their
optimal properties, including direct band gap, large absorption
coefficients, and high carrier mobility.5 Indeed, the significant
work carried out in the research resulted in a power conversion
efficiency (PCE) of perovskite solar cells (PSCs) close to
23%.6 The main strategy to enhance PCE has been the
optimization of the deposition process and of the halide
perovskite harvester by the use of multication/anion perov-
skites.7−11 However, other strategies have been employed
including the incorporation of noble metal nanoparticles
(NPs), increase of the thickness of the absorbing material,
adding scattering layers, or the use of back reflectors and other
light-trapping mechanisms.12−14 In these cases, the improve-
ment on solar cell performance is attained by the management
of the optical properties of the device. For example, deposition
of gold and silver NPs is a common approach because of their
high (and size tuned) scattering and absorption cross-

sections.15 They have also been shelled with SiO2
16−18 to

protect them from the corrosive effect of iodine and
incorporated in the architecture of PSCs, observing an
enhancement of the device performance.17 Theoretical studies
predict that core−shell Au/SiO2 NPs provide optical
absorption enhancement in PSCs in spectral regions where
the perovskite material has relatively poor absorption.19−21 It is
suggested that this enhancement is mainly based on a
plasmonic effect, but it is not the only way in which Au/
SiO2 NPs can help to enhance the PSC performance. Recently,
we have used Au/SiO2 NPs with a smaller Au core than
required to produce significantly enhanced light absorption
due to the near-field plasmonic effect.8 However, we have
observed an increase of cell performance by modification of the
interfacial properties.22 Light scattering is also a way in which
light harvesting can be improved because of the light-trapping
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enhancement. Nanopatterned mp-TiO2 layers enhance the
light-harvesting efficiency of PSCs.23 In addition, the high
scattering efficiency observed for big Au/SiO2 NPs demon-
strates to be an effective way of improving light harvesting
because of the redirection of the incident light into solar cells
with increased optical path lengths (light-trapping effect).24−27

In terms of material preparation process and cost, the total
elimination of Au can be highly interesting if SiO2 dielectric
NPs could also induce a beneficial role on PSCs. The use of a
mesoporous layer of SiO2 instead of the conventional TiO2 has
been investigated.28 However, the record performance for
PSCs has always been reported with a TiO2 mesoporous
layer.7−11 Here, we propose further enhancement of the TiO2
mesoporous scaffold by the introduction of SiO2 NPs on it.
In this study, we synthesized SiO2 NPs, incorporating them

within the mesoporous TiO2 layer to fabricate PSCs. The cell
structure was fluorine-doped tin oxide (FTO)/compact TiO2/
TiO2 mesoporous containing SiO2/CH3NH3PbI3/spiro-OMe-
TAD/Au (Figure 1). Two different sizes of SiO2 NPs, 50 and

100 nm, and different concentrations within the mesoporous
layer were tested to exploit the effect of these NPs in the solar
cell performance.

2. EXPERIMENTAL PROCEDURE

2.1. Synthesis of SiO2 NPs. The sol−gel method was used
for the synthesis of SiO2 NPs with diameters of 50 and 100 nm
by hydrolyzing tetraethylorthosilicate (TEOS) in a mixture of
ethanol, water, ammonia, and a surfactant. TEOS, ethanol, and
ammonia were used as the silica precursor, the common
solvent, and the catalyst, respectively. Typically, 5.5 mL of
ethanol, 11 mL of deionized water, and 0.8 mL of ammonia
were mixed and stirred at 30 °C (for 100 nm SiO2 NPs) or 40
°C (for 50 nm SiO2 NPs). At the same time, a solution
containing 5.5 mL of ethanol and 1.7 mL of TEOS was
prepared and stirred at 30 °C (for 100 nm SiO2 NPs) or 40 °C
(for 50 nm SiO2 NPs). Then, the latter was added to the first
solution, and the reaction mixture was maintained at 30 or 40
°C (depending on the desired particle size) for 2 h. During this
time, the reaction turned turbid slowly because of the
formation of silica NPs. Once the reaction was completed, 3-
amino-propyltriethoxysilane was added dropwise to stabilize
the particles. The resulting solution was heated at 80−90 °C to
remove the excess of ammonia. The precipitate was collected
by centrifugation and washed several times with water and
ethanol; then, it was dried overnight at 100 °C. Figures S1 and
S2 show the transmission electron microscopy (TEM) images
of the SiO2 NPs with 50 and 100 nm sizes, respectively.

