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Abstract
A novel compression-based toolkit for modelling and processing se-

quential text is described. The design of the toolkit adopts an encoding
perspective—applications are considered to be problems in searching for
the best encoding of different transformations of the source text into the
target text. This paper describes a two phase ‘noiseless channel model’ ar-
chitecture that underpins the toolkit which models the text processing as
a lossless communication down a noise-free channel. The transformation
and encoding that is performed in the first phase must be both lossless
and reversible. The role of the verification and decoding second phase is
to verify the correctness of the communication of the target text that is
produced by the application. This paper also argues that this encoding
based approach has several advantages over the decoding based approach
of the standard noisy channel model.

This paper describes the toolkit’s libraries whose purpose are intended
to shield the user from details of the modelling and probability estima-
tion process in order to enable different implementations of models to be
replaced transparently in application programs. The design behind the
toolkit is probabilistic: that is, it supplies the probability of the next
symbol in the sequence. It is general enough to deal accurately with
Markov-based models that include escapes for probabilities. The concepts
abstracted by the toolkit’s design are explained together with details of
the library calls. The pseudo-code for a number of algorithms are also de-
scribed for the applications that the toolkit implements including encod-
ing, decoding, classification, training (model building), parallel sentence
alignment, word segmentation and language segmentation. Some imple-
mentation details, memory usage and execution speeds are also discussed
for these applications.

1 Introduction
This paper describes the design and implementation of a compression based
toolkit for text processing. The toolkit can be applied to any type of text since
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it involves the application of text compression algorithms designed for general
text. However, this paper will focus specifically on its application to natural
language processing (NLP) and the processing of written text.

The toolkit is based on an earlier Application Programming Interface (API)
designed by Cleary & Teahan Cleary and Teahan (1997) for modelling sequen-
tial text using text compression models. The purpose of the toolkit is to sim-
plify the design of applications where textual models are needed such as text
compression, categorisation, and segmentation, by shielding the user from the
details of the modelling and estimation process. Another purpose is to enable
different implementations of models to be replaced transparently in application
programs. The design behind the toolkit is probabilistic: that is, it supplies the
probability of the next symbol in the sequence. It is general enough to deal ac-
curately with Markov-based models that include escapes for probabilities such
as the Prediction by Partial Mapping (PPM) text compression scheme Cleary
and Witten (1984); Moffat (1990).

During the development of the API and earlier versions of the toolkit, it
became apparent that broadening its scope to encompass a much wider range
of text operations was possible. It was found that many of the API-based
programs that were devised had remarkable similarities in the underlying source
code—despite the programs being complex, only a few changes were needed
to define the key differences between the applications Mahoui et al. (2008).
These observations have led to the creation of the Tawa1 Toolkit described in
this paper. The toolkit is now available for download2 and is a comprehensive
extension of the original Cleary & Teahan API and an updated version of the
TMT toolkit Mahoui et al. (2008) that was based on the API. The toolkit
provides a powerful method for classifying, mining and transforming text. The
purpose of this paper is to describe the design and implementation behind the
toolkit including its architecture, libraries, and sample applications.

The contributions of this paper are as follows:

• The compression-based architecture which underpins the toolkit, and how
it differs from the standard architecture for NLP, the noisy channel model,
is fully described for the first time. This paper explains the encoding
approach taken by the toolkit’s architecture as opposed to the decoding
approach of the noisy channel model and how it provides a wider range of
processing possibilities.

• This paper is the first to discuss in detail the toolkit’s libraries, including
the methods and objects used. The toolkit provides an extensive update
of previous versions including an overhaul of the transformation libraries
that simplifies and consolidates the processes previously used.

1Tawa is a common broadleaf tree found in New Zealand. The acronym stands for Text
Analyser from Waikato since it was first developed at Waikato University, and subsequently
improved over two decades at Lund, Robert Gordon and Bangor Universities.

2https://bangoroffice365-my.sharepoint.com/:f:/g/personal/eesa0e_bangor_ac_uk/
Ej-84lAJuUNOuSVz44daZCIBt__4NQyanF_5qH8FLSJaIQ?e=rFNW3P
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• The algorithms behind each of the toolkit’s main applications are also
described for the first time.

This paper is organised as follows. In the next section, we detail the design
of the toolkit and its underlying architecture. The toolkit’s libraries are then
described followed by pseudo-code for some sample applications built using the
libraries. A list of specific applications implemented by the toolkit, sample
use, implementation details, memory usage and execution speeds and search
algorithms are discussed in Section 4. The paper then discusses previously
published experimental results, and related work and provides a conclusion and
discussion of future work in the final section.

2 The toolkit’s design
In this section, the overall design of the Tawa toolkit shown diagrammatically
in Figure 1 is described. The aim of the toolkit is to simplify the conceptualisa-
tion and implementation for a broad range of text mining and NLP applications
involving textual transformations. The toolkit presently consists of nine main
applications (such as align, classify, codelength, and so on). These appli-
cations are built using three libraries—TXT for text-based operations, TLM for
language modelling operations, and TTM for transformation operations. These
libraries are detailed in Section 3 and sample methods discussed in Section 3.1.
Nine applications that demonstrate how the libraries work are detailed in Sec-
tion 4. These applications provide useful tools for many NLP operations that
have often produced state-of-the-art results as detailed in Section 5. Underly-
ing the design of these libraries and applications is a novel compression-based
architecture called the “Noiseless Channel Model” to distinguish it from the
standard “Noisy Channel Model”. The key insight is that each application per-
forms a search to find the best encoding of the target message rather than
performing a decoding of the observed message.

The Noisy Channel Model is a common architecture for many NLP appli-
cations, such as OCR, spelling correction, POS tagging and machine transla-
tion Kernighan et al. (1990). In this architecture, applications are formulated
as a communication process with the source text conceptualised as being sent
down a communication channel by the sender, with the receiver trying to re-
cover the original message in the presence of noise by correcting the observed
text that is received. This process of text correction involves the search for the
most probable corrected target text which is often referred to as decoding (see
Figure 2a). Note that the correct source text is unknown—the search process
for the target text makes a best guess as to what it might be.

The noisy channel model leads to robust and effective performance for many
NLP tasks despite it being perhaps a rather arbitrary and abstract characteri-
sation for NLP. As an alternative, we wish to adopt language models based on
well performing text compression techniques such as PPM which have already
been found to be highly effective in many NLP applications Teahan (1998); Tea-
han et al. (1998, 2000); Teahan (2000); Witten et al. (1999a,b); Mahoui et al.
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Figure 1: A diagrammatic overview of the Tawa Toolkit and its design.

(2008). Therefore, we have also investigated in previous research Mahoui et al.
(2008) an alternative design perspective with an emphasis based on encoding
rather than decoding. This has culminated in the architectural design shown
in Figure 2b. This design adheres to two main principles—the communication
process must be both lossless and reversible. A lossless encoding by definition
is reversible with no loss of information, with no noise being added to the mes-
sage being transmitted. Note that any transformation that occurs prior to the
encoding in our approach also needs to be reversible. This is so that there is no
loss in information during the communication in order to ensure the message
is transmitted correctly and as efficiently as possible and this can be verified
during decoding.

The Tawa toolkit based on this architecture has now gone through several
design cycles culminating in the latest version of the toolkit described in this
paper. In this updated toolkit, an NLP process is not thought of as being one
of noisy communication, therefore requiring a decoding process to recover the
original message. Instead, the approach taken by the toolkit is to characterise
an NLP process as a noiseless or noise-free communication. In this setting,
the sender will search for the best encoding of the target message and this
is then transmitted losslessly down the communication channel. In this case,
the decoding process is of secondary importance, mainly to verify the encoding
process—the emphasis instead is placed on how efficiently the target message
can be encoded. Also encoded is additional information on how to transform the
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Figure 2: Two architectures for NLP: (a) the standard decoding-based ‘Noisy
Channel Model’ versus (b) the encoding-based ‘Noiseless Channel Model’
adopted by the Tawa Toolkit.

source message into the target message. In this case, the search process—that
of finding the best transformation, plus the information required to transform
between them—occurs prior to the encoding phase rather than during the de-
coding phase. (See Figure 2b).

Following the workflow in the figure, the sender first starts from a known
source text and transforms it in some way (as shown by the dark gray box
labelled ‘Transform’) into the target text. This is the text that is the desired
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output for some application (such as compression, text mining, spelling correc-
tion, machine translation and so on). In order to illustrate the variety of possible
transformations which includes but goes beyond those traditionally covered by
the noisy channel model, some example transformations are listed below3:

• inserting markup tags into the text (called tag insertion), such as to in-
dicate where different languages are in the text for language segmenta-
tion Teahan (2000); Alkhazi and Teahan (2017);

• inserting extra characters, such as spaces for word segmentation Teahan
et al. (2000);

• changing the alphabet, such as replacing common character bigraphs or
word bigrams with new symbols to aid compression Teahan (1998); Al-
hawiti (2014);

• transforming the text into a grammar, such as for grammar-based com-
pression Teahan and Aljehane (2017);

• encoding extra information such as parts-of-speech (POS) tags for POS
tagging and tag-based compression Teahan (1998); Alkhazi et al. (2017);

• switching between models used to encode each symbol in the text Teahan
(2000); Teahan and Harper (2001).

The transformations are done in such a way that they are reversible (as
shown by the line labelled ‘Reverse transform’ in the figure). If tags or spaces
are added, for example, then these can simply be removed to recover the original
source text without any loss of information. If the alphabet is altered, then there
is a one-to-one mapping between the old and new alphabets so that the original
source text is easily recoverable. This property of reversibility ensures that
information is communicated losslessly.

The target text is then encoded to produce the compressed target text (as
depicted by the dark gray box labelled ‘Encode’). A search process shown in
the figure by the rightmost arrow is used to find the most compressed text by
repeatedly trying out different variations of the transformation (for example,
by inserting or not inserting spaces after each character if performing word
segmentation). This search can be thought of as the transformation & encoding
phase whose purpose is to generate a suitable target text.

