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ABSTRACT  

We fabricated perovskite quantum dot solar cells (PQDSCs) varying the thickness of the QD layer by 

controlling the number of deposition cycles, that were systematically investigated with impedance 

spectroscopy. Despite the evident structural differences with respect to standard perovskite solar cells 

(PSCs), similar impedance spectra were obtained for PQDSCs, pointing to similar working principles in 

terms of the active layer. We distinguish two different regimes: at low illumination, recombination is 

ruled by multiple trapping with trap distributions and/or shunting. However, at higher light intensities 

Shockley-Read-Hall recombination is observed. In addition, the low frequency capacitance, CLF, of 

PQDSCs increases several orders of magnitude by varying the illumination from dark to 1-sun 

conditions. This feature has not been observed in other kinds of photovoltaic devices and is characteristic 

of PSCs. Despite no consensus about the exact mechanism responsible for CLF the suggested models 

point to an ion migration origin. Its observation in thin film and PQDSCs devices implies a similar effect 

in both. 
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Halide perovskite solar cells (PSCs) have inspired the photovoltaic community in the last few 

years motivated by the high power conversion efficiency1-3 already exceeding 23% for solution processed 

semiconductors.4 This value surpasses other thin film photovoltaic technology efficiencies such as CdTe 

or CIGS and is close to that of crystalline Si cells.4 However, the record efficiencies reported for hybrid 

organic-inorganic halide perovskites are in non-stabilized devices,4 pointing to the most important 

challenge of halide perovskite technology: stability.5 Although, hybrid perovskite solar cells show high 

efficiency, significant challenges remain to prove that a perovskite photovoltaic product can operate in 

the field with lifetime greater than 25 years as current technologies do.6 One way to palliate these stability 

issues is the use of fully inorganic halide perovskites which provide higher stability under thermal stress.7, 

8 CsPbI3 seems to be the most obvious all-inorganic choice to use in perovskite solar cells, as iodine 

perovskites presents a narrower bandgap than bromine and chlorine perovskites,9, 10 consequently 

allowing light harvesting for a broader range of wavelengths. Nevertheless, the small size of Cs+ cation 

makes the  yellow orthorhombic phase with broad bandgap, Eg, the thermodynamically stable phase for 

CsPbI3 at room temperature,11 while the  perovskite phase with Eg =1.73 eV12 is the stable phase at high 

temperature >320ºC.13 

The limitation of the perovskite phase stability of CsPbI3 bulk thin films can be overcome by the 

use of quantum dots (QDs) of the same material that can trap the crystal structure in the typically high 

temperature crystal perovskite phase.13 Colloidal QDs are nanocrystals with smaller dimensions on the 

order of the Bohr exciton radius, allowing the observation of quantum confinement behaviors such as Eg 

tuning with particle size.14 QDs have been broadly studied in the last few decades due to, among other 

things, their outstanding optical properties enhancing the reported ones for their bulk counterparts.15, 16 

The great success of halide perovskites boosted also the interest on the nanoparticles of these materials. 

Pérez-Prieto and coworkers reported by first time the development of hybrid halide perovskite 

nanoparticles,17 and Kovalenko and coworkers prepared inorganic CsPbX3 (X: Cl-, Br-, and/or I-).18 In 

addition to thin film halide perovskites, nanoparticles are also generating a huge interest as relative easy 

preparation methods yield a simple core structure, without need for passivating shells, reach 

photoluminescence quantum yield (PLQY) higher than 90%.19, 20 This remarkable PLQY points to low 

non-radiative recombination and consequently shows excellent rationale for the development of solar 

cells. In fact, CsPbI3 QDs have been deposited in a thin film utilized for solar cell fabrication recently 
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achieving a power conversion efficiency of 13.43%,21 the world record efficiency for QD solar cells 

(QDSCs) already eclipsing any other QD material system with very little research.4 This efficiency was 

achieved with a post treatment of perovskite QD film using halide salts which provide a method for 

tuning the coupling between perovskite QDs improving charge transport.21 Lower performances have 

been obtained when iodine is totally or partially substituted by bromine.22 CsPbI3 QDs have been also 

used in QD sensitized solar cells configuration demonstrating a power conversion of efficiency of 5%.23 

In addition, perovskite QDs also offer the possibility of a real bandgap tuning using mixed halide 

perovskites, as CsPb(Br1-xIx)3, as the reduced size of these nanoparticles avoids the phase segregation,24 

forming to bromide and iodine rich segregated domains.25, 26 The phase segregation limits the 

effectiveness of high bandgap perovskite materials of special interest for the development of tandem 

devices.27 It is also worth mentioning that QDs can exhibit Eg tuning by size confinement, enabling a 

potential higher bandgap material without the need for Br. 

