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Abstract
1.	 Passive acoustic monitoring (PAM) is used for many vocal species. However, few 
studies have quantified the fraction of vocalisations captured, and how animal 
distance and sound source level affect detection probability. Quantifying the de-
tection probability or effective detection area (EDA) of a recorder is a prerequisite 
for designing and implementing monitoring studies, and essential for estimating 
absolute density and abundance from PAM data.

2.	 We tested the detector performance of cetacean click loggers (C-PODs) using 
artificial and recorded harbour porpoise clicks played at a range of distances and 
source levels. Detection rate of individual clicks and click sequences (or click 
trains) was calculated. A Generalised Additive Model (GAM) was used to create a 
detection function and estimate the effective detection radius (EDR) and EDA for 
both types of signals.

3.	 Source level and distance from logger influenced the detection probability. Whilst 
differences between loggers were evident, detectability was influenced more by 
the deployment site than within-logger variability. Maximum distance for detect-
ing real recorded porpoise clicks was 566 m. Mean EDR for artificial signals with 
source level 176 dB re 1 μPa @ 1m was 187 m., and for a recorded vocalisation 
with source level up to 182 dB re 1 μPa was 188 m. For detections classified as 
harbour porpoise click sequences the mean EDR was 72 m.

4.	 The analytical methods presented are a valid technique for estimating the EDA of 
any logger used in abundance estimates. We present a practical way to obtain 
data with a cetacean click logger, with the caveat that artificial playbacks cannot 
mimic real animal behaviour and are at best able to account for some of the vari-
ability in detections between sites, removing logger and propagation effects so 
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1  | INTRODUC TION

Conservation and management of wildlife requires reliable estimates 
of animal abundance or density, traditionally achieved through vi-
sual counts or by (re-)capturing animals. Many animals, such as forest 
dwellers and diving marine species can be challenging to study due 
to inaccessibility of their habitats and limited availability for ground-
based or sea surface-based observers. Visual monitoring methods 
are furthermore prone to inherent biases caused by temporal vari-
ability, observer ability and, particularly at sea, are limited to calm 
weather and good visibility. Visual surveys conducted in summer 
cannot predict abundance in other seasons, and if not conducted 
at frequent intervals have a low ability to detect long-term trends in 
population status. Cryptic, but vocal species, including many mon-
keys, bats, birds, frogs, and cetaceans are increasingly being moni-
tored using passive acoustic methods. Various techniques have been 
developed for mobile (i.e., towed) acoustic methods for studying 
cetaceans (Barlow & Taylor, 2005; Akamatsu et al., 2008) but static 
devices pose a new set of challenges. Various automated acoustic 
devices to collect and analyse acoustic data can now detect and 
identify species and can be an efficient alternative to or complement 
existing visual sampling as they can be used in inaccessible areas, 
reduce disturbance caused by human presence, and maximise tem-
poral coverage through a long-term sampling regime (Digby, Towsey, 
Bell, & Teal, 2013; Mellinger, Stafford, Moore, Dziak, & Matsumoto, 
2007). In this paper, we present a technique for characterising the 
performance of an acoustic detector using playback experiments; al-
though the technique is potentially applicable to terrestrial studies, 
our focus here is on cetaceans.

Effective abundance monitoring is crucial for species under 
threat from anthropogenic activities. One such species is the harbour 
porpoise (Phocoena phocoena, Linnaeus, 1758), which, although com-
monly sighted off the North East Atlantic coastline, is increasingly 
threatened by human activities; the Baltic subpopulation is listed 
as “critically endangered” in the IUCN Red List (Hammond et al., 
2008). The porpoise is difficult to monitor using visual techniques 
because of its small size and cryptic behaviour, but it lends itself 
well to acoustic studies because it emits stereotypical, narrow-band 

