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Abstract. Spatio-temporal variation in climate and weather, allochthonous

carbon loads, and autochthonous factors such as lake metabolism (photo-

synthesis and respiration) interact to regulate atmospheric CO2 exchange of

lakes. Understanding this interplay in diverse basin types at different timescales

is required to adequately place lakes into the global carbon cycle, and pre-

dict CO2 flux through space and time. We analyzed 18 years of data from

seven moderately hard lakes in an agricultural prairie landscape in central

Canada. We applied generalized additive models and sensitivity analyses to

evaluate the roles of metabolic and climatic drivers in regulating CO2 flux

at the intra-annual scale. In all basins, at mean conditions with respect to

other predictors, metabolic controls resulted in uptake of atmospheric CO2

when surface waters exhibited moderate primary production, but released

CO2 only when primary production was very low (5 − 13 µg L−1) or when

dissolved nitrogen was elevated (>2000 µg L−1), implying that respiratory

controls offset photosynthetic CO2 uptake under these conditions. Climat-

ically, dry conditions increased the likelihood of ingassing, likely due to evap-

orative concentration of base cations and/or reduced allochthonous carbon

loads. While more research is required to establish the relative importance
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of climate and metabolism at other time scales (diel, autumn/winter), we

conclude that these hard fresh waters characteristic of continental interiors

are mainly affected by metabolic drivers of pCO2 at daily-monthly timescales,

are climatically controlled at interannual intervals, and are more likely to in-

gas CO2 for a given level of algal abundance, than are softwater, boreal ecosys-

tems.

Keypoints:

• In Canadian hardwater prairie lakes, calculated CO2 fluxes correlate mostly

with pH, not DIC

• Intra-annual CO2 correlates with algal abundance (-CO2) and prolonged

clearwater phases (+CO2)

• CO2 influx increases with drier weather conditions, and is reduced with

extreme N loading
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1. Introduction

It is widely accepted that lakes are important nodes that process terrestrial carbon (C)

and influence global C fluxes [Cole et al., 2007; Downing et al., 2008; Tranvik et al., 2009].

However, improved understanding of regulatory mechanisms which underlie trends and

variability among lentic systems is needed to improve predictions of how lakes will both

contribute and respond to future climate change [Prairie, 2008; Tranvik et al., 2009]. In

particular, there remains high regional and temporal variation in the mechanisms regu-

lating lake pCO2, despite increasing efforts to synthesize and upscale in-lake CO2 levels

and greenhouse gas fluxes. In part, this variability reflects the wide range of analytical

methods and study time frames, varying from instantaneous estimates of regional lakes

[Duarte et al., 2008; Lapierre and del Giorgio, 2012] to decadal analyses of individual sites

[Finlay et al., 2015; Perga et al., 2016]. Furthermore, certain lake types (e.g., hardwa-

ter and saline) are understudied relative to softwater boreal systems. Variability in the

importance of contrasting regulatory mechanisms (e.g., broad-scale climatic drivers vs.

local metabolic factors) across temporal and spatial scales can obscure the hierarchical

relationships among control processes, which in turn limits insights derived from upscaled,

ecosystem-level comparisons and global estimates.

Interannual and decadal trends in lake pCO2 are modulated by many interacting vari-

ables, primarily acting at the landscape scale through climatic and meterological drivers.

For example, changes in precipitation affects transport of solutes such as dissolved organic

(DOC) and inorganic carbon (DIC), which in turn alter lake water CO2 content [Ojala

et al., 2011]. In the case of organic forms of carbon, higher substrate supply tends to

c©2018 American Geophysical Union. All Rights Reserved.



elevate microbial respiration [Maberly et al., 2013; Ducharme-Riel et al., 2015], whereas

increased DIC can either increase or reduce in situ pCO2 in hardwater systems, depending

on ambient pH and alternate buffering mechanisms [e.g., Baehr and DeGrandpre, 2004;

Knoll et al., 2013]. Additionally, landscape-scale variation in irradiance (e.g., cloud cover)

or air temperature [O’Reilly et al., 2015] can lead to evaporative concentration of lakes

[Pham et al., 2009] and consequent changes in parameters regulating pCO2 (DIC, DOC,

nutrients, etc.). For example, in continental Canadian hardwater lakes, interannual vari-

ability in both temperature and precipitation has affected pH and CO2 flux via effects of

ice-off timing [Finlay et al., 2015], DIC content [Pham et al., 2009], and regional hydrology

[Bonsal and Shabbar , 2008; van der Kamp et al., 2008].

Metabolic processes are likely to be paramount in regulating atmospheric exchange

of greenhouse gases at scales of hours to days. For example, water-column pCO2 typi-

cally increases overnight as photosynthesis becomes light-limited and respiration contin-

ues [Raymond et al., 2013; Liu et al., 2016]. In softwater reservoirs, these diel metabolic

patterns can account for ca. 30% of total variation in CO2 flux over a summer season

[Morales-Pineda et al., 2014]. In general, larger diel amplitudes of CO2 content are found

as lake productivity increases [Hanson et al., 2003; Shao et al., 2015; Morales-Pineda

et al., 2014], suggesting that multiple temporal scales may be needed to evaluate CO2

regulation in productive lakes.

