>
=
%)
14
Ll
=
zZ
=)
o
O
o
=z
<
o
o
O
o
=z
<
oM
|
O
O
2
>
LL
@
o

PRIFYSGOL

BANGOR

UNIVERSITY

4,5-Diazafluorene co-oligomers as electrondeficientlight-emitting materials
and selectivefluorescence sensors for mercury(ll) cations

Ghosh, Sanjay; Alghunaim, Abulaziz S.; AL-Mashhadani, Mohammed;
Krompiec, Michal Piotr; Hallett, Megan; Perepichka, Igor

Journal of Materials Chemistry C

DOI:
10.1039/C7TCO05051H

Published: 14/04/2018

Peer reviewed version

Cyswilit i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Ghosh, S., Alghunaim, A. S., AL-Mashhadani, M., Krompiec, M. P., Hallett, M., & Perepichka, I.
(2018). 4,5-Diazafluorene co-oligomers as electrondeficientlight-emitting materials and
selectivefluorescence sensors for mercury(ll) cations. Journal of Materials Chemistry C, 6(14),
3762-3773 . https://doi.org/10.1039/C7TC05051H

Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

09. Oct. 2020


https://doi.org/10.1039/C7TC05051H
https://research.bangor.ac.uk/portal/en/researchoutputs/45diazafluorene-cooligomers-as-electrondeficientlightemitting-materials-and-selectivefluorescence-sensors-for-mercuryii-cations(afc1aa25-19bf-4068-bce4-01f067fe2895).html
https://research.bangor.ac.uk/portal/en/researchers/igor-perepichka(11dcf20c-9ab5-478c-b6e5-aecdc36a5111).html
https://research.bangor.ac.uk/portal/en/researchoutputs/45diazafluorene-cooligomers-as-electrondeficientlightemitting-materials-and-selectivefluorescence-sensors-for-mercuryii-cations(afc1aa25-19bf-4068-bce4-01f067fe2895).html
https://research.bangor.ac.uk/portal/en/researchoutputs/45diazafluorene-cooligomers-as-electrondeficientlightemitting-materials-and-selectivefluorescence-sensors-for-mercuryii-cations(afc1aa25-19bf-4068-bce4-01f067fe2895).html
https://doi.org/10.1039/C7TC05051H

Journal of Materials Chemistry C

AL SOCETY Journal of
("""““ Materials Chemistry C

4,5-Diazafluorene co-oligomers as electron-deficient light-
emitting materials and selective fluorescence sensors for
mercury(II) cations

Journal: | Journal of Materials Chemistry C

Manuscript ID | TC-ART-11-2017-005051.R1

Article Type: | Paper

Date Submitted by the Author: | n/a

Complete List of Authors: | Ghosh, Sanjay; Bangor University, School of Chemistry

Alghunaim, Abdulaziz; Bangor University, School of Chemistry
Al-mashhadani, Mohammed; Bangor University, School of Chemistry
Krompiec, Michal; Bangor University, School of Chemistry

Hallett, Megan; Bangor University, School of Chemistry

Perepichka, Igor; Bangor University, School of Chemistry

Note: The following files were submitted by the author for peer review, but cannot be converted to
PDF. You must view these files (e.g. movies) online.

ESI-2_FNF sensor.MOV
ESI-3_FFNFF sensor.MOV
ESI-4_FNoF sensor.MOV

\RONE"




Journal of Materials Chemistry C Page 8 of 74

4,5-Diazafluorene co-oligomers as electron-deficient light-emitting materials and

selective fluorescence sensors for mercury(Il) cations™

Sanjay Ghosh, Abdulaziz S. Alghunaim, Mohammed H. Al-mashhadani, Michal P.
Krompiec,’ Megan Hallett, and Igor F. Perepichka*

School of Chemistry, Bangor University, Bangor, LL57 2UW, UK
*E-mail: i.perepichka@bangor.ac.uk; i_perepichka@yahoo.com; Tel: +44—(0)1248—382386