The remaining parts of the workflow shown in the figure is the verification &
decoding phase. This step is not necessarily needed depending on the application
since just producing the target text will usually be sufficient in order to complete
the task(s) required. However, as argued below, verification is of fundamental
importance in ensuring the output is correct. This is done by sending the

3The first two examples above are transformations possible using a related tag insertion
approach Yeates et al. (2001) that was similar to what was implemented in an earlier version
of the toolkit. However, the subsequent examples above go beyond the tag insertion approach
and are used to illustrate what is possible in the updated toolkit.
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compressed target text down a noise-free communication channel, and then
checking that the decoded target text matches the original target text.

Mahoui et al. Mahoui et al. (2008) pointed out that the noiseless channel
model could be viewed simply as “the noisy channel model in another guise”.
This is because the search processes (e.g. the Viterbi algorithm Viterbi (1967))
produce a similar result with the best target text being found in both cases.
However, as Mahoui et al. have argued, there are important differences. Firstly,
when designing text compression systems, it is well-known that the encoding
and decoding processes are not necessarily equivalent (for example, often either
the encoding or decoding process can take noticeably longer as further effort is
required to maintain probability tables in the form required for coding).

Secondly, the perspective has changed from correcting ‘noise’ (which is just
one approach to NLP) to one of efficiently encoding the source text plus fur-
ther information to transform the message into the target text (which can be
considered an equally plausible alternative approach to NLP).

Thirdly, as stated, the decoding process for the noiseless channel model pro-
vides a means for physically verifying the correctness of the communication.
That is, we can directly apply standard techniques used for lossless text com-
pression by checking that we can directly encode and decode the target message
to and from a file on disk. (That is, there is a physical measurable object that
exists in the real world). The noiseless channel model makes it clear that all
information must be transmitted. Many current approaches using the noisy
channel model base the decoding on implicit information and make the assump-
tion that this information has little or no effect on the accuracy of the transfor-
mation. This may be correct, or erroneous, but this first needs to be verified,
which is one of the main arguments for supporting the alternative approach
in Figure 2b. All necessary information must be encoded explicitly otherwise
it would not be possible to get the decoder to work. As a consequence, the
encoding codelengths (how much it takes in bits to physically encode the infor-
mation) becomes a useful and verifiable means for measuring the effectiveness
of the language models being used.

And fourthly, the changed perspective opens up further possibilities for im-
proved language models based on models found effective for lossless text com-
pression, such as: alternative encoding methods, not necessarily probabilistic,
e.g. the Burrows Wheeler Transform Burrows and Wheeler (1994) and Lempel-
Ziv methods Ziv and Lempel (1977, 1978); methods for preprocessing the text
prior to encoding Abel and Teahan (2005); Teahan and Alhawiti (2015); and
hybrid methods for combining or switching between models Volf and Willems
(1998); Teahan and Harper (2001).

It is also clear from Figure 2 that the source text for the noiseless channel
model is known when it is encoded which contrasts with the noisy channel model
where the original source text is unknown. This is a fundamental difference that
must be considered when designing applications based on these two architec-
tures. In the noiseless case, the designer has access to all the information from
the source text (since it is known) during the search which may be significantly
more efficient as a result. For example, one method found effective at improv-
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ing compression of natural language text is to replace common bigraphs with
new single unique symbols prior to compression Teahan and Alhawiti (2015);
Teahan and Aljehane (2017). This is a very straightforward task for an encoder
working from a known source to find the most common bigraphs. However,
bigraph replacement at the decoding stage is not possible in the same way since
the original source text is not known.

3 The toolkit’s libraries
In this section, the libraries provided with the toolkit are described. As with
the original Cleary and Teahan API Cleary and Teahan (1997) whose design the
libraries are based upon, the intention of the libraries is to shield the user from
details of the modelling and probability estimation process. A primary goal is
to allow the rapid prototyping of applications where the use of textual models
is needed, such as text compression, text classification, text mining, and text
correction, with a minimal amount of code needed for implementation.

Object Description
Symbol A symbol is a number that is being modelled. It is represented in C as an

unsigned int. There is no notion of what a symbol means. However, it is
restricted by the alphabet size (A) when a model is created. e.g. A = 256 is
used for ASCII text; A = 0 means an unbounded alphabet used for words. The
mapping between symbols and text characters is user-defined such as ASCII
byte values or a different mapping (required for UTF-8 coded text).

File A file is associated with a physical file on disk. It is used to open, read and
load text files.

Text A text is used for storing a sequence of symbols. They are essentially variable
length arrays of symbols.

Model A model provides predictions for sequences of symbols. It has an alphabet size
(A) and order (O) associated with it. A model can also be static or dynamic.
They are used for specifying the type of language model being used and the
type of operations being performed (such as a PPM Cleary and Witten (1984);
Moffat (1990) language model).

Coder A coder is used for encoding and decoding a sequence of symbols from com-
pressed files on disk using an arithmetic coder, for example, or a range coder.

Context A context is used for accessing and updating a model. The coding context is
updated from the symbols that have just been encoded. (For a PPM model,
the maximum length of the context is fixed as specified when the model is
created).

Transform A ‘transform’ defines a possible transformation for altering or correcting the
sequence. These are used for defining and performing transformations on the
text such as used for correction-based or ‘tag insertion’ style algorithms (i.e.
insertion of markup tags).

Table 1: A summary of the objects used by the toolkit’s libraries.

Table 3 lists the objects the libraries use and their description. When com-
pared to standard text operations that most programming languages provide,
the Symbol and Text objects have a similar functionality to characters and
strings, and the File object is closely related to its programming language equiv-
alent. However, the Symbol object provides a much greater range of symbol
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numbers for the developer to use rather than just the 256 possibilities that 8-bit
ASCII characters provide, for example, or even the range provided by Unicode
characters. Although the Text object provides similar operations that strings
do in standard programming languages, the length of the text is not restricted
and can be varied at run-time by some operations such as appending onto the
end of the text.

The toolkit defines various further objects such as Model and Coder that
facilitate the design of context-based modelling and compression-based applica-
tions and are used for specifying the ‘model’ and ‘coder’ that are at the heart
of these types of compression applications. Rissanen and Langdon Rissanen
and Langdon (1981) have noted the important distinction between modelling
and coding, and the toolkit uses this insight in its design. Uniquely, the toolkit
also explicitly incorporates a Context object4 as well in its design to aid in
the traversal of the model and the probability estimation process as the text is
processed sequentially.

The final Transform is an object whose purpose is to ease the design of
applications requiring some form of transformation on the text such as used
for correction-based or ‘tag insertion’ style algorithms (i.e. insertion of markup
tags). The type of search algorithm, such as the Viterbi algorithm Viterbi (1967)
or the stack decoding algorithm Jelinek (1969), is specified when the Transform
object is created. Specific transformations of the form source text→ target text
are then added to the object. These specify the source text sequence that must
be matched before the target sequence is generated. Multiple transformations
will generate multiple paths in the search tree. A similar convention used for
regular expressions is used here to represent (and match) the source and target
text. For example: a wildcard form can be used to match any character; ranges
denoted by [. . .] denote character disjunction; and functions can also be used
to match character sequences. A method is used to start the transformation
process using a specific Model object to define what model to use for the en-
coding of the corrected target sequence and this can be called multiple times for
different Model objects. Another method is then called to perform the trans-
formation process which returns a transformed Text object upon completion
which represents the most compressed transformed target sequence found by
the search.

3.1 A selection of methods provided by the toolkit’s li-
braries

Table 3.1 provides a selection of the main methods provided by the libraries
for each of the seven types of objects described in the previous section. Space
precludes listing all the methods provided by the toolkit which can be found by
downloading the software distribution. The table lists methods for each object
type in alphabetical order. The method name and its arguments are listed in
column three of the table. Note that the prefixes TLM, TXT and TTM used in the

4This is similar to that used in pseudo-code for an adaptive statistic encoder and decoder
proposed by Teahan Teahan (1998)[page 112].
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Object Returns Method name and arguments
Symbol Symbol TLM_decode_symbol(Model, Context, Coder)

V oid TLM_encode_symbol(Model, Context, Symbol, Coder)
V oid TLM_find_symbol(Model, Context, Symbol),
Boolean TLM_next_symbol(Model, Context, *Symbol)
Boolean TLM_reset_symbol(Model, Context)
Symbol TXT_sentinel_symbol()

File V oid TXT_close_file(F ile)
F ile TXT_open_file(F ilename, Mode, ...)
F ile TXT_load_text(F ile)
V oid TXT_read_file(F ile, T ext, Max)
Char TXT_readline_file(F ile, T ext)
V oid TXT_write_file(F ile, String)

Text V oid TXT_append_symbol(T ext, Symbol)
V oid TXT_append_text(T ext, T ext1)
T ext TXT_create_text()
Boolean TXT_get_symbol(T ext, P os, *Symbol)
Boolean TXT_is_alphanumeric(Symbol)
Boolean TXT_is_ascii(Symbol)
Unsign. Int. TXT_length_text(T ext)
V oid TXT_put_symbol(T ext, Symbol, P os)
V oid TXT_release_text(T ext)

Model Model TLM_create_model(ModelT ype, T itle, ...)
Boolean TLM_get_model(Model, ...)
Model TLM_load_model(F ile)
Model TLM_next_model()
Unsign. Int. TLM_numberof_models()
V oid TLM_release_model(Model)
V oid TLM_set_model(Model, ...)
Unsign. Int. TLM_sizeof_model(Model)
V oid TLM_reset_model()
V oid TLM_write_model(F ile, Model, ModelF orm)

Coder Coder TLM_create_arithmetic_decoder(SourceF ile, CompressedF ile)
Coder TLM_create_arithmetic_encoder(SourceF ile, CompressedF ile)
V oid TLM_release_coder(Coder)

Context Context TLM_create_context(Model)
V oid TLM_release_context(Model, Context)
V oid TLM_update_context(Model, Context, Symbol)

Transform V oid TTM_add_transform(T ransform, Codelength,
SourceF ormatString, T ransformF ormatString, ...)

