

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y

A taxonomic look at instance-based stream classifier

Gunn, Iain; Arnaiz-Gonzalez, Alvar; Kuncheva, Ludmila

Neurocomputing

Published: 19/04/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Gunn, I., Arnaiz-Gonzalez, A., & Kuncheva, L. (2018). A taxonomic look at instance-based
stream classifier. Neurocomputing, 286, 167–178.
http://pages.bangor.ac.uk/~mas00a/papers/igaalkneurocomputing18.pdf

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 09. Oct. 2020

https://research.bangor.ac.uk/portal/en/researchoutputs/a-taxonomic-look-at-instancebased-stream-classifier(91ea57cc-d4b3-4eca-9387-1549f8527369).html
https://research.bangor.ac.uk/portal/en/researchers/ludmila-kuncheva(f4065913-f912-4245-b88e-2b17556e8743).html
https://research.bangor.ac.uk/portal/en/researchoutputs/a-taxonomic-look-at-instancebased-stream-classifier(91ea57cc-d4b3-4eca-9387-1549f8527369).html
https://research.bangor.ac.uk/portal/en/researchoutputs/a-taxonomic-look-at-instancebased-stream-classifier(91ea57cc-d4b3-4eca-9387-1549f8527369).html
http://pages.bangor.ac.uk/~mas00a/papers/igaalkneurocomputing18.pdf

A Taxonomic Look at Instance-based Stream Classifiers

Iain A. D. Gunna,1,∗, Álvar Arnaiz-Gonzálezb, Ludmila I. Kunchevaa

aSchool of Computer Science, Bangor University, Dean Street, Bangor LL57 1UT, UK
bEscuela Politécnica Superior, University of Burgos, 09006 Burgos, SPAIN

Abstract

Large numbers of data streams are today generated in many fields. A key
challenge when learning from such streams is the problem of concept drift.
Many methods, including many prototype methods, have been proposed in
recent years to address this problem. This paper presents a refined taxonomy
of instance selection and generation methods for the classification of data
streams subject to concept drift. The taxonomy allows discrimination among
a large number of methods which pre-existing taxonomies for offline instance
selection methods did not distinguish. This makes possible a valuable new
perspective on experimental results, and provides a framework for discussion
of the concepts behind different algorithm-design approaches. We review a
selection of modern algorithms for the purpose of illustrating the distinctions
made by the taxonomy. We present the results of a numerical experiment
which examined the performance of a number of representative methods on
both synthetic and real-world data sets with and without concept drift, and
discuss the implications for the directions of future research in light of the
taxonomy. On the basis of the experimental results, we are able to give
recommendations for the experimental evaluation of algorithms which may
be proposed in the future.

Keywords: Machine learning, stream classification, instance selection,
prototype generation, concept drift

∗Corresponding author

Email addresses: i.gunn@mdx.ac.uk (Iain A. D. Gunn), alvarag@ubu.es (Álvar
Arnaiz-González), l.i.kuncheva@bangor.ac.uk (Ludmila I. Kuncheva)

1Present address: Department of Computer Science, Middlesex University, The Bur-
roughs, London NW4 4BT

Preprint submitted to Neurocomputing July 29, 2017

1. Introduction

Storing large data sets can be problematic, especially in stream learning,
where data is continuously arriving. This issue is more relevant than ever
in an era of “big data”, where important problems involve data streams
which cannot be stored in full [1, 2]. Many techniques have been suggested
for forming reduced reference sets for instance-based classifiers, in particular
the nearest-neighbour classifier [3, 4]. However, as we argued in a previous
contribution [5], the taxonomy developed for describing offline algorithms for
data editing is inadequate to describe algorithms for streaming data.

In summary, the offline taxonomy fails because many approaches devel-
oped for offline editing are inherently unsuitable for streaming data. For
example, in the offline case, there are methods which only add instances
to the reference set, never removing them; methods which only remove in-
stances from the reference set (starting with all the training data), and never
re-add them; and methods which both add and remove instances as they run.
These are distinguished taxonomically as “incremental”, “decremental”, and
“mixed” methods. Clearly, editing methods which can only add or only
remove examples are unsuitable for dealing with unbounded data streams.
Only “mixed” methods can be used in the streaming case, so the offline tax-
onomic distinction is useless for the streaming case. In the streaming case,
all methods now being “mixed”, the key taxonomic question of interest is the
choice of processes by which instances are added to and removed from the
reference set in response to the stream of arriving data, as it is here that the
nature of the streaming problem forces a great difference in approach from
the offline case.

In addition to the need for editing, a second key issue with stream learn-
ing is that data streams may typically be “non-stationary”, that is, subject
to “concept drift”. We also found previously [5] that the established taxon-
omy developed to describe algorithms designed to deal with concept drift [6]
cannot sensibly be used to classify instance-based algorithms. The existing
taxonomy in this case used separate concepts of “Data Management” and
“Memory” which could not be applied to lazy learners, for which memory
simply is data retention.

This paper expands our previous study [5] on instance selection meth-
ods for drifting data streams. In addition to augmenting and refining the
taxonomy of such methods, we carry out a numerical experiment to com-
pare the performance of some modern algorithms, in light of the taxonomy.

2

The present work also gives greater consideration to prototype generation
methods, typified by the learning vector quantisation (LVQ) family [7].

Note that our study considers the various algorithmic approaches for
forming a reference set from streaming data, not the variety of instance-
based classifiers which might use such a reference set. We do not compare
alternative classifiers: we simply use the nearest-neighbour (1NN) classifier.
(Differences between classification rules may be taxonomically considered as
for the offline case.)

The rest of the paper is organised as follows. The formal problem of clas-
sification of a stream subject to concept drift, and related terminology, are
introduced in section 2. Data-editing methods are introduced in section 3.
Our refined taxonomy of instance-based methods for the concept drift prob-
lem is presented in section 4. The algorithms included in the experiment,
and some other representative algorithms, are discussed in section 5. Our
experimental set-up and results, with discussion, are presented in section 6.
The conclusion section 7 contains recommendations for future experimental
practice.

2. The concept-drift problem

The streaming version of the classification problem is typically posed thus:

• One data point x ∈ Rd is received at time t.

• The class label of the point is not available at time t. The point is
labelled by the classifier.

• The true label is then revealed before the next data point is classified.

The model can easily be altered to a batch-input form, in which a set
of N points X ⊂ Rd is considered to arrive all at once at time t, and all N
points must be labelled before the true labels are revealed and the next input
batch arrives.