2.2. Cell Fabrication. PSCs were fabricated in a structure
based on FTO glass substrates, which were partially etched
using HCl and zinc powder, cleaned with soap and deionized
water, sonicated in a mixture of acetone/ethanol and then in
acetone/isopropyl alcohol, and dried with compressed air. The
substrates were then treated by an ultraviolet−ozone lamp for
15 min. To prepare the TiO2 blocking layer (bl-TiO2),

Figure 1. Schematic of the PSC structure where the TiO2
mesoporous layer is modified with SiO2 NPs. Compact TiO2 and
spiro-OMeTAD as electron and hole selective contacts, respectively.

Figure 2. Boxplot showing the minimum, quartile 1, mean, median, quartile 3, and maximum for the photovoltaic performance of cells using
different concentrations of SiO2 NPs of 100 nm size. (a) Jsc, (b) Voc, (c) FF, and (d) PCE. Concentration is indicated in μL of a solution of 0.4 mg
of SiO2 powder in 10 mL of ethanol.
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titanium diisopropoxide dis(acetylacetonate) in ethanol (1:9,
v/v) was deposited by spray pyrolysis at 450 °C, and then the
film was annealed at 450 °C for 30 min in air. SiO2 (0.4 mg)
powder in 10 mL of ethanol was stirred for 1 night. Different
concentrations of SiO2 solution (0, 10, 20, and 50 μL) were
combined with a dilute commercial TiO2 paste (30NRT) in
ethanol (1:5 weight ratio). Then, the SiO2/TiO2 (mp-TiO2)
layer was deposited on the bl-TiO2 layer by spin-coating at
2000 rpm for 10 s. After drying at 100 lC for 10 min, it was
annealed in air up to 500 aC for 30 min. Lithium bis-
(strifluoromethanesulfonamide) (Li-TFSI, 35 mM) solution in
acetonitrile was deposited on the substrates by spin-coating at
3000 rpm for 10 s. This Li-TFSI deposition has been
performed for samples using SiO2 with 50 nm, but not for
100 nm, to rule out the influence of treatment instead of NP
incorporation. Then, the substrates were annealed at 450 PC
for 30 min.29 PbI2 (622 mg) and 105 mg of dimethyl sulfoxide
were mixed in 944 mg of dimethylformamide (DMF) solution
inside a glovebox. This solution was heated at 65 oC and then
mixed into 214 mg of CH3NH3I. The completely dissolved
solution was spin-coated on the substrate layer at 4000 rpm for
50 s. Also, on the rotating substrate, diethyl ether was dripped,
which caused rapid vaporization of DMF. Then, the deposited
film was heated at 100 wC to obtain a dense CH3NH3PbI3
film. Then, 72.3 mg of spiro-OMeTAD, 28.8 μL of 4-tert-butyl
pyridine, and 17.5 μL of Li-TFSI solution (520 mg/mL of Li-
TFSI in acetonitrile) were dissolved in 1 mL of chlorobenzene
and deposited on the perovskite layer as a hole-transfer layer
by spin-coating at 4000 rpm for 30 s. Finally, the electrode
contacts (60 nm Au) were deposited on the cells by thermal
evaporation in a high vacuum chamber.
2.3. Characterization. The current−voltage (J−V) curves

were obtained with a scan rate of 50 mV/s in an Abet
Technologies Sun 2000 Class A AM 1.5G solar simulator with
a Keithley 2612 Source Meter, where the light intensity was

adjusted with an NREL-calibrated Si solar cell with a KG-5
filter to 1 sun of intensity (100 mW/cm2) in the Institute of
Advanced Materials (INAM) at Universitat Jaume I. The
measurements were performed using a shadow mask with an
area of 0.101 cm2. Ultraviolet−visible absorption spectra were
recorded by using a Cary 500 Scan VARIAN spectropho-
tometer in the 250−800 nm wavelength range. Impedance
spectroscopy measurements were performed using an Autolab
PGSTAT-30 instrument equipped with a frequency analyzer
module at 0.1 sun light illumination. The dc bias was selected
at 0 V, and the ac perturbation was 60 mV covering the
frequency range of 0.1 Hz to 1 MHz. The integration time was
0.125 s, and the number of cycles was equal to one.

