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SUMMARY STATEMENT 23 

Zebrafish can be trained as a group to learn collective responses and memorise locations by 24 

using cues. However, the speed of collective decisions when choosing between locations 25 

can be limited by the splitting of groups comprising individuals of dissimilar personality.  26 

 27 

 28 

ABSTRACT 29 

 We tested zebrafish shoals to examine whether groups exhibit collective spatial 30 

learning and whether this relates to the personality of group members. To do this we trained 31 

shoals to associate a collective spatial decision to a reward and tested whether shoals could 32 

reorient to the learned location from a new starting point. There were strong indications of 33 

collective learning and collective reorienting, most likely by memorising distal cues, but 34 

these processes were unrelated to personality differences within shoals. However, there was 35 

evidence that group decisions require agreement between differing personalities. Notably, 36 

shoals with more boldness variation were more likely to split during training trials and took 37 

longer to reach a collective decision. Thus cognitive tasks, such as learning and cue 38 

memorisation, may be exhibited collectively, but the ability to reach collective decisions is 39 

affected by the personality composition of the group. A likely outcome of the splitting of 40 

groups with very disparate personalities is the formation of groups with members more 41 

similar in their personality. 42 

 43 

 44 

 45 

 46 
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INTRODUCTION 47 

 Organised groups are characterised by cooperative and synchronised behaviour, 48 

which allows for better resource acquisition and risk avoidance (Pitcher and Parrish, 1993). 49 

However, collective behaviour varies depending on external and internal conditions, e.g. 50 

environmental risk-levels and inter-group dynamics (Hoare et al., 2004; Sumpter, 2006). On 51 

some occasions, such as during foraging, this may require that information about current 52 

local conditions is disseminated between individuals within the group and presumably 53 

processed collectively by the group (Laland and Williams, 1997). The collaborative use of 54 

shared information to solve problems and make decisions is called collective cognition 55 

(Couzin, 2009). Although collective cognition may be utilised for various group functions, 56 

it is particularly useful for adjusting group behaviour in spatial contexts such as food 57 

location or route choice (de Perera and Guilford, 1999; Conradt and Roper, 2005; Couzin et 58 

al., 2005). Indeed, group living has been proposed to enhance navigation performance via 59 

information-sharing (Simons, 2004). Navigation relies on several behavioural and cognitive 60 

processes, such as exploration/sampling effort, decision-making, learning and cue 61 

memorisation (Brown et al., 2006). The use of these processes by a group may be limited by 62 

the extent to which cognitive or behavioural similarities between individuals facilitate 63 

collective responses.  64 

 Most studies on group navigation have focused on collective decision-making as a 65 

means of choosing between routes while maintaining group structure (Couzin, 2009; Couzin 66 

et al., 2005; Conradt and Roper, 2005). Yet individual variation has been noted in important 67 

cognitive processes: some individuals may be better at memorising information from their 68 

environment (Croston et al., 2016), faster or more successful in their decisions (Chittka et 69 

al., 2009) or faster learners (Trompf and Brown, 2014). Interestingly, individual variation in 70 
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many of these processes has been linked to animal personality (Griffin et al., 2015; Guillette 71 

et al., 2016). Animal personality is often described by behavioural traits exhibiting 72 

consistent inter-individual differences and intra-individual repeatability (Wolf and 73 

Weissing, 2012). A well-studied trait, boldness, is indicated by exploration tendencies and 74 

feeding motivation (Toms et al., 2010), making it a regular predictor of spatial associative 75 

learning (e.g. Trompf and Brown, 2014; Mamuneas et al., 2015). Although a prominent 76 

hypothesis is that bolder animals are faster but less accurate in their decisions (Chittka et al., 77 

2009), often effects manifest independently of these trade-offs. For example, bolder fish 78 

may be faster at choosing between locations and faster learning rewarded responses, but not 79 

less accurate in their choices than more timid animals (Trompf and Brown, 2014; 80 