“Concept drift” is the generally accepted term for change in the probabil-
ity distributions related to the problem, and the management of this problem
is essential in streaming learning [8]. Occurrences of concept drift have been
described in terms of the behaviour of the stream at the onset of the drift:
see Figure 1 for an illustration of this idea. The terminology is taken from
Bose et al. [9] and Gama et al. [6]. Concept drift may be sudden, or the

3

time

d
at

a
m

ea
n Concept drift

(a) Sudden/Abrupt

time

d
at

a
m

ea
n Concept drift

(b) Incremental

time

d
at

a
m

ea
n Concept drift

(c) Gradual

time

d
at

a
m

ea
n Concept drift

(d) Recurring

Figure 1: Main concept drift types illustrated schematically as if for one-dimensional data.
Adapted from Gama et al. [6].

underlying distribution may pass continuously and relatively slowly through
intermediate states (“incremental drift”). The original concept may then be
gone forever, or it may recur, briefly (in “gradual drift”), or indefinitely, in
which case it is called a true “recurring concept”. In general, it is to be
expected that some algorithms deal better than others with certain forms of
drift. For example, algorithms which explicitly maintain a library of former
concepts have been so engineered in order to perform better when the stream
includes recurring concepts, but can only be disadvantaged by this appara-
tus when applied to a stream containing only sudden, irrevocable concept
shifts. (This approach of storing former concepts for re-use is typified by
the FLORA3 algorithm [10], one of the first algorithms to explicitly address
recurring concepts. It is part of the FLORA family of algorithms [11], [12],
dating back to 1989.)

Whether such a collection of former concepts is maintained or not, an
algorithm for handling concept drift will have both a learning mechanism of
some sort and a forgetting mechanism of some sort, the latter being essential
to ensure the classifier does not become stuck in some setting after seeing a
large amount of data which exceeds its capacity for learning. Some methods
use explicit change detection strategies, which allow the algorithm to make
a suitable increase in learning and forgetting rates when a concept shift is
detected. We refer the reader to the survey of Gama et al. [6] for a good
recent review of concept-drift adaptation methods.

Concept drift is of interest to the extent that it affects adversely the future
performance of the classifier and requires action: the occasional outlier or
short abnormal event should simply be treated as noise and ignored.

4

3. Prototype selection and generation

One key distinction among data-editing methods must be introduced be-
fore the entire taxonomy is presented. This is the distinction between “proto-
type selection” and “prototype generation” families, which have been treated
very similarly in taxonomies of their offline members [3, 4], but which we have
argued [5] need very different treatment in their online incarnations.

The process of editing training data for use with the nearest-neighbour
classifier, or similar instance-based classifiers, consists of replacing the set
of training data, S, with a smaller reference set of what are called “proto-
types”. The meaning of “prototype” depends on the approach (selection or
generation) chosen for the data editing2. In prototype selection, the reduced
set of prototypes, S ′ is a subset of S (along with the labels of the objects). In
prototype generation, the prototypes are allowed to be different points in the
same space (or to be extended as other structures such as hyper-rectangles
or hyper-ellipses). Generated prototypes in the original space can be created
by various procedures for relabelling, merging or re-positioning members of
an initial subset of S, such as by finding cluster centres.

Prototype generation is potentially the richer of the two data-editing ap-
proaches. In prototype generation, the entire space is available for the posi-
tioning of prototypes, allowing the approximation of any classification bound-
ary with a specified precision. If instead the prototypes are constrained to
be chosen from the finite set of points constituting the training data, the set
of possible boundaries is correspondingly reduced.

The learning vector quantisation (LVQ) family of methods are exemplars
of the Prototype Generation approach which are particularly popular and
successful in the online case. Many algorithms of the LVQ type have been
developed, and a taxonomy of this family has been suggested [7], in which
the algorithms are distinguished by their theoretical approach and concept
of distance. However, as we previously found for prototype selection algo-
rithms [5], the taxonomy developed for offline algorithms is no longer ap-
propriate in the streaming case. For example, if the data stream may be
subject to concept drift, it certainly cannot be assumed that the data is
drawn i.i.d. from a stationary distribution; this destroys the usual approach
to likelihood-maximisation and hence the taxonomic approach which consid-

2Synonyms of prototype generation in the literature are prototype construction, extrac-
tion, reduction and replacement.

5

ers this theoretical basis. There is important work to be done in developing
theoretical approaches for concept drift; but for now, online algorithms are
heuristic and cannot be classified in terms of theoretical approach.

There are two main differences between streaming LVQ algorithms and
offline ones. The first difference is in the initialisation process: LVQ algo-
rithms need an initialisation step that is not straightforward in the stream-
ing case. Second, in the offline case, LVQ does not require a mechanism for
adding/removing prototypes because the number of prototypes is typically
fixed in advance. It is to be expected that new prototypes would be added
to a streaming LVQ algorithm only to cope with a sudden new concept, in
contrast to a prototype selection algorithm for which the addition and re-
moval of prototypes is part of the adjustment to incremental drift as well.
Nevertheless, it may turn out that questions of the mechanism for adding
and removing prototypes are at least as important for the classification of
streaming LVQ algorithms as the details of the prototype update procedure,
as the choice of mechanism may strongly affect how the algorithm behaves
in the presence of concept drift.

On the prototype selection side of things, the nature of streaming data
renders impossible the application of many established offline techniques for
forming reduced reference sets. As mentioned in the Introduction, methods
which proceed in a single “direction” by either starting with the empty set
and adding prototypes to it, or starting with the set of all training data and
removing prototypes from it, are not applicable to streaming data. Any al-
gorithm designed to maintain an up-to-date reference set in response to an
indefinite amount of streaming input data must necessarily have both a mech-
anism for adding new prototypes to the reference set, and a mechanism for
removing prototypes from the reference set (even if the mechanism for proto-
type addition is as simple as to add all new examples as they come in). For
this reason, our taxonomy differs substantially from the usual taxonomy of
offline data reduction algorithms. We characterise the algorithms in terms of
prototype addition and removal mechanisms, instead of the traditional terms
of condensation vs editing, increasing vs decreasing “direction”, or wrapper
vs filter evaluation (for discussion of which see our previous contribution [5]).

4. A taxonomy of nearest neighbour methods for streaming data

The taxonomy we present here is an augmentation and refinement of that
we created in our previous contribution [5], where we brought together the

6

Prototype Methods for Adaptive Learning

Reference Set Management

Change detection
Yes

No

Classifier
management

Single

Ensemble

Input management
Online

Batch

Approach

Prototype selection

Prototype
addition

1. Add all new

2. Add if misclassified by existing set

3. Add by a competence criterion

Prototype
removal

1. Delete poorly predicting

2. Delete oldest
3. Delete random

4. Delete by geometric criterion
5. Delete if misclassified
6. Delete if well classified

Prototype generation

2. Reposition1. Relabel 3. No evolution

Figure 2: A taxonomy of nearest-neighbour methods for streaming data. The nodes in
boxes show properties that should be specified, and their values are chosen among the
leaves of the respective sub-tree. Shaded boxes are areas for which algorithms might be
developed independently. For example, an ensembling method might be developed which
is agnostic regarding the base classifier; the base classifier could then be any classifier
trained on the chosen reference set.

taxonomies of instance selection/generation and concept-drift methods for
the first time. Fig. 2 shows the proposed taxonomy. The shaded boxes cor-
respond to three areas for which algorithms have separately been proposed:
online maintenance of a reference set of prototypes; ensembling of classifiers;
and change detection. A proposed method for classifying streaming data
might be an algorithm for any of these three tasks, or might be presented as
a “system” or “framework” with algorithms for these separate areas.

We do not seek here to develop a taxonomy of change-detection algorithms
or of ensembling methods3. We have therefore left the options in Fig. 2
for these categories as simple yes-or-no choices, to indicate whether such
algorithms are in use or not, although a richer description is possible and
could be deemed important in future taxonomic studies. The most important
and difficult first step is to develop a taxonomy for the methods of reference
set management, because reference set management is the core of the area:

3We refer readers interested in taxonomies for change-detection to Webb et al. [13].
For ensembling methods we recommend the recent survey of Gomes et al. [14].