3. RESULTS AND DISCUSSION

To demonstrate the effect of SiO2 NPs on the PSC
performance, the fabricated cells were tested (with different
concentrations and sizes of SiO2) under 1 sun condition in air.
Figures 2 and 3 show the dependence of the average device
performance parameters when the concentration of SiO2 NPs,
with 100 and 50 nm sizes, respectively, varies from 0 to 10 and
50 μL. To ensure reliability, at least 15 devices were made for
each concentration, but usually more devices are prepared in a
single condition. We have analyzed several batches at each
condition, and two operators prepared the devices to avoid
dispersion from batch to batch, independent of the skill of a
single operator. No cell was ruled out of the analysis despite
some batches presenting a significant lower performance than
the average. This procedure implies the preparation of a large
amount of samples, as we have prepared in this work, to have a
confidence interval as high as 90%, where no overlap is
observed between the intervals for the samples having the
highest PCE and the reference, as we show in Figures S3 and
S4, making the study statistically meaningful. The boxplot
featuring the short-circuit current density (Jsc), open circuit

Figure 3. Boxplot showing the minimum, quartile 1, mean, median, quartile 3, and maximum for the photovoltaic performance of cells using
different concentrations of SiO2 NPs of 50 nm size. (a) Jsc, (b) Voc, (c) FF, and (d) PCE. Concentration is indicated in μL of a solution of 0.4 mg of
SiO2 powder in 10 mL of ethanol.
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potential (Voc), fill factor (FF), and PCE of all of the cells with
different SiO2 NP concentrations are compared in Figures 2
and 3. Clearly, the addition of SiO2 NPs demonstrates an
increase in the Jsc and hence in the PCE. In particular, the
highest PCE for samples containing 50 and 100 nm size SiO2
NPs embedded in the TiO2 mesoporous scaffold was achieved
by using 20 and 10 μL solutions, respectively. No significant
variation in light absorbance was observed after the addition of
SiO2 NPs, see Figure S5.
The values of the photovoltaic parameters for the cells with

the highest PCE with different SiO2 NP concentrations and
sizes are summarized in Table 1. Again, the cells with NPs

exhibit higher photovoltaic parameters. Clearly, the observed
PCE enhancement for the device incorporating SiO2 NPs
mainly comes from the great improvement of Jsc because the
Voc and FF exhibit only a slight change. The maximum PCE of
the devices without NPs reaches 15.04%, whereas the
maximum PCE of those incorporating the NPs reaches 16.51
and 16.71% for sizes of 50 and 100 nm, respectively. The J−V
curves of these champion cells are plotted in Figure S6.
To highlight the cause of the observed enhancement of PCE

performance, the optical properties of the mesoporous scaffold
have been theoretically analyzed to calculate the effect of
incorporation of SiO2 NPs of different sizes. The obtained
results are consistent with the scattering of SiO2 NPs inside the
TiO2 scaffold calculated by the Mie theory.30 First, the
scattering cross-section (σscattering) of a SiO2 NP immersed in
the TiO2 bulk matrix induces a clear scattering enhancement
by increasing the size (radius) of the NP, as illustrated in
Figure 4a. This behavior agrees with previous calculations
carried out with metal NPs in polymer media15 and can
qualitatively explain the enhancement of the solar cell
efficiency when 100 nm size SiO2 NPs are used inside the

TiO2 scaffold. Moreover, the dependence of the scattering as a
function of the filling factor (FF, volume of SiO2 inside the
TiO2 matrix) will exhibit an optimum concentration, as
presented in Figure 4b for a size of 100 nm. Here, it was
important to take into account the mesoporous nature of
TiO2: it seems that for low concentrations, SiO2 is totally
covered by TiO2, whereas for a high FF, the NPs “can see” the
influence of the air present in the porous layer, and an effective
index medium has to be considered.15 Under these conditions,
σscattering decreases for large concentrations, where the effective
refractive index of the matrix will approach that of SiO2.
Nevertheless, because the total scattering is proportional to the
number of NPs (and hence, FF), there is an optimum
concentration that maximizes the scattering of light and, with
it, the efficiency of the solar cell (see Figure 4b). In addition,
other effects such as the improvement of the contact between
the perovskite and the mesoporous layer by the presence of
large size SiO2 NPs can also contribute for enhancing the PSC
performance.
On the other hand, the enhancement on cell performance

observed when 100 nm NPs are used instead of 50 nm NPs is
significantly more moderate than that expected from the
theoretical analysis, as highlighted in Figure 4a. Here, it is
worthy to note that the thickness of the scaffold, ∼200 nm, is
of the same order as the SiO2 NP size, and consequently an
excessive increase of the NP concentration would affect
seriously the morphology of this layer and even light
transmission, effects that were not considered in Figure 4.
The PCE enhancement achieved, according to Table 1, was