Mamuneas et al., 2015; Kareklas et al., 2017). Regardless of these trade-offs, the effects of 81 

personality on cognitive performance may also influence how animals work collectively. In 82 

particular, personality-differences between individuals may predict how they tackle 83 

cognitive tasks collectively; the exploration tendencies and reward-motivation of group 84 

members, could affect how they coordinate responses, how they decide, and how they 85 

organise, share and utilise information when learning (Couzin, 2009).  86 

 To examine whether collective processes of decision-making and learning are 87 

affected by the composition of groups, in terms of the individual boldness of their members, 88 

we studied the zebrafish Danio rerio. Fish were first tested as individuals to determine their 89 

levels of boldness (Figure 1) and were then trained as groups of five, referred to here as 90 

shoals, in a spatial-associative learning task. During training, only spatial decisions made by 91 

all individuals by reaching a location together were reinforced (reward or punishment), to 92 

determine learning specific to a collective response. After reaching a learning criterion, we 93 

tested the ability of shoals to reorient, examining their ability to memorise distal cues during 94 
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training. Animals may simply rely on the memorisation of a response, such as a turning 95 

direction, or also on the memorisation of the relative positions of distal cues (Tolman et al., 96 

1946; Burgess, 2006). Associating a memorised response to a rewarded location relies on 97 

orienting from a familiar starting point. In contrast, the additional memorisation of distal 98 

cues can facilitate reorientation from novel starting points by attending to changes in the 99 

relative position of these cues towards the correct arm (place learning; Rodriguez et al., 100 

1994). Therefore, reorienting can identify whether learning relies on composite strategies 101 

that utilise the memorisation of the relative position of distal cues or simple associations of 102 

location to directional-response. 103 

 First, we tested the hypothesis that collective decisions, learning and memorisation 104 

are related to mean boldness levels, with shoals of bolder composition differing from those 105 

with shier composition. Second, we tested the hypothesis that collective decisions, learning 106 

and memorisation are predicted by the variance in boldness among shoal members, because 107 

large differences in personality inhibit agreement or cooperation. Based on effects by 108 

personality composition on group response-time in other shoaling species, we expected 109 

decision times to be related to boldness, being generally faster for groups of bolder 110 

individuals (Dyer et al., 2009). The learning of a collective response and memorisation-111 

strategies, such as place learning, have only recently been experimentally studied in fish 112 

groups (McAroe et al., 2017), noting both the facilitation of visual-cue memorisation and 113 

faster learning by zebrafish in groups. However, the effects of the personality composition 114 

of groups on these group processes have not been examined. We predict that links to 115 

personality may be indicated due to either differences between individuals in their response 116 

tendency or their performance in particular cognitive tasks, with more variable groups 117 

reaching lower agreement and cohesion (Ioannou and Dall, 2016), and overall bolder groups 118 
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being faster to decide and associate food reward to a location (such as in individuals, e.g. 119 

Griffin et al., 2015; Guillette et al., 2016; Kareklas et al., 2017). 120 

 121 

RESULTS  122 

Collective decisions 123 

 All shoals reached collective decisions within the time limit (<5 min) in both the 124 

initial and probe trial, but some tended to split before reaching a decision (supplementary 125 

material). No significant differences were found between the initial trial (before training) 126 

and the probe trial (after training) for either decision times (R
2
=0.017; P>0.05) or the 127 

probability of splitting (R
2
=0.02; P>0.05), suggesting consistency in collective behaviour 128 

and limited effects from differing individual learning during training. The mean boldness of 129 

shoal members did not significantly contribute to the probability of splitting (R
2
=0.016; 130 

P>0.05; Figure 2a), and although shoals with members of greater mean boldness exhibited 131 

shorter decision times (R
2
=-0.73; Figure 2a) the relative effect was not significant (P>0.05). 132 

The only significant predictor was variance in shoal-member boldness, which strongly 133 

predicted both collective decision-times (R
2
=0.816; F1,20=9.19, P=0.008) and the probability 134 

of splitting (R
2
=0.482, χ2

1,20=13.26, P<0.001). Groups with greater variance in boldness 135 

between their members were consistently more likely to split and took longer to collectively 136 

reach an arm (Figure 2b and c). Further, collective decisions took longer when splitting 137 

occurred than when not (Welch's t=4.15, P=0.002; Figure 2d).  138 

 Decision accuracy (number of erroneous decisions during training) was only weakly 139 

predicted by the mean of shoal-member boldness (R
2
=0.127; χ

2
=8.19, P<0.05), but was not 140 

significantly predicted by the probability of splitting decision (R
2
<0.04; P>0.05). Contrary 141 

to predicted speed-accuracy trade-offs (Chittka et al., 2009), the number of erroneous 142 
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decisions during training did not significantly correlate with the time shoals needed to 143 

decide in either the initial or the probe trial (rs<0.2, P>0.05). 144 

Collective learning  145 

 All shoals met the collective learning criterion of all fish being simultaneously in the 146 

rewarded location for 8/10 trials over three consecutive days (Figure 3). The rate of learning 147 