high-frequency (NBHF) echolocation clicks and produces near con-
tinuous vocalisations apart from short rest periods (Linnenschmidt, 
Teilmann, Akamatsu, Dietz, & Miller, 2013; Wright et al., 2017). 
Automated underwater click loggers such as C-PODs (Chelonia 
Ltd., Cornwall, UK) use waveform characterisation to identify clicks 
based on their intensity, bandwidth, frequency, and duration. After 
retrieval of the devices, custom-written software then uses the re-
corded information to classify detected sounds into series, termed 
trains. These are further categorised based on their likely origin 
(boat sonar, dolphin, or porpoise) according to known characteristics 
of cetacean vocalisations. Click logger data are now widely used to 
evaluate presence and foraging behaviour of vocalising cetaceans 
in both coastal and offshore areas (Benke et al., 2014; Verfuß et al., 
2007; Schaffeld et al., 2016; Simon et al., 2010); and assess distur-
bance from wind farms, shipping, fisheries, and coastal development 
(Carstensen, Henriksen, & Teilmann, 2006; Todd, Pearse, Tregenza, 
Lepper, & Todd, 2009). They can also potentially be used to estimate 
animal density (Kyhn et al., 2012).

1.1 | Estimating density

Several approaches have been developed to estimate animal den-
sity from stationary passive acoustic data (Marques et al., 2012; 
Stevenson et al., 2015); we introduce two here that are relevant to 
static loggers. In the first, the unit of analysis is an individual vocali-
sation, such as a cetacean click. Then,

where n is the number of detected vocalisations, c is the propor-
tion of those that are false positives (i.e., not from the target spe-
cies), v is the effective detection area (EDA, see below), T is the 
total monitoring time summed over all detectors in the survey, and 
r is the average rate of sound production. The false-positive rate, 
c, is estimated by inspecting a sample of the data under the as-
sumption that a human analyst can accurately detect false posi-
tives. Sound production rate is best obtained from an auxiliary 
study where a sample of animals are fitted with acoustic recording 

(1)̂D=
n
(

1− ĉ
)

v̂Tr̂

that what remains is density and behavioural differences. If calibrated against real-
world EDAs (e.g., from tagged animals) it is possible to estimate site-specific detec-
tion area and absolute density. We highlight the importance of accounting for both 
biological and environmental factors affecting vocalisations so that accurate esti-
mates of detection area can be determined, and effective monitoring regimes 
implemented.

K E Y W O R D S

abundance, C-POD, density estimation, detection function, effective detection radius, static 
passive acoustic monitoring
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tags and their vocalisation rate is measured; in practice, it is often 
obtained from studies undertaken in other times and places rais-
ing the possibility of bias. Here we focus on estimating EDA using 
recordings of cetacean echolocation, but the following equations 
can be applied to any animal that vocalises frequently. EDA is 
the area around a logger within which as many vocalisations are 
missed as are detected outside it; hence the EDA can be thought 
of as a measure of the area monitored by a logger. Acoustic detec-
tion is range-dependent, so one way to estimate EDA is by first 
estimating a detection function, g(y) (Buckland et al., 2001), which 
describes the probability of detection as a function of horizonal 
range y of the click from the logger. Assuming vocalisations are 
distributed randomly around the logger (or, more appropriately, 
that multiple loggers are used in the survey and that they are dis-
tributed randomly within the study area),

where in theory w = ∞ but in practice some finite truncation dis-
tance is used where g(y) is known to be 0. EDA is sometimes ex-
pressed in terms of the effective detection radius (EDR), ρ, that 
is, the distance from the logger within which as many animals 
are missed as are detected outside it, where �=

√

ν∕�. Another 
related quantity is the detection probability, that is, the average 
probability of detecting a sound within distance w of the logger, 
Pa=υ∕�w2.

In the second approach to density estimation (e.g., Kyhn et al., 
2012), the monitoring time is divided into a sequence of short “snap-
shots” where animal movement is negligible. Echolocating animals 
click in a regular sequence (a “click train”), and hence it is typically 
possible to count the number of animals detected within a snap-
shot interval (i.e., the number of overlapping click trains). The unit 
of analysis in this approach is the total number of animal detections, 
summed over all snapshots. Density is estimated as

where ns is the number of animals detected, cs is the probability 
of a false-positive animal detection, vs, is the EDA for a vocalising 
animal over the snapshot interval, Ts is the total number of snap-
shots (summed over all sensors), and rs is the probability of an animal 
vocalising at least once during a snapshot interval. A variant of this 
method can deal with the situation where animals are in groups, and 
multiple animals can be detected within a single snapshot (see Kyhn 
et al., 2012).