9 and 14% for NPs 50 and 100 nm in diameter, respectively,
which can be explained as a consequence of the light-trapping
effect of the NPs. These NPs act like mirrors inside of the
mesoporous layer; the sunlight is scattered on it, enabling a
longer optical path length, and thereby a higher amount of
light is absorbed by the perovskite. One of the most interesting
characteristics of the method proposed here to enhance the
PCE is the fact that this TiO2−SiO2 nanocomposite is
obtained through a simple mixing step, indicating the feasibility
of the proposed method easily upscalable. There are other
light-trapping mechanisms, as nanotextures,31 that theoretically
can achieve a higher enhancement, but require a complicated
fabrication method that is difficult to transfer to industrial
applications.
It is well-known that the mesoporous scaffold also plays an

important role in the recombination and decrease of
hysteresis.8,32 In addition to the increase of PCE with the
incorporation of SiO2, a significant decrease in the J−V
hysteresis is observed, see Figure 5 and Table 2. The forward

Table 1. Values of Jsc, Voc, FF, and PCE for Champion PSCs
with Different Concentrations and Sizes of SiO2 NPs under
the Irradiation of 1 sun Intensity (100 mW/cm2; AM 1.5G)

size (nm) SiO2 (μL) Jsc (mA/cm2) Voc (V) FF (%) PCE (%)

50 0 19.35 1.055 73 15.04
10 20.03 1.065 74 15.99
20 20.55 1.061 75 16.51
50 19.72 1.052 72 15.15

100 0 20.06 1.006 72.47 14.63
10 22.59 1.023 72.32 16.71
20 20.17 0.998 69.94 14.09
50 20.38 1.033 74.29 15.64

Figure 4. (a) Integrated scattering cross-section as a function of the size of the SiO2 NP inside the TiO2 matrix. (b) Integrated scattering cross-
section per FF as a function of FF. Size was fixed to 100 nm.
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and reverse sweeps of the J−V curve for reference devices with
no SiO2 and for devices with SiO2 NPs of 50 nm are
summarized in Table S1. The hysteresis index (HI) has been
quantified by calculating as follows33

=
−( ) ( )
( )

J J

J
HI

V V

V

Rev 2 For 2

Rev 2

oc oc

oc

(1)

where JRev(Voc/2) and JFor(Voc/2) are the currents when half of
the Voc voltage is applied for reverse (from Voc to zero) and
forward (from zero to Voc) voltage scans, respectively. A HI of
0 corresponds to a cell without significant hysteresis, whereas a
HI of 1 corresponds to a system in which the hysteresis is as
high as the photocurrent.
Different aspects contribute to hysteresis in PSCs, among

them, ion migration and accumulation at perovskite interfaces
is one of the most influencing ones.34 One easy way to weigh
the effect of ion accumulation is by open circuit voltage decay
(OCVD) measurements.35 Light soaking produces an
accumulation of ions at the interface. This charge accumulation
causes an electrostatic potential adding its value to the built-in
potential from the Voc. After switching off the illumination in
OCVD measurements, two regimes are observed. First, a fast
decrease is observed as the built-in potential induced by carrier
photogeneration is quickly removed. For longer times, a
significantly slower decay is observed as the elimination of the
electrostatic potential is related with the slow ion migration
that removes the ion accumulation. OCVD measurements for
PSCs with and without SiO2 NPs are plotted in Figure 6.
Although both kinds of samples present the same behavior in
the fast decay regime, a clear difference is observed in the slow
decay regime. Samples with SiO2 NPs are able to remove the
electrostatic potential induced by ion accumulation faster than
reference cells, pointing to a lower ion accumulation and/or a
faster dynamic in samples with SiO2 NPs. In this sense, the
addition of SiO2 NPs is not just affecting the optical properties
of the mesoporous scaffold but also affecting the ion migration
properties of the perovskite deposited in it. Alternatively, ion
accumulation was also monitored by the low-frequency
capacitance.32,36−38 Samples with SiO2 NPs present lower

low-frequency capacitance, see Figure S7, pointing to a lower
ion accumulation in good agreement with the OCVD
measurements.