7

there can be no use for ensembling or change detection methods without a
base classifier for them to work with.

4.1. Reference set management

The key distinction from the offline case is that concepts of “editing” or
“condensing” must be replaced with a concept of “reference set management”
for the streaming case. The potential presence of concept drift requires any
instance-based algorithm to continue to be able to adopt new instances in-
definitely; it must therefore also have the ability to continue to remove old
instances indefinitely.

4.1.1. Input management

The “Input Management” category is used to make a distinction between
algorithms which operate in a truly online manner on a single new data
point at a time, and those for which the data stream is regarded as arriving
in batches. This distinction is separate from the issue of which prototypes
are “remembered” and for how long.

4.1.2. Approach: Prototype (instance) selection versus prototype generation

The distinction between these two broad families was introduced in sec-
tion 3. Prototype selection methods in our taxonomy are classified according
to the many different possibilities for adding and, especially, removing pro-
totypes from the reference set. In contrast, prototype generation methods
are typically thought of as updating persistent prototypes, though a mech-
anism for (occasionally) adding new prototypes will usually be necessary.
These methods are therefore classified according to the prototype evolution
mechanism: leaf 1 corresponds to the relabelling of prototypes; and leaf 2 cor-
responds to the repositioning of prototypes, as for LVQ methods. However,
it is not quite universally true that prototype generation methods proceed by
evolving prototypes; therefore, there is a third leaf to the prototype genera-
tion branch. It describes those methods which do not update their generated
prototypes, but simply add and remove them to and from the reference set
as the prototype selection methods do. (SyncStream [15] is the algorithm we
consider which has this behaviour; see section 5.)

4.2. Change detection

This category distinguishes between approaches which attempt actively
to determine whether the input stream is undergoing concept drift at a given

8

time and adapt their strategy accordingly, and those whose adaptation is a
purely passive consequence of continuing to update the reference set.

4.3. Classifier management

Ensembling of classifiers is a popular and successful technique, though
less so for nearest-neighbour classifiers than for other classifiers such as de-
cision trees. This is usually said to be a result of the “stability” of nearest-
neighbour methods, which makes them less suitable than unstable methods
as ensemble base methods. However, there may be promise in ensembles of
nearest-neighbour methods whose base classifiers use different subsets of the
features [16].

5. Algorithms considered

This section reviews some existing editing kNN methods for streaming
data, for the purpose of illustrating the taxonomy. We consider this to be a
representative collection, and do not claim a comprehensive coverage of the
area. Table 1 shows the proposed classification under the new taxonomy of
the algorithms reviewed in this section. A subset of these algorithms will
subsequently be used in section 6 for our experimental study.

5.1. Prototype selection methods

Historically, Aha et al.’s Instance-Based Learning Algorithm IB3 was the
first prototype selection technique capable of handling concept drift [17].
IB3 adds new instances to the reference set if they are misclassified by the
existing reference set. For removal, IB3 uses a statistical test to determine
which instances have a classification performance which is significantly poor;
these are discarded.

PECS [18] takes a similar approach to IB3. The main differences, apart
from the particular statistical methods, are that PECS immediately includes
all new examples in the prototype set, and that it never truly deletes exam-
ples, only inactivates them (PECS is therefore not strictly a streaming algo-
rithm, although it can handle concept drift). It is interesting that authors
of PECS converged to this IB3-like approach, despite the algorithm being
developed from the conceptually different LWF algorithm [19]. The LWF
algorithm removes prototypes when they have been superseded by newer
prototypes in the same region of the feature space. This is the reason for our
“2/4” notation for this algorithm in Table 1: we seek to indicate that the age

9

Table 1: Prototype selection methods for streaming data with concept drift, described
within the taxonomy of Fig. 2.

Method Change detection

Approach

Data management
PG PS

+ −

1NN N 1 2 O

PECS N 1 1 F

SimC N 1 1 O

LWF N 1 2/4 O

COMPOSE N 1 4 B

AES Y 1 2, 5, 6 O

IBL-DS Y 1 2, 3, 5 O

IBLStreams Y 1 2, 3, 5 O

IB3 N 2 1 O

Lu et al. Y 3 1 B

SyncStream Y 3 1 1 O

ILVQ N 2 O

oiGRLVQ N 2 O

ANNCAD* N 1 O

Notes:

PG: Prototype generation: (1) Prototypes are regular grid in space; edit by rela-
belling; (2) Reposition; (3) Prototypes not evolved.

PS (+): Prototype selection (Prototype Addition): (1) Add all; (2) Add misclas-
sified; (3) Add by a competence criterion.

PS (−): Prototype selection (Prototype Removal): (1) Remove poorly predicting;
(2) Remove oldest; (3) Remove a random sample; (4) Remove by a geometric
criterion; (5) Remove if misclassified (traditional editing); (6) Remove if correctly
classified by many neighbours (condensing).

O/B/F : Online / Batch / Offline

* Ensemble method, rather than single classifier.

10

criterion is intertwined with a geometric criterion in this case, as opposed to
age and geometric criteria being separately implemented.

In IBL-DS [20] and IBLStreams [21], the key mechanism for prototype
removal is to remove prototypes which are misclassified according to other
nearby prototypes, as in Wilson editing [22]. In these algorithms, if the
class of a newly-arrived example is the same as the class of the majority of
the youngest examples in that neighbourhood, then older examples of the
opposite class in that neighbourhood are removed. There is also provision
to remove prototypes purely based on age, to guarantee an upper bound on
the reference set size. A mechanism to delete prototypes pseudorandomly is
triggered when abrupt concept change is detected.

The AES [23] algorithm is presented in terms of an extended analogy with
endocrine systems, which turns out in practice to mean a distance-weighted
voting scheme. The location of the “cell” (reference prototype) with highest
“hormone concentration” (the sum of the votes) is moved to the location
of the newly-arrived example. In our way of thinking about maintaining
a reference set of selected prototypes, this is equivalent to adding all new
examples and deleting, upon the arrival of each new example, the example
most strongly in agreement with its neighbours (as in traditional condensing).

The COMPOSE algorithm [24] is based on an idea that is mathematically
elegant, but computationally very expensive: the set of reference prototypes
for each class is thinned by removing examples associated with simplices
which contain the outer faces of an α-shape4 which defines the class boundary.

SimC [25] internally separates the reference instances of each class into
a number of separate sets corresponding to different regions of the search
space. New examples are added to the nearest suitable set, or are used to
start a new set if no nearby set is suitable. Poorly performing examples are
removed as new examples are added to their sets. Through this splitting of
the reference set into multiple sub-sets with their own update criteria, SimC
aims to achieve good “spatial and temporal relevance”.

5.2. LVQ family

Kohonen [26] developed the Learning Vector Quantization technique, a
seminal example of prototype generation. Many derivative algorithms have
been developed over the years, but it is only relatively recently that LVQ-style

4α-shapes are a generalisation of the concept of a convex hull.