Despite this potential, to date there is little knowledge concerning the operating mechanism in 

perovskite QDs solar cells (PQDSCs) devices. A priori, the presence of complex QD surface structure28  

with the corresponding ligand molecules and presumed high densities of surface defects should influence 

transport and recombination, and therefore limit the open circuit potential, Voc, to far below that of thin 

films. However, Voc of up to 90% of the radiative limit have been shown in various compositions of PQD 

absorber layers,5 and with hole transport contact optimization, voltage as large as 1.27 V have been 

reported for absorbers with Eg below 2 eV.29 Here, we prepare PQDSCs with different QD layer thickness 

and characterize them systematically using frequency modulated Impedance spectroscopy (IS) to 

highlight the behavior of this system in terms of working mechanisms and in comparison with standard 

PSCs. IS can be applied at the device working conditions and the frequency modulation allows to 

decouple processes with different characteristic times making this technique ideal to characterize the 

different processes occurring in the device.30  

CsPbI3 QDs were synthesized following previous reports.31 The synthesized QDs were cube 

shaped and 9.3 ± 1.5 nm in size as determined by TEM, see Figure S1. As reported previously, this 

synthesis procedure yields QDs in the perovskite crystalline phase as determined by XRD, see Figure 

S2. After QD deposition and subsequent ligand exchange, from the 0.39 theta at full width at half 

maximum (FWHM) of XRD peak corresponds to (100) plane, observed in the samples, Figure S2, a 

grain size of 21.46 nm is calculated using the Scherrer equation. As expected there is an increase of the 

crystal size after ligand exchange but with a size significantly lower that the reported in the standard solar 
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cells. On the other hand, we have previously reported that ligand exchange just partially remove the 

capping layer of QDs32 preserving consequently the capping molecules and providing integrity to the 

perovskite nanoparticles. The PLQY of the CsPbI3 QDs after a couple of washing processes, in order to 

remove the organic excess before the deposition, was measured to be roughly 40% in hexane solution. 

For the fabrication of PQDSCs, SnO2:F (FTO) coated conductive glass was used as substrate. A compact 

layer of TiO2 (c-TiO2), was deposited as electron selective contact33 on top of the FTO layer, see Figure 

1a. A controlled number of layers of CsPbI3 QDs were then spin coated on top of c-TiO2 to vary the active 

layer thickness of the solar cell. More details about the fabrication process can be found in the Supporting 

Information. Briefly, a purified solution of CsPbI3 QDs in octane was spin coated, then the film was 

dipped three times into a MeOAc or EtOAc solution containing Pb(NO3)2, rinsed in neat MeOAc or 

EtOAc, and then immediately dried with nitrogen. This complete process constitutes one layer of CsPbI3 

QDs and was repeated multiple times to create devices with different thickness ranging from 150 to 400 

nm. On top of QD film, spiro-OMeTAD was deposited as hole selective contact. Finally, a 70 nm thick 

Au layer was evaporated as hole extracting contact. In Figure 1a the cross section of a PQDSC analyzed 

in this work is depicted. 

The CsPbI3 QD layer exhibits a photoluminescence (PL) at 689 nm with a full width at half 

maximum (FWHM) of 30 nm, see Figure 1b. As expected, the light absorption of the QD layers increases 

with the number of deposited layers, see Figure 1b. The thicknesses of the films were measured from the 

cross section by SEM, see Figure 1c. Different device batches have been produced and analyzed. 

