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Abstract 29 

Recent developments in machine learning have expanded data-driven modelling (DDM) capabilities, 30 

allowing artificial intelligence to infer the behaviour of a system by computing and exploiting 31 

correlations between observed variables within it. Machine learning algorithms may enable the use 32 

of increasingly available ‘big data’ and assist applying ecosystem service models across scales, 33 

analysing and predicting the flows of these services to disaggregated beneficiaries. We use the Weka 34 

and ARIES software to produce two examples of DDM: firewood use in South Africa and biodiversity 35 

value in Sicily, respectively. Our South African example demonstrates that DDM (64-91% accuracy) can 36 

identify the areas where firewood use is within the top quartile with comparable accuracy as 37 

conventional modelling techniques (54-77% accuracy). The Sicilian example highlights how DDM can 38 

be made more accessible to decision makers, who show both capacity and willingness to engage with 39 

uncertainty information. Uncertainty estimates, produced as part of the DDM process, allow decision 40 

makers to determine what level of uncertainty is acceptable to them and to use their own expertise 41 

for potentially contentious decisions. We conclude that DDM has a clear role to play when modelling 42 

ecosystem services, helping produce interdisciplinary models and holistic solutions to complex socio-43 

ecological issues. 44 

Key words: ARIES; Artificial Intelligence; Big data; Data driven modelling; Data Science; Machine 45 

learning; Mapping; Modelling; Uncertainty, Weka. 46 
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Introduction 47 

Many scientific disciplines are taking an increasingly integrative approach to planetary problems such 48 

as global climate change, food security and human migration (Baziliana et al., 2011; Bullock et al., 49 

2017). To address such challenges, methods and practices are becoming more reliant on large, 50 

interdisciplinary data repositories often collected in cutting-edge ways, for example via citizen 51 

scientists or automated data collection (Isaac et al., 2014). Recent developments in information 52 

technology have expanded modelling capabilities, allowing researchers to maximise the utility of such 53 

‘big data’ (Lokers et al., 2016). Here, we focus on one of these developments: data-driven modelling 54 

(DDM). DDM is a type of empirical modelling by which the data about a system are used to create 55 

models, which use observed systems’ states as inputs for estimating some other system state(s), i.e., 56 

outputs (Jordan and Mitchell, 2015; Witten et al., 2016). Thus, DDM is the process of identifying useful 57 

patterns in data, a process sometimes previously referred to as knowledge discovery in databases 58 

(Fayyad et al., 1996). This process consists of five key steps: 1) understanding the research goal, 2) 59 

selecting appropriate data, 3) data cleaning, pre-processing and transformation, 4) data mining 60 

(creating a data driven model), and 5) interpretation/evaluation (Fayyad et al., 1996) (Figure 1). A 61 

variety of methods for data mining and analysis are available, some of which utilise machine learning 62 

algorithms (Witten et al., 2016; Wu et al., 2014) (Figure 1). A machine learning algorithm is a process 63 

that is used to fit a model to a dataset, through training or learning. The learned model is subsequently 64 

used against an independent dataset, in order to determine how well the learned model can 65 

generalise against the unseen data, a process called testing (Ghahramani, 2015; Witten et al., 2016). 66 

This training-testing process is analogous to the calibration-validation process associated with many 67 

process-based models. 68 

 69 



 70 

Figure 1 – A schematic outlining how machine learning algorithms (yellow) can contribute to the 71 

data-driven modelling process (blue) (Fayyad et al., 1996). 72 

 73 

In general, machine learning algorithms can be divided into two main groups (supervised- and 74 

unsupervised-learning; Figure 1), separated by the use of explicit feedback in the learning process 75 

(Blum and Langley, 1997; Russell and Norvig, 2003; Tarca et al., 2007). Supervised-learning algorithms 76 

use predefined input-output pairs and learn how to derive outputs from inputs. The user specifies 77 

which variables (i.e., outputs) are considered dependent on others (i.e., inputs), which sometimes 78 

indicates causality (Hastie et al., 2009). The machine learning toolbox includes several linear and non-79 

linear supervised learners, predicting either numeric outputs (regressors) or nominal outputs 80 

(classifiers) (Table 1). An example of supervised machine learning that is familiar to many ecosystem 81 

service (ES) scientists is using a general linear model, whereby the user provides a selection of input 82 

variables hypothesised to predict values of an output variable and the general linear model learns to 83 

reproduce this relationship. The learning process needs to be fine-tuned through a process, as for 84 

example in the case of stepwise selection where an algorithm selects the most parsimonious best-fit 85 

Machine learning algorithms 

can be used to identify 

patterns in data with varying 

degrees of autonomy 

Supervised-learning 

algorithms use predefined 

input-output pairs, learning to 

derive outputs from inputs. 