11

algorithms have begun to be designed for streaming applications.
In the oiGRLVQ algorithm [27], new examples are added to the reference

set if they are sufficiently far from any existing prototype, according to the
similarity measure which the algorithm uses. A pruning step removes a
proportion of the prototypes in each class, removing those which have least
often been the closest prototype to a new exemplar.

ILVQ [28] also adds new examples to the reference set when they are
distant from existing elements of the reference set, and removes prototypes
which are little-used in classification.

5.3. Non-LVQ generated-prototype methods

ANNCAD [29] discretises the feature space into a grid, an approach
whose equivalence to a nearest-instance method may not be immediately
obvious. However, the approach is equivalent to using the centre of each
hyper-rectangular cell of the discretisation as a generated prototype. Note,
though, that ANNCAD does not perform a true nearest-neighbour classifi-
cation: to reduce computational demands, only those neighbours are queried
which are also nearby branches in the tree structure which describes the var-
ious resolutions of the discretisation. ANNCAD is of further interest as the
only exemplar of an ensemble approach in our selection. (The ensembling in
the case of ANNCAD is baked into the instance handling algorithm: this is
in contrast to the more common case where a base classifier can optionally
be incorporated into an ensemble, or not.) ANNCAD uses a small ensemble
of offset grids, to mitigate the problem of the neighbourhood relation being
strongly dependent on the quantisation process.

SyncStream [15] is interesting in its use of two levels of reference set data.
Strongly-performing instances are retained in one level; poorly-performing
instances are deleted; and instances of mediocre performance are summarised
by a clustering technique into a smaller number of generated prototypes.
Hence, SyncStream is categorised both according to prototype selection and
prototype generation techniques in Table 1, and is further unusual in that
it makes use of generated prototypes but does not evolve them; prototypes
once generated are preserved until their deletion, like selected prototypes.

5.4. Case-based reasoning family

We include in Table 1 the “concept drift-tolerant case-base editing tech-
nique” of Lu et al. [30], as a recent and generally applicable example of the

12

“case-based reasoning” approach. This algorithm is designed for the concept-
drift problem, and is interesting in that it seeks to add new prototypes in
areas of the feature space where it believes concept drift to be taking place.
For this algorithm, reference set management is inextricably bound up with
change detection. (This algorithm takes the place of certain older case-based
algorithms with a narrow application to spam filtering which we considered
in our previous study [5].)

6. Experimental comparison

Clearly, a comprehensive experimental comparison demonstrating the
strengths and weaknesses of all categories in the proposed taxonomy is in-
feasible. Our present experiment serves as an illustration; we are cautious
of making strong claims. Nonetheless, we believe that this experiment can
give useful insights. We may be able to identify traits in the taxonomy which
have an effect on performance (for example, are methods which use change
detection better/worse than methods which do not?) and we may be able to
identify promising avenues for future research on that basis.

We performed three sets of sub-experiments. The first uses synthetic
data sets, with no added noise: the results and discussion for these sub-
experiments are given in subsection 6.4.2. The second uses synthetic data
with various levels of noise added using a setting in the MOA system: the
results and discussion are in subsection 6.4.3. The third uses real-world
data, with concept drift introduced using a synthetic method: the results
and discussion are in subsection 6.5. We draw our key insights from the first
of these sub-experiments, in our discussion in 6.4.2. The principal function
of the remaining two sub-experiments is to show that the results found in
that section do not vanish in the presence of noise or for real-world data,
though there is some further interest in these results.

6.1. Framework

The framework selected for the experiments was the Massive Online Anal-
ysis (MOA) system5, version 2016.04. We created our own, non-optimised
implementation of the following algorithms: ANNCAD [29]; PECS [18];
IB3 [17]; LWF [19]; and oiGRLVQ [27]. The algorithm IBLStreams [21]

5Available at http://moa.cms.waikato.ac.nz/

13

was already available in MOA6. A wrapper was necessary for the adaptation
of the publicly available code of SimC7 [25] and SyncStream8 [15] to MOA.
We have made all the implemented methods available online for general use:
https://github.com/alvarag/ConceptDriftMOA.

6.2. Algorithms and parameters

A sliding window of 2 000 instances (with the nearest-neighbour classifier
(1NN)) was selected as the baseline method. The list of all algorithms and
parameter settings included in the experimental comparison is as follows:

• 1NN: sliding window of 2 000 instances.

• LWF: θ = 0.05, β = 0.04, and τ = 0.08.

• IB3: conf. accept. = 0.8 and conf. drop = 0.05.

• PECS: pmin = 0.3, pmax = 0.7, and β = 0.4.

• ANNCAD: ensemble size = 4, λ = 0.98, and shift = 0.1.

• SimC: default options.

• SyncStream: “statistical analysis” strategy used9; θ = 60.

• IBLStreams: without adaptation of the size k of the neighbourhood,
i.e. k = 1 always.

• oiGRLVQ: reduction = 20%, # mini-batch = 500.

We have kept most of the parameter settings close to the ones suggested by
the creators of the respective algorithms, but it was necessary to alter some
of the values in order to ensure that all of the algorithms stored a similar
number of prototypes, around 2 000. The set of algorithms chosen for the
experiment is necessarily only representative. It is not practical to consider
all instance-based algorithms with all possible parameter values.

6Minor changes were made to run the algorithm in the current version of MOA. The
original code is available at: https://www-old.cs.uni-paderborn.de/fachgebiete/

intelligente-systeme/software/iblstreams-moa-extension.html.
7Available at https://www.dropbox.com/s/s2t2ogaki1x1n4w/Weka.rar?dl=0.
8Available at https://github.com/kramerlab/SyncStream/.
9The “statistical analysis” strategy is one of two options for concept-drift detection the

authors of SyncStream propose for use with their algorithm [15].

14

6.3. Experimental setup

The performance of the different algorithms was evaluated by the tech-
nique known as Interleaved Test-Then-Train or Prequential : the model is
tested with each incoming example and subsequently the new example is
used for training [31]. A benefit of this common technique is that it makes
maximum use of the available data [6]. We used the sliding-window version
of the Prequential technique (with a window of width 100), as opposed to
the main alternative of using a fade factor. The accuracy statistic was calcu-
lated and stored after every 100 instances: each accuracy value recorded is
the percentage of instances correctly classified in the previous 100 instances.

6.4. Experiments using synthetic data sets

We wished to evaluate the behaviour of the algorithms in a controlled
setting suitable as a benchmark. For this purpose, we used two popular [6, 30]
generators in MOA, with and without concept drift. The key benefit of using
a generator is its reproducibility: the stream can be replicated in MOA (or
other software) directly.

6.4.1. Data sets used

All the sub-experiments involved binary classification problems. Except
where noted, default options for the generators were adopted. Only numeric
attributes were used because some of the algorithms cannot deal with nominal
features. The two generators used were:

• Hyperplane: first used in [32]. The data stream is generated uniformly
in a unit hypercube in a d-dimensional space (each dimension is a fea-
ture). A hyperplane is constructed to split the data into two classes
and serve as the boundary. Concept drift is generated by varying the
position of the plane with time. In our experiments, the feature space
was defined by ten numeric attributes (d = 10).

• Random tree: the class labels are determined by means of a decision
tree prepared in advance. The tree is constructed by choosing ran-
dom attributes to split the space; a random class label is then assigned
to each leaf. The random tree was generated with five numerical at-
tributes, and a maximum depth of five was allowed. The same attribute
may be picked more than once in the decision process.

