
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Effect of polarization sensitivity on ultrasmall SOI-based AWG for FBG
sensor interrogation
Li, Hongqiang; Xie, Rui; Hong, Yanhua; Zhang, Zanyun; Zhang, Cheng; Tang,
Chunxiao; Li, Enbang

Optical Engineering

DOI:
10.1117/1.OE.57.6.065103

Published: 27/06/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Li, H., Xie, R., Hong, Y., Zhang, Z., Zhang, C., Tang, C., & Li, E. (2018). Effect of polarization
sensitivity on ultrasmall SOI-based AWG for FBG sensor interrogation. Optical Engineering,
57(6). https://doi.org/10.1117/1.OE.57.6.065103

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 09. Oct. 2020

https://doi.org/10.1117/1.OE.57.6.065103
https://research.bangor.ac.uk/portal/en/researchoutputs/effect-of-polarization-sensitivity-on-ultrasmall-soibased-awg-for-fbg-sensor-interrogation(fba3c1cb-63a7-49bc-88fa-d41e7ab1a955).html
https://research.bangor.ac.uk/portal/en/researchers/yanhua-hong(c0119b77-f392-4247-9f4a-bc968a6b7c82).html
https://research.bangor.ac.uk/portal/en/researchoutputs/effect-of-polarization-sensitivity-on-ultrasmall-soibased-awg-for-fbg-sensor-interrogation(fba3c1cb-63a7-49bc-88fa-d41e7ab1a955).html
https://research.bangor.ac.uk/portal/en/researchoutputs/effect-of-polarization-sensitivity-on-ultrasmall-soibased-awg-for-fbg-sensor-interrogation(fba3c1cb-63a7-49bc-88fa-d41e7ab1a955).html
https://doi.org/10.1117/1.OE.57.6.065103


Effect of polarization sensitivity on ultrasmall SOI-based AWG for
FBG sensor interrogation
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Enbang Lic

aTianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and
Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
bSchool of Electronic Engineering, Bangor University, Bangor LL57 1UT, U.K.
cSchool of Physics, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract. Polarization sensitivity is an important factor that affects the interrogation of ultrasmall arrayed waveguide
grating (AWG) for fiber Bragg grating (FBG) sensor. An ultrasmall 1× 8 silicon-on-insulator (SOI) AWG with a core
size of less than 530µm × 480µm is proposed in this study. This ultrasmall SOI AWG exhibits good transmission
spectra and high polarization sensitivity. The increased channel numbers and tight structure increase the polarization
sensitivity of AWG. Temperature interrogation experiments show that the FBG sensor interrogation is drastically
affected when the effect of polarization sensitivity on the ultrasmall AWG is sufficiently large.

Keywords: Arrayed waveguide grating, Polarization, Silicon-On-Insulator, Fiber Bragg grating.
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1 Introduction

Fiber Bragg grating (FBG) sensors have attracted increasing attention because they provide con-

siderable advantages over conventional electrical sensors.1–7 Several FBG sensor interrogation

methods, such as dynamic matched grating filtering,8 Fabry-Perot filter method,9, 10 Mach-Zehnder

modulator method,11, 12 tunable narrow-line width laser scanning,13 and arrayed waveguide grating

(AWG) interrogation,14, 15 have been proposed. Among these FBG sensor interrogation methods,

the dynamic matched grating filtering method exhibits the simplest structure and the lowest accu-

racy. The Fabry-Perot filter method possesses high resolution but requires complicated equipment.

The Mach-Zehnder method cannot be used in quasistatic measurements. The tunable narrow-line

width laser scanning method requires high amounts of light. The AWG-based FBG sensor inter-

rogation system has attracted attention because of its high precision and high speed. However,

traditional AWGs cannot satisfy the latest requirements for miniaturization given their large sizes.
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Thus, a specially designed AWG with suitable size and performance for AWG interrogation must

be developed.