Unsupervised-learning 

processes learns to detect 

patterns from the inputs (with 

no specific feedback supplied 

for input data). 

A variety of 

machine learning 

algorithms are 

available (Table 1) 

Model structure can be 

defined or learned by the 

algorithm (structural learning) 

Data 

Target data 

Knowledge 

Transformed and pre-

processed data 

Pattern 

Identifying research questions & 

hypotheses 

Selecting appropriate data 

Data cleaning, pre-processing and 

transformation 

Data mining 

Interpretation and evaluation 



model (Yamashita et al., 2007). However, note that stepwise functions may also be used in 86 

unsupervised learning processes when combined with other methods. Within unsupervised-learning 87 

processes, there is no specific feedback supplied for input data and the machine learning algorithm 88 

learns to detect patterns from the inputs. In this respect, there are no predefined outputs, only inputs 89 

for which the machine learning algorithm determines relationships between them (Mjolsness and 90 

DeCoste, 2001). An example unsupervised-learning algorithm, cluster analysis, groups variables based 91 

on their closeness to one another, defining the number and composition of groups within the dataset 92 

(Mouchet et al., 2014). Within the supervised- and unsupervised-learning categories, there are several 93 

different varieties of machine learning algorithms, including: neural networks, decision trees, decision 94 

rules and Bayesian networks. Others have described the varieties of machine learning algorithms 95 

(Blum and Langley, 1997; Mjolsness and DeCoste, 2001; Russell and Norvig, 2003; Tarca et al., 2007) 96 

and so we only provide a brief summary here, leaving out more advanced methods such as 97 

reinforcement learning, and deep learning (see Table 1). 98 

 99 

Table 1 – A simplified summary of machine learning algorithms (categorised as supervised and 100 

unsupervised).  101 

 102 

Category Task Common algorithms 

Unsupervised learning 
(learning without feedback 
from a trainer) 

Clustering k-means 

Associations Apriori 

Dimensionality reduction PCA 

Supervised learning 
(learning past 
actions/decisions with trainer) 

Classification (learning a 
categorical variable) 

Bayesian Networks, Decision 
Trees, Neural Networks 

Regression (learning a 
continuous variable) 

Linear Regression, Perceptron 

 103 

DDM undoubtedly has a role to play when modelling socio-ecological systems and assessing ES. DDM 104 

can give useful predictive insight into areas where understanding of the underlying processes is 105 

limited. However, as with many statistical methods, DDM requires adequate data availability. The level 106 

of data required is determined on a case-by-case basis, depending of the research question being 107 

asked. For example, to use machine learning algorithms, data must be able to be divided into training 108 

and testing subsets (Smith and Frank, 2016). Machine learning algorithms assume considerable 109 

changes in the modelled system have not taken place during the time period covered by the model 110 

(Ghahramani, 2015; Jordan and Mitchell, 2015), though machine learning can also be used for 111 

identifying change, i.e., detecting concept drift (Gama et al., 2004). Model validation/testing, which 112 

has yet to become standard practice within the ES modelling community (Baveye, 2017; Hamel and 113 

Bryant, 2017), is an integral part of the machine learning process within DDM. This is vital as DDM can 114 

result in overfitting, which occurs when the model learns the training data well (i.e., a close fit to the 115 

training data), but performs poorly on independent test data (Clark, 2003).  116 

 117 

To assess the quality of the learning process, machine learning algorithms use various methods 118 

(summarised in Witten et al. (2016)) to ensure that the results are generalizable and avoid overfitting. 119 

For example, k-fold cross validation allows for fine-tuning of model performance (Varma and Simon, 120 

2006; Wiens et al., 2008). This approach maximises the data availability for model training by dividing 121 

the data into k subsets and using k-1 subsets to train the model whilst retaining a subset for 122 

independent validation. This process is repeated k times so that all available data have been used for 123 

validation exactly once. The results of the k-folds are then combined to produce metrics of quality for 124 

the machine learning process, often accompanied with an estimation of the model uncertainty (i.e., 125 



the cross-validation statistic). Whilst the goodness-of-fit parameter used varies within DDM (e.g., root 126 

mean square error is used extensively within regression models, but the standard error is more 127 

commonly used in Bayesian machine learning (Cheung and Rensvold, 2002; Uusitalo, 2007)), it 128 

provides the user with a transparent estimate of model uncertainty. Whilst estimates of uncertainty 129 

are useful, users of DDM should be aware that such models do not represent the underlying processes 130 

within socio-ecological systems, but instead capture relationships between variables (Ghahramani, 131 