15

Table 2: Settings used with the MOA generators.

Generator Seed Concept drift

Position Width Seed

Hyperplane (no CD) 1 - - -
Hyperplane (gradual CD) 1 25 000 1 000 5
Hyperplane (abrupt CD) 1 25 000 1 5
Random tree (no CD) 1 - - -
Random tree (gradual CD) 1 25 000 1 000 5
Random tree (abrupt CD) 1 25 000 1 5

Time series of 50 000 instances were generated, with the concept drift
introduced in the middle. Two different types of concept drift were tested,
sudden and gradual. For the hyperplane generator, two versions of the ex-
periment were performed: without and with noise added to the data. Where
used, noise was added directly using the option provided in the MOA frame-
work for the Hyperplane generator. The experiments without noise are dis-
cussed in subsection 6.4.2; the experiments with added noise are discussed
in subsection 6.4.3.

The configuration of the generators, including seed values, is shown in
Table 2.

6.4.2. Hyperplane and random tree generators without noise: results and
discussion

Six sub-experiments were performed for synthetic data without the addi-
tion of noise: Hyperplane with (1) no concept drift, (2) gradual change, and
(3) abrupt change; and Random tree with (4) no concept drift, (5) gradual
change, and (6) abrupt change. The results for these six data streams are
shown in Figs 3–8 respectively. Each of these figures shows accuracy as a
function of time for all nine methods. In the (a) subfigures, the accuracies of
all methods are plotted in grey, and each method is highlighted in black in
its own sub-plot. This view allows for an instant evaluation of the success of
the highlighted method. If the black curve runs higher than the grey curves,
the method outperforms its competitors. The average accuracy for a method
across the whole run is shown in the bottom-left corner of its subplot. To the
right of these accuracy plots, in the (b) subfigures, we show boxplots for each
of the nine methods, showing the distribution of the values of the accuracy

16

(a) Evolution of accuracy (b) Boxplot

Figure 3: Hyperplane generator: accuracy (in %) of the algorithms without concept drift.
The evolution of the accuracy statistic is shown in subfigure (a), and the distribution of
the instantaneous accuracy values for each algorithm is shown by a boxplot in subfigure
(b). The average accuracy is shown in the bottom-left corner of each sub-plot in (a).

statistic calculated throughout the run. This gives further information about
the stability of the methods’ performance.

Tables 3 and 4 show respectively the means and the medians of the meth-
ods for the 6 sub-experiments. Each column represents one sub-experiment;
they are grouped by the generator used and distinguished by the type or
absence (“–”) of concept drift. The best value of each column is highlighted
in bold.

With these results in hand, we will now turn to address the possible in-
sights we mentioned at the beginning of this section. First, a note of warning
about the limitations on what can be inferred: we have so far (cf. follow-
ing sections) used only artificial data generated from MOA, we restricted
the number of prototypes to about 2 000, and we enforced the use of the
1NN rule for classification (in particular, no adaptation of k was allowed for
IBLStreams, which uses a variable-neighbourhood kNN classification rule by
design). Any of these choices may disadvantage some methods. Further,
none of our datasets involved recurring concepts; hence, methods designed
to detect recurring concepts do not appear here to their best advantage. For
these reasons and more, our findings do not by any means invalidate the

17

(a) Evolution of accuracy (b) Boxplot

Figure 4: Hyperplane generator: accuracy (in %) of the algorithms with gradual concept
drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a).

(a) Evolution of accuracy (b) Boxplot

Figure 5: Hyperplane generator: accuracy (in %) of the algorithms with abrupt concept
drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a).

18

(a) Evolution of accuracy (b) Boxplot

Figure 6: Random tree generator: accuracy (in %) of the algorithms without concept
drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a).

(a) Evolution of accuracy (b) Boxplot

Figure 7: Random tree generator: accuracy (in %) of the algorithms with gradual concept
drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a).

19

(a) Evolution of accuracy (b) Boxplot

Figure 8: Random tree generator: accuracy (in %) of the algorithms with abrupt concept
drift. The average accuracy is shown in the bottom-left corner of each sub-plot in (a).

Table 3: Mean accuracy of the methods for the 6 sub-experiments using synthetic data
without noise. Columns with a dash “–” in the header are for experiments with no concept
drift. The best value of each column is highlighted in bold.

Method Hyperplane Random tree

– gradual abrupt – gradual abrupt

1NN 82.98 82.01 83.00 83.99 84.22 85.07

PECS 82.80 70.18 77.49 81.42 73.69 74.47

SimC 76.63 75.86 76.53 78.96 76.82 77.50

LWF 82.69 76.31 77.03 83.06 78.85 79.59

IBLStreams 81.32 66.53 66.16 82.79 71.09 70.94

IB3 80.27 78.46 79.74 79.48 78.54 80.31

SyncStream 78.90 78.35 79.15 80.48 79.91 80.66

oiGRLVQ 85.66 82.09 84.22 85.48 82.45 84.11

ANNCAD 84.76 81.41 82.43 86.01 85.19 86.21

20

Table 4: Median accuracy of the methods for the 6 sub-experiments using synthetic data
without noise. Columns with a dash “–” in the header are for experiments with no concept
drift. The best value of each column is highlighted in bold.

Method Hyperplane Random tree

– gradual abrupt – gradual abrupt

1NN 83.00 83.00 83.10 84.00 85.20 85.40

PECS 83.20 68.30 79.50 81.40 70.50 78.15

SimC 77.00 76.70 76.70 79.20 77.15 77.60

LWF 82.80 73.65 78.75 83.00 79.30 80.45

IBLStreams 82.00 59.84 59.99 83.30 67.05 66.09

IB3 80.70 79.70 80.40 79.90 79.40 80.10

SyncStream 78.90 79.00 79.20 80.60 80.40 80.60

oiGRLVQ 85.65 80.95 84.10 85.60 82.78 83.90

ANNCAD 85.30 82.70 82.90 86.70 84.30 84.70

methods which did not work well in our chosen setting.
We see from the plots that PECS, LWF and IBLStreams had difficulties

recovering from either gradual or abrupt change. This can alternatively be
seen from Tables 3 and 4. In contrast, SimC and SyncStream showed good
resilience to concept drift, but at the expense of poor overall accuracy. A
combination of resilience to drift and good overall accuracy was displayed
by oiGRLVQ, by ANNCAD, and by the benchmark method, simple win-
dowed 1NN.

Following previous practice [3, 4], we visualise the methods’ performance
in relation to the taxonomic properties by plotting each property with a
different marker: see Fig. 9. The marker shape indicates whether or not the
method uses explicit change detection, and the filling distinguishes between
prototype selection and prototype generation methods. The 9 methods are
shown in the space of x = (Hg +Ha)/2 and y = (Rg +Ra)/2 where Hg is the
median accuracy of the method for the hyperplane data with gradual change
(sub-experiment 2), Ha is the median accuracy for the hyperplane data with
abrupt change (sub-experiment 3), and Rg and Ra are the equivalents for the
Random tree data (sub-experiments 5 and 6).