In both the above formulations, a critical step is estimation 
of the detection function, g(y), and hence the EDA. The most re-
liable way to do this is to collect auxiliary information from wild-
swimming animals within the study area during the time of the 
survey. In some cases, it may be possible to track a sample of 
animals in the vicinity of the loggers, for example by fitting them 
with acoustic- and location-sensing tags (e.g., Marques, Thomas, 
Ward, DiMarzio, & Tyack, 2009) or by observing them from a 

vantage point (e.g., Kyhn et al., 2012). However, tagging studies 
are logistically infeasible in many situations, and vantage points 
occur in limited locations and are only useful for species with 
short dive intervals.

Here, we present an alternative approach, based on playback 
of artificial cetacean clicks or real recordings. This has the advan-
tage of being feasible for use in many cases at all sampling loca-
tions, and potentially at multiple times during the survey period. 
All acoustic studies should account for imperfect detectability, 
inherent in any detector and various factors affect the detection 
probability of cetaceans with acoustic data loggers (Katsanevakis 
et al., 2012). In a marine environment, playbacks can account 
for some of these factors, such as distance, water temperature, 
background noise, salinity, and substrate which can cause varia-
tion in sound propagation, or lead to transmission loss, absorp-
tion into sediment and potential shadowing from physical objects 
(Au, 1993; Au & Hastings, 2008; DeRuiter et al., 2010; Zimmer, 
2011). However, a playback experiment cannot readily account for 
factors related to animal behaviour and activity state such as vo-
calisation rate, intensity and frequency of emitted sounds, direc-
tion of movement, and orientation in the water column (Nuuttila 
et al., 2013), which must be borne in mind when interpreting re-
sults from such experiments. The first objective was to assess 
the performance of the hardware detection via the data logger’s 
hydrophone in detecting playbacks of porpoise click-like artificial 
signals. The second objective was to examine the performance of 
the click train classification and species identification software by 
playing a recorded porpoise vocalisation sequence to the logger 
and calculating the detection rate for the clicks detected but also 
for click sequences identified by the algorithm (i.e., the snapshot 
method). The equations presented above can be adapted to other 
vocal species and acoustic instruments, both click loggers and full 
bandwidth recorders while the practical experiment presents a 
crucial step towards estimating cetacean abundance based on sta-
tionary acoustic monitoring of echolocation clicks.

2  | MATERIAL S AND METHODS

2.1 | C-POD calibration

The frequency response of the C-POD hydrophone was −208 dB 
re 1V/uPa at 130 kHz. Each logger was calibrated in a tank at the 
German Oceanographic Museum. This consisted of ensonifying 
each C-POD with a 130 kHz artificially created click signal at de-
creasing sound source levels and determining the sound pressure 
level threshold at four different positions around the C-POD where 
50% of the transmitted signal was received by each POD. The av-
erage threshold level over the four positions was then used as the 
calibration sensitivity, which varied from 111 dB to 119 dB re 1 μPa 
peak-to-peak (pp) across the C-PODs used in the study. Details on 
methodology can be found in Dähne, Verfuß, Brandecker, Siebert, 
and Benke (2013).

(2)ν=2�

w

∫
0

rg (y) dy

(3)̂D=
ns

(

1− ĉs
)

v̂sTsr̂s
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2.2 | C-POD deployment

Fifteen calibrated loggers were deployed off New Quay, Wales, 
moored in five stations of three loggers each in a triangular forma-
tion, at depths of 13-20 m of water, 1.5 m above the seabed and 
approximately 50–75 m apart (Figure 1). All the playbacks were con-
ducted in sea states two or less, to ensure stability of the recording 
set up and the accuracy of the distance measurements. A side-scan 
sonar survey of the area was conducted prior to the study, revealing 
a generally even, sandy bottom substrate.