A compact AWG can be fabricated on a silicon-on-insulator (SOI)-based platform because of

its ultrahigh relative refractive index difference in the Si core and low-index claddings. These char-

acteristics allow for sharp bends and enable size reduction to the micrometer, as well as the inte-

gration of scaled-up structures with other devices in a microsystem.16 Therefore, SOI-based AWG

miniaturization warrants further study. Yang proposed a 48×48 AWG on an SOI platform with 0.8

nm channel spacing. The fabricated AWG has a compact size of approximately 220µm× 470µm

and exhibits an insertion loss and a crosstalk of less than -4 and -15 dB, respectively.17 Wang pro-

posed an 8 × 8 silicon nanowire AWG that has a crosstalk of approximately -17 dB, an insertion

loss of approximately -2.92 dB, and a footprint of only 730µm × 300µm.18 Park fabricated an

eight-channel AWG that demonstrates an insertion loss of 0.63 dB and a crosstalk of -23 dB to

-25.3 dB.19 Zou fabricated two SOI AWG routers that exhibit significantly improved spectral re-

sponses relative to those exhibited by SOI AWG routers with conventional design.20 However, the

effect of polarization sensitivity on ultrasmall SOI AWG for an FBG sensor interrogation system

remains uninvestigated.

This study proposes a 1× 8 SOI AWG, which possess core sizes of 350µm× 250µm. Simula-

tion results show that these ultrasmall SOI AWGs exhibit large wavelength drift under transverse

electric (TE) and transverse magnetic (TM) modes. The polarization sensitivity of the AWG in-

creases because of the increase in channel number and tight structure. The experimental results

show that the 1×8 AWG has an insertion loss of less than -3.4 dB, a crosstalk of less than -23.4 dB,

and a channel spacing of 1.9 nm. Temperature interrogation experiments show that the proposed

FBG sensor interrogation system that is based on the 1 × 8 AWG displays a high-interrogation
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Fig 1 Schematic of the proposed FBG sensor interrogation system. (a) Schematic of the AWG interrogation of FBG
sensors. (b) Hybrid Si photonic chip for the proposed FBG sensor interrogator system.

accuracy over the range of 10 ◦C to 50 ◦C and temperature measurement errors of less than 0.3

◦C.

2 Principle, design and analysis

The proposed FBG sensor interrogation system consists of a light source, a 2×2 multimode in-

terference coupler,21 1×N/2 FBG distributed sensors, a 1×N SOI AWG,22 a 1×N photodetector

array,23 subsequent signal amplification circuits, an analog-to-digital converter, and a data process-

ing unit (Fig. 1 (a)). The light from the light source penetrates the FBG through the coupler. The

reflected light also penetrates the AWG through the coupler. In case of interference from other

AWG channels, the central wavelength of each FBG must be in the middle of the central wave-

lengths of two adjacent AWG channels. When the related variables that affect the spectrum of FBG

change, the spectrum will shift and its overlap changes with each AWG channel, thus changing the

light intensity in each channel. Each adjacent AWG channel can be used to demodulate variables.

SOI is a well-known microelectronics and optoelectronics platform. Extremely small devices can

be fabricated on SOI substrates because of the ultrahigh refractive index between Si and SiO2. A

schematic of the hybrid silicon photonic chip for the proposed FBG sensor interrogator system is

shown in Fig. 1 (b).
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Fig 2 (a) AWG principle. (b) Structure of the spot-size converter. (c) Cross-sectional schematics of the arrayed
waveguides of the AWG.

The 1 ×N AWG is the key component of the FBG sensor interrogation system. In this study,

three types of ultrasmall 1 × N SOI AWGs are designed. These AWGs consist of input, slab,

array, and output waveguides, as shown in Fig. 2(a). Fig. 2(b) shows the structure of the spot-

size converter. Light is launched into the planar waveguide through the input spot-size converter.

The planar waveguide is designed in accordance with the Rowland circle principle, wherein it can

diffract light in the arrayed waveguide. Each arrayed waveguide is located on a circle with its

center located at the end of the center input waveguide. The diffracted light enters the arrayed

waveguides in the same phase. Fig. 2(c) presents the cross-sectional schematics of the arrayed

waveguides of the AWG. In the arrayed waveguides, a length difference (∆L) is observed between

adjacent waveguides. Thus, lights of different wavelengths can attain the same phase difference

in the waveguide output. This phase difference results in wavelength-dependent wavefront tilting.