21

Figure 9: Scatterplot of the 9 methods in the space of median accuracies for the two
synthetic data sets without noise. The significance of the markers is as follows: shape
indicates whether or not the method uses explicit change detection: circle ◦ – yes, triangle
4 – no; and a filled shape indicates a prototype selection method while an empty shape
indicates a prototype generation method. The filled marker for SyncStream is circled to
indicate that this method belongs to both the prototype selection and prototype generation
categories. The ensemble approach, ANNCAD, is indicated with an asterisk.

22

The results from this experiment favour prototype generation methods.
This might be said to be expected on theoretical grounds, in that prototype
generation can be seen as a generalisation of prototype selection, in which the
instances are not limited to examples of the original data set. It might also be
said that methods with no explicit change detector performed well, though
few methods with explicit change detection were considered. Furthermore,
the only ensemble-like method ANNCAD performed well, suggesting that an
ensembling of nearest neighbour classifiers for streaming data could be an
interesting research avenue. It should be noted that ANNCAD might be at
an advantage when classifying the Random tree data, by virtue of using a tree
structure internally. However, this is not the case for the hyperplane data,
for which ANNCAD performs very nearly as strongly relative to the other
algorithms. Conversely, it might have been thought that the hyperplane data
would favour windowed 1NN, but it performs at least as well on the random
tree data. The particularly poor performance of IBLStreams is most likely
explained by its being particularly disadvantaged by our choice to impose
the use of the 1NN classifier.

Perhaps the most exciting (though not entirely unexpected!) finding in
this paper is the excellent performance of the baseline method: 1NN with a
simple fixed-width sliding window. With no concept drift, the sliding window
works on a par with the best of the other methods. However, when concept
drift occurs, the sliding window gives high accuracy with a low variability, as
evidenced by the boxplots in Figs 4, 5, 7, and 8. It also appears as the best
method in Fig. 9.

The good performance of simple methods often raises the question of
“value for money”. Sophisticated designs are only justified if they demon-
strably outperform the simple methods, both in terms of accuracy and con-
sistency. Otherwise, practitioners will not have sufficient reason to opt for
a complicated design. The humble windowed 1NN algorithm still poses a
formidable challenge to those who would design new algorithms in this area,
a challenge which must not be ignored.

That being said, we must emphasise that our conclusions are based on
limited experiments. We have not considered multi-class problems, imbal-
anced data sets, data sets with categorical features, and so on. There are
many possible areas in which more-sophisticated algorithms may prove their
worth!

23

Table 5: Mean accuracy of the methods for the 9 sub-experiments using synthetic data
with noise. Columns with a dash “–” in the header are for experiments with no concept
drift. The best value of each column is highlighted in bold.

Method 10% noise 20% noise 30% noise

– gradual abrupt – gradual abrupt – gradual abrupt

1NN 70.96 70.38 70.83 61.84 61.52 61.76 55.34 55.20 55.19

PECS 73.70 63.24 70.61 64.70 58.15 59.31 57.11 54.01 56.05

SimC 67.66 66.62 67.05 60.29 59.76 60.04 55.08 54.48 54.48

LWF 70.95 66.90 67.17 61.86 59.65 59.80 55.37 54.43 54.46

IBLStreams 71.31 60.49 61.14 62.90 56.32 56.66 56.05 53.05 53.14

IB3 60.22 59.79 60.10 54.53 54.32 54.31 51.59 51.54 51.51

SyncStream 68.35 67.64 67.92 60.27 60.12 60.13 54.54 54.62 54.42

oiGRLVQ 73.06 71.57 72.56 62.69 62.81 63.25 55.43 55.70 55.74

ANNCAD 73.03 71.77 72.45 63.65 62.82 63.25 56.00 56.06 56.18

Table 6: Median accuracy of the methods for the 9 sub-experiments using synthetic data
with noise. Columns with a dash “–” in the header are for experiments with no concept
drift. The best value of each column is highlighted in bold.

Method 10% noise 20% noise 30% noise

– gradual abrupt – gradual abrupt – gradual abrupt

1NN 71.00 71.00 71.10 61.90 61.70 61.70 55.30 55.40 55.30

PECS 73.70 59.75 71.35 64.70 56.30 60.00 57.20 54.10 56.50

SimC 67.80 67.20 67.30 60.30 60.10 60.20 54.80 54.50 54.40

LWF 71.00 66.50 66.90 61.90 59.85 59.80 55.45 54.60 54.50

IBLStreams 71.80 54.91 55.16 63.30 54.65 55.48 56.10 53.00 52.90

IB3 60.25 60.00 60.10 54.40 54.30 54.40 51.55 51.70 51.60

SyncStream 68.40 68.00 68.10 60.30 60.40 60.30 54.70 54.50 54.50

oiGRLVQ 73.20 71.10 72.05 62.70 62.60 62.90 55.50 55.70 55.77

ANNCAD 73.30 72.55 72.60 63.90 63.60 63.65 56.00 56.30 56.20

24

0 10 20 30
50

60

70

80

90

1NN PECS SimC LWF IBLStreams IB3 SyncStream oiGRLVQ ANNCAD

0 10 20 30
50

55

60

65

70

75

80

85

90

Noise (%)

A
cc

u
ra

cy

0 10 20 30
50

55

60

65

70

75

80

85

90

Noise (%)
A

cc
u

ra
cy

0 10 20 30
50

55

60

65

70

75

80

85

90

Noise (%)

A
cc

u
ra

cy

(a) No concept drift (b) Gradual concept drift (c) Abrupt concept drift

Figure 10: Accuracy of the different classifiers with and without noise on the hyperplane
generator.

6.4.3. Hyperplane generator with noise: results and discussion

Real-life data sets are not perfect: outliers and noise are frequently
present, negatively impacting the prediction capabilities of classifiers [33].
Moreover, instance-based classifiers (like kNN, and especially 1NN) are usu-
ally more sensitive to noise than other approaches. For these reasons, we
performed further experiments in which noise was added to the synthetic
data using a tool provided in the MOA framework. The hyperplane genera-
tor was used with various levels of added noise: 10%, 20%, and 30%.

Tables 5 and 6 show respectively the means and the medians of the meth-
ods for the 9 sub-experiments (each column represents one sub-experiment).
There is one sub-experiment for each noise level and, as previously, for each
type of concept drift: no drift; gradual; and abrupt drift. The best value of
each column is highlighted in bold.

Figure 10 shows the performance of the various classifiers in the presence
of noise, under our three concept-drift scenarios. The IB3 algorithm imme-
diately stands out as having the worst tolerance to noise, with or without
concept drift. On the other hand, ANNCAD and oiGRLVQ continue their
good showing from the noise-free case. Again, and more surprisingly in this
case, windowed 1NN outperforms many of the more sophisticated classifiers.

6.5. Real-world data sets

For a more complete comparison of the algorithms, we have performed
a similar set of experiments on some real-world data sets, into which we

25

Table 7: Description of data sets used for experiments in section 6.5: name; number of
binary and numeric features; and number of instances.

Data set # attributes Size of the stream

Binary Numeric

Electricity 7 7 45 312
Forest Covertype 44 10 49 514
Poker-hand 20 5 50 000

have introduced concept drift using the method proposed by Shaker and
Hüllermeier [34].