At intermediate timescales, trends in lake pCO2 are likely to be regulated by a combi-

nation of metabolic and climatic mechanisms [Morales-Pineda et al., 2014]. For example,

metabolic controls underlie seasonal trends in dimictic temperate lakes when, in winter,

CO2 accumulates under ice [Denfeld et al., 2015], causing springtime efflux of CO2 during
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ice melt and lake overturn. Reduced pCO2 occurs in summer when the water column is

stable and primary production increases, whereas pCO2 increases during fall as respiratory

products in the hypolimnion are mixed into surface waters [Alin and Johnson, 2007; Stets

et al., 2009; Ducharme-Riel et al., 2015; Marcé et al., 2015]. These seasonal patterns can

be disrupted by climatic or meteorological events such as passing storms or heat waves

[Maberly , 1996; Klug et al., 2012; Audet et al., 2017], or be dampened in polymictic lakes

where CO2 exhibits more limited seasonal variation [Jonsson et al., 2003].

While metabolic controls of CO2 also operate at seasonal scales in hardwater lakes

[Striegl and Michmerhuizen, 1998], their influence can be overrun by landscape-level con-

trols of solute loading [Anderson et al., 1999; Sobek et al., 2005; Christensen et al., 2013;

Knoll et al., 2013; Marcé et al., 2015]. For example, lakes with strong groundwater in-

fluences can have high allocthonous supplies of DIC and exhibit super-saturation of CO2,

particularly in regions close to the groundwater entry points [Stets et al., 2009]. On the

other hand, the high pH and alkalinity of hardwater lakes also buffers against large fluc-

tuations in pH [Duston et al., 1986; Hanson et al., 2003], leading to smaller amplitudes

of both pH and CO2 than exist in softwater lakes. Therefore, especially in polymictic

hardwater lakes without strong stratification, hypolimnetic CO2 accumulation should be

relatively low and uniform throughout the year, with the net direction of atmospheric CO2

exchange depending on climate effects on solute loading and metabolism. Thus, seasonal

patterns of CO2 content in hard-water lakes may contrast sharply from those known from

dimictic boreal systems.

Here, we use generalized additive models (GAMs) and sensitivity analysis to quantify

the effects of climatic and metabolic parameters in regulating intra-annual variability in

c©2018 American Geophysical Union. All Rights Reserved.



pCO2 of hardwater lakes in the sub-humid Canadian interior. Using bi-weekly data for

18 years in seven lakes, we sought to determine: 1) When and to what extent metabolic

factors (photosynthesis and respiration) were regulating lakewater pCO2 and CO2 flux;

2) Whether local meteorology and global climatic factors contribute to intra-annual CO2

flux variability, and; 3) How consistent the drivers of CO2 flux were among study lakes

that varied more than 10-fold in size, productivity, and catchment area. Improved under-

standing of the relative importance of biotic and abiotic controls of CO2 flux in hardwater

lake types is critical to achieving a predictive understanding of the role of freshwater

ecosystems in global carbon cycles.

2. Methods

2.1. Study sites

The seven study sites are situated within the Qu’Appelle River catchment (ca. 52,000

km2) in the northern Great Plains of southern Saskatchewan, Canada (Fig. 1). The region

has a sub-humid continental climate and is hydrologically reliant on water originating

from the Rocky Mountains as well as local snowmelt [Bonsal and Shabbar , 2008; Pham

et al., 2009]. The South Saskatchewan River feeds the Qu’Appelle River system via Lake

Diefenbaker reservoir (D). Water flows eastward from the main reservoir through a chain

of lakes including Buffalo Pound (B), Pasqua (P), Katepwa (K), and Crooked (C) Lakes.

Wascana (W) and Last Mountain (L) Lakes are situated on tributaries that feed into

the Qu’Appelle river system upstream of Pasqua Lake. All lakes receive diffuse nutrient

sources from agriculture, with the wastewater treatment plants from the cities of Regina

and Moose Jaw acting as point sources of nutrients to Pasqua and eastern basins [Hall
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et al., 1999]. All lakes are dammed to variable extent, and Buffalo Pound and Diefenbaker

are actively managed reservoirs. For simplicity, we refer to all sites as lakes.

Median nutrient concentrations are generally elevated (Table 1), including to-

tal dissolved nitrogen (TDN) (0.96 mg N L−1) and total dissolved phosphorus (TDP)

(106 µg L−1), resulting in high algal abundance as chlorophyll a (Chl a) (median

16 µg L−1) and mesotrophic to hypereutrophic conditions [Hall et al., 1999; Finlay et al.,

2009]. Compared with saline lakes worldwide [e.g., Duarte et al., 2008], Qu’Appelle lakes

have moderate DIC (median = 45 mg L−1) and conductivity (median = 1050 µS L−1), but

rather high pH (median = 8.8) (Fig. 2a). DOC concentrations are moderate (median

11.5 mg L−1). Temporal variation in many major chemical variables such as pH is highly

synchronous across the sites (Fig. 2b; Vogt et al. [2011]) (see Fig. A1 for intra-annual

variability in variables relating to nutrient status and lake metabolism).

2.2. Long-term limnological sampling

Biweekly limnological sampling of pH, temperature, dissolved oxygen, conductivity,

salinity, DIC, DOC, Chl a, TDN and metabolic bioassay estimates (primary production,

respiration) followed methods outlined in Finlay et al. [2009]. Briefly, pH was measured

at the lake surface, while oxygen, temperature, conductivity and salinity were recorded at

1 m depth using YSI-85 multi-probe meters (YSI, Inc., Yellow Springs, OH). DIC, DOC,

Chl a, TDN and metabolic bioassay samples used depth-integrated water samples pooled

from 2-L Van Dorn sampler casts taken at 0.5 m intervals.