T ransform TTM_create_transform(T ransformAlgorithm, ...)
T ext TTM_perform_search(T ransform, SourceT ext)
V oid TTM_release_transform(T ransform)
V oid TTM_start_search(T ransform, T ype, SourceT ext, Model)

Table 2: A selection of methods provided by the toolkit.

method names are used to signify the library being used for language modelling
operations, text-based operations and transformation operations respectively.
Column one lists the main type of object being operated upon, and column two
lists the type of object returned by the method. (Here V oid indicates the method
returns nothing, Unsign. Int. indicates the method returns an unsigned integer,
Transform a transform object, Boolean a boolean and Char a character with
the other return types being one of the toolkit’s object types).
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A brief description of these methods for each of the toolkit’s object types
now follows:
•Methods for Symbol objects: TLM_decode_symbol(Model,Context,Coder)

returns the symbol decoded using the arithmetic Coder and also updates the
Context for the Model so that the last symbol in the context becomes the
decoded symbol. TLM_encode_symbol(Model,Context,Symbol,Coder) encodes
the specified Symbol using the arithmetic Coder and also updates the Context
for the Model so that the last symbol in the context becomes the encoded sym-
bol. TLM_find_symbol(Model,Context,Symbol) finds the predicted Symbol in
the Context for the Model. TLM_next_symbol(Model,Context,*Symbol) re-
turns the next predicted Symbol in the Context for the Model and the cost
in bits of encoding it. The context is not updated. If a sequence of calls
to TLM_next_symbol are made, every symbol in the alphabet will be visited
exactly once although the order in which they are visited is undefined being
implementation and data dependent. The function returns False when there
are no more symbols to process. The codelength value that is returned is the
same as that returned by TLM_update_context which may use a faster search
method to find the symbol’s codelength more directly (rather than sequentially
as TLM_next_symbol does). TLM_reset_symbol(Model,Context) resets the cur-
rent position to point back at the first predicted symbol in the Context for the
Model. TXT_sentinel_symbol() returns the “sentinel symbol”. This is used
where there is a break required in the updating of the context, such as when
the end of text has been reached or when more than one model is being used
to encode different parts of a text. The effect of encoding the sentinel symbol
is that the prior context is forced to the null string i.e. the subsequent context
will contain just the sentinel symbol itself. This is useful during training if there
are statistics that differ markedly at the start of some text than in the middle
of it (for example, individual names, and titles within a long list).
• File methods: TXT_close_file(File) closes the File and releases mem-

ory used by the file object. TXT_open_file(Filename,Mode, ...) opens the
file named Filename with the specified Mode and creates and returns a file
object for the file. TXT_read_file(File,Text,Max) reads Max symbols from
the specified File into the Text. If argument Max is zero, then all symbols
until EOF are read. TXT_readline_file(File,Text) loads the Text using the
next line of input from the File. Returns the last character read or EOF .
TXT_write_file(File,String) writes out the String to the File.
• Text methods: TXT_append_symbol(Text,Symbol) appends the Symbol

onto the end of Text. TXT_append_text appends Text1 onto the end of Text.
TXT_create_text() creates and returns a text object for storing, accessing and
updating a string of symbols. TXT_get_symbol(Text,Pos, *Symbol) returns
True if there exists a symbol at position Pos in the Text. The argument Symbol
is set to the specified symbol if it exists. TXT_is_alphanumeric(Symbol) re-
turns True if the Symbol is an alphanumeric character. TXT_is_ascii(Symbol)
returns True if the Symbol is an ASCII character. TXT_load_text(File) cre-
ates and returns a new text object, loading it using text from the File (assuming
standard ASCII text. TXT_length_text(Text) returns the length of the Text.
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TXT_put_symbol(Text,Symbol,Pos) inserts the Symbol into the Text at posi-
tion Pos. Inserting a symbol beyond the current bounds of the text will cause a
run-time error. TXT_release_text(Text) frees the memory used by the Text.
• Model methods: TLM_create_model(ModelType,Title, ...) creates and

returns a new empty dynamic model of the specified type ModelType,Title
(such as TLM_PPM_Model for a PPM model) and other parameters depending on
the ModelType. TLM_get_model(Model, ...) returns information describing the
Model such as alphabet size and title. TLM_load_model(File) loads a model
which has been previously saved to the File into memory and allocates it a new
model object which is returned. TLM_next_model() returns a model object for
the next valid model in the list of models that have been loaded into memory.
Returns Nil if there aren’t any. TLM_numberof_models() returns the number
of models currently loaded into memory. TLM_release_model(Model) frees the
memory used by the Model. TLM_set_model(Model, ...) sets information that
defines the Model such as alphabet size and title. TLM_sizeof_model(Model)
returns the current number of bits needed to store the Model in memory.
TLM_reset_model() resets the current model so that the next call to the method
TLM_next_model will return the first valid model in the list of models that have
been loaded into memory (or Nil if there are none).

TLM_write_model(File,Model,ModelForm) writes out the Model to the
File (which can then be loaded by other applications later). The argument
ModelForm must have the value TLM_Static or TLM_Dynamic and determines
whether the model is static or dynamic when it is later reloaded using the
method TLM_load_model.
• Coder methods: TLM_create_arithmetic_decoder(SourceF ile, Com-

pressedF ile) creates an arithmetic coder object used for decoding from the com-
pressed file CompressedF ile back to the source file SourceF ile. The method
TLM_create_arithmetic_encoder(SourceF ile,CompressedF ile) creates an
arithmetic coder object used for encoding from the source file SourceF ile to the
compressed file CompressedF ile. TLM_release_coder(Coder) frees the mem-
ory used by the Coder.
• Context methods: TLM_create_context(Model) creates a context object

for the Model used during operations such as encoding, decoding and update
on which predictions of the upcoming symbol are made. TLM_update_context
(Model,Context,Symbol) updates the Context for the Model using the current
Symbol. TLM_set_context_operation(Operation) sets the type of Operation
to be performed by the methods TLM_next_symbol, TLM_find_symbol and
TLM_update_context such as returning the codelength (in TLM_Codelength) or
a list of arithmetic coding ranges (in TLM_Coderanges). TLM_release_context
(Model,Context) frees the memory used by the Context for Model.
• Transform methods: TTM_add_transform( Transform, Codelength,

SourceFormatString,TransformFormatString, ...) adds the formatted cor-
rection to the Transform object. The argument SourceFormatString is the
format of the original text begin corrected; TransformFormatString is the
format of the text it will be corrected to; and Codelength is the cost in bits
of making that correction when the text is being corrected or marked up.
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TTM_create_transform(TransformAlgorithm, ...) creates and returns a trans-
form object which can be used to transform or “mark up” text. The argument
TransformAlgorithm specifies the type of search algorithm to use such as
TTM_Viterbi. TTM_perform_search(Transform,SourceText) creates and re-
turns a text object that contains the result of the search for the most com-
pressible SourceText when corrected according to the transform object and
models associated with it. TTM_release_transform(Transform) frees the
memory used by the Transform. TTM_start_search( Transform, Type,
SourceText, Model) starts a new search process for correcting or marking up
the SourceText using the specified Model by applying the transforms spec-
ified by the Transform. This routine must be called at least once before
TTM_perform_search. Multiple calls to this procedure will cause separate trans-
form paths to be initiated for each of the specified models.

4 Sample applications provided by the toolkit
This section gives sample pseudo code for the following nine applications:

1. a method that encodes symbols using the PPM compression scheme (Al-
gorithm 1);

2. a context based encoding method (Algorithm 2);

3. a context based decoding method (Algorithm 3);

4. a context based method for computing compression codelength without
coding (Algorithm 4);

5. a context based method for building (“training”) models (Algorithm 5);

6. a compression-based method for text classification (Algorithm 6);

7. a compression-based method for verifying sentence alignment in a parallel
corpus (Algorithm 7);

8. a compression-based method for performing word segmentation on a text
file (Algorithm 8);

9. a compression-based method for performing language segmentation on a
text file (Algorithm 9).

These examples are used to illustrate the use of methods from the toolkit’s
libraries. Also, a further purpose of the examples is to illustrate the brevity
of the solutions especially the algorithms for word segmentation and language
segmentation considering the complexity of each of these applications which is
hidden to the most extent from the developer.
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4.1 A PPM encoder
The method PPMEncodeFile as detailed in Algorithm 1 encodes symbols (such
as bytes or characters) in an input file using the PPM compression scheme.
The input file is passed to the method as the argument SourceF ile with the
compressed output file specified by the argument CompressedF ile.

Algorithm 1: A method for order 5 PPMD encoding.
1 method PPMEncodeFile (SourceF ile, CompressedF ile)
2 Model = TLM create model (TLM PPM Model,“Title”, 256, 5,“D”,

True, True);
3 Coder = TLM create arithmetic encoder (SourceF ile,

CompressedF ile);
4 EncodeFile (SourceF ile, Model, Coder);
5 TLM release model(Model);
6 TLM release coder(Coder);
7 end

The variable Model specifies the model number of the PPM compression
language model—this number is returned by the call to TLM_create_model
for creating a new dynamic PPM model (line 2). The arguments to the call
specify the model’s title, that the alphabet size is 256, that the order of the
model is 5, that escape method D is being used (that is, the model is PPMD),
and that both full exclusions and update exclusions are being used. As an
alternative, TLM_load_model can be used to load an existing static or dynamic
model directly from disk rather than have it created as this method does.

The variable Coder is set to the coder number of the arithmetic coder cre-
ated for the method that is returned by the TLM_create_arithmetic_encoder
method (line 3). The coder is used to perform the arithmetic encoding and
decoding used for encoding and decoding a stream of bits that represent the
PPM model’s predictions to a compressed file on disk.