We selected three popular data sets available on the MOA webpage10:
Electricity, Forest Covertype, and Poker-Hand. Each of these has been used
in several publications concerning learning from streams [15, 25, 29, 35, 36].
These data sets are highly imbalanced, have several classes and are relatively
large. Moreover, some of their attributes are nominal, and hence cannot
be handled by all of the algorithms in our selection. Therefore, we prepro-
cessed the data sets to make them suitable for the experiment: the nomi-
nal attributes were converted into sets of binary attributes, only instances
belonging to one of the two majority classes were selected, and random un-
dersampling was performed to reduce the size of the sets. Table 7 describes
the main characteristics of the processed data sets. In the relevant sub-
experiments, concept drift was introduced starting at the 25 000th instance,
with the random seed set to 1. As in the experiments with synthetic data
sets, the gradual drift had a width of 1 000 and the abrupt drift had a width
of 1.

Following Shaker and Hüllermeier [34], a drifting stream was created from
each processed data set along the following lines: the original set was split,
and one of the subsets is used without change; the drift sample is created by
means of inverting the class of the other subset.

The results of the experiments on these data sets are summarized in
the Tables 8 and 9. As for the previous tables for the experiments with
synthetic data, these tables show the means and the medians of the methods,
respectively, for each of the 9 sub-experiments (three data sets and three

10Available at https://moa.cms.waikato.ac.nz/datasets/.

26

Table 8: Mean accuracy of the methods for the 9 sub-experiments on real-world data.
Columns with a dash “–” in the header are for experiments with no concept drift. The
best value of each column is highlighted in bold.

Method Forest Covertype Electricity Poker-hand

– gradual abrupt – gradual abrupt – gradual abrupt

1NN 98.26 97.64 98.23 86.37 86.01 86.42 71.45 70.59 70.55

PECS 96.28 95.70 96.13 82.96 83.10 83.30 74.92 74.59 74.72

SimC 97.45 96.82 97.49 90.13 89.67 90.20 71.58 70.86 70.88

LWF 97.66 96.94 97.65 86.32 86.27 86.69 71.92 73.25 73.51

IBLStreams 96.97 92.12 93.12 86.67 72.80 73.42 73.88 66.78 67.05

IB3 95.61 94.58 95.57 70.91 71.71 71.57 71.18 70.38 70.64

SyncStream 98.13 97.55 98.13 81.35 81.07 81.33 71.59 70.39 70.36

oiGRLVQ 96.21 95.43 96.00 72.72 72.21 72.15 68.00 65.75 66.68

ANNCAD 96.86 96.93 97.49 77.38 81.91 82.19 75.19 73.40 73.65

Table 9: Median accuracy of the methods for the 9 sub-experiments on real-world data.
Columns with a dash “–” in the header are for experiments with no concept drift. The
best value of each column is highlighted in bold.

Method Forest Covertype Electricity Poker-hand

– gradual abrupt – gradual abrupt – gradual abrupt

1NN 98.30 98.20 98.30 86.20 86.30 86.50 71.80 70.40 70.30

PECS 96.00 95.80 95.80 83.00 83.40 83.40 74.55 74.30 74.20

SimC 97.50 97.40 97.55 90.30 90.30 90.50 71.90 71.05 71.05

LWF 97.70 97.30 97.60 86.30 86.60 86.80 71.80 73.40 73.95

IBLStreams 97.45 96.90 97.15 87.30 83.80 83.90 74.30 65.55 66.45

IB3 96.00 95.55 95.80 70.30 71.20 71.00 71.25 70.70 70.95

SyncStream 98.20 98.10 98.20 81.80 81.62 81.80 71.90 70.60 70.60

oiGRLVQ 97.00 96.90 96.90 75.40 72.40 73.40 67.50 64.95 66.10

ANNCAD 97.00 97.40 97.40 77.60 82.30 82.40 75.05 73.75 73.90

27

configurations for each).
For the real-world data, the question of which algorithm is best strongly

depends on the data set. The baseline windowed 1NN classifier was the best
on Forest Covertype, and SimC was the best on Electricity, for all three sub-
experiments (with and without concept drift). For the Poker-hand data set,
when drift was present the PECS classifier was the best, whereas when drift
was not present ANNCAD achieved the best results. This is a remarkable
contrast to the performance of PECS on the noisy synthetic data, where
PECS was the best-performing algorithm in the absence of drift, but its
performance strongly degraded in the presence of gradual drift. The overall
poor performance of all the methods on the poker-hand data is explained by
the complex and abstract nature of the relationship between a poker hand
and its constituent cards: the learning task in this case really calls for some
sort of symbolic rule extraction, rather than usual type of machine-learning
techniques based on delineating regions in a feature space.

7. Conclusion

We have presented an augmented and refined taxonomy for nearest-
neighbour methods for the classification of data streams subject to concept
drift. A numerical experiment, interpreted in the light of the new taxonomy,
gave the following insights.

For the problem of classifying data streams subject to concept drift, meth-
ods based on prototype generation may be a more promising avenue for future
research than further refinements of the many prototype selection methods
which have been proposed. The theoretical observation that prototype gener-
ation methods draw from a richer hypothesis space than prototype selection
methods is borne out, by our limited experiment, as greater practical perfor-
mance by prototype generation algorithms: see Fig. 9.

We regard the strikingly strong performance of the simple windowed 1NN
baseline method as a valuable result. We strongly recommend that experi-
mental evaluations of streaming classification algorithms proposed in the fu-
ture should include this simple baseline as a point of reference. Further, when
choosing state-of-the-art algorithms to which to compare the performance of
proposed new instance-based algorithms, the algorithms ANNCAD [29] and
oiGRLVQ [27] might be valuable additions to the pool of standard algorithms.

28

Acknowledgement

This work was done under project RPG-2015-188 funded by The Lev-
erhulme Trust, UK, and TIN 2015-67534-P from the Spanish Ministry of
Economy and Competitiveness. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No 731593.

References

[1] Q. Yang, X. Wu, 10 challenging problems in data mining research, Inter-
national Journal of Information Technology & Decision Making 05 (04)
(2006) 597–604. doi:10.1142/S0219622006002258.

[2] B. Krawczyk, J. Stefanowski, M. Wozniak, Data stream classification
and big data analytics, Neurocomputing 150, Part A (2015) 238 – 239,
selected papers from the 16th International Conference on Knowledge-
Based and Intelligent Information & Engineering Systems (KES 2012),
Selected papers from the 6th Iberian Conference on Pattern Recognition
and Image Analysis (IbPRIA 2013). doi:10.1016/j.neucom.2014.10.025.

[3] S. Garcia, J. Derrac, J. R. Cano, F. Herrera, Prototype selection for
nearest neighbor classification: Taxonomy and empirical study, IEEE
Transactions on Pattern Analysis and Machine Intelligence 34 (3) (2012)
417–435. doi:10.1109/TPAMI.2011.142.

[4] I. Triguero, J. Derrac, S. Garcia, F. Herrera, A taxonomy and
experimental study on prototype generation for nearest neighbor
classification, IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews) 42 (1) (2012) 86–100.
doi:10.1109/TSMCC.2010.2103939.

[5] L. I. Kuncheva, I. A. D. Gunn, A concept-drift perspective
on prototype selection and generation, in: 2016 International
Joint Conference on Neural Networks (IJCNN), 2016, pp. 16–23.
doi:10.1109/IJCNN.2016.7727175.