2015). However, for some datasets and model applications (see Discussion for further details), DDM 132 

can produce more accurate models than process-based models, as the latter may suffer from an 133 

incomplete representation of the socio-ecological processes (Jordan and Mitchell, 2015; Tarca et al., 134 

2007). Finally, as with any modelling, DDM depends on the quality of the training and testing datasets 135 

used; whilst some extreme cases or outliers might get ignored during DDM, the quality of the 136 

information supplied to the machine learning algorithms should be verified beforehand (Galelli et al., 137 

2014). 138 

 139 

The aim of this paper is to demonstrate the utility of DDM to the ES community. We present two 140 

examples of DDM using Bayesian networks (a supervised learning technique), as implemented in the 141 

Waikato Environment for Knowledge Analysis machine learning software (Weka; 142 

http://www.cs.waikato.ac.nz/ml/weka/; Frank et al. (2016); Hall et al. (2009)), used both standalone 143 

and as part of the Artificial Intelligence for Ecosystem Services (ARIES; 144 

http://aries.integratedmodelling.org/; Villa et al. (2014)) modelling platform. We chose Bayesian 145 

network methods as uncertainty metrics describing both the model fit and the grid-cell uncertainty 146 

can be calculated (Aguilera et al., 2011; Landuyt et al., 2013; Uusitalo, 2007). Our Weka example 147 

focusses on firewood use in South Africa, and is comparable to conventional ES models recently 148 

published by Willcock et al. (in revision). Using ARIES, we model biodiversity value within Sicily, and 149 

demonstrate how DDM can make use of volunteered geographical information by incorporating data 150 

from Open Street Maps into the machine learning process. In both examples, we highlight how model 151 

structure and uncertainty computed in the machine learning process supplement and enhance the 152 

value of the results reported to the user.  153 

 154 

Methods 155 

For the first example, we used Weka, an open-source library of machine learning algorithms (Frank et 156 

al., 2016; Hall et al., 2009), to create a model capable of identifying the upper quartile of sites for 157 

firewood use in South Africa. We chose this example as: 1) firewood use is of high policy relevance in 158 

sub-Saharan Africa (Willcock et al., 2016); 2) robust spatial data on firewood use are available within 159 

South Africa and may, for some municipalities, provide a comparable context to other parts of sub-160 

Saharan Africa, which are often more vulnerable but data deficient (Hamann et al., 2015); 3) models 161 

ranking the relative importance of different sites were rated as useful to support ES decision-making 162 

by nearly 90% of experts in sub-Saharan Africa (Willcock et al., 2016); and 4) multiple conventional 163 

models have recently been run for this ES covering this spatial extent (see Willcock et al. (in revision) 164 

for full details).  165 

The firewood use data are freely available (Hamann et al., 2015) and are based on the South African 166 

2011 population census, which provides proportions of households per local municipality using a 167 

specific ES (similar data are available for a set of other ES; see www.statssa.gov.za for all 2011 census 168 

output). For this paper we used the proportion of households that use collected firewood as a resource 169 

for cooking (Hamann et al., 2015). To derive a measure of total resource use, we multiplied the 170 

proportion of use by the 2011 official census municipal population size (from www.statssa.gov.za) as: 171 

[(% households using a service) x (municipal population size)]. We then divided this value by the area 172 

http://www.cs.waikato.ac.nz/ml/weka/
http://aries.integratedmodelling.org/
http://www.statssa.gov.za/
http://www.statssa.gov.za/?s=municipality%20population&sitem=statistics%20by%20place


of each local municipality to provide an estimate of firewood use density, ensuring that model inputs 173 

are independent of the land area of the local municipality. 174 

To utilise Bayesian networks, the decision variable (firewood use density) had to be converted into a 175 

categorical (nominal) attribute; note, the categories created during this process are unordered. The 176 

goal of this task was to predict the areas in the upper quartile, reflecting demand from decision-177 

makers for identification of the most important sites for ES production and, once identified, enabling 178 

these areas to be prioritised for sustainable management (Willcock et al., 2016). Thus, the firewood 179 