2.3 | Playback with artificial porpoise-like signals

All the playbacks were conducted from a small inflatable boat 
drifting, with engine off, across the experimental area. An artifi-
cial click signal was used to create a repeatable signal where the 
source level could be manipulated to cover the intensity range of 
real harbour porpoise vocalisations. The signal consisted of 15 
cycles of 130 kHz frequency, generated via National Instruments 
Corporation Ltd (UK) 6356 usb-box and played back using 
National Instruments Labview software and an omni-directional 
transducer (Reson TC4033, Teledyne RESON A/S, Denmark, with 
a projective sensitivity of 137 dB pp re 1 μPa/V for 130 kHz signal. 
The signal was played back at different source levels (see below) 
and distances from 0 to 800 m from the C-PODs, to assess the 
effect of varying intensity on detection probability. Due to the 
drift of the boat, the playbacks were conducted from a total of 
744 different distances measured using the boat’s GPS. The omni-
directional transducer meant that the sound would travel to all 
directions resulting in expected detections across all C-PODs at 
varying distances.

The signals were fed through an amplifier (A-301, A.A. Lab 
Systems Ltd., gain 26 dB), which drove the transducer suspended 
from the boat at 2 m below the water surface. The playback 
consisted of four separate sequences. Each sequence contained 
eleven blocks of ten clicks (90 ms duration with 60 ms pause be-
tween each block); each block had different source levels (SL), 
decreasing in 3 dB steps over a range of 30 dB from 176 dB pp re 
1 μPa/V @ 1 m to 149 dB pp re 1 μPa/V @ 1 m (Figure S1, online 
supplement). Initially playbacks were conducted at higher source 

levels (up to 184 dB re 1 μPa/V @ 1 m) but 176 dB re 1 μPa/V 
@ 1 m represented the maximum source level that could be 
produced with the used equipment without creating distorted 
waveforms.

2.4 | Playback with recorded porpoise vocalisations

To assess the detection probability of actual harbour porpoise vocali-
sations, and the performance of the click train detection algorithm, 
echolocation clicks were recorded from captive porpoises at Fjord 
& Bælt Center, Denmark, and compiled into an 18 s long sequence. 
The recording included clicks of varying amplitude and frequency 
ranges, with source levels between 130 and 182 dB re 1 μPa, repre-
senting some of the known variability in click rate and source level of 
real porpoise vocalisations (See signal waveform in Figure S2, online 
supplement).

The recording was played using a similar setup as above but without 
an amplifier and through a calibrated directional transducer, a Reson 
TC2130, resonant at 104 kHz, with a usable transmitting band between 
100 and 200 kHz, and a projection directionality of 12.316.9° for a sig-
nal between 100 and 150 kHz, which is similar to a porpoise beam at 
13° at 130 kHz (Koblitz et al., 2012). The playbacks were played from 
590 different distances ranging from 0 to 640 m from the C-PODs with 
an additional gain of 20 dB generated through the computer, resulting 
in a maximum source level of 182 dB re 1 μPa/V @ 1 m. The directional 
transducer, which has a narrow beam was used to replicate a real por-
poise to imitate the directionality and beam width of the animal. During 
playbacks it was continuously rotated from side to side horizontally in 
an arc of approximately 90° centred on the middle of each C-POD sta-
tion, imitating the sweeping movement of a porpoise head. The speed 
of rotational arc was not measured; it was based on subjectively deter-
mined observations of animals.

The distance between the playback vessel and each of the C-
PODs was determined from GPS latitude and longitude coordinates 
using the spherical law of cosines as follows:

where the position of the boat was defined as lat1 and long1, the 
position of the C-POD was defined as lat2 and long2, and R was the 
mean radius of the earth (6,371 km).

(4)y=cos−1 ( sin (lat1) sin (lat2)+cos (lat1) cos (lat2) cos (long2− long1))R

F IGURE  1 A diagram of a C-POD 
mooring set up for each station (a) and 
the map of the deployment site of all the 
C-PODs (b). For each of the five station, 
three C-PODs were moored on the sea 
bed and the playback transducer was 
suspended from the boat
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2.5 | Data analysis

The data were visually inspected using C-POD software v.2.026 
(Chelonia, 2012) to assess which playbacks were detected by the 
logger. For each artificial sequence, the C-POD raw click files 
(CP1 files) were examined, and the number of clicks from each 
series and each block was counted. For the recorded porpoise 
click sequence, only those playbacks with a clear recording of 
the whole or part of the identifiable sequence were considered 
as detected. The resulting data were divided into three data-
sets, each analysed separately to assess the performance of the 
C-POD’s KERNO train classification algorithm in identifying the 
playback sequence as of porpoise origin: (a) detections of play-
back sequence in raw click files (called CP1 files by the C-POD 
programme), (b) detections of trains (CP3 files), and (c) detections 
of porpoise trains (CP3 files).