Abstract. A series of 4,5-diazafluorene-based (N) conjugated co-oligomers with 9,9-
dialkylfluorene (F) or electron-deficient dibenzothiophene-S,S-dioxide (S) have been synthesized
by Pd-catalyzed coupling reaction (FNF, FFNFF, FNoF, SNS, NSN). Cyclic voltammetry studies
reveal their improved electron affinity compared to oligofluorene. SNS and NSN co-oligomers
showed a decrease of their LUMO energies by 0.37 — 0.38 eV compared to FNF cooligomer.
Absorption/emission studies showed that all oligomers, except FNoF, are blue-emitting materials
(ApL ~ 400 — 450 nm) with high quantum yields of their photoluminescence (®rL = 84 — 100% in
solution and 24 — 42% in the solid state). FNoF trimer emits in yellow region with very low ®pL ~
1%, but the emission efficiency is substantially increased to ®pr = 10—17% in the solid state. FNF
co-oligomer was studied as metal cation responsive colorimetric and fluorescent sensor using a
series of mono- and divalent cations and showed high sensitivity and selectivity toward mercury
cations. On addition of Hg?*, the blue emission of FNF (Apr = 404 nm) was quenched and a new,
bathochromically shifted (to the green region, Ap. = 507 nm) emission band appears, which allows
to use this compound as both “ON - OFF” and “OFF - ON” fluorescent sensor.

1 Introduction

During the past two decades, fluorene-based oligomers and polymers have extensively been studied
as efficient blue light-emitting materials with good thermal and electrochemical stability, high
charge mobility, and easily tunable properties through chemical modifications and co-
polymerization for organic light-emitting devices (OLEDs) and other optoelectronic

applications.!2343

T We dedicate this paper to Prof. Fred Wudl in celebration of 50 years of his contributions to the field of n-conjugated
organic materials.

¥ Electronic supplementary information (ESI) available: procedures for synthesis of the oligomers and
intermediates. 'H and 'C NMR spectra and MS for characterized compounds; '*C DEPT and COSY NMR
spectra for selected compounds; additional data on UV-Vis and PL experiments (including metal cation
effects) and DFT calculations. See DOI ######

$ Present address: Merck Chemicals Ltd, Southampton, UK.
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More recently, the topologically similar structure of dibenzothiophene-S,S-dioxide (Figure 1),
which consist of an electron deficient sulfonyl (—SO2—-) group as a bridge between the benzene rings

(instead of —CR>— bridge in the fluorene) has attracted much attention for the construction of

6,7,8 9,10,11,12,13,14,15,16

conjugated light-emitting oligomers®™’® and polymers, as well as molecular OLED
materials with thermally activated delayed fluorescence (TADF).!”!%1920 Apn incorporation of
dibenzothiophene-S,S-dioxide units into polymeric or molecular systems improved their electron
affinity and electron transporting in the materials, and facilitated intramolecular charge-transfer in
some specific structures.

Another electron-deficient conjugated moiety of a similar topology is 4,5-diazafluorene,?' in
which case two carbons (CH groups) in the benzene rings are substituted by more electronegative
nitrogen atoms. According to DFT calculations, the LUMO (lowest unoccupied molecular orbital)
energy levels of dibenzothiophene-S,S-dioxide (S) and 4,5-diazafluorene (N) are lower than that in
fluorene (F) by 1.04 eV and 0.58 eV, respectively, while the HOMO-LUMO energy gaps (HOMO
is highest occupied molecular orbital) are very close for all three units (Figure 1). As such, an
incorporation of N moieties into the conjugated oligomers and polymers should substantially
decrease their LUMO energy levels to afford materials with high electron affinity for using as
electron transporting materials or n-type semiconductors. Some 4,5-diazafluorene derivatives are
fluorescent and they have already been exploited in a few studies for design of semiconductive
light-emitting materials with improved electron injection/transporting properties,?>?** donor-

25,26,27,28

acceptor conjugates and conjugated co-polymers.?’

-0.77 0.58 6V
-1 __\ T °7 -135 Lumo
1.04 eV - T
_2 T
I ! |
Eg=4.96 Eq=4.85 Eg=4.88

B3LYP/6-31G(d) energies [eV]
S

F S N
(52 By
CoHs CoHs O//S\\O CoHs CaHs

Figure 1 Frontier orbital energy levels of 9,9-diethylfluorene, dibenzothiophene-S,S-dioxide and
9,9-diethyl-4,5-diazafluorene, calculated by DFT/B3LYP/6-31G(d).