use density data were categorised within the highest 25% (Q4) and the lowest 75% (Q1-Q3) quartiles 180 

using Weka’s Discretize filter to create ranges of equal frequencies (four in our case). Out of the 181 

generated quartiles, the three lower ones were merged with the MergeTwoValues filter. To ensure 182 

like-for-like comparisons between our DDM and conventional models, we provided the machine 183 

learning algorithms with the same user supplied input data used to model firewood within Willcock et 184 

al (in revision) (Table 2). Since most Bayesian network inference algorithms can use only categorical 185 

data as inputs, the input data were discretised by grouping their values in five bins of equal 186 

frequencies. Selecting the number of bins is a design choice and may impact model output (Friedman 187 

and Goldszmidt, 1996; Nojavan et al., 2017). As such, the sensitivity of the modelled output to variable 188 

bin numbers warrants future investigation, but is beyond the scope of this first-order introduction to 189 

machine learning for ES. 190 

Table 2 – The municipal-scale inputs into the Weka machine learning algorithms to estimate firewood 191 

use in South Africa. Overfitting is avoided by first training the algorithm on subset of these data and 192 

then testing against the remaining data.  193 

Attribute Description 

LCAgriculture The proportion of agricultural land area, derived from GeoTerraImage (2015) 

LCForest The proportion of forested land area, derived from GeoTerraImage (2015) 

LCGrassland The proportion of grassland land area, derived from GeoTerraImage (2015) 

LCUrban The proportion of urban areas, derived from GeoTerraImage (2015) 

LCWater The proportion of water bodies area, derived from GeoTerraImage (2015) 

COFirewood The proportion of area on which firewood can be produced (Forest, 
Woodland, Savanna), derived from GeoTerraImage (2015) 

OProtected The proportion of protected natural areas, derived from the World Database 
on Protected Areas (www.protectedplanet.net) 

MOCarbon Mean amount of carbon stored per hectare, as calculated in Willcock et al. (in 
revision) 

OGrowthDay Average number of growing days in the area as driven by the relationship 
between rainfall and evapotranspiration, as calculated in Willcock et al. (in 
revision) 

ZScholesA A metric of the nutrient-supplying capacity of the soil (Scholes, 1998) 

ZScholesB A metric of the nutrient-supplying capacity of the soil (Scholes, 1998) 

ZScholesD Scholes (1998) land use correction, as calculated in Willcock et al. (in revision) 

ZSlope This is the mean slope in the area, based on the global 90-m digital elevation 
model downloaded from CGIAR-CSI 
(srtm.csi.cgiar.org/SELECTION/inputCoord.asp). 

Population_density The municipal population based on the South African 2011 census 
(www.statssa.gov.za). 

Firewood_density Observed firewood use for cooking from the South African 2011 census 
(Hamann et al., 2015). 

 194 

http://www.protectedplanet.net/
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://www.statssa.gov.za/


We used the BayesNet implementation of Weka to train our DDM. The machine learning algorithm 195 

can construct the Bayesian network using alternative network structures and estimators for finding 196 

the conditional probability tables (Chen and Pollino, 2012). In a Bayesian network, conditional 197 

probability tables define the probability distribution of output values for every possible combination 198 

of input variables (Aguilera et al., 2011; Landuyt et al., 2013). Unlike the use of expert elicitation or 199 

Bayesian network training (e.g., Marcot et al. (2006)), the machine learning approach fits the structure 200 

of the model, as well as the conditional probabilities, a process also called structural learning (Figure 201 

1). In this example, we evaluated 16 alternatives for parameterising the Bayesian network learning 202 

(see Appendix 1). We used 10 cross-fold validation (Varma and Simon, 2006; Wiens et al., 2008), 203 

repeated 10 times with different seeds, for creating the random folds.  204 

ARIES has recently incorporated the Weka machine learning algorithms into its modelling framework, 205 

with the aim of enabling use of DDM within the ES community (see Villa et al. (2014) for a description 206 

of the ARIES framework). In our second example, we used the ARIES implementation of Weka 207 

BayesNet to propagate site-based expert estimates of ‘biodiversity value’ and so build a map for the 208 

entire Sicilian region (Li et al., 2011). Here, biodiversity value does not refer to an economic value, but 209 

to a spatially explicit relative ranking. The original biodiversity value observations were the result of 210 

assessments made with multiple visits by flora, fauna and soil experts (Figure 2). The same experts 211 

who had ranked high-value sites were asked to identify sites of low biodiversity value, with the 212 

constraint that the low value depended on natural factors and not on human intervention, as datasets 213 

combining high and low value observations generally produce more accurate models (Liu et al., 2016). 214 