(number of days to reach criterion) was negatively related to the number of erroneous 148 

choices during training (i.e. choosing the punished arm) (R
2
=-0.945, χ2

1,10=3.99, P=0.046; 149 

Figure 3). However, learning rate was not significantly predicted by the variance and the 150 

mean of shoal-member boldness, or the likelihood of splitting (R
2
<0.04; P>0.05).  151 

 At probe trials from the new starting point (i.e. the top arm which was blocked 152 

during training) all shoals reached one of the arms collectively (i.e. were at the same arm 153 

together before the 5 min), but the ability to reorient to the arm rewarded during training 154 

was unrelated to the variance and the mean of shoal-member boldness or the likelihood of 155 

splitting (R
2
<0.04; P>0.05). Indeed, the majority of shoals (8/10) showed preference for 156 

reaching the rewarded arm significantly more than predicted by chance (proportion>0.5: 157 

z10=1.90, P=0.029; Figure 3).  158 

 159 

DISCUSSION  160 

 To collectively reach one of two locations, groups must maintain cohesion and 161 

structure. This relies on interactions between the individuals comprising the group, a 162 

process known as self-organisation (Sumpter, 2006). The interactions facilitate information 163 

sharing (Couzin, 2009; Ward et al., 2011) and in fish this can be in the form of changes in 164 

swimming direction, where swimming towards a location by some individuals propagates 165 

through the group (Croft et al., 2003). The extent of the propagation is indicated by the time 166 
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needed by all individuals to change direction together, which can be limited by individuals 167 

deciding to act otherwise (Couzin, 2009; Ward et al., 2008). Here, our findings implicate 168 

personality differences between group members in this process. Groups with greater 169 

variance in boldness between its members were consistently more likely to split and took 170 

longer to collectively reach an arm (Figure 3b and c). Given collective decisions took longer 171 

when splitting occurred than when not (Figure 3d), we conclude that the splitting of groups 172 

with members more dissimilar in their boldness results in collective decisions taking longer 173 

to be reached. The involvement of personality on collective decision speed may reflect a 174 

greater tendency by bolder individuals to reach food-rewarded locations (Kareklas et al., 175 

2017). 176 

 The relationship of personality differences with cohesion and collective-decision 177 

speed proposes that high-variance groups might be disadvantaged when competing for 178 

spatially distributed resources. A study on guppies Poecilia reticulata did not find mixed 179 

groups more disadvantaged than bold groups, but faster at reaching food than shy groups 180 

(Dyer et al., 2009). Differences in the effects of personality may depend on the species, but 181 

the study in guppies also utilised a categorical separation of bold and shy to compose 182 

groups. In contrast, here we measured the variance in boldness score within randomly 183 

assembled groups. A higher variance in our shoals is most likely be due to the presence of 184 

extremely shy individuals, based on their individual latency distributions (Figure 1). The 185 

direct effects of high variance on splitting are unclear, as we did not track individuals, but 186 

they are possibly driven by intra-group differences in exploration and approach tendency 187 

between more greatly differing personalities (Toms et al., 2010) and possibly due to related 188 

differences in sociality (Ward et al., 2004; McDonald et al., 2016). Another possibility is 189 

that differences in boldness correspond to differences in decision-making strategy (Griffin 190 
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et al., 2015; Kareklas et al., 2017), which again would require identifying consistencies in 191 

the position individuals occupy in a shoal. Further, different types of splitting may represent 192 

different processes. Lateral fission may reflect individuals being less social and actively 193 

seeking to split, but rear fission may be the result of either active splitting or passive 194 

restraints (Croft et al., 2003), such as being more fearful and timid (Toms et al., 2010; 195 

Kareklas et al., 2017). The splitting of groups with very high variance in personality could 196 

possibly lead to the formation of groups with lower variance in personality. While this is yet 197 

to be tested, it could be a way for groups to ensure that agreements are reached more easily. 198 

Indeed, larger differences in personality can manifest effects on the way fish socialise, 199 

cooperate and prioritise reward or risk (Ioannou et al., 2015). Alternatively, splitting might 200 

be an effect of hierarchical dynamics, with leader initiations and follower delays relying on 201 

similarities in personality aspects such as boldness and flexibility (Ioannou and Dall, 2016).  202 

 Contrary to expectations that personality differences have an effect on both speed 203 

and accuracy due to trade-offs (Chittka et al., 2009), the number of erroneous decisions 204 

during training was independent of how fast fish in a shoal reached a location together. 205 