Independent of the synthetic batch, the light absorption increased linearly with the number of deposited 

layers, in the case plotted in the inset of Figure 1c, the absorbance at 500 nm increased roughly by 0.3 

for each 100 nm of QD layer thickness.   

 

Figure 1. (a) SEM micrograph of the cross section of a PQDSC with an architecture glass/FTO/Compact 

TiO2 (c-TiO2)/CsPbI3 QD thin film/spiro-OMeTAD/Au. (b) UV-Vis. absorption spectra (solid lines) of 
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PQDSCs with different number of deposited layers of CsPbI3 and photoluminescence (dashed line). (c) 

Thickness of CsPbI3 film as function of the number of deposited layers, measured by SEM. Inset, 

absorbance at 500 nm, see arrow in (b), as function of thickness, the slope of the linear fit is indicated. 

 Figure 2 shows the average photovoltaic parameters of the PQDSCs as function of the number of 

deposited layers, at least 5-10 cells have been prepared at each thickness. Photocurrent density, Jsc, and 

open circuit potential, Voc, Figure 2a and 2b respectively, increased with the number of layer saturating 

for large numbers. J-V curves of representative devices with different number of layers are plotterd in 

Figure S3. On the other hand, fill factor, FF, remains practically constant with the number of layers taking 

into account the error bars. Consequently, the photoconversion efficiency, , increased with the number 

of deposited QD layers until a maximum average efficiency is reached for 4 layers, in the conditions of 

preparation of the batch depicted in Figure 2. Further deposition of layers decreased the performance due 

mainly to the reduction of FF. In this study a maximum efficiency of 8.1 % was obtained with JSC =11.3 

mA/cm2, VOC = 1.094 V and FF= 66%, see Figure S4. Different batches have been prepared changing 

some deposition parameters such as the concentration of QDs, or the ligand exchange procedure. In all 

the analyzed batches the solar cell parameters exhibits the same trend as reported in Figure 2. 

 Comparing the performances obtained for PQDSCs with state-of-the-art PSCs based on bulk thin 

film,3 FF and especially JSC are significantly lower for PQDSCs. Higher FF have been reported for 

PQDSCs, 80%,21 in our case the low FF is probably due to the c-TiO2 as this selective contact plays a 

fundamental role in the performance and FF of perovskite solar cells.34 However, the weakest 

photovoltaic parameter for PQDSCs compared to conventional thin films is the photocurrent. JSC has 

been improved by the use of cation halide salt treatment.21 Nevertheless, this parameter still requiring 

improvement as the reported one for the record PQDSCs,4 15.246 mA/cm2,21 remains low in comparison 

with PSCs. This limitation is mainly due to the low incident photo to current efficiency (IPCE) at longer 

wavelengths, see Figure S5. Thin QD layers do not allow the complete harvesting of the long wavelength 
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region while an increase of thickness does not necessarily solve this issue as carrier transport limitations 

arise.  

 

 

Figure 2. Average photovoltaic parameters of the PQDSCs prepared from a QD solution of 50 mg/ml as 

function of the number of deposited layers: (a) photocurrent, JSC; (b) open circuit potential, VOC; (c) fill 

factor, FF and (d) photoconversion efficiency, . 

 

 In order to obtain a better understanding of PQDSCs, measurements at various light intensities 

were systematically performed. Details about the experimental procedure can be found in the supporting 

information and in the recent reference.35 In Figure 3a, we plot VOC as function of the light intensity. This 

representation allows for the easy calculation of the diode ideality factor, m, simply by the linear fit of 
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the data.36 Figure 3a points to two different working regimes: at low and at high light intensities 

characterized by different ideality factors. At low light intensities m presents values significantly higher 

than two that could be assigned to a recombination process with multiple trapping events throughout a 

distribution of trap energies.36 High m values have not been reported for standard PSCs using compact 

TiO2 and spiro-OMeTAD respectively as electron and hole selective contacts36, 37 and consequently this 

multiple trapping process at low light intensities would be associated with the perovskite QD layer. 