[6] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey
on concept drift adaptation, ACM Comput. Surv. 46 (4) (2014) 44:1–
44:37. doi:10.1145/2523813.

29

[7] D. Nova, P. A. Estévez, A review of learning vector quantization clas-
sifiers, Neural Computing and Applications 25 (3) (2014) 511–524.
doi:10.1007/s00521-013-1535-3.

[8] S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak, F. Her-
rera, A survey on data preprocessing for data stream mining:
Current status and future directions, Neurocomputing (2017) –
doi:10.1016/j.neucom.2017.01.078.

[9] R. P. J. C. Bose, W. M. P. van der Aalst, I. Žliobaitė, M. Pechenizkiy,
Handling Concept Drift in Process Mining, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011, pp. 391–405. doi:10.1007/978-3-642-21640-
4 30.

[10] G. Widmer, M. Kubat, Machine Learning: ECML-93: European Con-
ference on Machine Learning Vienna, Austria, April 5–7, 1993 Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, Ch. Effective
learning in dynamic environments by explicit context tracking, pp. 227–
243. doi:10.1007/3-540-56602-3 139.

[11] M. Kubat, Floating approximation in time-varying knowledge bases,
Pattern Recognition Letters 10 (4) (1989) 223 – 227. doi:10.1016/0167-
8655(89)90092-5.

[12] G. Widmer, M. Kubat, Learning in the presence of concept drift
and hidden contexts, Machine Learning 23 (1) (1996) 69–101.
doi:10.1007/BF00116900.

[13] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, F. Petitjean, Characterizing
concept drift, Data Mining and Knowledge Discovery 30 (4) (2016) 964–
994. doi:10.1007/s10618-015-0448-4.

[14] H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, A survey on ensem-
ble learning for data stream classification, ACM Comput. Surv. 50 (2)
(2017) 23:1–23:36. doi:10.1145/3054925.

[15] J. Shao, Z. Ahmadi, S. Kramer, Prototype-based learning on concept-
drifting data streams, in: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, KDD ’14, ACM, New York, NY, USA, 2014, pp. 412–421.
doi:10.1145/2623330.2623609.

30

[16] N. Garćıa-Pedrajas, D. Ortiz-Boyer, Boosting k-nearest neighbor classi-
fier by means of input space projection, Expert Systems with Applica-
tions 36 (7) (2009) 10570 – 10582. doi:10.1016/j.eswa.2009.02.065.

[17] D. W. Aha, D. Kibler, M. K. Albert, Instance-based learning algorithms,
Machine Learning 6 (1) (1991) 37–66. doi:10.1007/BF00153759.

[18] M. Salganicoff, Tolerating concept and sampling shift in lazy learning
using prediction error context switching (1997) 133–155doi:10.1007/978-
94-017-2053-3 5.

[19] M. Salganicoff, Density-adaptive learning and forgetting, in: Proceed-
ings of the Fifth International Conference on Machine Learning, Morgan
Kaufmann, Amherst, MA, 1993, pp. 276–283.

[20] J. Beringer, E. Hüllermeier, Efficient instance-based learning on data
streams, Intelligent Data Analysis 11 (6) (2007) 627–650.

[21] A. Shaker, E. Hüllermeier, IBLStreams: a system for instance-based
classification and regression on data streams, Evolving Systems 3 (4)
(2012) 235–249. doi:10.1007/s12530-012-9059-0.

[22] D. L. Wilson, Asymptotic properties of nearest neighbor rules using
edited data, IEEE Transactions on Systems, Man, and Cybernetics
SMC-2 (3) (1972) 408–421. doi:10.1109/TSMC.1972.4309137.

[23] L. Zhao, L. Wang, Q. Xu, Data stream classification with artifi-
cial endocrine system, Applied Intelligence 37 (3) (2012) 390–404.
doi:10.1007/s10489-011-0334-8.

[24] K. B. Dyer, R. Capo, R. Polikar, COMPOSE: A semisupervised learn-
ing framework for initially labeled nonstationary streaming data, IEEE
Transactions on Neural Networks and Learning Systems 25 (1) (2014)
12–26. doi:10.1109/TNNLS.2013.2277712.

[25] D. Mena-Torres, J. S. Aguilar-Ruiz, A similarity-based approach for data
stream classification, Expert Systems with Applications 41 (9) (2014)
4224 – 4234. doi:10.1016/j.eswa.2013.12.041.

[26] T. Kohonen, The self-organizing map, Proceedings of the IEEE 78 (9)
(1990) 1464–1480. doi:10.1109/5.58325.

31

[27] I. Cruz-Vega, H. J. Escalante, An online and incremental grlvq algorithm
for prototype generation based on granular computing, Soft Computing
21 (14) (2017) 3931–3944. doi:10.1007/s00500-016-2042-0.

[28] Y. Xu, F. Shen, J. Zhao, An incremental learning vector quantization
algorithm for pattern classification, Neural Computing and Applications
21 (6) (2012) 1205–1215. doi:10.1007/s00521-010-0511-4.

[29] Y.-N. Law, C. Zaniolo, An adaptive nearest neighbor classification al-
gorithm for data streams, in: A. M. Jorge, L. Torgo, P. Brazdil, R. Ca-
macho, J. Gama (Eds.), Knowledge Discovery in Databases: PKDD
2005: 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases, Porto, Portugal, October 3-7, 2005. Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 108–120.
doi:10.1007/11564126 15.

[30] N. Lu, J. Lu, G. Zhang, R. L. de Mantaras, A concept drift-tolerant
case-base editing technique, Artificial Intelligence 230 (2016) 108–133.
doi:10.1016/j.artint.2015.09.009.

[31] J. Gama, R. Sebastião, P. P. Rodrigues, Issues in evaluation of stream
learning algorithms, in: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, KDD ’09, ACM, New York, NY, USA, 2009, pp. 329–338.
doi:10.1145/1557019.1557060.

[32] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data
streams, in: Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, ACM,
New York, NY, USA, 2001, pp. 97–106. doi:10.1145/502512.502529.

[33] Álvar Arnaiz-González, J. F. Dı́ez-Pastor, J. J. Rodŕıguez, C. I. Garćıa-
Osorio, Instance selection for regression: Adapting DROP, Neurocom-
puting 201 (2016) 66 – 81. doi:10.1016/j.neucom.2016.04.003.

[34] A. Shaker, E. Hüllermeier, Recovery analysis for adaptive learning from
non-stationary data streams: Experimental design and case study, Neu-
rocomputing 150 (2015) 250 – 264, bioinspired and knowledge based
techniques and applications The Vitality of Pattern Recognition and

32

Image Analysis Data Stream Classification and Big Data Analytics.
doi:10.1016/j.neucom.2014.09.076.

[35] I. Žliobaitė, Combining similarity in time and space for training set
formation under concept drift, Intell. Data Anal. 15 (4) (2011) 589–611.
doi:10.3233/IDA-2011-0484.

[36] G. Ditzler, R. Polikar, Incremental learning of concept drift from stream-
ing imbalanced data, IEEE Transactions on Knowledge and Data Engi-
neering 25 (10) (2013) 2283–2301. doi:10.1109/TKDE.2012.136.

33