To estimate the detection function for the artificial signal, 
the detected clicks were analysed using a Generalised Additive 
Mixed Model (GAMM), implemented via the gam function in the 
mgcv package in R (Wood, 2006, 2011), with binomial error struc-
ture, logit link function and maximum likelihood (ML) parameter 
estimation. “Detected” (1) or “not detected” (0) was the binary 
response variable, with distance, source level, sensitivity, station, 
and playback ID used as potential explanatory variables (on the 
logit scale). The numerical variables distance, source level, and 
sensitivity were modelled using smooths (specifically, thin plate 
regression splines, with degree of smoothness selected by gen-
eralised cross validation). Playback ID and station were included 
as random effects, as each playback generated trials on each of 
the three C-PODs at a station, making the responses potentially 
nonindependent. All potential main-effects models were fitted 
and the model with lowest Akaike Information Criterion (AIC) 
value was selected for inference (Burnham & Anderson, 1998). 
Models involving interactions were not considered. Variance and 
95% confidence intervals (CIs) were calculated using a nonpara-
metric bootstrap (conditioning on the selected model), treating 

each playback as the unit for resampling with 1,000 bootstrap 
replicates.

The selected model was then used to estimate click detection 
probability as a function of distance and the other selected variables; 
EDR was also calculated, by integrating out distance (Equation 2). 
The statistical analysis was identical for the recorded porpoise 
sequence, with the omission of source level as explanatory variable.

3  | RESULTS

3.1 | Playbacks with artificial porpoise clicks

Overall, 343 artificial playback sequences of 11 blocks of 10 clicks 
each were transmitted across the 15 C-PODs. This resulted in over 
16,000 recorded playback blocks that were visually assessed.

The model with lowest AIC values included all five explanatory 
variables (distance from data logger, source level, sensitivity, station, 
and the random effect of playback; see Table S1 in the online supple-
ment). The model explained 73.7% of the deviance in the dataset. As 
expected, there was a strong negative effect of increasing distance 
and lower source level of the playback on detection probability, but 
also a significant effect of sensitivity (Figure 2). The detection prob-
ability fell sharply between 100 and 300 m distance from the data 
logger. The effect of source level on detection probability increased 
sharply for clicks over 160 dB pp re 1μPa/V @ 1 m for all CPODs.

The calculated EDR for artificial clicks with a source level of 
176 dB re 1μPa m varied from 225 to 148 m, with a mean of 186 m 
(95% CI: 173-200) averaging across the other explanatory variables 
and a mean EDA of 0.111 km2 averaging across all loggers. Lower 
source levels drastically decreased the EDR and detection area, with 
notable differences between C-PODs and sites (Figures 3, 4 and S3, 
online supplement). Results of GAMM-model (Table S1) showed a 
strong negative correlation with distance and decreasing source 
level and to a lesser degree with sensitivity. The EDR values with 
95% CI and CV for each C-POD for different source levels are listed 
in the online supplement in Table S2.

F IGURE  2 The effect of distance from C-POD, the signal source level and logger sensitivity on the detection probability of artificial 
playback signal in the GAMM model, estimated at the mean value of other covariates. Dashed lines indicate plus and minus two standard 
errors from the estimates; y-axis is transformed to the response variable scale, and the up-ticks on x-axis show the covariate values in the 
data
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3.2 | Playbacks with recorded porpoise clicks

The recorded porpoise sequence was played back 184 times across 
the data loggers producing 715 captured sequences across dis-
tances up to 640 m from the loggers. A total of 12 loggers out of the 
15 deployed recorded usable data for this part of the experiment; 
data from station five were excluded from the analysis due to some 
unexplained discrepancies in recordings, some of which may have 
been due to mistakes in time stamping the recordings and erroneous 
start times of the devices. Consequently, only 409 of the captured 
sequences were usable for analysis.