However, pinholes could also produce this high m behavior and this explanation cannot be completely 

ruled out especially in the case of the thinnest layers. At higher light intensities m reduced to two for the 

thickest samples as most of these traps are filled , pointing to an elimination of trapping leaving only 

Shockley-Read-Hall recombination at deep trap states.36 Note that the small shunts produced by pinholes 

could be overwhelmed at hight illumination, and similar behavior should be expected. Pinholes are 

especially influencing in the cell performance for thinner samples in fact the thinnest layer in Figure 3a 

presents an ideally factor m is higher than 2 even at high illumination. Analysis of recombination 

resistance, see below, also points to the presence of pinholes especially in the case of the thinnest samples. 

 Impedance spectroscopy has been performed with an applied bias equal to VOC under different 

light intensities.35 While there is a lack of consensus on interpretation of such IS patterns, an interesting 

qualitative comparison can be performed to detect differences between PSCs and PQDSCs. As in the 

case of conventional thin film PSCs, two main features (arcs) at high and low frequency were presented 

in the Nyquist plot (imaginary part of the impedance, Z’’, vs. real part of the impedance, Z’), 34, 38-40 see 

Figure 3b. A closer inspection of the Nyquist plot points to a more complex system, as the high frequency 

feature, the left handside feature with lower Z’, is not a single arc but better represented as two merged 

arcs at high frequency.34 Consequently, we have used an equivalent circuit previously employed for 

PSCs,41 containing an intermediate frequency arc, to fit the experimental data, see Figure S6. This 

equivalent circuit model can accurately fit the experimental measurements, see Figure 3b. The impedance 
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spectra of PQDSCs are analogous to those observed for standard PSCs and consequently the same 

equivalent circuits can be used to simulate the performance of both devices. 

Impedance fitting allows the comparison of different parameters as a function of the number of 

layers. Figure 3c plots the recombination resistance, Rrec, normalized to QD thin film volume for different 

PQDSCs obtained as the sum of low and high frequency resistances,42, 43 more details in Figure S7. Rrec 

depends reversely to the recombination rate30 and consequently can provide a direct quantitative view of 

the recombination process. Rrec can also be obtained as the lifetime divided by the chemical capacitance.30 

Rrec depends on carrier density and consequently on the applied bias , following a relation of the type30: 

𝑅𝑟𝑒𝑐 = 𝑅0 𝑒𝑥𝑝 (−
𝛽𝑞𝑉

𝑘𝐵𝑇
)   (1) 

where R0 is the recombination resistance at short circuit, q is the elementary charge, kB is the Boltzmann 

constant, T is the absolute temperature and  a dimensionless parameter related with the ideality factor 

m as one is the inverted value of the other (m=1/).44 Good agreement is obtained between m and  

values obtained in Figures 3a and 3c respectively, indicating the correctness of the experimental 

procedure.  

From figure 3c, we find that the recombination resistance normalized to the volume of QD layer 

is improved as more layers are deposited up to saturation at 6 layers. This fact explains the increase in 

Voc observed in Figure 2b by a reduction of the recombination rate as the deposition of multiple layers 

reduces potential pinholing and inhomogeneities. 
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Figure 3. Optoelectronic characterization of PQDSCs with different thickness. (a) Open circuit potential as 

function of the light intensity. Solid line is a straight line with m = 2.4. (b) IS Nyquist plot at applied bias 

equal to the device Voc for three different light intensities, symbols are experimental data while solid lines 

correspond to the fit using the equivalent circuit plotted in Figure S6. (c) Recombination resistance, Rrec, the 

dashed line is the linear regression of experimental points at high applied bias according Eq. (1) for the two 

thicker layers. Low frequency capacitance (d) as function of light intensity; (e) Bode plot at Voc applied bias 

under different light intensities where dashed arrow indicate the evolution of the impedance spectra as light 

intensity is reduced and (f) CLF as function of VOC, the dashed line is the linear regression of experimental 

points at high applied bias while the solid line to representation of a straight line with slope defined by =0.5.  