Apart from the improved electron deficiency (compared to fluorene), 4,5-diazafluorene can

act as NN ligand to form complexes with metal cations. Many 4,5-diazafluorene derivatives have
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been studied in the past as chelating agents for transition (and some main group elements)

30.31.32.33.3435 More recently, 4,5-diazafluorene has also attracted attention for design of

metals.
cationic iridium (III) complexes for light-emitting electrochemical cells (LEECs).36:37-38:39:40

For fluorescent ligands, coordination with metal cations can lead to a change of their
fluorescence properties through different mechanisms, e.g. fluorescence resonance energy transfer
(FRET), photo-induced energy transfer (PCT) or photoinduced electron transfer (PET).*! This
strategy had been used by Wong’s group to demonstrate fluorescence sensing of bipolar donor-
acceptor (D-A) spiro-bridged bis(diphenylamino)fluorene/4,5-diazafluorene molecules in
complexation with metal cations.?> Modulation of the emission color on protonation or on
complexation with metal cations was also recently shown for 4,-5-diazafluorene copolymers by
Huang’s group.?

In this work we report a series of novel co-oligomers with an improved electron affinity based
on electron-deficient N and S moieties and electron-rich F moiety. We demonstrate how the
combination of these building blocks tune the LUMO energy levels of the co-oligomers and their
ability toward n-doping, as well as how these structural variations effect on the emission
characteristics of the materials. We also present the results on complexation of the trimer FNF with
a series of metal cations (M" and M>"), which shows remarkable sensitivity and selectivity of its
fluorescence to the toxic mercury cation, Hg?*, and thus can be used as selective fluorescent sensors

for mercury salts in the presence of other cations.

2 Results and discussion

2.1 Synthesis

Synthesis of co-oligomers FNF, FFNFF, FNoF, NSN, and SNS is depicted in Scheme 1 (see ESI
for details). 4,5-Diazafluorenone (3) was reduced into 4,5-diazafluorene by Wolf-Kizhner reaction.
Its alkylation by n-hexyliodide and #~-BuOK, as a base, in tetrahydrofuran (THF) or by n-octyliodide
and NaOH, as a base, in dimethylsulfoxide (in the presence of tertiary ammonium salt as catalyst),
gave the monomers 1 and 5 with the yields of 49% and 53% (in two steps), respectively. Palladium-
catalyzed Suzuki coupling of the monomers 1 and 3 with fluorene- or bifluorene-boronic acids (2 or
4) gave the trimers FNF and FNoF, and the pentamer FFNFF. While FNF and FNoF were
obtained with conventional heating, the pentamer in these conditions gave very low yield due to
substantial mono-coupling of bifluorene 4 on prolonged heating and formation of mono-substituted
by-product. Therefore, the reaction was performed in a microwave-assisted conditions at 150 °C
affording FFNFF with 61% yield after column purification. Borolane derivatives of

dibenzothiophene-S,S-dioxide 6 and 8 were synthesized from corresponding mono-/dibromo-
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dibenzothiophene-S§,S-dioxides in excellent yields (~75-85%) using Miyaura coupling with
bis(pinacolato)diboron, catalyzed by PdCla(dppf) (see ESI). This procedure was found to be a much
better method compared to the previously reported procedure, which gave only 26% yield of 8.4
Reactions of dibromo- and monobromo-diazafluorenes 5 and 7 with monoborolane 6 and
diborolane 8, respectively, gave corresponding 4,5-diazafluorene/dibenzothiophene-S,S-dioxide
trimers SNS and NSN. Generally, Pd-catalyzed couplings worked well to give the co-oligomers
with good yields of 49—71% (except NSN, in which case the yield was lower, 26%). All synthesized

oligomers are stable light-yellow compounds, with good solubility in common organic solvents.

4'%%
N CeHiz CeHis CeH1z. _CgHis
N\ 2, (i)
g0 2 SO LD
71%

CeHiz™ "CgHys CeHi3 CeHys
1 FNF
(i, iv)T 49%

N N— CeH1z CeH1z CeHis CeH1s
_ 2O =TT o
{5 PO FT

49%
(6]
3 FNoF
(iii,v)l 53%
\// \//
N N
N = 6, (i) /
e S /\\
59%
CsH17 C8H17 CSH17 CSH17
5 SNS
/ N\ N— O\ //O / N N—
A\
T e 0 \/\ eV
26%
CgHy7 CgHiz CgH17 CgHy7 CgH17 CgHi7
7 NSN
CeH1s. CeHi3
B(OH)2 QO OO B(OH),
C6H13 C6H13 CGH13 CGH13