For all three datasets (raw click files, (CP1 files); detections of trains 
(CP3 files) and detections of porpoise trains (CP3 files), GAMM with 
lowest AIC values included station, distance, sensitivity, and the ran-
dom effect for playback, although for the raw click data (CP1 files) and 
the train detection files, sensitivity was not a significant variable at the 
p = 0.05 level (Table S3 and Figure S5, online supplement). Station and 
distance were the most influential variables according to AIC scores. 
The models explained between 40% and 55% of the deviance in the 
datasets, notably less than the models for the artificial playbacks. 
Lowest detection probabilities for click data (CP1) were recorded for 

C-PODs 1A, 1C, 2A, and 2B. High detection probability of clicks did 
not always correspond to high detection of classified porpoise trains 
(Figure S5 and S6, online supplement).

The calculated mean EDR across all C-PODs for raw click data 
from the recorded signal was 188 m (95% CI: 135–241). For the part 
of the signal that the algorithm recognised as click train sequence, 
the mean EDR was 116 m (95% CI: 80–152) and for detected signal 
that was classified as porpoise train, the mean EDR was 72 m (95% 
CI: 52–92) (Figure 4). The mean EDR values for the click data with 
95 CI and CV for each C-POD are listed in the online supplement 
Table S4. The EDA using the clicks detected from the raw click files 
(CP1) was 0.111 km2. When examining only those clicks that were 
correctly assigned as harbour porpoise trains by the classification 
algorithm, the effective area was reduced to 0.016 km2. The mean 
difference in EDR from detected clicks to correctly detected species 
was 105 m (95% CI: 66–144).

3.3 | Maximum detection distances

Maximum detection distances where acoustic detections were still 
made depended on the source levels of the emitted signals. The 
maximum artificial click source level emitted without distortion was 
176 dB re 1 μPa @ 1 m. Our observed maximum detection distance 
for this source level was 545 m (recorded with C-POD 3B) and a 
mean detection distance was 402 m (95% CI: 371–429).

The maximum detection distance for the recorded porpoise se-
quence was 566 m (C-POD 4C) and the mean maximum distance for 
all the C-PODs was 248 m (95% CI: 181–316).

4  | DISCUSSION

Acoustic recorders are now commonly used, and they have the po-
tential of estimating animal abundance. This is particularly important 
in the context of small cetaceans where click loggers are widely avail-
able, easy to use and provide cost effective way for long-term moni-
toring. Understanding the distance at which animals are detected 
and how source level and sensitivity affects their detectability is 

F I G U R E   3 Fitted probability curves for 
the detection of artificial playback clicks 
at different distances for source levels 
between 176 and 149 dB re 1 μPa/V @ 
1 m for C-PODs at stations 1A and 1B. 
Each line depicts the fitted probability for 
one dB value

F IGURE  4 The effective detection radius (EDR) for both 
recorded porpoise sequence and the artificial playbacks. Artificial 
playback of highest source level 176 dB (white), recorded porpoise 
playback sequence for all logged clicks (light grey), all detected 
trains (dark grey), and all trains classified as porpoise (black) on all 
C-PODs
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crucial for quantifying the species’ area use. Accurate estimates 
of EDA are essential for density estimation using such devices. As 
far as we are aware, this is the first published study to attempt the 
estimation of the detection probability and calculation of EDA for 
C-PODs, or any other static, single hydrophone click detector for 
high-frequency odontocetes, using both artificial and recorded real 
cetacean clicks. Note, however, that playback experiments cannot 
incorporate animal behavioural variability and thus cannot produce 
accurate estimates of detection probability. Although it is possible 
that some unavoidable multipath reflections were contained in the 
playback signal, those reflections should not have interfered with 
our analysis since multipath would have been very low in amplitude 
and therefore would not have triggered the detection threshold of 
the C-POD at longer distances. In very short ranges multipath re-
flections can be recorded as individual clicks of which only the first 
(direct path) was used for our calculations. As such, the use of an 
artificial click sequence allowed us to assess the performance of the 
C-POD’s hydrophone and electronics in detecting clicks in a stand-
ardised and repeatable way. The use of real, recorded clicks with a 
directional transmitter enabled us to evaluate the performance of 
the classification algorithm for one type of standardised sequence 
with some measure of potential variability exhibited by the porpoise.