 

Especially interesting is the characterization of low frequency capacitance, CLF, as this 

capacitance is the most characteristic and recognizable feature of the impedance pattern of PSCs.45 In 

PSCs, an increase in the CLF of several orders of magnitude, even at zero applied bias, has been observed 

between dark conditions vs. 1-sun illuminations, in contrast with other photovoltaic technologies such as 

Si where a minimal change is observed.45 On the other hand, CLF is not observed in all-solid state dye 

sensitized solar cells either,46 where the same selective contacts are used and consequently its origin is 

attributed to the perovskite layer and/or the interaction of the perovskite layer with the selective contacts. 

The physical origin of this capacitance is not clear and different models have been proposed. However, 
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many of these models, especially the most recent ones, coincide in pointing out the ionic migration as 

the fundamental origin of this phenomenon. On one hand, this capacitance has been associated with the 

accumulation of majority carriers at the TiO2 interface, and it is observed at low frequency as the 

accumulation process is coupled with the ion migration.47 On the other hand, light induced ion migration 

has been pointed out as the origin of the behavior.48 In addition, the interplay between ionic and electronic 

charge transfer at perovskite-contact interfaces controlling electronic injection and recombination,49 and 

ion-modulated recombination have been also indicated as possible origin of the behavior.50 Consequently, 

there is a broad consensus on the ionic origin of this feature characterizing PSCs. Moreover, it has been 

reported that the J-V curve hysteresis observed for PSCs is related to ion migration,50-53 and in fact a 

reduction of hysteresis has been related to a decrease of CLF, connecting both effects with the ion 

migration behavior in halide perovskites.50, 51, 54  

In the case of PQDSCs, it is notable to observe that the CLF follows a similar behavior as in 

standard PSCs, exhibiting an linear increase of several orders of magnitude with light illumination, see 

Figure 3d. This behavior can be clearly observed at lower frequencies of the Bode plot of PQDSCs at 

applied bias equal to the VOC at different light illuminations, see Figure 3e. This similatity strongly points 

to an analogous origin of CLF in both PSCs and PQDSCs and origin linked with ion migration as it has 

been suggested for PSCs. However, further research is needed to fully confirm this point. 

A close inspection of CLF at different illuminations at VOC conditions allows to differentiate two 

working regimes at low and high illumination, see Figure 3f. Note that in Figure 3f CLF is normalized to 

the device area and not to the QD layer volume. At high light intensity all four devices present the same 

CLF independent of the thickness, pointing to a process where interfacial effects take a major role. It is 

interesting to note that at high light intensities CLF presents an exponential behavior, than can be fitted 

with a phenomenological equation analogous to Eq. (1): 
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𝐶𝐿𝐹 = 𝐶0 𝑒𝑥𝑝 (−
𝛽𝑞𝑉

𝑘𝐵𝑇
)  (2) 

where C0 is the low frequency capacitance at 0 bias. A  = -0.39 is obtained for CLF at high applied bias, 

see Figure 3f, while a complementary value of 0.39 was obtained for Rrec at high applied bias, see Figure 

3c. Both  are in good agreement with the ideality factor measured independently in Figure 3a. On the 

other hand very similar values of  for the high and low resistances have been also obtained, see Figue 

S7. This complementarity of CLF and Rrec slopes has been previously observed for standard PSCs,42 where 

a of  = -0.5 was observed. A solid straight line corresponding to this  value is plotted in Figure 3e with 

a solid line for comparison. The  = -0.5 slope of the capacitance slope has been previously associated 

with the characteristic behavior of the interfacial charge accumulation.42, 47, 55 The complementarity of 

the slopes points to a common effect linking recombination and ion migration through Rrec and CLF 

respectively. It has been calculated that interstitial iodine defects introduce deep electron/hole traps in 

CH3NH3PbI3,
56 if these defects are the main resposibles of non-radiative recombination process the 

recombination process would be affected by the ion migration, as the behavior Rrec and CLF suggest. Note 

that two regimes can be also distinguished at for Rrec and CLF at low and high applied bias, corresponding 

with the low and high regimes previously commented regarding the light intensity dependence in Figure 

3a. 