These data were originally interpolated using an inverse distance weighted technique to provide a 215 

map of biodiversity value to support policy- and decision-making (Figure 2a), and our DDM attempts 216 

to improve on this map. The DDM process involved 20 repetitions, each using 75% of the data to train 217 

the model and 25% to validate it. Using ARIES, we instructed the machine learning algorithm to access 218 

explanatory variables, indicated by the same experts who provided the estimates used in training as 219 

the most likely predictors of biodiversity value (see Appendix 2). The data used by the machine 220 

learning process (Appendix 2) included distance to coastline and primary roads metric calculated using 221 

citizen science data from Open Street Map (https://www.openstreetmap.org/; Haklay and Weber 222 

(2008)). The trained model was then used to build a map of biodiversity value for the entire island, 223 

computing the distribution of biodiversity values for all locations not sampled by the experts. The 224 

machine learning algorithms used quantitative variables, discretised in 10 equal intervals, for both 225 

inputs and outputs (Friedman and Goldszmidt, 1996; Nojavan et al., 2017). The resulting map was 226 

subsequently discussed and qualitatively validated by the same experts who collected the data, as 227 

well as quantitatively using a confusion matrix accuracy assessment.  228 

Results 229 

https://www.openstreetmap.org/


 230 

Figure 2 – The relative value of terrestrial biodiversity in Sicily estimated by a) inverse distance 231 

weighted interpolation of observed values and b) Bayesian networks using data-driven modelling. 232 

Both original (white) biodiversity value observations and the additional sites of low biodiversity value 233 

(black) are shown as points. 234 

In the first example, the results for all configurations of the DDM created for firewood use in South 235 

Africa had a classification accuracy above 80% (see Appendix 1). The model predictions are statistically 236 

significant with a confidence level of 0.05 (two tailed) when compared to the ZeroR classifier (a 237 

baseline classifier that always predicts the majority class). Using ArcGIS v 10.5.1, we spatially mapped 238 

the outputs of the most accurate Bayesian network DDM (Figure 3; Figure 4; Appendix 3). The 239 

confusion matrix for this model shows that 186 out of the 226 local municipalities were correctly 240 

classified (an overall classification accuracy of 82%), and, out of 56 municipalities classified in the 241 

upper quartile (Q4), 36 were correct predictions (64% recall [i.e. the percentage of the most important 242 

sites for firewood ES correctly identified], comparable with conventional modelling methods 243 

evaluated against independent data [Table 3; Willcock et al (in revision)]; Appendix 3). The DDM also 244 

produces probabilistic outputs for the respective inputs (Appendix 4). 245 



 246 
Figure 3 – Diagrammatic representation of the machine-learned Bayesian network model of firewood 247 

use in South Africa (see Table 2 for category codes). The structure of the model was informed by the 248 

machine learning algorithm with no predetermined restrictions.  249 

For biodiversity value in Sicily, 43% of the testing subsample was correctly classified into 1 of 10 250 

biodiversity value categories, with a majority of the incorrectly classified results falling into 251 

immediately close numeric ranges (Appendix 5). During a workshop in June 2017, the same Sicilian 252 

experts that provided the training set (a team of five including an academic conservationist, an 253 

academic ornithologist, an academic botanist and an expert on agricultural biodiversity) qualitatively 254 

evaluated the output in non-sampled but well-known regions and deemed it a distinct improvement 255 

on previously computed biodiversity value assessments, built through conventional GIS overlapping 256 

and interpolation techniques; an assessment that was embraced by other participants from both local 257 

governmental and conservation institutions (Figure 2). As the map reflects the human assessment of 258 

biodiversity value rather than objective measurements, the consensus of experts and practitioners 259 

was deemed equivalent to a satisfactory validation. The confusion matrix (Appendix 5) shows how the 260 

majority of misclassifications are between similar value categories. For example, 73% of test data were 261 

predicted within one class above or below their actual class, and 84% of test data were correctly 262 

classified within two classes above and below their actual class. A Spearman Rho test highlights the 263 

significant correlation between the ranked model and validation data categories (Rho: 0.58; p-value < 264 