Filtered water (0.45 µm pore size) was used for DIC and DOC analyses using a to-

tal carbon analyser (Shimadzu 500A), while TDN was measured by photocombustion,

both following Environment Canada protocols [Environment Canada, 1979]. Chl a was
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determined trichromatically from particulate organic matter (POM) collected on 1.2 µm

pore Whatman GF/C glass fiber filters following Jeffrey and Humphrey [1975] and fol-

lowing extraction using 80% acetone: 20% methanol, by volume. The wavelength-

specific absorbance was quantified using a Hewlett Packard model 8452A photodiode array

spectrophotometer (1996–2004) or an Agilent model 8453 UV-Visible spectrophotometer

(2005–2014).

Metabolic estimates of gross primary production, net primary production and respira-

tion were based on changes in oxygen concentration following incubation of whole water

samples in light and dark glass bottles [Finlay et al., 2009]. All analyses were run in

triplicate using screened (243 µm mesh), depth-integrated water following Howarth and

Michaels [2000]. Incubations occurred for 24 h at ambient lake temperature and under a

12-hour light/dark cycle with 450 µmol quanta m−2 s−1, comparable to that recorded in

situ at Secchi depth using a profiling radiometer [Finlay et al., 2009].

Sampling occurred primarily from May 1st to August 31st between the hours of 0900 and

1300, with ca. 5% of sampling dates occurring earlier in spring or later in autumn. This

long-term ecological research program began sampling in 1994, but for reasons related to

data availability, we restricted this study to data from either 1996 (most lakes) or 2004

(Pasqua) to 2014, inclusive.

2.3. CO2 flux calculation

In the absence of direct measurements of CO2, we relied on calculated fluxes which

approximate real values particularly well in high-alkalinity lakes [Abril et al., 2015] (such

as our study sites), where there are strong chemical relationships between pH and dissolved

CO2 [Soumis et al., 2004, R2 = 0.81]. Calculated values are widely applied in the absence
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of measurements, particularly when long-term or broad spatial data are being examined

(e.g. Duarte et al. [2008]; Seekell and Gudasz [2016])

The procedure for calculating CO2 fluxes and pCO2 followed Finlay et al. [2009].

Briefly, CO2 concentrations ([CO2]) were calculated based on DIC concentrations (depth-

integrated samples) and pH (surface), with correction for ionic strength and water tem-

perature measured at 1 m depth [Stumm and Morgan, 1996]. Partial pressure of CO2 (Pa)

was estimated using Henry’s Law constant [Kling et al., 1992], and chemically enhanced

CO2 flux (mmol m−2 d−1) was calculated following Cole et al. [1998]:

net daily CO2 flux = αk([CO2lake ] − [CO2sat ]) (1)

where: in-lake CO2 concentration for [CO2lake ] refers to surface water; saturation levels

[CO2sat ] refer to equilibrium with the atmosphere; α is the chemical enhancement of CO2

flux at high pH [Hoover and Berkshire, 1969], calculated following Wanninkhof and Knox

[1996], and; k is piston velocity (cm h−1) following Cole et al. [1998], relating k to wind

speed and temperature [Wanninkhof , 1992].

The effect of an alternative piston velocity was evaluated by including the effect of

lake surface area on piston velocity and therefore CO2 flux in our sensitivity analysis

(See Statistical methods) [equations for k derived from Table 2, Model B; Vachon and

Prairie, 2013]. We did not have data to account for wind direction, which would plausibly

incur errors in lake area-based estimates of gas transfer for e.g. Katepwa (North-South

orientation) vs Pasqua (West-East orientation). Overall, however, the influence of lake

area on chemically enhanced flux was subsidiary to pH and therefore not considered further

in this paper.
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Complete data for calculating CO2 flux were available from 1996 for all lakes ex-

cept Pasqua at which sampling began in 2004. Variables included temperature, pH,

conductivity, salinity, DIC, wind speed, air pressure and atmospheric pCO2. Observa-

tions with any one missing variable were omitted, leaving 991 data points for modeling.

Hourly wind speed and air pressure were acquired from publicly available Environment

Canada (EC) data (http://climate.weather.gc.ca/) using Regina stations 4016560

and 4016566 (Climate IDs) which had complete records for the study period. Using one

weather station location for all lakes was deemed acceptable as existing records from

other weather stations were found highly correlated. Two-week average wind speed was

calculated to smooth out brief effects of extreme weather events. Monthly averages of air

pressure (EC), and Mauna Loa atmospheric pCO2 (Earth System Research Laboratory,

http://www.esrl.noaa.gov/gmd/ccgg/trends/data.html) were used.

2.4. Statistical methods

All statistical analyses were performed using R version 3.2.5 [R Development Core Team,

2016], using packages mgcv [Wood , 2011, 2017] and pse [Chalom and de Prado, 2016]. R

code is available at https://github.com/simpson-lab/jgr-co2-flux.

Our analytical approach follows a few key underlying considerations. Since CO2 flux

was estimated from water chemistry and physical variables and not measured directly,

we avoided any approach that would circularly include these ’calculation variables’ as

metabolic or climatic proxy predictors of CO2 flux. Furthermore, we were specifically

interested in which of these calculation variables correlate the most with CO2 flux in

our study region. In this regard we note that, although the real, rather than estimated,

relationship between these variables and CO2 flux is unknown, this step can identify which

c©2018 American Geophysical Union. All Rights Reserved.

http://climate.weather.gc.ca/
http://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
https://github.com/simpson-lab/jgr-co2-flux


variable is key to proxy CO2 flux in our region (and conversely, which variables are not).