A further comparison between PQDSCs and PSCs can be performed taking into account the 

impedance measurements. A characteristic time, , can be defined as CLF × Rrec, see Figure S8. Note that 

 is not a lifetime as CLF is not a chemical capacitance.57 Due to the complementary value of CLF and Rrec, 

a value 1 s is obtained, lower in the case of the thinner layer, see Figure S8. Characteristic times of the 

same order, measured by alternative transient techniques, have been reported for PSCs.40, 58 This 

characteristic time has been shown independent of the applied bias and light illumination but decreasing 



 13 

with the thickness and depending of the perovskite material and on the selective contacts.42 The value of 

 here obtained for PQDSC is very similar to that reported for planar PSCs of the same thickness 

fabricated and selective contacts with MAPbI3 and one order of magnitude higher than planar cell of 

FAPbI3, where MA is methylammonium and FA formamidinium. Additionally, PQDSCs present a  3 

orders of magnitude higher than planar PSCs of the same thickness fabricated and selective contacts with 

MAPbI3 but with inverted configuration and organic selective contacts.42  

The impedance spectroscopy analysis of PQDSCs is remarkably similar to the most 

characteristics trends of standard PSCs, yet not observed in other cells: increase of several orders of 

magnitide of CLF with light illumination, Figure 3d-e, complementary slopes of Rrec and CLF, Figure 3c 

and 3f respectively, and nearly constant characteristic time  =CLF·Rrec, Figure S8. Consequently our 

study preliminarly suggest that the PQDSCs present the same working mechanism than PSCs.  

It will be important to further confirm this preliminary results as important conclusions 

conclusions could be obtained from this similarity. Concretely, CLF presents a similar behavior to the 

observed for PSCs, pointing to an important ion migration effect in PQDSCs, despite the fact that 

different ion migration properties might be expected between the PQDSCs and standard PSCs due to the 

structural differences between a thin film where QDs act as a brick with a continuous thin films with 

crystalline grains of hundreds of nanometers. It is expected that the presence of an organic capping on 

perovskite QD surface would likely influence the ion migration process in perovskite QD layers. In fact, 

there are anions on the QD surface just to balance the charge. Those anions could migrate under a field 

through the voids in the QD layer.28 In our case, as ligands from the as-synthesized QDs were removed 

to reduce the interdot distance and to insolubilize the QDs on the substrate so that multiple layers could 

be coated.31 Rapid and facile halide exchange in QD solutions has been observed due to the dynamic 

surface properties of QD perovskites in solution and this effect can be used to create homogeneous halide 
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alloy compositions.59 Appropriate surface capping properties can reduce this effect.60-62 The impedance 

analysis carried out in this work for PQDSCs shows clearly an analogous behavior than in standard PSCs 

for CLF, usually attributed to ion migration as we have previously discussed. The implication in PQDSCs 

will need further research. In this sense, impedance spectroscopy arises as a highly appealing method for 

characterization of PQDSCs in general and ion migration in particular. 

 In summary, we have prepared and characterized PQDSCs with CsPbI3 QDs. The devices with 

different number of QD deposited layers, i.e., different thicknesses, have been prepared and analyzed. 

Two different working regimes are identified at low and high illumination conditions. At low illumination, 

recombination is ruled by multiple trapping and trap distributions. However, at higher light intensities 

most of these traps are filled observing a Shockley-Read-Hall recombination. PQDSCs present a similar 

impedance spectroscopy pattern than bulk thin film PSCs. Thick enough layers have to be prepared to 

reduce recombination which probably originated in thin layers due to non-uniformities. Interestingly, 

PQDSCs present the main impedance signature of PSCs, a high CLF under illumination commonly related 

with ion migration. The similarity of the impedance pattern and the characteristic behavior of reported 

in this work of Rrec and CLF strongly points to analogous working mechanism in both PSCs and PQDSCs. 

Further confirmation of this point would indicate that ionic effect is not just important in bulk perovskite 

thin films but on QD layer, influencing decisively the working behavior of PQDSCs. As in the case of 

PSCs at high illumination CLF for PQDSCs is independent of the active layer thickness pointing to a 

major role of interfacial effects. CLF also presents a complementary slope to the observed for Rrec, also 

observed in PSCs, pointing to a relationship between ion migration and recombination but further 

research is required to stablish properly this relationship. In addition, this work highlights the interest of 

impedance spectroscopy in the future optimization of this technology. 
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