However, shoals that made fewer erroneous collective decisions during training reached the 206 

learning criterion faster (Figure 3). This negative association between erroneous trials and 207 

learning rate is consistent with learning by positive reinforcement, given less erroneous 208 

shoals would collectively reach the rewarded arm more frequently during training (Brown et 209 

al., 2006), but suggests a low effect from negative reinforcement by the mild punishment of 210 

erroneous trials. Interestingly, the majority of shoals (8/10) re-oriented at probe trials to the 211 

location rewarded during training (Figure 3). This indicates that most shoals did not simply 212 

use a learned response for collectively reaching the rewarded arm, e.g. turn direction, but 213 

learned the place of the reward. Place learning proposedly involves allocentric processes, 214 
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where positions of distant cues in relation to a target are memorised and reorientation is 215 

possible (Tolman et al., 1946; Rodriguez et al., 1996). Although this may involve cognitive 216 

mapping (mental representations of space using the relative positions of landmarks), other 217 

cue-based strategies are difficult to exclude, e.g. beaconing to large cues near the goal 218 

(Bennett, 1996). Most notably, D. rerio zebrafish individuals can take longer to learn and do 219 

not prefer place over response learning (McAroe et al., 2016). Thus, being in a shoal can 220 

facilitate both learning efficiency and the use of learning strategies that rely on the 221 

memorisation of cues and not solely of simple directional responses. This has been 222 

exemplified recently in a study comparing shoals to individual zebrafish, where only shoals 223 

were able to exhibit place learning (McAroe et al., 2017).  This is enabled in fish groups by 224 

social learning (Laland and Williams, 1997; Trompf and Brown, 2014), cooperative 225 

vigilance and information sharing (Pitcher and Parrish, 1993; Miller and Gerlai, 2011). 226 

 In contrast to models predicting that cohesion and individual differences in 227 

behaviour may affect collective behaviour and learning (Couzin, 2009), we found no strong 228 

evidence of personality or splitting having any significant influence on collective learning 229 

or accuracy. Decision accuracy and learning may instead be influenced by inter-individual 230 

differences in experience, attention, acquisition and cue perception (Couzin, 2009; Kao et 231 

al., 2014). Indeed, in the absence of effects from individual behavioural phenotypes, based 232 

on personality, differences in individual experience and a balancing between personal and 233 

shared information in the group are both very likely alternative factors (Miller et al., 2013). 234 

Otherwise, groups may rely on the leadership of more experienced or reward-driven 235 

individuals (de Perera and Guilford, 1999; Krause et al., 2000). For memorisation strategies 236 

in particular, there is evidence that individuals can use cue and response based strategies 237 

together and often animals reverse between strategies over training times (Packard & 238 
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McGaugh, 1996; Burgess, 2006). These processes could carry over in collective learning 239 

and this can be tested by repeated probe trials during collective training.  240 

 Although our study did not include analysis of any kinematic data, recent work has 241 

increasingly shown the benefit of  identifying behaviour-specific movement bouts (Marques 242 

et al., 2018) and for assessing how the solitary movement patterns of group members affect 243 

collective swimming patterns (Marras et al., 2015). This would provide more evidence for 244 

the individual effects on collective decisions and learning,  and could identify the extent to 245 

which effects from individual motor behaviour are related to personality (e.g. bouts related 246 

to risk-response or approach; Marques et al., 2018) or other phenotypic factors, such as 247 

morphology (Conradsen and McGuigan, 2015). While these effects remain to be examined, 248 

here we show that zebrafish can learn to reach collective spatial decisions for rewards and 249 

utilise place memorisation strategies to do this, but that collective decisions are biased by 250 

personality differences. 251 

 252 

 253 

MATERIALS AND METHODS 254 

Animals and housing 255 

 Naïve male zebrafish D. rerio (n=50) were acquired from a local supplier, Grosvenor Tropicals, 256 

Lisburn, Northern Ireland. Given the supplier was not informed on strain variations in their stock, we used 257 

only males that show no strain preferences for shoaling (Snekser et al., 2010), which also removed the chance 258 

of mating during group-living and controlled for sex-related differences in boldness. Fish were housed in tanks 259 

(26cm W x 36cm L x 30cm H; 26±2
O
C and 7.4±0.4pH dechlorinated tap-water) enriched with fine sediment, 260 

plants and plastic-pipes. Photoperiods were 12h long (0700-1900) and feeding was daily (TetraMin® flakes).  261 