The lights with different wavelengths will then focus on each output spot-size converter. Finally,

the results of all output gratings are measured by a spectrometer, then a spectrogram is plotted.

This spectrogram can be used to analyze the different types of AWG problems.

When light is transmitted in AWG, the different polarization states of the frequencies of the

TE and TM modes shift because waveguide birefringence directly affects the performances of the
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AWG devices. nTE and nTM are assumed to be the TE and TM modes of the effective index

rate, respectively. The waveguide birefringence is thus B = nTE − nTM . The wavelength shift

attributed to TE and TM modes is assumed to be ∆λ. The center wavelength that corresponds to

the polarization state is expressed as follows:

λTM( f ) = c / f nTM( f ) , (1)

λTE( f ) = c / f nTE( f ) , (2)

where f is the center frequency, and c is the light velocity. ∆λ is expressed as follows:

∆λ = cB / f nTEnTM , (3)

W is the channel width of the 1×N AWGs. The increment in the channel width will affect the

interrogation results because of the polarization effect. The interrogation results will be unaffected

when the wavelength drift is less than the wavelength spacing of the AWG but will be seriously

affected when ∆λ is large. The output wavelength shift of the AWG under TE and TM modes is

shown in Fig. 3(a). Fig. 3(b) shows the schematic of the FBG-reflected wave in the measurement

results of the 1 × N AWG. When the channel width of the AWG is considerably large, a large

channel crosstalk will occur, causing the reflected signals of the FBG to enter numerous channels.

Thus, the temperature interrogation system will not work properly.

Different types of spot-size converters and AWGs are designed through the finite-difference

time-domain (FDTD) method. The OptiFDTD simulation software is used for parameter opti-
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Fig 3 (a) Output wavelength shift diagram of AWG under TE and TM modes. (b) Schematic of FBG-reflected wave
in the measurement results of the 1×N AWG.
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Fig 4 Simulation results for input spot-size converter with different parameters. (a) Transmission efficiency as a
function of the input spot-size converter length of L2 with different L1 values. (b) Transmission efficiency as a
function of the input spot-size converter length of L2 with different Ws.

mization in the simulation experiment. The results show that the AWG with a 0.35µm waveguide

width exhibits the best transmission spectrum. Fig. 4 presents the transmission efficiency of the

input spot-size converter with different parameters. Fig. 4(a) depicts that the change in W mini-

mally affects transmission efficiency. Moreover, the change in W negligibly affects transmission

efficiency when L2 is greater than 90µm (Fig 4 (b)). Under such results, the parameters of the

input spot-size converter can be set as W = 6µm and L2 = 95µm.

The simulation results of the input spot-size converter are presented in Fig. 5(a), which shows

that the insertion loss of the input spot-size converters is approximately less than -0.6 dB. The
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Fig 5 Simulation results of (a) input and (b) output spot-size converters. “1, Launch” and “2, Launch” represent the
input light power of the spot-size converter, respectively.
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Fig 6 Simulation results of the 1×8 AWG with 30 arrayed waveguides.

same method is used to study the output spot-size converter. The simulation results of the output

spot-size converter are presented in Fig. 5(b), which shows that the insertion loss of the output

spot-size converters is approximately less than -1.3 dB.

In this study, the AWG structure is optimized by designing different waveguide widths and

shapes to obtain the parameters for a high-performance AWG. A 1 × 8 AWG is designed with 30

arrayed waveguides and the core size of 350µm× 250µm. The arrayed waveguide width of all the

AWGs is 0.35µm. The simulation results show that the 1 × 8 AWG with 30 arrayed waveguides

exhibits the best transmission spectra, with an insertion loss of less than -3.2 dB and a crosstalk of

less than -23.7 dB, as shown in Fig. 6.
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Fig 7 Schematic layout of the microscopy images of the (a) input spot-size converter, (b) output spot-size converter,
and (c) 1×8 AWG with 30 arrayed waveguides (core size is 350 µm × 250 µm).