As expected, the detection probability and the EDR decreased 
with increasing distance from data logger and the decreasing source 
level of the artificial signal. For porpoise-like sounds, no detections 
were made beyond 545 m from the logger, and signals below 153 dB 
pp re 1 μPa/V at 1 m had less than 0.2 probability of being detected 
even at distances of less than 50 m. The most intense signal emit-
ted (176 dB pp re 1 μPa/V at 1 m) here was effectively detected 
within 187 m radius around the C-POD, yielding a detection area of 
0.110 km2. The highest source level used here was at the edge of the 
performance capability of the transducer and may have caused slight 
distortion to the signal. Further experiments with higher perfor-
mance transducers are therefore recommended to evaluate higher 
source levels.

Similarly, decreasing detection probability with distance was ev-
ident with the real porpoise click sequences, with nearly the same 
EDR of 188 m for the raw data. The real clicks had generally higher 
detection probability and were detected from further away than 
the artificial clicks, despite being played back using a directional 
transducer which was being rotated from side to side. The higher 
detectability of the recorded real porpoises was likely because the 
probability of artificial signal detection was estimated for a single 
click, whereas the probability of real porpoise signal detection was 
calculated for the entire 18 s long snapshot sequence, more easily 
detected because of its duration but also because parts of the se-
quence were played at higher maximum source level than the arti-
ficial playbacks (182 dB re 1 μPa/V @ 1 m) and highlights the main 
difference between the two methods for density estimation dis-
cussed earlier. No published EDR values for porpoise clicks exist for 
C-PODs, but for TPODs the reported mean EDR for wild porpoises 
for a comparable time window of 15 s was approximately 30 m, 
varying slightly with TPOD type and sensitivity (Kyhn et al., 2012). 

Here, the mean EDR of C-PODs for detecting and identifying re-
corded porpoise clicks as porpoises was much improved in compari-
son to T-PODs at 72 m, although it must be noted that Kyhn’s results 
were obtained from real, wild animals using visual tracking and could 
have thus been influenced by more unknown variables.

The highest source level of the real recorded porpoise signal 
was at 182 dB re 1 μPa @ 1 m, yielding a maximum detection dis-
tance of 566 m. The mean maximum distance for all the C-PODs was 
248 m (95% CI: 181–316), reflecting much reduced detection rates 
due to the directional transducer used, emulating more closely the 
real-life scenario of actual porpoise movement patterns and sonar 
beam-width.

4.1 | Click detection vs. train classification

As expected, the detection probability decreased from detected 
clicks to classified trains, and again to correctly classified species 
(Figure 4). The challenge remains for the software developers to 
improve the train classification algorithm to match the click detec-
tion abilities of the device, increasing its EDA—for the real porpoise 
click sequence used here, this would be a five-fold increase from 
0.02 to 0.1 km2. As C-PODs do not record full waveforms they de-
pend heavily in train detection on click intervals and their respective 
sequences. Therefore, an improvement is limited by the number of 
clicks necessary for classification and the allowed number of false 
positives. Attempt to reduce false positives typically increases false-
negative detections, however, in density estimation, false-positive 
detections are perfectly acceptable, providing the false-positive rate 
is accurately determined at the temporal and spatial scale of the den-
sity estimates, hence the parameter c in equation 1.

4.2 | Differences between loggers, deployment 
sites, and playbacks

It is crucial to ensure that data loggers used are calibrated to simi-
lar sensitivity thresholds. C-PODs used in this study had a range in 
detection sensitivities at received levels between 111 and 119 dB 
re 1 μPa pp which is higher than advertised by the manufacturer. 
The measured calibration sensitivity had only a slight effect on the 
models, but there were large differences between calculated EDRs 
for C-PODs throughout the experiment. These are likely due to a 
combination of factors including C-POD sensitivity, subtle differ-
ences between deployment sites such as unexpected boulders or 
troughs in the seabed or variation in the substrate type, the deploy-
ment depth (Sostres Alonso & Nuuttila, 2015), and most importantly 
the added variability in the transmitted signal, due to hydrophone 
directionality and the added movement by the operator mimicking 
the side-to-side movement of the porpoise head.