CIr ey

Scheme 1 Synthesis of 4,5-diazafluorene-based co-oligomers: (i) Pd(PPh3):Cl, 2M K2COs,
dioxane or dioxane—EtOH, reflux, 24-32 h; (ii) Pd(PPhs)s, 2M K2CO3, toluene—EtOH, MW = 150
W, 150 °C, 4 h; (ii1)) N2HaxH20, AcOH (cat.), ethylene glycol, 135-140 °C, 20 h (71%); (iv)
CeHisl, +-BuOK, THF, -5...+25 °C, 32 h (69%); (v) CsHi7l, 50% NaOH, [BzNEt3]+C1 (cat.),
DMSO, r.t., 23 h (75%).
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2.2 Absorption and emission spectra

The absorption and emission spectra of all the co-oligomers have been studied both in solution
(degassed dichloromethane, DCM) and in the solid state (spin-coated films on quartz windows) at
room temperature (Figure 2 and Table 1). UV-Vis spectra of all oligomers, both in solution and in
films (Figures 2a,c) showed characteristic absorption bands between 300 nm to 400 nm attributed to
the spin allowed n—n" transition. FNoF, apart of an absorption in the UV region, also showed
additional broad low intense band in the visible region (400-500 nm, peaked at ~450 nm) attributed
to spin forbidden n—z" transition on the carbonyl group of 4,5-diazafluorenone. All the trimers
showed only minor changes in their absorption maxima (in the range of 7.5 nm and 13 nm, in DCM
and in films, respectively). Compared to FNF, more electron deficient SNS and NSN demonstrated
some hypsochromic shifts of their absorption spectra (by ~4-5.5 nm in DCM and ~9.5-15 nm in
films), and an elongation of the conjugation in FFNFF pentamers resulted in bathochromic shifts
by 7-11.5 nm. The optical energy gaps of the oligomers determined from the red absorption edge of
the spin-coated films were in the range of Eg ~ 2.92-3.09 eV, except of FNoF whose E°" = 2.44
eV.

319 (in DCM) 1.0 '

e — (b) (in DCM)

g 087 —FNF 2 0.8

£ — FFNFF e

-g 0.6+ FNoF o 0.6 ENE

2 ——NSN b

< 044 ——SNS N 0.4/ 7E;NEF

o © [o]

8 o2 E o2 ——NSN

s 2 ——SNS

§ 0.0+ , ,K ‘ ; 0.0 - : : : , :

z 300 350 400 450 500 350 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

8 0.84 —FNF 3 0.8

£ — FFNFF g

-g 0.6+ FNoF 2. 0.6+

@ —NSN §

< 044 —_SNS = 0.4

S £

N 0.2 6 0.2

© 4

E ool , , : : 0.0 , , : , : :

S 300 350 400 450 500 350 400 450 500 550 600 650 700
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Figure 2 Normalized UV-Vis absorption (a,c) and photoluminescence (b,d) spectra of 4,5-
diazafluorene co-oligomers in DCM solution (a,b) and in films (c¢,d). For PL spectra, Aex are shown
in the Table 1.
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Table 1 Absorption and photoluminescence maxima of 4,5-diazafluorene-based co-oligomers in

solution and in the solid-state, their photoluminescence quantum yields and optical energy gaps.

opt
Aps (Mm)* A, (nm)* Ay (nm)? App (nm)* e (%), Do (%), g™

Comp. . ) Dex (nm)].Y [hex (nm)].° ¢
DCM Film DCM Film DCM Film (eV)
FNF 366 310,379 409, 430sh 413, 434 93 [350] 35[370] 3.09

FFNFF 328,378 330,386 429,447sh  438,460sh  84[350]  42[385] 2.92
FNoF  366,440sh 364,440sh 416,575 416,570 1[370]  10.5 [370]%f 2.44
1[370F  14.4-17.3

[370]%¢
NSN  340sh,h 358.5 345sh, 364 405, 425 440 89[350]  24[365] 3.02
SNS 303,362 305,369.5 399,421  418sh,435, 101[350] 30[370] 2.9

480

2 The strongest peaks are shown in bold. "Photoluminescence quantum yields (PLQYs) in solution estimated using 9,10-
diphenylanthracene as a reference (®p. = 0.90 in degassed cyclohexane);* (excitation wavelengths in nm are shown in
brackets). “Absolute PLQYSs in the solid state determined using an integrating sphere for spin coated films on quartz
substrates. “Optical energy gaps determined by the red edge of absorption spectra for spin coated films on quartz
substrates. *Absolute PLQY, measured on an integrating sphere. ‘For powder sample. ®For films (slight increase of
PLQY was observed on thermal annealing the films at 80 — 130 °C, see Figure S5 in the ESI). "sh — shoulder.