Algorithm 1 calls the EncodeFile method (line 4) which is defined in Algo-
rithm 2 and described in the next subsection. The method finishes by releasing
the memory allocated to the Model and Coder that were created (lines 5 and
6). These release methods are necessary for implementations in programming
languages that do not automatically free memory on exit of the method. Many
of the objects used by the toolkit (such as the Context, Model, Coder and
Transform objects) require complex multiple data structures for implemen-
tation and can take up considerable resources when many objects are created
during Viterbi-style search operations, for example. Freeing up these resources is
non trivial and dedicated methods for performing these operations are required
and therefore explicitly defined by the toolkit.
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4.2 Context based encoding and decoding
Algorithms 2 and 3 provides pseudo-code for context-based encoding and de-
coding of a file respectively. They assume that a Model has already been cre-
ated or loaded and a Coder has been created prior to these methods being
called with these being passed as arguments. The encoder requires the input
file (SourceF ile) as an argument, and the decoder requires the compressed file
(CompressedF ile) as an argument.

Algorithm 2: A context based method for encoding.
1 method EncodeFile (SourceF ile, Model, Coder)
2 Context ← TLM create context (Model);
3 for each Symbol in SourceF ile do
4 TLM encode symbol (Model, Context, Symbol, Coder)
5 end
6 TLM encode symbol (Model, Context, Coder, TXT sentinel symbol());
7 TLM release context (Context);
8 end

Algorithm 3: A context based method for decoding.
1 method DecodeFile (CompressedF ile, Model, Coder)
2 Context ← TLM create context (Model);
3 while Symbol← TLM decode symbol (Model, Context, Coder) !=

TXT sentinel symbol() do
4 Output Symbol
5 end
6 TLM release context (Context);
7 end

Both methods require that a Context variable be created first using the
TLM_create_context method (lines 2). Then each symbol is processed se-
quentially, either encoded using the TLM_encode_symbol method (line 4, Al-
gorithm 2) or decoded using the TLM_decode_symbol method (line 3, Algo-
rithm 3). (These methods also update the Context at the same time for the
current symbol. The Context is released just before the end of both methods).

Both methods process symbols sequentially which is specified using the vari-
able Symbol. The way a file is preprocessed (during encoding) and postpro-
cessed (during decoding) is user-defined. Symbols for English text are usually
mapped directly to the ASCII byte values of the characters in the file. For
Unicode (e.g. UTF-8) encoded files, on the other hand, a different mapping is
required. Further preprocessing / postprocessing of the symbol stream may also
be performed such as replacement of common bigraphs Teahan (1998); Alhaw-
iti (2014); Teahan and Aljehane (2017) (also see Section 5 below) as this can
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often lead to improved compression. However, these steps are not detailed in
Algorithms 2 and 3.

The special sentinel symbol (returned by TXT_sentinel_symbol) has been
used to signify the end of the encoding stream and is encoded once all the other
symbols in the file have been encoded (line 6, Algorithm 2). It is a unique
character which effectively expands a model’s alphabet by one that is encoded
at the end of an encoding stream and forces the model to back off to the default
oder -1 context. The decoder simply decodes symbols until the sentinel symbol
is decoded (line 3, Algorithm 3). An alternative way of encoding the end of the
stream which the toolkit implements is to encode the length of the stream at
the beginning using (for example) a start-stop-step encoder Bell et al. (1990).
However, this requires a first pass through the stream being encoded to find its
length, and using a unique extra symbol such as TXT_sentinel_symbol does
not incur much overhead except for the cost of the escapes down to the order -1
context and the cost of encoding this symbol in the lowest order context which
is ameliorated by PPM’s full exclusions mechanism.

4.3 Calculating compression codelengths without coding
The method CodelengthText in Algorithm 4 calculates the compression code-
length for a text object without performing any coding operation. It is sim-
ilar to the encoding and decoding methods above, except that it uses the
routine TLM_update_context to update the model (line 5) instead of either
TLM_encode_symbol or TLM_decode_symbol as above. The argument Model
specifies the language model being used. The text SourceText passed as an ar-
gument would usually have the sentinel symbol marking the end of the text so
therefore this does not need to be explicitly processed at the end of the stream
(as was the case with Algorithm 2). The variable Codelength (line 2) is used to
accumulate the totals of the compression codelengths as each symbol in the text
is processed. It is returned by the method at the end (line 9). The codelength
values that are the cost of encoding each symbol are obtained by accessing the
variable TLM_codelength (see line 6) and reflect the theoretically optimum en-
coding of each symbol for which the actual (physical) encoding to disk using an
arithmetic coder is a very close approximation Rissanen and Langdon (1979);
Witten et al. (1987). This method can be used to speed up processing as it does
not perform any physical coding and has wide applications. A variant of the al-
gorithm has been used to perform the automatic cryptanalysis of transposition
ciphers, for example Al-Kazaz et al. (2016).

4.4 Building models
The method TrainFile in Algorithm 5 builds (or ‘trains’) a model from the text
in the file SourceF ile passed as an argument. The way the algorithm works is
similar to Algorithm 5 above as it uses TLM_update_context (line 4) to process
each symbol sequentially (line 3) without performing any coding. However, no
codelength calculations need to be performed in this case since all we are doing

16



Algorithm 4: A context based method for computing compression code-
length without coding.

1 method CodelengthText (SourceText, Model)
2 Codelength← 0.0;
3 Context← TLM create context (Model);
4 for each Symbol in SourceText do
5 TLM update context (Model, Context, Symbol);
6 Codelength += TLM Codelength;
7 end
8 TLM release context (Context);
9 return Codelength;

10 end

is building a model.

Algorithm 5: A context based method for building models.
1 method TrainFile (SourceF ile, Model, ModelType, ModelF ilename)
2 Context ← TLM create context (Model);
3 for each Symbol in SourceF ile do
4 TLM update context (Model, Context, Symbol)
5 end
6 TLM update context (Model, Context, TXT sentinel symbol());
7 TLM release context (Context);
8 TLM write model (ModelF ilename, Model, ModelType);
9 end

The method can be used to build a dynamic model (which keeps on being up-
dated when further files are processed at a latter time) or a static model (which
does not subsequently change and therefore will always give the same proba-
bility estimates). This explains the need for the argument Model to specify
an already existing model which may be dynamic. (It will have been initially
created using a call to TLM_create_model similar to that on line 2 in Algo-
rithm 1). The argument ModelType specifies whether the model is dynamic
or static. The model is written out to the file named ModelF ilename (using
the call to TLM_write_model on line 8) and can be latter loaded directly using
a call to TLM_load_model without the need for symbol processing. (Note that
the size of a model, such as a PPM model, will usually be significantly smaller
than the size of the text used to train it, even for higher order models).

Once a dynamic model is written out as a static model, it can not be sub-
sequently updated. The use of static models can lead to better performance
in some tasks (such as text classification) and optimisation of model memory
allocation and data structures can be performed once it is known that the model
will not be updated in the future.
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Usually the symbols in the text will be processed directly from the source
training file (from SourceF ile) rather than from an intermediate text (from
SourceText). For example, in the following text classification application, com-
pression codelength calculations for multiple models need to be performed on
the same source file, and therefore it is more efficient to load the source file once
into a text object and have it available for subsequent processing without the
need for further I/O operations being performed on the same file.

4.5 Text classification
The method ClassifyFile in Algorithm 6 performs text classification on a text
file. It classifies the file SourceF ile by finding which model compresses the text
in the file best. This symbol-based method of text classification has been found
to be competitive in many classification tasks compared to standard feature-
based (word) classification schemes often with state-of-the-art results Teahan
and Harper (2003). It has been used to accurately identify the natural language
in which the source text is written Khmelev and Teahan (2003), and to identify
the most likely author of the text Teahan and Harper (2001), for example.
Recent results have shown that it can classify gender Altamimi and Teahan
(2017), recognise emotions Al-Mahdawi and Teahan (2017) and even identify
whether the text has been written by a person who is dyslexic or not Alamri
and Teahan (2017).

Algorithm 6: A compression-based method for text classification.
1 method ClassifyFile (SourceF ile)
2 BestCodelength← 0.0;
3 BestModelT itle← NULL;
4 SourceText← TXT load text (SourceF ile);
5 TLM reset model ();
6 while Model← TLM next model () do
7 Codelength← CodelengthText (SourceText,Model);
8 if (BestCodelength = 0.0) or (Codelength < BestCodelength) then
9 BestCodelength← Codelength;

10 BestModelT itle← TLM get title (Model);
11 end
12 TXT release text (SourceText);
13 return BestModelT itle;
14 end

The method calls TLM_reset_model and TLM_next_model to cycle through
all the models that have previously been loaded into memory (lines 5 and 6). The
compression codelength is calculated on line 7 by calling the CodelengthText
method that was defined in Algorithm 4. TXT_load_text is used to load the
source file once into the text object SourceText (line 4). Note that the routine
TXT_load_text appends the sentinel symbol onto the end of the text.
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The method works by cycling through all the models to compute their com-
pression codelengths on the source text, and returns the title (obtained using
the call to TLM_get_title on line 10) of the best performing model.

4.6 Verifying sentence alignment of a parallel corpus
The method VerifyParallelFiles in Algorithm 7 checks the quality of sen-
tence alignment between two files (File1 and File2) in a parallel corpus. It as-
sumes that the corpus has already been aligned and the purpose of this method
is to verify its quality prior to being used to build language models for statistical
machine translation. The method also assumes that the sentences in the two
different languages are on corresponding separate lines in the two files. There-
fore, the TXT_readline_file (line 5) is being used to read each line of the two
files simultaneously into two text objects Text1 and Text2 .

Algorithm 7: A compression-based method for verifying parallel sentence
alignment.