Therefore, we first quantified the influence of the calculation variables on estimated CO2

flux (’influence’ here used in the regression sense of changes in x influencing estimates

of y, rather than a directional causal sense). Secondly, we regressed our metabolic and

climatic variables of interest against the variable that accounted for most of this variation.

The second step allowed us to use a measured, rather than estimated, response variable,

reducing the amount of imprecision in our regression values. We were then able to relate

these values back into CO2 flux estimates using the results from the first step, thereby

avoiding presenting misleadingly precise results for CO2 flux itself.

2.4.1. Variable selection

Metabolic variables were selected from various estimates of lake production and res-

piration to achieve the greatest availability over the data period. In the case of highly

correlated variables, we modelled only a single variable, so in our case, respiration (R) was

selected over net and gross primary production, whereas TDN was retained over TDP (at

most times at most study sites, N limitation exceeds P limitation [Patoine et al., 2006]).

Ultimately, five metabolic variables were selected for modeling, including in situ O2 (res-

piration/photosynthesis), DOC (potential effects on respiration), Chl a (algal biomass or

production), R (respiration), and TDN (nutrient availability). Chl a, TDN, and DOC

were log10-transformed to approximate a normal error distribution.

To capture the major climatic processes most likely to influence lake CO2 via solute

and nutrient loading (hydrological processes, evapotranspiration), we included both broad

drivers of intra-annual climate and more local, instantaneous proxies for evaporation-

precipitation balance. Variables included the Southern Oscillation Index (SOI) and Pa-
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cific Decadal Oscillation (PDO), metrics of climate systems which strongly influence re-

gional precipitation and temperature patterns, either alone or in combination [Bonsal

and Shabbar , 2008; Pham et al., 2009; Shabbar and Yu, 2012]. Both indices were in-

cluded as three-month averages, six months prior to sample collection, to account for the

lags between the regions of observation and effect [Pomeroy et al., 2007; Shabbar et al.,

2011]. Monthly values were obtained from the National Oceanic and Atmospheric Admin-

istration (NOAA) (http://www.cpc.noaa.gov/data/indices/soi) and the Joint Insti-

tute for the Study of the Atmosphere and Ocean (JISAO) (http://research.jisao.

washington.edu/pdo/PDO.latest). Because regional precipitation is highly localized

(lake-specific; Vogt et al. [2011]) and weather stations were not adjacent to our study

sites, we did not attempt to use data from weather stations to estimate rainfall. In-

stead, Standardized Precipitation Evapotranspiration Index (SPEI) values for each site

(0.5 degree spatial resolution) were obtained from the Consejo Superior de Investigaciones

Cientficas (CSIC) Global SPEI database (http://sac.csic.es/spei/database.html)

[Vicente-Serrano et al., 2016]. Index values were calculated using a two-month ’memory’

(autocorrelation) to account for temporal variation in soil drying and hydration.

2.4.2. Sensitivity analysis

Given the absence of direct measurements, we analysed data to select the best proxy of

CO2 in our climatic-metabolic model by simulating the sensitivity of calculated CO2 flux

to changes in pH, conductivity, salinity, water temperature, DIC, wind speed, atmospheric

pCO2, and local air pressure. A sensitivity analysis was used for this purpose because it

shows the magnitude of individual variable contributions to estimate CO2 flux for multiple

combinations of variables and values. Further, this method allows us to perform multi-
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step calculations while controlling for underlying data correlations [Chalom and de Prado,

2015].

Differences among lakes in the relative contribution of variables to calculated CO2 flux

were tested by comparing an analysis conducted for all lakes combined, with those for

each lake individually. Specifically, we used a latin hypercube sampling (LHS) approach

[Chalom and de Prado, 2015] and generated realistic data variations of all variables for each

lake based on their observed variation over the sampling period (n = 500 per simulation).

Rank correlations were selected, rather than a linear analysis among variables, to account

for potential nonlinear relationships between predictors and responses. The output metric

(partial rank correlation coefficient: PRCC), for any one variable, controls for the effect

of all other variables by reflecting the correlation between the unexplained part of the

outcome, given all other variables, and the unexplained part of one variable, given all

other variables (i.e., a correlation between residuals).

2.4.3. Generalized additive models

pH was the strongest correlate with calculated CO2 flux based on sensitivity analysis (see

Results) and, therefore, was carried forward to evaluate the effects of selected metabolic

and climatic variables on CO2 flux. Here, we applied generalized additive models (GAM),

which account for nonlinear relationships between predictors and responses [Hastie and

Tibshirani , 1990; Wood , 2017] (Section 2.4.4). GAMs also allowed us to include Year and

Lake as random effects to account for between-lake and inter-annual variations known to

be important [Finlay et al., 2009, 2015]. The resolutions of all other predictors also link

with the resolution of variability they are able to explain: e.g., biweekly predictors can

explain pH variation at a within-month scale, while monthly predictors can only explain
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pH variation occurring at a between-month scale. Temporal structure within the climatic-

metabolic model was visualised by plotting term contributions to pH against time.

The first model, which evaluated the degree to which lakes differed in their relationship

between CO2 and pH was formulated as follows, for y = CO2 flux,

y = β0 + f(pH) + flake(pH) + αlake + γyear + ε (2)

Here, the effect of pH was modelled both globally (f(pH)) and by lake (flake(pH), while

terms α and γ were random effects of lake and year, respectively, and ε was the error term.