The simulation results of the three types of AWGs are presented in Table 1, which shows that

the channel spacing and the wavelength drift of the 1 × 8 AWG are 1.9 and 0.3 nm, respectively.

This wavelength drift is small relative to the wavelength spacing, thus implying that the 1×8 AWG

displays high-resolution accuracy in temperature interrogation experiments.

Table 1 Simulation results of the 1×8 AWG.

Type AWG core Insertion Crosstalk Wavelength Channel Wavelength
size(µm2) loss(dB) (dB) range(nm) spacing(nm) drift(nm)

1×8 350×250 -3.2 -23.7 1543-1558 1.9 0.3

3 Experimental results of the optical elements

In reference to the comprehensively optimized design shown above, the designed AWGs and their

photonic integrated system are fabricated on a standard SOI wafer with a 220 nm-thick top Si and a

2µm-thick buried oxide. The AWGs are fabricated at the Institute of Microelectronics, Singapore

via electron beam exposure and response-coupled plasma technology. The microscopy images of

the local parts of the spot-size converter are shown in Figs. 7(a) and 7(b). All of the AWGs have

the same input and output spot-size converters. Figs. 7(c) shows the microscopy images of the

1 × 8 AWG.
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Fig 8 Experimental results. (a) Optical experimental setup consisting of a light source, tapered lensed single-mode
fibers, a fiber–waveguide coupling alignment system, and a spectrum analyzer. (b) Experimental results obtained with
the 1×8 AWG with 30 arrayed waveguides.

The experiment is performed by using the optical experimental setup shown in Fig. 8 (a). The

optical experimental setup includes a light source (10 mW SLED, 1550 nm wavelength), tapered

lensed single-mode fibers (2 m long, 900 µm Hytrel loose-tube buffered fibre, 7 mm stripped

length, 2 ± 0.5µm spot diameter, and 12 ± 3µ m working distance), a fiber-waveguide coupling

alignment system (±0.1 dB alignment accuracy, ±0.1 dB/h stability, ≤ 0.5 µm gap accuracy, and 1

time W.D. 68 mm LED light), and a spectrum analyzer (-70 dBm sensitivity, 0.050 nm resolution).

The tapered lensed single-mode fibers are used to connect the SOI devices and spectrum analyzer.

The fiber-waveguide coupling alignment system is used to align the optical fiber and Si waveguide.

The experimental results show that the insertion loss of the input spot-size converter is -0.9 dB,

whereas that of the output spot-size converter is -1.7 dB. The input and output waveguide width

of the AWG is 0.35µm, and the waveguide spacing is 1µm. The 1 × 8 AWG with 30 arrayed

waveguides exhibits an insertion loss of -3.4 dB, a crosstalk of less than -23.4 dB, and a channel

spacing of 1.9 nm, as shown in Fig. 8 (b).
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4 Interrogation experimental results and discussion

In the FBG sensor interrogation experiments, when the reflection light of FBG penetrates the

AWG, light with a different wavelength separates and travels to different adjacent array waveg-

uides. When each FBG reflection spectrum passes through the adjacent channel of the AWG, the

reflection spectrum overlaps with the transmission spectrum of two AWG adjacent channels. Pi

and Pi+1 are the two adjacent channels of the output light intensity of AWG. Additionally, Pi and

Pi+1 are the convolutions of the FBG reflection spectrum and the AWG adjacent channel transmis-

sion spectrum, respectively. Pi and Pi+1 are expressed as follows:

Pi = (1 − Li)

∫ ∞
0

S(λ) ·RFBG(λ) · TAWG(i, λ)dλ , (4)

Pi+1 = (1 − Li+1)

∫ ∞
0

S(λ) ·RFBG(λ) · TAWG(i+ 1, λ)dλ , (5)

where S(λ) is the output power spectrum of the light source with the assumption that the output

power is constant S0 within the AWG bandwidth. Li and Li+1 are the light attenuation coefficients.