1 method VerifyParallelFiles (File1,File2, Model1, Model2,
CRThreshold)

2 Text1 ← TXT create text ();
3 Text2 ← TXT create text ();
4 LineNo← 0;
5 while TXT readline file (File1, Text1 ) and TXT readline text (File2,

Text2 ) do
6 LineNo← LineNo + 1;
7 Codelength1 ← CodelengthText (Text1 ,Model1);
8 Codelength2 ← CodelengthText (Text2 ,Model2);
9 if Codelength1 > Codelength1 then

10 CR← Codelength1 /Codelength2
11 else
12 CR← Codelength2 /Codelength1
13 if CR > CRThreshold then
14 Output “Check alignment for Line ” LineNo

15 end
16 TXT release text (Text1 );
17 TXT release text (Text2 );
18 end

The method CodelengthText from Algorithm 4 is used to calculate the
compression codelengths of the two sentences in Text1 and Text2 according to
the models Model1 and Model2 respectively. In order for this method to be
effective, it requires the two models to be separately trained on a large amount of
text that is representative of the respective languages. Recent research Liu and
Teahan (2014); Alkahtani et al. (2015) has shown that comparing compression
codelength in this manner is an effective way for verifying that corresponding
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sentences are aligned, as well as measuring the quality of translation.
The method specifically computes the codelength ratio (CR) measure on

lines 9 to 12 which is the maximum of the two ratios Codelength1 /Codelength2
and Codelength2 /Codelength1 . This ensures that CR is always greater than or
equal to 1.0. A value of 1.0 indicates that the two codelengths are the same value
and values close to or equal to 1.0 provide strong evidence that the sentences are
probably aligned. This is based on the assumption that the information (from
an information theoretical sense) between corresponding sentences that are co-
translations should be the same or similar, and compression codelength provides
an excellent means for measuring the information Liu and Teahan (2014).

The method on line 13 compares CR to a threshold CRThreshold which is
passed as an argument. If CR exceeds this threshold, then a message is output
with the line number of the suspicious sentence (line 14). Values of 1.8 and
above for CRThreshold have been found effective at locating unsatisfactory
translations in experiments with Chinese/English Liu and Teahan (2014) and
Arabic/English Alkahtani et al. (2015) parallel corpora. These experiments
also show that codelength based measurements are more effective than sentence
length based measurements for verifying sentence alignment.

4.7 Word segmentation
The method WordSegmentlFile in Algorithm 8 performs word segmentation on
the file SourceF ile. Specifically, it will insert spaces into the file which usually
contains no spaces to indicate where the words are. Word segmentation is an
important NLP application for languages that are not naturally word segmented
such as Chinese. The method shown in Algorithm 8 is based on the PPM-based
word segmentation method Teahan et al. (2000) that has been used as a baseline
model for an international evaluation on Chinese word segmentation Sproat and
Emerson (2003).

The method uses a transform object Transform to perform the segmenta-
tion. It is created on line 3 using TTM_create_transform which specifies that
the Viterbi search algorithm be used to find the best segmentation (as measured
by the sequence of text with spaces inserted which has the lowest compression
codelength). The method then specifies using TTM_add_transform that two
transformations be used for the search (lines 4 to 8). This defines the cost
of the transformation in codelength (second argument to TTM_add_transform),
the symbol sequence that needs to be matched (third argument) specified using a
printf-like string syntax borrowed from the C programming language, and the
transformed sequence (fourth argument) also specified using printf-like string
syntax. The first transformation added to the transform model in the method on
line 4 specifies that whatever the current symbol is (using the wildcard “%w” for
the third argument to indicate that any symbol should be matched), it should
always be included unchanged as one pathway in the search tree. This is be-
cause the wildcard “%w” is also being used for the fourth argument meaning
that whatever symbol matches it should be transformed unchanged. Line 4 is
typically found in most transform-based applications since usually the original
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Algorithm 8: A compression-based method for word segmentation.
1 method WordSegmentFile (SourceF ile, Model, Alphanumeric?)
2 SourceText← TXT load text (SourceF ile);
3 Transform← TTM create transform (TTM Viterbi);
4 TTM add transform (Transform, 0.0, “%w”, “%w”);
5 if not Alphanumeric? then
6 TTM add transform (Transform, 0.0, “%w”, “%w ”);
7 else
8 TTM add transform (Transform, 0.0, “%f”, “%f ”,

TXT is aplhanumeric);
9 TTM start transform (Transform, TransformType, SourceText,

Model);
10 TransformText← TTM perform transform (Transform, SourceText);
11 TTM release text (SourceText);
12 TTM release transform (Transform);
13 return TransformText;
14 end

text symbols need to form one search pathway rather than be totally discarded
and/or transformed into something else.

The method uses the argument Alphanumeric? to indicate which of the
second transformations (line 6 or line 8) should be applied to the search. If
this argument is not true, then a space symbol is inserted prior to each symbol
(there is a space included at the beginning of the transformed sequence “ %w”
for the fourth argument on line 6). This transformation would typically be
used for word segmentation of Chinese text, for example, since in this case, we
would wish to search through all the possible insertions of spaces after each
of the symbols in the text. If the argument Alphanumeric? is true, on the
other hand, the transformation on line 8 specifies that spaces only be inserted
after alphanumeric characters as a possible search pathway (using the “ %f”
option for the matching and transformed sequences to specify that the function
TXT_is_alphanumeric be used to match the symbol). This transformation is a
useful optimisation if English text without spaces is being segmented (by finding
where to put the spaces back) since it will substantially reduce the search as
non-alphanumeric characters will remain unchanged and not cause an extra
pathway to be added to the search tree.

The effect of having two transformations used in this method is that two
search pathways will be generated for every symbol being transformed. Hence,
the maximum size of the search tree is essentially 2n where n is the number of
symbols being transformed. The search is started using TTM_start_search on
line 9 which initialises the search for the best transformation of the SourceText
using the Model. The Viterbi algorithm that is executed by the operation
TTM_perform_search (line 10) substantially reduces this search using trellis-
based techniques and other optimisations so that for Markov-based models
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(such as PPM models) the search is completed essentially in linear time. The
method returns the transformed text TransformText which has the best com-
pression codelength compared to alternatives once the search performed by
TTM_perform_search has been completed.

4.8 Language segmentation
The method LanguageSegmentlFile in Algorithm 8 performs language seg-
mentation. That is, it marks the boundaries between different languages in the
same file. This is an important NLP application for texts that contain multiple
languages which aren’t explicitly marked up, and also for languages where code-
switching is common, for example Arabic and Welsh, as an important early step
that should be performed on the NLP pipeline.

Algorithm 9: A compression-based method for language segmentation.
1 method LanguageSegmentFile (SourceF ile)
2 SourceText← TXT load text (SourceF ile);
3 Transform← TTM create transform (TTM Viterbi);
4 TTM add transform (Transform, 0.0, “%w”, “%w”);
5 TLM reset model ();
6 while (Model← TLM next model ()) do
7 TTM add transform (Transform, 0.0, “%w”, “%m%w”, Model);
8 end
9 TLM reset model ();

10 while (Model← TLM next model ()) do
11 TTM start transform (Transform, TransformType, SourceText,

Model);
12 end
13 TransformText← TTM perform transform (Transform, SourceText);
14 TTM release text (SourceText);
15 TTM release transform (Transform);
16 return TransformText;
17 end

The method creates a transform object Transform on line 3 and specifies
that the Viterbi algorithm be used to perform the search for the best trans-
formation. The method then adds a transformation using TTM_add_transform
on line 4 that uses the wildcard “%w” form to ensure that the current symbol
unchanged is included as one of the search pathways. Then the “%m” form
is inserted as an alternative pathway for each model that has been loaded into
memory (lines 5 to 8). This form states that for the transformed text, the model
which is passed as the argument to TTM_add_transform on line 7 will be used
to predict subsequent symbols in the transformed text.

As with the previous word segmentation in Algorithm 8, the effect of hav-
ing the transformations used in this method is that multiple search pathways
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will be generated for every symbol being processed. In this case, all possi-
ble segmentations of the text using the models that have been loaded will be
searched. Hence, the maximum size of the search tree in this case is mn where
m is the number of models used and n is the length of the text. The search for
the best transformation of the SourceText is started using TTM_start_search
for each model on line 11. Again, the Viterbi algorithm which is executed by
TTM_perform_search (line 13) substantially reduces the search using trellis-
based techniques and other optimisations and the method returns the trans-
formed text TransformText which has the best compression codelength once
the search has been completed.

4.9 Applications implemented by the toolkit
The algorithms detailed above have all been implemented using the Tawa toolkit’s
libraries in the C programming language. Table 3 summarises these applications
that come bundled with the toolkit. The table lists for each application its name
(in bold font), a short description (in bold and italic fonts), the algorithms de-
tailed above they are based on and selected arguments. The encode, decode
and train applications for PPM compression, decompression and model build-
ing, for example, use similar arguments which specify amongst other things the
argument size, order of the model, and whether the model performs full exclu-
sions and update exclusions. The train application has additional arguments
for specifying the title of the model, and whether the model should be written
out as a static model. The markup and segment applications use arguments
for specifying whether Viterbi search should be adopted, and the stack depth if
the stack algorithm should be used instead.

These application arguments provide a wide range of possible settings that
have proven to be very effective in many NLP experiments as summarised in
Section 5. Many further possible uses still exist for these applications which
have the advantage that they can be used “off-the-shelf” without the need to
perform any further development using the toolkit’s libraries.

Some examples of shell commands and output using these applications are
shown in Table 4. The purpose of including these here is to demonstrate typical
use and also some of the possibilities offered by the commands. Line 1 pro-
vides an example of typical use for the encode application. In this case the
raw text from the million word Brown corpus of American English Francis and
Kuc̆era (1979) in the file Brown.txt is being encoded (compressed) to the file
Brown.encoded using the order 5 PPMD algorithm (which is the default) with
an alphabet of 256. Some summary data is output when the program completes
such as the number of input bytes, the number of output bytes and the compres-
sion ratio of 2.152 bpc (bits per character). Line 2 provides the command that
can be used to decode (decompress) the encoded file, and the diff command
on Line 3 confirms that the decoded file is the same as the original file since no
differences are produced as output.