The global and lake-specific effects of pH were identified via different orders of quadratic

penalties on their respective basis expansions. The global function of pH (f(pH)) was

subject to the usual second-order penalty whereby the wiggliness penalty was on the

second derivative of a fitted spline. First-order penalties were used for the lake-specific

splines so that the penalty applied to departure from a flat or zero function. This approach

had the effect of making each flake(pH) represent the departure of each lake from the global

pH effect. Smoothness parameters for f and flake were chosen using restricted maximum

likelihood (REML) selection [Wood , 2011]. Lake-specific effects of pH on CO2, (flake(pH)),

were only retained when they were assessed to be significantly different from a zero (flat)

function. Therefore, lake-specific splines retained reflect regional heterogeneity (objective

3) between the study sites. pH was selected for a combined metabolic and climatic GAM

to explore sub-annual controls of CO2 flux.

The second model, which quantified the influence of climatic and metabolic variables

on pH, followed the principles outlined above for the first model. For y = pH,
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y = β0 +
J∑

j=1

[f(xj) + flake(xj)] + f(PDO, SOI) + αlake + γyear + ε (3)

where: xj is the jth metabolic (TDN, DOC, Chl a, O2) or climatic (SPEI) covariate,

f(PDO, SOI) is a 2-D tensor product spline combining the main and interactive effects

of PDO and SOI; α and γ are random effects of lake and year, and; ε is the error term.

As above, the unique effects of the xj for each lake were incorporated through inclu-

sion of separate difference splines for each lake (flake(xj)) employing first-order wiggliness

penalties. REML smoothness selection was used as described above. Where model terms

were marginally significant, likelihood ratio tests were used to determine whether a model

including the terms was justifiable.

Preliminary runs suggested that co-linearity between DOC and TDN was sufficient

to confound results, and argued for retaining only one predictor (DOC), based on both

internal model Wald tests and Akaike and Bayesian Information Criteria (AIC; BIC).

However, due to TDN being a significant correlate absent from the final model, the model

replacing DOC with TDN is also used in this paper to portray the relationship between

TDN and pH.

3. Results

3.1. The sensitivity of CO2 flux to variables used in its calculation

Sensitivity analysis showed that pH explained the greatest amount of variation in CO2

flux (PRCC = -0.96) followed by DIC (PRCC = 0.51) for all lakes (Table 2, Fig. B1).

This sequence was also retained in the simulations for individual lakes; however, DIC

was more influential in some lakes (B, C, D, L) than in others (K, P, W). Overall, the
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importance of DIC was small (Table 2) and sensitive to which simulation data were used

for analysis (not shown).

Generalized additive modeling echoed the results of the sensitivity analysis and showed

that pH was the main correlate of CO2 flux (Fig. 3). This model explained 97% of

deviance in CO2 flux, while the use of DIC as an additional term only explained a further

1% of variation (and an equivalent model with DIC, not pH, explained only 30% of flux

variation; not shown).

Lakes were predicted to in-gas atmospheric CO2 above a pH of 8.8, the median pH over

the whole data set, while no net atmospheric exchange occurred around pH 8.7. Generally

more productive lakes (K,P,W) were significantly different from less productive sites (B,

C, D, L) based on GAM analysis of the relationship between pH and CO2, primarily at

the high and low ends of pH (<10% of all observations). These groups of lake also differed

in the extent to which DIC content tended to influence sensitivity analyses (Table 2).

3.2. Metabolic and climatic regulation of pH

GAM analysis explained 43% of historical deviance in pH, mainly due to climatic and

metabolic parameters (Figs 4 – 6). Significant predictors of pH included Chl a (p <

0.001), PDO∗SOI (p < 0.001), Lake + Year (p < 0.001), oxygen (p = 0.0108), DOC (p

= 0.0137) and SPEI (p = 0.0122). The only variable for which individual lake splines

were significant was Chl a. In all cases, R was insignificant and removed from the model.

The ranges of pH over which the metabolic and climatic variables exerted control were

variable, and in decreasing order included PDO∗SOI (ca 8.5-10), Chl a (8.5-9.6), oxygen

(8.6-8.9), DOC (8.75-8.9), and SPEI (8.9-9.1), approximately (see uncertainties at the

edge of prediction: Figs 4, 6). Using all measured combinations of our predictors, i.e. the
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empirical data, our model pH predictions encompass a range from 7.8 to 10 (± errors),

which does not capture the full range of observed pH (7 to 10.9) (Figs C1, C2).

Concentrations of Chl a were correlated positively with pH, with low algal abundance

(< 5 − 13 µg L−1) occurring when depressed pH correlates with out-gassing of CO2 when

all other predictors were held at their mean (Fig. 4). Results from the two small, shallow

lakes (W, B) were significantly different from other basins in that both increases and

declines in Chl a had comparatively strong relationships with pH. In general, pH increased

with oxygen saturation, with CO2 in-gassing at supersaturated oxygen concentrations

>9 − 10 mg L−1). CO2 efflux occurred only at low oxygen concentrations (<5% of all

observations which were lower than ca 5 mg L−1 when all other predictors held at their

mean). Finally, DOC was positively correlated with pH, particularly in the range where

elevated pH favoured influx of CO2.

In the alternative model where DOC was replaced with TDN, TDN had a slight posi-

tive relation with pH up to concentrations of ca 1100 µg N L−1 above which pH declined

consistently (Fig. 5). Uncertainties in the effect of TDN on pH were high at both ends of

the range due to low observation frequency; however, extremely high values of TDN (>

2000 − 6500 µg N L−1) co-occurred with pH values that correspond with CO2 efflux.