Oligomers FNF, FFNFF, NSN and SNS are highly emissive materials which fluoresce in the
blue region with a typical vibronic structure of their emission spectra, characteristic for rigid-rod
conjugated systems (Figures 2b,d). They showed high photoluminescence quantum yields (PLQY,
@y, ) of their emission of 84-100% in solution (vs 9,10-diphenylanthracene standard) and 24-42%

in the solid state (absolute PLQY), the values which are similar to that commonly observed in

6:44,45.46:47.4849 Dye to intramolecular donor-acceptor interaction, the local excited

oligofluorenes.
state (LE) emission in FNoF in the blue region was almost completely quenched and a new broad
intramolecular charge transfer (ICT) emission band in the yellow region at 570 — 575 nm appeared.

while the PLQY of this emission in solution is rather low (®p ~ 1% (DCM), Figures 2b, Table 1).

Fluorene—fluorenone—fluorene trimer, FFoF, as an analog of FNoF showed similar spectral changes

and substantial quenching the emission (in DCM: A,; = 584 nm, ®p; = 4%).>° Also, quenching the

oligo/polyfluorene emission by “fluorenone defects” in the main chain® with an appearance new
band in the green region was subject of numerous studies.>>3->435-56

Often, the emission of luminescent materials in the solid state is decreased compared to the
solution because the excited states of the aggregates decay via non-radiative pathways. Surprisingly,
the PLQY of FNoF was drastically increased in the solid state (as powder or spin-coated films) to
ca. 10 — 17% (Table 1). Thermal annealing of the films at 80 — 100 °C does not change the shape of

the emission, but leads to some increase of PLQY (from 14.4 to 17.3%; Figure S5 in the ESI). This

6
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indicates that intramolecular interactions inhibit non-radiative pathways of the excited state decay.
We did not studied the details of the photophysical processes responsive for stronger quenching the
emission in solution compared to the solid state, but there are several examples in the literature on
an improved solid-state emission. One widely studied phenomenon is an aggregation-induced
emission (AIE) due to restriction of intramolecular rotations in a condensed phase.’’ Other
possibilities include e.g. conformation planarization and twisted/planarized intramolecular charge
transfer (TICT/PICT). Also, tuning the triplet energy levels by solid state effect might be
responsible for the difference between the solution and solid-state PLQY. Thus, rigid molecules of

anthracene and perylene showed substantially higher PLQY in a single crystal state (9, = 64% and
31%, respectively) compared to their solutions (®p; = 0.28 % and 0.02%, respectively).”® This was

explained by low-lying second triplet energy level in solutions (ET2 = 3.24 eV), which is lower than
the energy level of the singlet excited state (Es1 = 3.29 eV), thus facilitating the singlet-triplet inter-
system crossing and quenching the emission (in the solid state, the second triplet state energy, Et2 =

3.51 eV, is higher than the energy level of the singlet excited state Esi1 =3.11 eV).

Solvent effect. Solvent polarity effect on the absorption and emission spectra was carried out
for the oligomer FNF (Figure 3a). In our previous studies on fluorene/dibenzothiophene-S,S-
dioxide co-oligomer (FSF), we observed very little effect of the solvent polarity on the absorption
spectra [AAabs(EtOH-hexane) = 5 nm] but more pronounced effect on the PL spectra [AApL(EtOH—
hexane) = 41 nm].” Detailed photophysical studies of FSF have shown that only weak D-A
interaction occurs in FSF in its ground state, but the excited state of the molecule is highly polar,
with twisted intramolecular charge transfer (TICT). Polar solvents stabilize the excited ICT state, so
depending on the solvent polarity, the emission occurs from either LE (in non-polar solvents) or
ICT state (in polar solvents), or from both (dual LE/ICT emission®!?). The N moiety is somewhat
weaker as an acceptor compared to S (Figure 1). On the other hand, the nitrogen atoms in N are part
of the m-cloud of the main oligomer chain. So, FNF showed positive solvatochromic effect in both
absorption and emission spectra, while the shift in the emission is less pronounced compared to
FSF [Figure 3a: Alabs(EtOH—-hexane) = 8.5 nm, AkrL(EtOH—hexane) = 17 nm; see also Figure S6 in
the ESI]. Similar positive solvatochromism was observed for FFNFF and FNoF, in which cases the
influence of the solvent polarity on the emission wavelength are even more pronounced (FFNFF:
AlrL(EtOH-hexane) = 32.5 nm; FNoF: AApL(ACN-hexane) = 77 nm; Figures 3b,c and Table S3 in
the ESI). These spectral changes of FNoF ressemble well the emission of its fluorene—fluorenone—
fluorene analog (FFoF), which showed substantial solvatochromism of its emission (AL = 507 nm

(methylcyclohexane), 584 nm (CHCl3), 543 nm (films)).>
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Figure 3 Effect of the solvent polarity on the absorption (solid lines) and emission spectra (dotted
lines; excited at the absorption maxima) of (a) FNF, (b) FFNFF and (c) FNoF oligomers.