Behavioural tests for boldness 262 

 Following a week-long acclimation to individual housing (tanks filled to 15 L with view of 263 

neighbours to reduce isolation effects), the boldness of each fish was assessed in their housing tank by 264 
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measuring consistency in their approach latency towards novelty between two contexts often used to test 265 

differences in boldness (see review by Toms et al., 2010). First, novel-object inspection was tested by the time 266 

fish took to reach ~1.5 body-length distance from a 7cm toy after it was lowered by a pulley system to the 267 

bottom of the tank, as estimated by viewing through a screen with a grid from above. Second, feeding 268 

motivation towards an unusual food was tested by recording the time fish needed to initiate feeding on 269 

chironomid larvae (released by forceps), which had not been previously offered to the fish in the laboratory. 270 

Opaque sheets kept tanks invisible to neighbours and the observer during tests. Fish had not been fed for ~24h 271 

prior to testing.  Both tests were 5 minutes duration, carried out at 11:00-13.00, with a 48h interval between 272 

them and in the same order for all fish to control carry-over effects (see Kareklas et al., 2017). As would be 273 

expected for the expression of personality traits, like boldness (Toms et al., 2010; Wolf and Weissing, 2012), 274 

latencies were found consistent between contexts (Chronbach's α= 0.803; Pearson's r=0.844) and used to 275 

calculate composite boldness scores. Greater latencies are linked to lower boldness (Toms et al., 2010), thus 276 

the standardised sums of latencies from both tests were used as scores (z-values) and inversed in sign (positive 277 

or negative) to rank by increasing boldness (Figure 1).  278 

Collective tests for learning 279 

 Following individual behavioural tests, fish were randomly sorted in shoals of five (n=10) and housed 280 

together (tanks filled to 25L tanks) for a further week and then trained in a plus maze (four-arm maze from 281 

acrylic sheets; each arm measuring 15cm W x 30cm L). During training internal landmarks were unavailable, 282 

but visual cues were available outside the maze, including white paper sheets on a distant wall, adjacent tank 283 

tops and the camera arm above the tank. To control for inter-shoal differences by differing information, these 284 

external cues and their location were kept constant during trials and for all shoals. Shoal trials started in the 285 

bottom arm and the top arm was blocked during training. Trials commenced by removing an opaque divider 286 

that kept shoals constrained in the starting arm for 2 minutes.  Shoals were then presented the two remaining 287 

arms, left or right, with 5 minutes to chose between them. A collective decision was indicated by all 288 

individuals being in the same arm at the same time, training them to associate a collective decision towards 289 

one arm to a reward and towards the other arm to a mild punishment. The choice of direction, left or right arm, 290 

for the rewarded and mildly-punished arm was randomised across shoals. When reaching the arm randomly 291 

assigned to be food rewarded, shoals were blocked in until each fish received 1-2 chironomid larvae 292 

(individual feeding latency was <5s). However, in the unrewarded arm they were blocked in for 2 minutes and 293 
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not fed (mild-punishment; McAroe et al., 2016; Kareklas et al., 2017). Following their choice, fish were gently 294 

guided by a net to the starting arm. After each trial, the tank-water was disturbed to minimise use of olfactory-295 

cues. Shoals had ten such trials daily until reaching a learning criterion of a minimum of 8/10 correct trials 296 

(i.e. collectively choosing the rewarded arm) on 3 consecutive days. The learning criterion corresponds to a 297 

learning plateaux and success-rates exceeding 24/30 correct trials, which differ from chance (15/30) at the 298 

0.1% level. Shoals were given a single probe trial 24h after reaching the learning criterion, which started from 299 

the previously blocked top arm. This tested if fish were able to collectively reorient to the rewarded arm from 300 

a novel starting point, via the memorisation of the relative positions of the distal cues during training 301 

(Rodriguez et al., 1994). The probe trial was unrewarded to control for the use of olfactory cues.  302 

 Reaching the correct arm during probe trials showed the ability to reorient by using distal landmarks, 303 

i.e. place learning. By contrast, a failure to reach the goal arm in the probe trail was considered the result of 304 

learning to go left or right during training, i.e. response learning (McAroe et al., 2016; McAroe et al., 2017). 305 