Line 4 provides an example of how the train command can be used to build
a model. In this case, the Brown corpus is being used to train a static order 5
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align – tool for verifying sentence alignment (based on Algorithm 7)
-1 fn (fn = parallel text filename for language 1) -2 fn (fn = parallel text
filename for language 2) -3 fn (fn = model filename for language 1) -4 fn (fn
= model filename for language 2)

classify – tool to classify text files (uses Algorithm 4 and 6)
-m fn (fn = filename for list of models) -t fn (fn = filename for list of test
files)

codelength – writes out compression codelengths (uses Algorithm 4 and 6)
-c (print outs codelengths for each character) -e (calculates cross-entropy and
not codelength) -m fn (fn = filename for list of models)

decode – PPM decoder (decompression tool) & (uses Algorithm 3)
encode – PPM encoder (compression tool) (uses Algorithms 1 and 2)

-a n (n = size of alphabet) -e c (c = escape method for the model) -F (does
not perform full exclusions) -m fn (fn = model filename) -N (input is unsigned
integers) -O n (n = max order of model) -p n (report progress every n symbols)
-U (does not perform update exclusions)

markup – segments a file by languages (uses Algorithm 9)
-D n (n = stack depth) -m fn (fn = model filename) -V (Use Viterbi algorithm)

segment – segments a file by words (uses Algorithm 8)
-A (Alphanumeric characters only) -D n (n = stack depth) -m fn (fn = model
filename) -N (input is unsigned integers) -V (Use Viterbi algorithm)

train – builds PPM models (uses Algorithm 5)
same arguments as for encode and decode plus:
-S (writes out the model as a static model) -T str (title of the model)

Table 3: Applications implemented by the Tawa toolkit with selected arguments.

PPMD model which is written out to the file Brown.model when the command
completes. Line 5 loads the model direct into memory (without the need for
processing the original training text which is much slower), and then uses it to
encode another text, the raw text from the million word LOB corpus of British
English Johansson et al. (1986) in the file LOB.txt with a compression ratio of
2.191 bpc for the encoded output file LOB.encoded. Line 6 encodes the LOB
corpus directly without loading a model, therefore will use a dynamic model that
adapts to the text being encoded (i.e. at the beginning, the model is empty but
is updated as the text is processed sequentially). The compression ratio of 2.131
for this adaptive approach is slightly better than the static approach used in
Line 5 despite the dynamic model being empty at the start. This is a typical
result for PPM models and reflects the effectiveness of these models at adapting
quickly to the specific nature of the text. Also, the earlier language in the
source document (British English in this case from the LOB corpus) is often
a better predictor of subsequent text in the same document rather than using
some other source to prime the encoding model in advance (American English
from the Brown corpus).

Line 7 provides an example of the use of the codelength tool. This appli-
cation computes the compression codelength without the need for performing
any physical coding which is much slower since it requires performing I/O op-
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1 encode -a 256 -O 5 <Brown.txt >Brown.encoded
bytes input 5998525 bytes output 1613517 2.152 bpc

2 decode -a 256 -O 5 <Brown.encoded >Brown.decoded
3 diff Brown.decoded Brown.txt
4 train -S -a 256 -O 5 -e D -T "Brown model" <Brown.txt >Brown.model

Trained on 5998525 symbols
5 encode -m Brown.model <LOB.txt >LOB.encoded

bytes input 5877271 bytes output 1609902 2.191 bpc
6 encode -a 256 -O 5 <LOB.txt >/dev/null

bytes input 5877271 bytes output 1565250 2.131 bpc
7 codelength -e -m models.txt <Brown.txt

English 3.514
French 5.421
German 5.618
Italian 5.664
Latin 5.400
Maori 5.820
Spanish 5.602
Minimum cross-entropy for English = 3.514

8 segment -m Brown.model -V -i woods_unsegm.txt -o woods_segm.txt
9 diff woods_segm.txt woods_correct.txt

< Of easy wind and down yflake
> Of easy wind and downy flake

10 markup -m models.txt <e_and_m.txt -V -F
<Maori>TE MANUHIRI TUARANGI <\Maori><English>AND MAORI INTELLIGENCER
LET THE PAKEHA AND THE MAORI BE UNITED.
Salutations to you friends the Maori people of New Zealand! Chiefs and
commoners, great and small, old and young salutations to you all !
It is customary among the Maories to welcome the advent of a stranger
With cries of <\English><Maori>Haere mai! Haere mai! <\Maori><English>
The welcome is commenced with the approach
of the visitor, and is prolonged until he has fairly entered the Kainga,
Now therefore, the <\English><Maori>Manuhiri Tuarangi <\Maori><English>
awaits the welcome of the Maori people.

Table 4: Sample commands and output using applications implemented by the
toolkit.

erations. In the example, a list of models trained on bibles in various languages
(English, French, German, Italian, Latin, Māori and Spanish) is specified in
the text file (models.txt). These models are loaded and then the compres-
sion cross-entropies for each of these models is calculated for the source text
(the Brown corpus). The output clearly shows that the English bible model is
a better predictor of American English with a compression ratio of 3.514 bpc
compared to the compression ratios produced by models for the other languages
(all above 5.4 bpc).

The command on Line 8 uses the segment tool to perform word segmenta-
tion using the Viterbi algorithm on a sample text (woods_unsegm.txt) which
contains the text for Robert Frost’s poem Stopping by Woods on a Snowy

25



Evening with spaces removed. The Brown corpus model is used as the training
model. The output text file produced by the tool is then compared to the cor-
rect text using the diff command on Line 9. The output produced shows that
the word segmentation tool has made just one mistake: “down yflake” instead
of “downy flake”.

The language segmentation tool is being used on Line 10. In this case, the
same bible models specified in the file models.txt that were used on Line 7
are used again to define the possible languages for the segmentation, with the
Viterbi search being used to find the most compressible sequence for all possible
segmentations of languages at the character level. The output produced on the
sample text (an extract from the Māori-English Niupepa collection from the
NZ Digital Library Witten and McNab (1997) from the mid 19th to early 20th
centuries) shows that only two languages were detected (Māori and English)
and the other languages did not appear in the final segmented text that was
output. The output shown contains only one error (“Kainga” should be tagged
as Māori text).

4.10 Implementation details, memory usage and execu-
tion speeds

This section discusses some implementation details for the toolkit applications,
as well as their typical memory usage and execution speeds. Table 5 provides
execution speeds and memory usage for the commands in Table 4 (ignoring
commands 3 and 9 which do not use any of the toolkit’s applications). The
execution speed is calculated from the average of 10 runs of the command on a
Macbook Pro5. The memory usage is provided in megabytes and represents the
maximum resident set size as reported by the /usr/bin/time -l command.

Command 1 2 4 5 6 7 8 10
Avg. exec. speed (secs) 7.272 8.041 7.124 5.027 7.217 60.029 0.185 1.586
Memory usage (MB) 21.05 21.07 21.65 14.17 21.95 56.60 14.36 34.18

Table 5: Average execution speeds across 10 runs and memory usage (maximum
resident set size) for the commands in Table 4.

From the average execution speeds in Table 4, commands 1 and 2 show that
for the Brown corpus, unprimed encoding is slightly faster than decoding (7.3
seconds as opposed to 8.0 seconds). This is a typical result for PPM compression
and is due to way the arithmetic coding ranges are decoded by the toolkit.
(This result backs up the statement in Section 2 concerning that “the encoding
or decoding process are not necessarily equivalent”). In the PPM case, the
encoding process is usually quicker but this depends on the implementation.
The average speed for command 4 shows that building a model from the Brown
corpus takes a similar amount of time to the encoding. This is because the text

515-Inch Retina display running OSX El Capitan Version 10.11.6 with 2.5 GHz Intel Core
i7 processor and 16 GB 1600 MHz DDR3 memory.
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processing is similar, and the difference is because the train command needs to
perform I/O to write out the model at the end whereas the encoding program
needs to write out the arithmetic encoding stream as each symbol in the text
is processed one-by-one. The result for command 5 shows that using a static
(pre-primed) model for encoding purposes is significantly quicker than using a
purely adaptive dynamic model (5.0 seconds versus 7.2 seconds for command
6). Command 7 loads seven static models and uses each of them to process the
Brown corpus text and therefore this takes considerably longer than the other
commands as the Brown corpus is processed multiple times using the approach
adopted in Algorithm 6. The results for Commands 9 and 10 shows that word
segmentation is very fast (just 0.18 seconds), and language segmentation is
also relatively fast (1.6 seconds). The slower time for the latter is because the
branching factor of the tree being searched is seven (for the seven Bible models in
different languages) as opposed to just two for the word segmentation problem.

Referring to the memory usage figures in Table 4, commands 1, 2, 3 and 6
all use similar amounts of memory as they need to build in memory a dynamic
PPM model for either the Brown corpus or the LOB corpus. Commands 5 and
9 in contrast load a static model of the Brown corpus, so hence use significantly
less memory (roughly 14 Mb as opposed to 21 or 22 Mb). Command 7 needs to
load the seven static Bible models so therefore uses the most memory of any of
the commands; similarly, command 10 also needs to use the same seven models
but uses less memory (34 Mb as opposed to 56 Mb) as the text being processed
is much smaller.

Table 6 lists the sizes (in bytes) of some sample texts including the Brown and
LOB corpora, the English and Latin bibles, and the Wall Street Journal (WSJ)
texts from the Tipster corpus available from the Linguistic Data Consortium.
The sizes (in bytes) of the static or dynamic PPMD models for different orders
when trained on the texts using the toolkit’s train tool are listed in the table
(in columns 4 and 6). These models store the trie data structure that records all
the contexts in the training text and their predictions (i.e. using the frequencies
of symbols that follow the context) up to the maximum order of the model. So
an order 6 model, for example, will contain information about all contexts of
lengths 6 down to 0 plus their predictions. The symbol frequencies stored in
the trie are used by the toolkit’s libraries for estimating probabilities and for
arithmetic coding purposes. In order to reduce the size of the dynamic model
as it is being updated, each dynamic model also maintains pointers back into
a copy of the input text when a context becomes unique and this is stored in
conjunction with the model’s trie data structure.

Also included in the Table are two further texts added for illustration pur-
poses to highlight aspects of the static and dynamic model mechanisms provided
by the toolkit. The first, indicated by ‘. . .×2’ in the table, is for when a dynamic
model was first created from the Brown Corpus and written out, then the same
Brown Corpus text was added again after the model was reloaded by the train
tool, and then eventually the model was written out to a different model file
(either as a static or dynamic model). The second, indicated by ‘. . .× 3’ in the
table, is for the case when the Brown Corpus was used three times to train the
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final model.