Broader-scale climate variables PDO and SOI had stronger relationships with pH than

did SPEI. The highest pH values were associated with the most negative SOI and positive

PDO (Figs 4 a-c), which typically indicate warm and dry conditions. In contrast variation

in SPEI had a limited effect on pH (ca 0.2 units) and was associated with above-mean

pH at the low and high end of its range (Fig. 6). Low pH was particularly common

when PDO was low and wet conditions predominate [Bonsal and Shabbar, 2008]. PDO
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had a more complex multi-modal relationship with pH than did SOI, which was more

linear (Figs 4 b-c). For a given PDO, increasing SOI shifted the position of the spline.

In general, SOI had a positive relationship with pH except at high PDO when high pH

occurred also at low SOI values (Figs 4 b-c). Overall, the range in climatic index values

during the observation period was similar to that recorded during the past century (PDO

mostly within -2,2; SOI mostly within -2.5, 2.5, SPEI mostly within -2,2).

Consistent long-term intra-annual trends were apparent for the metabolic variables

Chl a, and oxygen (Fig. 7), but not DOC or the climatic variables SPEI and PDO∗SOI.

Chl a increased in positive effect on pH over the summer in most lakes except during the

clear-water phase in June. Below-average pH at low Chl a occurred consistently at the

least productive site, Lake Diefenbaker. Oxygen effects in four lakes (C, K, B, D) were

most negative towards the end of the summer.

4. Discussion

Given the importance of climate and ice-cover duration in determining annual mean

pH and CO2 flux in these hard-water lakes [Finlay et al., 2015], we sought to determine

whether metabolic factors would emerge as a driving factor at an intra-annual timescale.

While we found similar controls also at sub-annual timescales (high coherence within the

region, pH the most significant predictor of CO2) (Table 2, Fig. 3), metabolic controls

were important in determining the balance between high likelihoods of influx (pH>8.8)

and efflux (pH<8.7) of CO2 (Fig. 4). Lake metabolism, as measured using algal abundance

(Chl a), was a key parameter controlling whether lakes acted as C sources or sinks within

any given year.
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4.1. The role of lake metabolism in directing pH and CO2 flux

There was strong evidence for metabolic control of pH and thereby CO2 flux both

at the high and low ends of a gradient of nutrient concentration when either primary

production was insufficient to sequester CO2 or it seemed offset by high levels of inferred

respiration. Further, metabolic effects exhibited a strong intra-annual pattern, stressing

the importance of short term controls of pH and thereby CO2 flux in these lakes in

calculating the annual CO2 budget.

Elevated algal abundance increased the likelihood of net CO2 uptake from the atmo-

sphere. Specifically, we found that CO2 under average conditions (all other predictors at

mean) was in-gassing at moderate to high primary production (Chl a > 15 µg L−1) while

lower levels of productivity (Chl a 5 − 10 µg L−1) could result in a net heterotrophic

state and CO2 efflux. Such low productivity values were found most frequently in the

mesotrophic Lake Diefenbaker, while strongly positive relationships between pH and Chl a

occurred often in the most shallow lakes (Wascana, Buffalo Pound; Fig. 4). In general,

the observed Chl a concentrations needed for net CO2 release were low (7 − 15 µg L−1)

relative to those found in other eutrophic lakes where out-gassing may predominate even

under the most productive conditions (Chl a > 40 µg L−1) [Huttunen et al., 2003; Reis

and Barbosa, 2014], although outgassing was predicted even in our sites at similar algal

production provided other predictors were set to values favouring outgassing (e.g. low

oxygen, high TDN).

Both Chl a and pH increased through the summer in most lakes suggesting a progres-

sive increase in the importance of metabolic controls. However, these trends were not

monotonic, particularly in the more productive lakes. In early summer, the more pro-
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ductive lakes have consistent clear-water periods [Dröscher et al., 2009] caused by strong

zooplankton grazing on phytoplankton, thus increasing pCO2 and subsequently decreas-

ing pH (Fig. 7). Conversely, in late summer, the more productive lakes exhibit reduced

oxygen concentrations (<5 mg L−1) indicative of increased respiration of organic material,

which favours release of CO2 to the atmosphere (Fig. 7). More intensive evaluation of fall

metabolism is required to establish whether this trend continues through to ice formation

in late October or November.

Similar to results of annual mean data [Finlay et al., 2009], rising DOC content tended

to co-occur with increasing pH at moderate to high DOC levels (DOC: 5 − 25 mg L−1).

These patterns are contrary to studies from boreal lakes which tend to show that DOC

mineralization increases pCO2 and reduces pH [Balmer and Downing , 2011]. Although

speculative, the observed positive relationship between pH and DOC may reflect recalci-

trant DOC which is not respired [Ostapenia et al., 2009], autochthonously derived DOC

during high primary production [Søndergaard et al., 2000], and/or a positive correlation

between DOC and nutrient influx [Osburn et al., 2011]. The latter two are most likely

given the positive correlation between TDN and DOC in our study lakes, however further

research is required to distinguish among these explanations.