0.001). The root-mean-squared error of the model prediction was also computed and resulted in a 265 

value of 0.26 (Hyndman and Koehler, 2006). 266 



 267 
Figure 4 – Observed (a and b) and modelled (c and d) data on firewood use density within South Africa. 268 

The Weka BayesNet DDM process derives a probabilistic output (c) from the observed data (a). The 269 

modelled output can be categorised into quartiles (Q1-4, with Q4 being the upper quartile; d) and 270 

compared to the observed data within the same categories (b). 271 

 272 

Discussion 273 



Lack of credibility, salience and legitimacy are the major reasons for the ‘implementation gap’ 274 

between ES research and its incorporation into policy- and decision-making (Clark et al., 2016; Olander 275 

et al., 2017; Wong et al., 2014). A lack of uncertainty information and the inability to run models in 276 

data-poor environments and/or under conditions where underlying processes are poorly understood 277 

may contribute to the implementation gap. However, DDM can help to address these current 278 

shortcomings in ES modelling. Here, we have demonstrated that DDM is feasible within ES science and 279 

is capable of providing estimates of uncertainty.  280 

 281 

For our South African case study, the machine learning algorithms were able to produce a modelled 282 

output of comparable accuracy to conventional modelling methods when using the same input 283 

variables, despite our DDM using data at a much coarser (local municipality) scale (Table 3). Using the 284 

spatially attributed uncertainty (i.e., the probability of each local municipality being in Q4), decision-285 

makers would be able to set their own level of acceptable uncertainty. In our example, since we have 286 

two categorical bins (i.e., Q1-3 and Q4), any local municipality with a modelled Q4 probability over 0.5 287 

is assigned to the Q4 category. This assignment threshold can be varied; e.g., it is possible to state that 288 

municipalities where modelled Q4 probability is less than 0.25 or greater than 0.75 are likely to be 289 

grouped within Q1-3 and Q4 respectively, and to admit that we are less certain for the remaining 290 

municipalities. In our example, this would result in a 96% (135 out of 140) categorisation accuracy for 291 

Q1-3 and a 91% (30 out of 33) categorisation accuracy for Q4, with 53 local municipalities left 292 

uncategorised due to uncertainty.  293 

 294 

Table 3 – Comparing recall of DDM outputs with conventional models when producing estimates of 295 

firewood use in South Africa. Outputs from conventional models of varying complexity were validated 296 

using independent data (see Willcock et al (in revision) for full model descriptions and model 297 

complexity analysis). DDM outputs were validated using k-fold cross validation (see Methods). 298 

 299 

Model Model Criteria Recall for the upper quartile of 
firewood use (%) 

Bayesian network within 
Weka (Frank et al., 2016; 
Hall et al., 2009) 

Assignment threshold = 50% 64.3 

Assignment threshold = 75% 90.9 

Conventional model A 
(Complexity score: 2; 
Willcock et al (in 
revision))* 

Gridcell size = 1 km 75.0 

Gridcell size = 10 km 73.2 

Conventional model B 
(Complexity score: 4; 
Willcock et al (in 
revision))* 

Gridcell size = 1 km 75.0 

Gridcell size = 10 km 76.8 

Conventional model C 
(Complexity score: 4; 
Willcock et al (in 
revision))* 

Gridcell size = 1 km 60.7 

Gridcell size = 10 km 60.7 

Conventional model D 
(Complexity score: 36; 
Willcock et al (in 
revision))* 

Gridcell size = 55.6 km 76.8 

Conventional model A 
(Complexity score: 31; 

Gridcell size = 5 km 53.6 



Willcock et al (in 
revision))* 

* Models have been anonymised as identification of the best specific model for a particular use is 300 

likely to be location specific and may shift as new models are developed (Willcock et al., in revision). 301 

 302 

Thus, using Bayesian networks and machine learning, we are able to convey to decision-makers not 303 

only which sites show the highest ES use or value, but also how confident we are in our estimate at 304 

each site (Aguilera et al., 2011; Chen and Pollino, 2012; Landuyt et al., 2013). This information allows 305 

decision-makers to 1) apply an assignment threshold of their choosing to the modelled output before 306 

making a policy- or management-decision, and 2) use their own judgement for potentially contentious 307 

decisions, where uncertainty is higher (Olander et al., 2017). For example, whilst it is perhaps obvious 308 

that sites where we are highly certain that there is high ES value should be appropriately managed, it 309 

is unclear which sites should be the next highest management priority. Given a limited budget, is a 310 

medium-ES value site with high certainty more or less worthy of management than a potentially high-311 

value site with medium or low certainty? Decision-makers show both capacity and willingness to 312 

engage with the uncertainty information should these data be made available (McKenzie et al., 2014; 313 