Collective decision speed, measured until the last fish of the group passed the mark to either arm (given all 306 

other fish were already in the same arm to designate a collective choice), was recorded only for the first 307 

training-trial (novel task) and the probe-trial (novel starting-point). The choice of using decision times only 308 

from these two trials was because their novelty controlled possible effects of familiarity and experience of 309 

making a particular decision; decisions from other trials during training could be biased by reinforcement from 310 

previous trials and thus not representative of a novel decision. In addition, by measuring times at two 311 

relatively novel trials, where one was before and one after training, allowed us to examine if novel decisions 312 

are affected by the experience of training as a group. Comparisons before and after training further enabled us 313 

to test consistency in the effects of intra-group boldness on decision making and to test for effects by 314 

individual-level learning. Before reaching collective decisions in these trials, some shoals exhibited splitting: 315 

individuals either stayed behind in the starting arm while others had chosen between left or right (rear fission) 316 

or went in a different direction, reaching the opposite arm from the rest (lateral fission) (Croft et al., 2003). 317 

The distance needed to travel between arms (centre to centre) was ~27cm or 5 zebrafish body-lengths (4-6 318 

cm), and was thus considered sufficient to indicate splitting. We recorded the occurrence of any type of 319 

splitting as an inverse measure of cohesion. If fish reached an arm together within the 5 minute recording time, 320 

any splitting was noted and the collective decision was recorded as either correct (rewarded arm) or erroneous 321 

(unrewarded arm).  Alternatively, if no choice was reached, any splitting was again recorded, but we did not 322 
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count the trial as either correct or erroneous. Decision accuracy was measured by total number of erroneous 323 

trials throughout training, because the number of correct trials can also be influenced by fish not choosing. The 324 

number of training days to reach criterion indicated learning rate. 325 

Analysis 326 

 The proportion of shoals reorienting at the probe trial was first tested against chance levels (0.5) by a 327 

binomial-proportion test. Speed-accuracy trade-offs were tested by correlations between time to decide and the 328 

number of erroneous trials during training (Spearman’s rs) (Chittka et al., 2009). Decision times from initial 329 

and probe trials were compared between trials where any splitting occurred and trials where no splitting 330 

occurred (Welch's t which does not assume equal variance and sample size). Individuals could not be 331 

identified during collective tests because the week-long group-acclimation period prevented us from 332 

continuously tracking them, and methods of tagging were unavailable. As a result, we could not identify 333 

particular individuals with a known boldness score, but we could compare groups of differing composition in 334 

terms of individual-member boldness. Therefore, regression models (linear for decision-times, Poisson for 335 

number of days to learn and number of erroneous trials during training, and binary-logistic for splitting 336 

probability) tested whether each measure was predicted by the mean (5% trimmed to limit bias by minority 337 

fish with extreme phenotypes) or the mean absolute deviation of shoal-member boldness (variance across all 338 

fish). Individuals with personality tendencies on the extreme ends of our distribution, mostly very shy 339 

individuals (Figure 1), can skew both the mean and variance, making it impossible to assess them as having  a 340 

different effect, i.e. effects by the slowest individual would appear both in the mean and variance. However, 341 

by removing the extreme ends of the group (5% trimmed) we extracted mean values for shoals that represent 342 

the majority of their members and not biased by a single very timid fish. Conversely, the variance measure 343 

includes these extreme personalities. This enabled differentiation between effects by the majority average 344 

(trimmed mean) and the extremes (variance). Models testing decision-speed and splitting additionally tested 345 

differences between initial and probe trial (categorical predictor; effect of learning) and included shoal number 346 

as a random effects term to avoid pseudoreplication. 347 

 348 

 349 

 350 
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FIGUER LEGENDS 463 

 464 

Figure 2:  Shoal cohesion (probability of splitting) and consequent effects on collective 465 

decision-times were influenced by individual boldness differences, but were not linked to 466 

majority averages in boldness (a) The mean boldness of shoal-members (5% trimmed to 467 

exclude biases by extremely bold or timid fish) had a negative, non-significant, effect on 468 

mean decision times between initial and probe trial (black line and marks), but no effect on 469 

splitting probability (grey curve and marks). (b) In contrast, the variance in boldness within 470 

shoals (mean average deviation of all fish) positively predicted the probability of splitting at 471 

probe and initial trials (grey curve and marks) and the mean decision times between initial 472 

and probe trial (black line and marks).  (c) Splitting was more consistent for shoals with the 473 

most variance in boldness and (d)  shoals took longer to reach a decision if they split. 474 

 475 

Figure 3: Shoals that made more erroneous trials during training (black bars) also took more 476 

days to learn (grey bars), but a greater than chance majority of shoals was able to memorise 477 

place (inset: proportion of shoals reorienting at probe trial, showing place learning). Shoals 478 

are ordered by increasing number of error counts and marked (cross) if they showed place 479 

learning. [*P<0.05] 480 
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