The unimodal relationship of TDN and pH (peak ca. 1100 µg N L−1) suggests that there

is a limit to the fertilising effect of nutrients on primary production and in turn pH. Such

a limit may reflect a consistent rise in bacterial decomposition of organic matter along the

production gradient, leading to a paramount effect of respiration under highly eutrophic

conditions [Hollander and Smith, 2001]. In our case, TDN itself may be directly utilised

by heterotrophs, as most (>80%) dissolved N in these lakes is in organic forms of TDN
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not available to autotrophs [Bogard et al., 2012]. Consistent with this idea, we note

that addition of organic N (as urea) to mesocosm experiments in Wascana Lake increased

respiration and decreased pH corresponding with CO2 efflux [Bogard et al., 2017]. Finally,

we infer that the negative correlation between high TDN and pH does not reflect a change

in the nutrient limitation status of the lakes, as only Diefenbaker and to a lesser extent

Buffalo Pound show evidence of P limitation [Vogt et al., 2015; Quiñones-Rivera et al.,

2015] and these sites generally exhibit low TDN values relative to other, more definitively

N-limited systems [Leavitt et al., 2006; Patoine et al., 2006].

While we observed a predictable positive relationship between pH and O2 concentration

when oxygen was below saturation, the relationship reversed direction when waters were

super-saturated with oxygen (Fig. 4b). We speculate that there are times when there

may be simultaneous supersaturation of oxygen and CO2 thereby decoupling the rela-

tionships between oxygen and pH, as observed in other hardwater systems where excess

allochthonous carbon coincides with high primary production [Stets et al., 2009; McDonald

et al., 2013].

4.2. Climatic regulation of pH

The strength of the relationship between climatic variables and pH was comparable to

that of metabolism and pH (Figs 4, 6), a pattern which suggests that climatic mechanisms

may also influence intra-annual variation in regional CO2 flux. For example, dry and warm

conditions (very high PDO and very low SOI) as well as high drought index values were

associated with elevated pH and increased concentrations of base cations in these and

other lakes lakes [Pham et al., 2009; Lake, 2011]. Similarly, this pattern is consistent

with findings of Finlay et al. [2015] who demonstrated that spring and summer pH is
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elevated during years when short duration of ice cover reduces under-ice respiration and

favours increased pH in spring and summer. The most likely drivers of climatic effects

on pH are increased base cation concentrations due to evaporative concentration [Evans

and Prepas , 1996; Pham et al., 2009], elevated residence time [Knoll et al., 2013], reduced

allochthonous DIC loads due to longer transit times [Stets et al., 2017], and higher reliance

on groundwater contributions [Lake, 2011]. However, further research will be required

to better refine these possibilities, including spatial studies relating geology, landscape

position, external loading and groundwater supply to seasonality of lake chemistry.

Despite strong and significant results from our modelling exercise, our statistical ap-

proach captured only ca. 43% of the deviance in pH, leaving a considerable proportion to

be accounted for by other factors. Because model residuals were random and normal, they

provided little indication of model deficiencies. In principle, model prediction might be

improved through distinction of DOC providence via spectrophotometric or compound-

specific analyses to better estimate its effect on respiration [Koehler et al., 2012], while

quantification of physico-chemical processes such as convection and mixing may be im-

portant in identifying additional controls of pH, such as seen elsewhere [Maberly , 1996;

Morales-Pineda et al., 2014; Liu et al., 2016]. Thirdly, the use of more finely resolved tax-

onomic data (e.g., algal groups) in place of coarse metrics of planktonic metabolism (Chl

a, R) may help refine how the importance of biotic controls varies along long limnological

gradients [Felip and Catalan, 2000; George and Heaney , 1978; Zhang et al., 2010]. Finally,

we have not been able to account for alkalinity affecting the buffering capacity and thus

the lakes’ responsiveness in pH to changes in metabolic CO2. However, the lack of overall
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correlation between pH and metabolic covariates suggests that alkalinity changes should

be investigated for their potential contribution to pH and CO2 flux.

4.3. Regional coherence and implications for upscaling CO2 fluxes

Predicting CO2 fluxes in these hard-water systems was simplified by the fact that DIC

concentrations varied little across the lakes, and that all lakes behaved similarly with

regards to metabolic and physical relationships with pH over broad spatial scales. While

the lakes varied substantially in salinity and conductivity (Fig. 2), these parameters had

relatively low impact on CO2 fluxes in their respective ranges (Table 2). Conversely, while

DIC concentrations are predicted to have substantial effects on atmospheric CO2 exchange

in other lake regions [Cumming et al., 1995; Doctor et al., 2008; Duarte et al., 2008], in

our study DIC levels were comparatively low, and also correlated weakly and negatively

with changes in pH (p < 0.001, R2=0.014) which implied an absence of negative effects

of high DIC on CO2 influx at high pH.

We found an unexpectedly strong effect of lake morphology on the role of algal abun-

dance (as Chl a) as a determinant of pH, with the effect of Chl a being much greater in

very shallow Buffalo Pound and Wascana lakes (<4 m mean depth) than deeper lakes,

particularly at very high pH values (Fig. 4). We speculate that shallow lakes are more

likely to exhibit whole-lake responses to photic-zone metabolism, and may have less ver-

tical structure than even deep polymictic lakes (Zhang et al. [2010], but see George and

Heaney [1978]). Fortunately, most prairie lakes are of a similar depth, many being shal-

low [Last , 1989], suggesting that variation in morphology will not unduly affect efforts

to estimate regional CO2 fluxes [Finlay et al., 2015]. Overall, the high level of coherence

among basins in terms of high pH and moderate DIC suggest that many lakes will act as
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CO2 sinks during much of the summer, provided they are moderately to highly productive

(> 15 − 20 µg L−1 Chl a) and are not under extreme (organic) TDN loads.