Scholes et al., 2013; Willcock et al., 2016), even when results may indicate high levels of uncertainty. 314 

This is illustrated by a Sicilian case study, in which decision-makers, when advised of the relatively low 315 

overall classification accuracy (43%), accepted it as predictions were close to their actual value (i.e. 316 

73% of test data were predicted within one class above or below their actual class) and were viewed 317 

as an improvement on previous estimates (Figure 2). Thus, providing estimates of uncertainty should 318 

become standard practice within the ES community (Hamel and Bryant, 2017). 319 

 320 

There are both advantages and disadvantages to using machine learning algorithms for the ‘data 321 

mining’ step of DDM (Fayyad et al., 1996). As highlighted above, machine learning algorithms provide 322 

indications of uncertainty that could usefully support decision-making. However, similar uncertainty 323 

metrics can also be obtained using conventional modelling (i.e., via the confidence intervals 324 

surrounding regressions (Willcock et al., 2014) or Bayesian belief networks (Balbi et al., 2016)). Similar 325 

to conventional modelling, the performance of model algorithms substantially depends on the 326 

parameters, model structure and algorithm settings applied (Zhang and Wallace, 2015). For example, 327 

many machine learning algorithms require categorical data and so potentially an additional step of 328 

data processing whereby continuous data are discretised. In our South African case study, we divided 329 

firewood use data into five bins but acknowledge that the number of bins may affect model 330 

performance and the impact of this warrants further investigation (Friedman and Goldszmidt, 1996; 331 

Nojavan et al., 2017; Pradhan et al., 2017). However, a variety of machine learning algorithms are 332 

available (Table 1) and not all of them required discretised data (Jordan and Mitchell, 2015; Witten et 333 

al., 2016). Furthermore, for our firewood models, we used machine learning to create the model 334 

structure. Structural learning can yield better performing models (i.e., all our South African model 335 

configurations had a classification accuracy above 80%; Appendix 1) and may highlight relationships 336 

that have not yet been theorised (or have previously been discarded) (Gibert et al., 2008; Suominen 337 

and Toivanen, 2016). However, the obtained structures (Figure 3) may not be causal and could confuse 338 

end-users (Schmidhuber, 2015). Thus, predefined network structures may be preferred for 339 

applications where causality is particularly important. Further generalisations useful for ES modellers 340 

considering machine learning algorithms include the following: 1) Multi-classification problems may 341 

have lower accuracy – as highlighted by comparing our South African (2 category output, 82% 342 

accuracy) and Sicilian (10 category output, 43% accuracy) examples – the more categories in the 343 

modelled output, the lower the apparent accuracy. Thus, the number of categories in the output 344 

should be considered when interpreting the model accuracy metric. For example, a random model 345 



with a two category output and a four category output will be accurate 50% and 25% of the time 346 

respectively. Thus, a machine-learned model with an accuracy of 40% is poor if the output had two 347 

categories, but learned more (and so might be of more use) if a four category output was being 348 

considered; 2) Supervised learning can be used when drivers are known – for example, with no a priori 349 

assumptions, unsupervised learning could cluster beneficiaries into groups, but these may not match 350 

known beneficiary groups (i.e., livelihoods) and so might be difficult to interpret (Schmidhuber, 2015). 351 

Supervised learning can be used to align the outputs from machine learning algorithms with decision-352 

maker specified beneficiary groups; 3) machine learning algorithms are best applied to the past and 353 

present, but not the future – Although machine learning algorithms can detect strong relationships, 354 

accurately describing past events and providing useful predictions where process-based 355 

understanding is lacking (Jean et al., 2016), the relationships identified may not be causally linked and 356 

so may not hold when extrapolating across space or time (Mullainathan and Spiess, 2017). Thus, where 357 

the process is well understood, DDM is unlikely to be more appropriate than conventional process-358 

based models (Jordan and Mitchell, 2015). Understanding the caveats and limitations of machine 359 

learning algorithms is important before the algorithms are used for DDM. 360 

 361 

A further critique of DDM is that it can appear as a ‘black box’ in which the machine learning processes 362 

are not clear to the user and so they could widen the implementation gap (Clark et al., 2016; Olander 363 

et al., 2017; Wong et al., 2014). However, we have demonstrated that utilisation of machine learning 364 

algorithms can be transparent and replicable. For example, Bayesian networks allow the links between 365 

data to be visualised (Figure 3) (Aguilera et al., 2011; Chen and Pollino, 2012; Landuyt et al., 2013). 366 