Text Size Order Static Avg. Dynamic Avg. Comp.
Size Time Size Time Input

(bytes) (bytes) (secs) (bytes) (secs) (%)
LOB corpus 5877271 6 23114666 7.859 41067518 8.279 16.23
LOB corpus 5877271 5 12815126 6.811 22667634 7.177 8.35
LOB corpus 5877271 4 5766170 6.101 10141414 6.476 3.39
LOB corpus 5877271 3 1920470 5.996 3350666 6.023 0.96
Brown corpus 5998525 6 24168398 7.734 42957274 8.343 16.73
Brown corpus 5998525 5 13357088 7.512 23628424 7.892 8.54
Brown corpus 5998525 4 5979854 6.061 10515322 6.517 3.43
Brown corpus 5998525 3 1993502 6.170 3477030 6.468 0.97
Brown corpus × 2 11997050 5 18679790 8.050 31132970 8.461 0.00
Brown corpus × 3 17995575 5 18679790 8.544 31132970 8.815 0.00
English bible 4138511 5 4523104 2.927 7846200 3.035 2.79
Latin bible 3399860 5 4229580 2.454 7324732 2.520 3.04
Tipster WSJ 132193779 5 53915630 233.626 95069366 223.100 1.48

Table 6: Sizes (in bytes) of text and models, average training execution speeds
(in seconds) and dynamic model compressed input percentages for various sam-
ple texts.

The table also provides average execution times to build the models across 10
runs (on the same Macbook Pro used for the experiments reported in Table 4)
in columns 5 and 7 for static and dynamic models respectively. In general, the
time for building a static model takes roughly 1 MB per second and is on average
slightly quicker than for building a dynamic model. However, the time required
to build models will depend on the complexity of the model and the length of
the text with the models trained on repeated Brown corpus text, for example,
being more complex and therefore slower to build, and the order 5 model for
the much longer Tipster WSJ text having a much faster build rate of 1.85 MB
per second.

For the model sizes, the results show that the sizes of the model grow sub-
stantially with order, but the rate of growth in model size reduces with higher
orders. For example, for the Brown and LOB corpus, the size of the order 6
models is just under twice the size of the order 5 models. This compares with
order 4 models being roughly three times the size of the order 3 models. Exper-
iments with PPM models show that model size eventually plateaus even with
higher orders Teahan (1998) [pages 138–139]. A comparison between the static
model sizes and the dynamic models sizes shows that the former is consistently
between 0.56 and 0.6 of the latter. This is due to the method used to prune the
dynamic model’s trie stored in the model when it is written out to a file on disk
in static form. The size of the static models compared to the size of the Brown
and LOB source texts ranges from approximately four times for the order 6
models, twice for the order 5 models and down to one times and 0.3 times for
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the order 4 and 3 models respectively. With much larger training size, however,
the ratio of the model size to text size reduces significantly. For example, for
the Tipster WSJ text, the size of the static order 5 model is pruned down to
just 0.4 of the size of the text.

Further pruning is also possible when a dynamic model is written out in
dynamic form as opposed to static form. When the model is written out as
a dynamic model, the copy of the input text that is stored in the model can
be substantially pruned by removing those parts which no longer have any
possibility of being required for future updates of the trie (since the model has
a fixed maximum order and the maximum depth of the trie has already been
reached for some contexts). The trie pointers have to be changed to point
at the new positions in the pruned input text copy. This pruning can lead to
substantial reductions in the size of the models being stored. The percentages of
the input text that need to be kept are shown in the last column of Table 6. For
example, when the order 6 models of the Brown and LOB corpora are written
out in dynamic form, the input text copy stored in the model can be pruned to
just over 16% of the training text size. This reduces even more to roughly 8%
for order 5 models, 3% for order 4 models and just under 1% for order 3 models
which represents a substantial reduction for these models whose training texts
are close to 6 Mb in size. When the training text is much longer, as for Tipster
WSJ, then a much greater percentage of the input text can be pruned out (over
98% with just 1.48% remaining). For the cases where the Brown corpus text
is used to update a dynamic model twice or three times, then the entire input
text copy can be pruned away (i.e. 0% remains) since all leaf nodes in the trie
are at maximum depth according to the maximum order of the model with all
contexts now being repeated.

4.11 Search algorithms
The Tawa toolkit implements several search algorithms for the method that is
used to search for the best transformation TTM_perform_search method). Var-
ious search algorithms can be used to prune the search space produced when
the transformations specified by one or more calls to the TTM_add_transform
method. Both the Viterbi dynamic programming algorithm Viterbi (1967) and
the stack decoding algorithm Jelinek (1969) have been implemented in the
toolkit and are available for the developer to trade off accuracy, memory and
execution speed. The Viterbi algorithm guarantees that the segmentation with
the best compression will be found by using a trellis-based search—all possible
segmentation search paths are extended at the same time and the poorer per-
forming alternatives that lead to the use of the same conditioning context are
discarded.

One of the drawbacks of the Viterbi algorithm is that it is an exhaustive
search rather than a selective one, unlike sequential decoding algorithms com-
monly used in convolutional coding which rely on search heuristics to prune the
search space Anderson and Moran (1984). Teahan et al.’s Teahan et al. (2000)
Chinese word segmentation method used a variation of the sequential decoding
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algorithm called the stack algorithm—an ordered list of the best paths in a seg-
mentation tree is maintained, and only the best path in terms of some metric
is extended while the worst paths are deleted. The metric they used was the
compression codelength of the segmentation sequence in terms of the order 5
PPMD model. This variation has also been implemented in the toolkit.

In the stack algorithm’s ordered list, paths vary in length (essentially, it is
like a best first search whereas the Viterbi search is more like a breadth first
search). For deleting the worst paths, the traditional method is that the list is
set to some maximum length, and all the worst paths longer than this length
are deleted. For Teahan et al.’s Teahan et al. (1998) PPM word segmenter
and in the toolkit, another variation was used instead. All the paths in the
ordered list except the first one were deleted if the length of the path plus
m was still less than the length of the first’s path, where m is the maximum
order of the PPM model. The reasoning behind this pruning heuristic is that
it is extremely unlikely (at least for natural language sequences) that the bad
path could ever perform better than the current best path as it still needs to
encode a future m characters despite being already worse in codelength. One
further pruning method was also found to significantly improve execution speed.
As for the Viterbi algorithm, poorer performing search paths that lead to the
same conditioning context are discarded. However, unlike the Viterbi algorithm,
search paths vary in length, so only poorer performing search paths with both
the same length and conditioning context are discarded. These heuristics have
been implemented in the toolkit.

In order to illustrate some important aspects of the search process, Figure 3
provides examples of initial search trees for the segment and markup tools for
the small sample text ‘the’. The search tree for this text for the word segmen-
tation problem (using the tool segment) is shown in the left box of the figure.
The transformed sequences delimited by quotes ‘’ are shown in each node of the
tree with an underscore being used (to make it more visible) to indicate where
a space has been inserted into the sequence. The root node is for the start of
the search where no symbol has been inserted yet. The branching factor of the
tree is two as there are two possible transformations—the symbol being pro-
cessed in the source text is kept unchanged (as represented by the gray nodes);
and a space is added after the symbol being processed (as represented by the
hashed nodes). So, for example, there are two nodes at level 1 of the tree. Here
the first symbol to be processed is the letter ‘t’. Two possible search paths are
generated—one for the letter unchanged (‘t’) and one with a space added to it
(‘t ’). At the next level, two further nodes are added for each node at level 1,
so there are four nodes at level 2, and consequently 8 nodes at the next level
and so on.

The search tree for the language segmentation problem (using the tool
markup) is shown in the right box. The tree in this example also has a branch-
ing of two as only two transformations are being used here for the languages
being segmented—English and Māori. Hence the search process is analogous
to the word segmentation problem—instead of a space being added or not, the
transformation simply decides to code the symbol being processed using the En-
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Figure 3: Search trees for the sample text ‘the’ for the word segmentation prob-
lem (on the left) and for the language segmentation problem (on the right).

glish model for the gray nodes or using the Māori model for the hashed nodes.
The subscripts shown in the transformed sequences within each node indicate
which model was used to code each symbol—the subscript ‘E’ if the English
model was used and the subscript ‘M’ if the Māori model was used instead. If a
symbol switches coding from one model to the other, then the sentinel symbol
is encoded which will incurr a significant cost as it will have to back off to the
null context as a result.

Shown to the right of each node in both trees is the compression codelength
for the transformed sequence as calculated by the toolkit (based on a static order
5 PPMD model trained on the Brown corpus for the left box, and static order 5
PPMD models trained on the English and Māori bibles for the right box). The
smallest codelength for each level of the tree is shown in bold font. Note that
these trees show the complete search tree as if a breadth-first search was being
applied. In reality, many of the nodes in the full trees would be pruned away
depending on the search algorithm being applied based on these compression
codelength values. (For example, for the Viterbi algorithm, all nodes at the same
level of the tree with the same conditioning context for the maximum order of
the model would be pruned except for the one with the lowest codelength).