Metabolic control of CO2 flux in these hardwater lakes does not appear to be as strong

as that observed in boreal or softwater regions where microbial metabolism of DOC

[Sobek et al., 2005; Lapierre and del Giorgio, 2012] or photosynthesis [Maberly , 1996;

Reis and Barbosa, 2014] regulates pCO2, albeit with variable allochthonous contributions

of respired or otherwise derived DIC [Weyhenmeyer et al., 2015; Bogard and del Giorgio,

2016]. These results fit within the larger matrix of lake types along gradients of DIC,

DOC, nutrients and alkalinity, and suggest that moderately hardwater lakes are more

likely to capture atmospheric CO2 at a given level of productivity than would dilute lakes

[Reis and Barbosa, 2014], those with high DOC loads [Huttunen et al., 2003], or hard-

water systems with chronic oversaturation of DIC [Marcé et al., 2015]. Further, because

such systems often co-incide with intensively fertilized agricultural regions, there exists

the possibility that many of these systems will fall below the global average estimate of

lake CO2 flux [Raymond et al., 2013].

5. Conclusions

Based on advanced time series analysis using GAMs, we found that both metabolic

and climatic factors strongly influenced factors related to pH and that variation in DIC

was of only secondary importance in affecting CO2 content. Overall, a modest degree of

eutrophication was required for high rates of CO2 uptake from the atmosphere and some

less productive lakes exhibited a release of CO2 from surface waters. These agricultural

areas often exhibit high allochthonous loads of organic carbon and nitrogen which are

likely to fertilize the lake. This increases the likelihood of CO2 influx, but the balance
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may switch in favour of respiration at extreme nitrogen loads. Overall, climate appeared

to have an effect on gas exchange mainly during extremes, such as regional drought,

when evaporative concentration of base cations and elevated pH may favour regional

influx of CO2 into lakes. These results aid in our ability to understand and predict how

future human-mediated changes to nutrient loading and climate change will impact carbon

cycling in lakes.
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Appendix A: Summary data for all lakes

Appendix B: Simulated relationships between predictors and CO2 using

sensitivity analysis

Appendix C: Model summaries and diagnostic plots
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Table 1. Summary data of study lakes, showing median, minimum-to-maximum (in paren-

theses) values of monitoring data over the sampling period, as well as mean depth and residence

time.

Lake Residence

time (yr)

Mean

depth

(m)

TDN

( µg N L−1)

Chl a

( µg L−1)

DOC

( mg L−1)

TDP

( µg P L−1)

B 0.7 3 491 (218-1350) 20.1 (1.5-

319)

6.1 (0.5-

31)

23 (9-132)

C 0.5 8 920 (450-2090) 18 (0-237) 12 (0-41) 126 (16-

650)

D 1.3 33 401 (107-1440) 4.7 (0.8-26) 4.8 (0-29) 9 (0.4-295)

K 1.34 14 1152 (418-

2390)

21 (1.5-117) 12 (3.7-37) 159 (40-

690)

L 12.6 8 999 (482-1510) 13 (2.3-49) 13 (0-82) 31 (14-470)

P 0.71 6 1420 (171-

3100)

22 (1.2-287) 12 (0-56) 162 (5-662)

W 0.7 1.5 1309 (600-

6400)

27 (2.2-309) 16 (4.8-53) 318 (33-

830)
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Table 2. Partial Rank Correlation Coefficients (PRCCs) following Latin Hypercube sensitivity

analysis for all variables and all lakes (left panel) and the most important two variables for

individual lakes (right panel).

Variable PRCC (all lakes) Lake PRCC (pH) PRCC (DIC)
pH -0.96 Last Mountain -0.98 0.74
DIC 0.51 Crooked -0.99 0.69
Temperature -0.28 Diefenbaker -0.99 0.68
Conductivity -0.26 Buffalo Pound -0.99 0.65
Wind 0.20 Pasqua -0.99 0.64
Salinity 0.10 Katepwa -0.99 0.57
Air pressure 0.10 Wascana -0.99 0.56
Air pCO2 -0.09
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Table 3. Summary of the climatic-metabolic model of pH, showing the estimated effects of the

predictors. EDF=estimated degrees of freedom, DF=degrees of freedom. Deviance explained:

43.2%, n=991.

Predictor spline EDF DF chi2 p value

Chlorophyll a (global) 0.979 9 134.366 � 0.0001

Chlorophyll a (Katepwa) 0.000159 4 0 0.47556

Chlorophyll a (Last Mountain) 0.0000767 4 0 1

Chlorophyll a (Buffalo Pound) 1.80 4 11.168 0.01886

Chlorophyll a (Crooked) 0.277 4 0.433 0.22987

Chlorophyll a (Diefenbaker) 0.0380 4 0.05 0.28051

Chlorophyll a (Wascana) 2.65 4 66.947 � 0.0001

Chlorophyll a (Pasqua) 0.000168 4 0 0.49175

DOC 1.40 9 39.519 0.01285

Oxygen 3.07 9 28.417 0.00772

PDO*SOI 10.8 24 567 � 0.0001

SPEI 1.41 2 16.342 0.01158

Lake*Year 105 128 532.24 � 0.0001
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Figure 1. The seven study sites lie along the Qu’Appelle River (SK, Canada) flowing west to

east, with the exception of Wascana (south tributary) and Last Mountain (north tributary).
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Figure B1. The relationship between calculated carbon dioxide flux and simulated data sets

(N=500) of input variables for sensitivity analysis.
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Figure C1. R output for main model diagnostics.
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