The standalone Weka software is user friendly and requires minimal expertise, and ease of use has 367 

been further simplified within the ARIES software as DDM can be run merely by selecting a 368 

spatiotemporal modelling context and then using the ‘drag-drop’ function to start the machine 369 

learning process (Villa et al., 2014). Machine learning and machine reasoning (Bottou, 2014) are 370 

facilitated within the ARIES system through semantic data annotation, which makes data and models 371 

machine readable and allows for automated data selection and acquisition from cloud-hosted 372 

resources, as well as automated model building (Villa et al., 2017). To ensure that this complex process 373 

remains transparent, the Bayesian network is described using a provenance diagram (Figure S2), 374 

characterising the DDM process, i.e., which data and models were selected by ARIES (Figure 1). 375 

Furthermore, work has begun to enable the ARIES software to produce automated reports that 376 

describe the DDM process and modelling outputs in readily understandable language (see Appendix 377 

2 for a preliminary automated report for the ARIES example used in this study). Advances such as this 378 

may enable decision-makers to run and interpret ES models with minimal support from scientists, 379 

potentially increasing ownership in the modelled results and closing the implementation gap (Olander 380 

et al., 2017). 381 

 382 

The DDM process encourages scientists to use as much data as possible to generate the highest quality 383 

knowledge. Machine learning algorithms provide a tool by which ‘big data’ can be incorporated into 384 

ES assessments (Hampton et al., 2013; Lokers et al., 2016; Richards and Tunçer, 2017). For example, 385 

using the ARIES software, we demonstrated how Open Street Map data can be included in the 386 

machine learning process (Haklay and Weber, 2008). Whilst future research is needed to determine 387 

how much data is actually needed, it is clear that ES scientists must contribute to and make use of 388 

large datasets to participate in the information age (Hampton et al., 2013), particularly where data 389 

are standardised and made machine-readable (Villa et al., 2017). Using machine learning algorithms 390 

to interpret big data may help provide a wide range of ES information across the variety of temporal 391 

and spatial scales required by decision-makers (McKenzie et al., 2014; Scholes et al., 2013; Willcock et 392 

al., 2016). There has been a recent call-to-arms within the ES modelling community to shift focus from 393 



models of biophysical supply towards understanding the beneficiaries of ES and quantifying their 394 

demand, access and utilisation of services, as well as the consequences for well-being (Bagstad et al., 395 

2014; Poppy et al., 2014). Combining social science theory and data to explain the social-ecological 396 

processes of ES co-production, use and well-being consequences will likely result in substantial 397 

improvements to ES models (Bagstad et al., 2014; Díaz et al., 2015; Pascual et al., 2017; Suich et al., 398 

2015; Willcock et al., in revision). Such social science data are sometimes available at large scales (e.g., 399 

via national censuses) but, with some notable exceptions (e.g., Hamann et al. (2016, 2015)), are rarely 400 

used within ES models (Egoh et al., 2012; Martínez-Harms and Balvanera, 2012; Wong et al., 2014). 401 

The process of DDM guides researchers in how to incorporate of big data into ES models, scaling up 402 

results from sites to continents (Hampton et al., 2013; Lokers et al., 2016). DDM allows an 403 

interdisciplinary approach across a large scale and so may help guide global policy-making, e.g., within 404 

the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES; 405 

www.ipbes.net). 406 

 407 

In conclusion, DDM could be a useful tool to scale up ES models for greater policy- and decision-making 408 

relevance. DDM allows for the incorporation of big data, producing interdisciplinary models and 409 

holistic solutions to complex socio-ecological issues. It is crucial that the approach and results of 410 

machine learning algorithms are conveyed to the user to enhance transparency, including the 411 

uncertainty associated with the modelled results. In fact, we hope that the validation of ES models 412 

becomes standard practice with the ES community for both process-based and DDM. In the future, 413 

automation of the modelling processes may enable users to run ES models with minimal support from 414 

scientists, increasing ownership in the final output. Such automation should be accompanied by 415 

transparent provenance information and procedures for a computerised system to select context-416 

appropriate data and models. Taken together, the advances described here could help to ensure ES 417 

research contributes to and inform ongoing policy processes, such as IPBES, as well as national-, 418 

subnational-, and local-scale decision making. 419 
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