Table 7 lists some experimental results for the two search algorithms im-
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Algorithm Editdistance Edistance Average Time Number of
Accuracy (%) (seconds) nodes

Viterbi 493 99.17 2.657 2391680
Stack (size = 5) 787 98.69 1.315 2338160
Stack (size = 10) 620 98.96 2.339 2345280
Stack (size = 20) 568 99.05 4.369 2348080
Stack (size = 50) 533 99.11 10.386 2443560

Table 7: Results from using various search algorithms for the segment tool to
segment the first 10,000 words of the unsegmented LOB corpus using a static
order 5 PPMD model trained on the Brown corpus using the train tool.

plemented by the toolkit—the Viterbi algorithm and the stack algorithm. In
this case, the segment tool was used to segment the first 10,000 words of the
unsegmented LOB corpus using a static order 5 PPMD model trained on the
Brown corpus using the train tool. Shown in the table are the following: a
description of the algorithm used (including the size of the stack if the stack
algorithm was used); the Levenshtein editdistance (e) between the correct LOB
source text and the output produced by the tool (where the cost of a deletion
and an insertion was counted as 1, and of a substitution as 2); the editdistance
accuracy as a percentage calculated as 100−100× e/N where N was the size of
the source text; the average time in seconds to complete the segmentation task
for 10 runs on the Macbook Pro; and the number of nodes that were generated
in the search tree as a measure of the memory used. The results show that the
Viterbi algorithm produces the least number of errors, and the number of errors
reduces with a larger stack size for the stack algorithm as expected. However,
the time and memory results show that a smaller stack size runs more quickly
(twice as fast when the stack size is only 5) and uses less memory but at a cost
in reduced accuracy. Therefore, if speed and/or memory is a concern (when
processing many texts or texts that are much larger in size), then accuracy can
be traded for improved speed and memory by choosing the stack algorithm.
These results mirror those published for the Chinese word segmentation prob-
lem using an earlier version of the toolkit Teahan (2000) and confirm that the
latest version produces similar behaviour.

5 Experimental results obtained using the toolkit
This section provides a summary in Table 8 of a selection of published exper-
imental results that were produced using the applications in the toolkit. The
table lists the publication, the toolkit tools that were used to obtain the experi-
mental results, and the specific application area, such as emotion recognition in
text, gender and authorship categorisation and so on. The purpose is to show
the wide variety of application areas that the toolkit can be applied to and also
to provide supporting evidence of the effectiveness of the algorithms detailed
in Section 4. For example, the classification results achieved using the classify
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tool consistently outperform well-known feature-based approaches such as SVM
and Näıve Bayes in many application areas. The reader should refer to the
publications directly for full details concerning the experimental methodology
involved and the results obtained.

Reference Tools used Application area

Alamri and Teahan (2017) classify, train Classifying dyslexic text
Al-Kazaz et al. (2016) codelength,

train
Cryptanalysis of transposition
ciphers

Alkahtani et al. (2015) align, train English-Arabic bilingual sen-
tence alignment

Alkhazi and Teahan
(2017)

classify,
markup, train

Classifying and segmenting
Arabic text

Al-Mahdawi and Teahan
(2017)

classify, train Emotion recognition in text

Altamimi and Teahan
(2017)

classify, train Gender and authorship cate-
gorisation of Arabic text

Liu and Teahan (2014) align, train English-Chinese bilingual sen-
tence alignment

Mahoui et al. (2008) markup, train Identification of gene function
in biological publications

Teahan and Aljehane
(2017)

encode, decode Grammar-based compression

Teahan and Alhawiti
(2015)

encode, decode Compression of Arabic text

Table 8: A summary of selected experimental results produced using the toolkit.

6 Related work
Many different toolkits, suites, architectures, frameworks, libraries, APIs and/or
development environments have been produced over the years for natural lan-
guage processing purposes and more specifically for statistical natural language
processing. The use of these terms to describe the functionality and nature of
the various NLP systems and approaches have often been inconsistent in the
literature. For example, Cunningham Cunningham (2002) stated for the GATE
system—a general ‘architecture’ for text engineering—that it “is generally re-
ferred to as an ‘architecture’, when, if we were a little more pedantic, it would
be called a framework, architecture and development environment”. The mean-
ing of the term ‘framework’ in software engineering has also evolved over the
years—its more specific meaning in recent years requires that a framework has
the key characteristic of ‘inversion of control’ where a framework must handle
the flow of control of the application. This characteristic is not appropriate for
the design used for the Tawa toolkit’s libraries which do not handle the flow
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of control in many of its applications (except for when Transform objects are
used). The meaning of the term ‘architecture’ is clearer in the literature—it
involves the abstract design concepts and structures behind an application. For
these reasons for the work described in this paper, the well accepted terms
toolkit, libraries and architecture have been used to describe the system, and
its design and implementation.

System Reference Type of system Language(s)
CoreNLP Manning et al. (2014) suite of tools Java
FreeLing Carreras et al. (2004) library C++
GATE Cunningham (2002) architecture, suite of tools Java
LingPipe Carpenter (2006) toolkit, API Java
MALLET McCallum (2002) toolkit, API Java
NLTK Bird (2006) library Python
OpenNLP Baldridge (2005) library Java
Tawa (This paper) toolkit, libraries C
UIMA Ferrucci and Lally (2004) architecture, middleware Java, C++

Table 9: Some systems for NLP and their details.

Table 9 lists a selection of systems that have been developed for NLP. The
table lists the name of the system, a reference, the type of system described using
terms used by the developers of the system and the language(s) in which the
system has been developed. The table illustrates that there have been many
systems developed to date in a number of different programming languages
with Java predominating. The preferred type of system is a toolkit and/or an
external library being available. These systems in general provide a suite of
tools for various applications, such as tokenisation, classification, POS tagging,
named entity recognition and parsing being the ones provided the most.

A number of further freely available systems that have been developed by
the NLP research community are based on a range of underlying architectures
including those listed in Table 9. For example, DKPro and ClearTK are two
examples that use the UIMA framework architecture for analysing unstructured
information. Alternatively, some of the systems are primarily designed around
a core external library or libraries that can be called from an application. Often
these systems are not described as having an underlying architecture (for exam-
ple, FreeLing, NLTK and OpenNLP in the table). The two main approaches all
of these systems use for text processing involve a rule-based approach (either
manually designed or automatically generated) and statistical. These systems
also predominantly process natural language text in a word-based manner.

What distinguishes the Tawa toolkit from most of these systems is threefold:
firstly, the toolkit is character-based; secondly, the design of the applications is
based around an integrated compression-based architecture; and thirdly, none
of the toolkits in the table (apart from Tawa itself), provide explicit support
for compression-based applications. Tawa is also written from the ground up
with carefully memory-managed C code for each object type and therefore is
designed to be memory efficient and fast.

34



Like the Tawa system, the LingPipe system also uses character language
models but uses the noisy channel model approach for various applications.
Using a character or symbol-based approach means that methods used for solv-
ing the tasks required for applications can be quite different to the traditional
word-based approach. For example, the Tawa toolkit for classification avoids
the need for explicit word-based feature extraction and simply processes all the
characters in the text being classified.

The application of compression-based models to NLP has had a long his-
tory and one of the main purposes of the Tawa toolkit is to make these models
more easily available for developers to use. In many cases, the applications
implemented using these models have produced state-of-the-art results. For ex-
ample, PPM character based language models have been applied successfully
to many applications in natural language processing Teahan (1998) such as
language identification and cryptography Irvine (1997) including various ap-
plications for automatically correcting words in texts such as OCR and word
segmentation Teahan et al. (1998, 2000) (also see Table 8 for a further selection
of results).

Text mining and named entity extraction in Tawa can also be performed
using character-based language models using an approach similar to that used
by Mahoui et al. Mahoui et al. (2008) to identify gene function. Bratko Bratko
(2012) have also used data compression models for text mining, specifically for
spam filtering. Witten et al. Witten et al. (1999a,b) have shown how text com-
pression can be used as a key technology for text mining. Here, character-based
language modelling techniques based on PPM to detect sub-languages of text
instead of explicit programming are used to extract meaningful low-level infor-
mation about the location of semantic tokens such as names, email addresses,
locations, URLs and dates. In this approach, the training data for the model of
the target text contains text that is already marked up in some manner. A cor-
rection process is then performed to recover the most probable target text (with
special markup symbols inserted) from the unmarked-up source text. Yeates et
al. Yeates et al. (2001) show how many text mining applications can be recast
as ‘tag insertion’ problems such as word segmentation and identifying acronyms
in text Yeates et al. (2000) where tags are re-insert back into a sequence to re-
veal the meta-data implicit in it. Teahan & Harper Teahan and Harper (2001)
describe a competitive text compression scheme which also adopts this tag in-
sertion model. The scheme works by switching between different PPM models,
both static and dynamic (i.e. that adapt to the text as it is being encoded). Tags
are inserted to indicate where the encoder has switched between models. Tag in-
sertion problems, however, are just part of a much broader class of applications
encompassed by the noiseless channel model and therefore possible using the
Tawa toolkit. The toolkit diverges substantially from the tag insertion model of
Yeates et al. Yeates et al. (2001) (by allowing regular expressions and functions
in the specification of both the matching source sequence and corrected target
sequence) and arguably also the noisy channel model approach (for example, by
making it easier to combine models using hybrid encoding methods or by using
preprocessing techniques to modify alphabets).
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7 Conclusion and future work
A novel toolkit for text processing6 and natural language processing has been
described. The underlying architecture is based on using an encoding approach:
that of characterising applications as a problem of searching for the best encod-
ing of the target text given the source text. The toolkit implements various types
of compression models, as well as several search algorithms, and various NLP
applications. These compression-based models process the text sequentially and
base their predictions of the upcoming character on a fixed length finite context
of preceding characters. Experimental results have shown that these models are
competitive against alternative word-based approaches adopted by most other
NLP systems.

Like the noisy channel model, the ‘noiseless channel model’ architecture
adopted by the toolkit models the text processing as sending a message down
a communication channel. The design of the toolkit adheres to two main
principles—the communication process must be both lossless and reversible.
All information in the message is communicated without loss, and therefore any
transformation of the source text to the target text is done in such a way that
the source text is recoverable. Unlike the noisy channel model where the source
text is unknown when it is decoded, the source text in the approach adopted
by the toolkit is known when it is encoded, therefore providing an opportunity
that a more effective encoding can be found more efficiently.

Future work will involve the application of this new model to further text pro-
cessing problems that have not yet been investigated fully such as POS tagging,
named entity recognition, OCR and machine translation. Also other approaches
similar to the joint source-channel model approach of Haizhou et al. Haizou et
al. (2004) for machine transliteration will also be investigated where the best
encoding of both the source and target messages are generated simultaneously
as this can be easily accommodated using the toolkit’s architecture.
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