4. CONCLUSIONS
SiO2 NPs with 50 and 100 nm sizes have been integrated into a
conventional mesoporous TiO2 layer of the PSCs, observing an
enhancement of cell performance up to 14%, in comparison
with reference samples, mainly because of an increase in the
photocurrent. These results are in good agreement with the
theoretical predictions based on the increase of light scattering
induced by the presence of SiO2. Light scattering is favored by
the increase of the NP size. However, as the size that is able to
produce significant scattering is comparable with the optimum
mesoporous layer thickness, other aspects such as the layer
morphology, the loss in transparency, and the reduction of the
effective refractive index have to be properly balanced to
optimize the SiO2 concentration in the mesoporous scaffold.
The addition of SiO2 NPs also affects the ion accumulation at
the perovskite interfaces, causing an additional beneficial effect,
reducing the cell hysteresis significantly. Here, we show a
method, easy to implement, to increase the PSC performance
by the modification of the mesoporous TiO2 scaffold with the
addition of dielectric SiO2 NPs, pointing concretely to the
development of new mesoporous layers as a way to further
increase the performance of PSCs. Optimization of optical
properties has allowed the latest improvement in performance
in very high-efficient GaAs solar cells and has to be necessarily
considered as the reported efficiency of the photovoltaic
technology is approaching the Shockley−Queisser limit, as it is
the case for PSCs.
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M.; de Abajo, F. J. G. Modelling the optical response of gold
nanoparticles. Chem. Soc. Rev. 2008, 37, 1792−1805.
(31) Xie, Z.; Sun, S.; Wang, W.; Qin, L.; Yan, Y.; Hou, R.; Qin, G. G.
Simulation study on improving efficiencies of perovskite solar cell:
Introducing nano textures on it. Opt. Commun. 2018, 410, 117−122.
(32) Anaya, M.; Zhang, W.; Hames, B. C.; Li, Y.; Fabregat-Santiago,
F.; Calvo, M. E.; Snaith, H. J.; Míguez, H.; Mora-Sero,́ I. Electron
injection and scaffold effects in perovskite solar cells. J. Mater. Chem.
C 2017, 5, 634−644.
(33) Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J.-W.; Park, N.-G.;
Kang, Y. S.; Mora-Sero, I.; Bisquert, J. Slow Dynamic Processes in
Lead Halide Perovskite Solar Cells. Characteristic Times and
Hysteresis. Chem. Phys. Lett. 2014, 5, 2357−2363.

ACS Omega Article

DOI: 10.1021/acsomega.8b01119
ACS Omega 2018, 3, 9798−9804

9803

http://orcid.org/0000-0002-1049-4409
http://orcid.org/0000-0003-2508-0994
http://dx.doi.org/10.1021/acsomega.8b01119


(34) Chen, B.; Yang, M.; Priya, S.; Zhu, K. Origin of J−V Hysteresis
in Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 905−917.
(35) Gottesman, R.; Lopez-Varo, P.; Gouda, L.; Jimenez-Tejada, J.
A.; Hu, J.; Tirosh, S.; Zaban, A.; Bisquert, J. Dynamic Phenomena at
Perovskite/Electron-Selective Contact Interface as Interpreted from
Photovoltage Decays. Chem 2016, 1, 776−789.
(36) Kim, H.-S.; Jang, I.-H.; Ahn, N.; Choi, M.; Guerrero, A.;
Bisquert, J.; Park, N.-G. Control of I−V Hysteresis in CH3NH3PbI3
Perovskite Solar Cell. J. Phys. Chem. Lett. 2015, 6, 4633−4639.
(37) Zarazua, I.; Bisquert, J.; Garcia-Belmonte, G. Light-Induced
Space-Charge Accumulation Zone as Photovoltaic Mechanism in
Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 525−528.
(38) Zarazua, I.; Han, G.; Boix, P. P.; Mhaisalkar, S.; Fabregat-
Santiago, F.; Mora-Sero,́ I.; Bisquert, J.; Garcia-Belmonte, G. Surface
Recombination and Collection Efficiency in Perovskite Solar Cells
from Impedance Analysis. J. Phys. Chem. Lett. 2016, 7, 5105−5113.

ACS Omega Article

DOI: 10.1021/acsomega.8b01119
ACS Omega 2018, 3, 9798−9804

9804

http://dx.doi.org/10.1021/acsomega.8b01119