RFBG(λ) is the reflection spectrum function of the sensory grating. TAWG(i, λ) and TAWG(i+1, λ)

are the AWG channels, and i and i+1 are the transmission spectrum functions in the fiber grating

interrogation system. The relationship between the adjacent channel light intensity ratio logarithm

of AWG and that of the FBG central wavelength is written as follows:

ln(
Pi+1

Pi

) =
8(ln 2)∆λ

∆λ2i + ∆λ2FBG

λFBG −
4(ln 2)(λ2i+1 − λ2i )

∆λ2i + ∆λ2FBG

, (6)

where ∆λ is the adjacent two-channel central wavelength difference in AWG at the initial
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temperature. When FBG is subjected to constant stress, λFBG exhibits a linear relationship with

temperature. Temperature change can be measured in real time by measuring the dual-channel

light intensity and by calculating the logarithm of light intensity ratio.

In the FBG sensor interrogation experiment involving the 1× 8 AWG, the central wavelengths

of the FBG sensors are 1544.75, 1549.05, 1552.25, and 1556.35 nm. The bandwidths are less than

0.25 nm. These experimental results indicate a Bragg wavelength shift of approximately 10 pm/◦C

against temperature change over the tested wavelength range. The wavelength spacing of the AWG

is less than 1.9 nm, indicating that the range of the Bragg wavelength shift cannot exceed 1.9 nm.

The wavelength drift ranges of the four AWGs are less than 0.8 nm, indicating that the measurable

range is less than 80 ◦C, as shown in Fig. 9(a). However, the measurement range of the FBG

sensor interrogation system is limited because of some reasons. In the temperature interrogation

experiment, FBG sensors are placed on a temperature control platform. The actual temperature

is the temperature of the temperature control platform, and the measured temperature is the tem-

perature measured by the FBG sensor interrogation system. The experimental results show that

the FBG sensor interrogation system displays high accuracy at 10 ◦C to 50 ◦C. Fig. 9(b) shows

the wavelength drift of the four FBGs at different temperatures. Fig. 9(c) shows the relationship

between the measured and actual temperatures of one FBG sensor. The errors for all measured and

actual temperatures are less than 0.3 ◦C.

Table 2 Experimental results of the 1×8 AWG.

Type AWG core size(µm2) Insertion loss(dB) Crosstalk(dB) Channel width(nm)
1×8 350×250 -3.4 -23.4 2.8

The optimization scheme for the FBG sensor system has two directions. The first direction

involves the optimization of device performance to improve system performance. Future work

11
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Fig 9 (a) Reflected wave of FBG in different channels of 1×8 AWG with 30 arrayed waveguides (CH3 − CH6).
(b) Wavelength drift of the four FBGs at different temperatures. (c) Relationship between the measured and actual
temperatures.

will focus on improving device performance to reduce insertion loss and channel crosstalk. The

other scheme is the optimization of the demodulation algorithm used in tracking wavelength shifts

in FBGs. The optimized algorithm should be more accurate and faster than other well-known

demodulation algorithms.

5 Conclusion

An SOI-based AWG is proposed in this study. The core sizes of the proposed AWG are smaller

than 530µm× 480µm. The simulation results show that the wavelength drifts of the 1× 8 AWG is

0.3 nm under TE and TM modes. The polarization sensitivity of the AWG increases because of the

increase in channels and tight structure. The experimental results of the optical elements show that
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the 1 × 8 AWG provides an insertion loss of less than -3.4 dB, crosstalk of less than -23.4 dB, and

channel spacing of 1.9 nm. The results of the temperature interrogation experiment show that the

FBG sensor interrogation system based on the 1 × 8 AWG displays high interrogation accuracy at

10 ◦C to 50 ◦C. Errors in the measured and actual temperatures are lower than 0.3 ◦C. The results

of this study, which investigates the polarization sensitivity of ultrasmall 1 × N SOI AWG, will

serve as important references for future works on FBG sensor interrogation.
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