4.3 | Wild harbour porpoise source levels

The source levels used here were based on limited recordings 
of wild porpoises (Villadsgaard, Wahlberg, & Tougaard, 2007), 



8  |    Methods in Ecology and Evolu
on NUUTTILA et al.

which may not reflect the real variation in source levels, likely to 
be affected by behavioural context and variation in habitat char-
acteristics, such as ambient noise. Such variation has been dem-
onstrated for the beluga whale (Delphinapterus leucas), adapting 
the source level and frequency of its echolocation clicks according 
to noise levels of its surroundings (Au, Carder, Penner, & Scronce, 
1985). Kyhn et al. (2013) show that recorded source levels of har-
bour porpoises can vary drastically between 169 and 199 dB re 
1 μPa m for Danish porpoises and 170 to 189 dB re 1 μPa m for 
porpoises from British Columbia resulting in a mean difference 
of 10 dB between the habitats. Furthermore, Villadsgaard et al. 
(2007) reported differences between porpoises in captivity and 
in the wild of ~20 dB showing a habituation to the environment. 
Therefore, measurement of source levels in the area of concern is 
a prerequisite for estimating abundance from stationary acoustic 
data loggers.

Here, the maximum undistorted source level achieved was 
182 dB pp re 1 μPa/V @ 1 m for the recorded real porpoise sig-
nal, which is considerably less than the maximum recorded level of 
205 dB re 1 μPa/V @ 1 m, and therefore the EDRs reported here 
will not represent the full detection range of wild porpoises. High 
source levels have been calculated for the most intense, “on-axis” 
clicks, whereas the loggers will detect both on and off axis clicks, 
and consequently clicks of varying source levels. Here we aimed to 
achieve this variation by swivelling the transducer from side to side 
and although we believe that these results represent at least some 
of the natural variability in porpoise click trains arriving at a C-POD, 
they still cannot accurately reflect the variation in natural vocalisa-
tion behaviour or in fact the actual position of the animals in the 
water column, depending on their behaviour and prey type targeted 
(Sostres Alonso & Nuuttila, 2015).

4.4 | EDR/EDA and density estimation

Here we provide a way to use playbacks to estimate an EDR and 
EDA, which could be repeated at sites where monitoring studies 
require some estimate of a local detection probability for an ef-
fective sampling regime. The challenge for this data logger is not 
detecting the clicks—as seen here, the C-POD detects porpoise 
clicks well. However, train classification and species identifica-
tion necessarily require more information, and this consequently 
reduces the EDR. In areas of low animal density, with no other 
cetacean species present, it would be practical to use the raw click 
data or the train classification results, without species identifica-
tion, improving the overall detection rate and enlarging the EDA. 
However, where there are several species present this approach is 
not workable and species classification is the most practical way 
of distinguishing species, regardless of the reduced EDR. Most im-
portantly EDR and playback experiments provide means to quan-
tify effort in stationary acoustic monitoring, not only applicable 
and necessary for large scale efforts in monitoring, but also for 
small scale studies such as analysing the impacts of anthropogenic 
activities on odontocetes.

To fully establish detection probabilities for cetaceans, we need to 
gain a thorough understanding of the effect of behaviour and group 
size on vocalisation rates (Nuuttila et al., 2013), including the portion 
of time the animals rest and spend silent, all of which can affect detect-
ability (Wright et al., 2017). We can be relatively certain that porpoise 
vocalisation rates vary according to time of day (Todd et al., 2009; 
Schaffeld et al., 2016), increase during prey capture (DeRuiter et al., 
2009; Verfuß, Miller, Pilz, & Schnitzler, 2009), and decrease or are non-
existent during rest periods (Linnenschmidt et al., 2013; Wright et al., 
2017), and that source levels of their feeding buzzes are reduced mak-
ing them less detectable than other clicks at similar ranges (DeRuiter 
et al., 2009). For many other cetacean species, we have only limited 
information on their vocalisation rates, and further research is required.
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