4,5-diazafluorene can be protonated, which should cause changes of their absorption and emission
spectra.29% Titration of FNF solution [~ 0.01 mM] in THF with methanesulfonic acid (0.05 — 0.5
mM; an excess 5 — 50 times) results in some decrease of the intensity of FNF absorption at 365 nm
and an appearance of a shoulder absorption at the red edge of the spectrum, with an isobestic point
at 386 nm (Figure 4a). At higher concentrations of the acid (1 — 40 mM), FNF absorption band

vanished and new band corresponding to the protonated form(s) of the oligomer appears at ~ 410

Normalized Abs., PL (a.u.)

Normalized Abs., PL (a.u.)

Normalized Abs., PL (a.u.)
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nm (deviation from the isobestic point at higher concentration might be due to partial protonation of
both pyridine rings). Similar changes are observed in photoluminescence spectra, i.e. disappearance
of vibronic emission of FNF in the blue region and an appearance of green emission of the
protonated FNF at 510 nm (Figure 4b and Figure S7c in the ESI). These changes in a emission
color are obvious under illumination by UV lamp (365nm) and clear seen by naked eyes (an insert
in Figures S7d,e in the ESI) illustrating promising light-emitting properties of the oligomer in its

protonated form.

(b) . FNF[10 uM] + CH3SO3H ——0
(@)  FNF[10 uM] + CH3SO3H ——0 _ J ——0.05mM
1.0+ l —0.05mM ) 7 (Lex = 365 nm) —01mM
——0.1mM c 0'25 M
~ o8] ——o025mm 3 6] e
5 ° —o05mM & ] 0.5mM
3 1 mM % —1mM
g 0.6 —2omM < 4] —2mM
c 3mM - 3 mM
8 0.4<\ ——5mM 2 31 —5mM
5 10 mM ® 10 mM
2 S — 20mM g 21 ——20mM
0.2 =
< 40 mM £ 1] 40 mM
|
0.0 o 0 T T T T T T T T T =
300 350 400 450 400 450 500 550 600 650 700
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Figure 4 Changes in UV-Vis absorption (a) and photoluminescence (b) spectra of FNF [~10 uM] in
THF at various concentrations of methanesulfonic acid (0.05 — 40 mM). For PL spectra corrected to
the differences in the absorption at the excitation wavelength (Aex = 365 nm) see Figure S7c¢ in the
ESI. Inset photos show the colors of the emission under hand-held UV lamp (365 nm)

2.3 Cyclic voltammetry study
To evaluate the redox properties in n-doping and p-doping processes, synthesized co-oligomers
were studied by cyclic voltammetry method (CV) (Figure 5). Due to the presence of electron-
deficient N and S moieties, an oxidation of oligomers occurs at high potentials (onset oxidation
potentials Eonset®™ = 0.64-0.98 V vs Fc/Fc' couple; Table 2) and is electrochemically irreversible
(quasi-reversible for FNF). The reversibility of the reduction process is better (quasi-reversible or
reversible for all trimers), allowing to estimate their half-wave potential E12™¢. Thus, replacement
of fluorene moiety in FNF (E12" = —2.35 V) by more electron deficient S moiety (SNS) results in
pronounced positive shift of the reduction wave by 0.38 V to E12¢ =—1.96 V (similar potential of —
1.97 V was observed for NSN oligomer). These results are in line with the computed LUMO energy
levels for F, N and S (Figure 1).

Cyclic voltammetry data have been used to estimate the HOMO and LUMO energies of the
oligomers and their HOMO-LUMO gaps (E.“, Table 2). Qualitatively the results on the HOMO-
LUMO gaps from CV experiments are in agreement with that obtained from electron absorption

spectroscopy data. When considering their numerical differences, it should be taken into account

9
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that optical and electrochemical measurements have deal with different physical processes. The use
of different solvents can also contribute to the not ideal coincidence of the estimations of the energy

levels by these methods.
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Figure 5 Cyclic voltammograms of (a) N/S co-oligomers (b) F/N co-oligomers. Reduction and
oxidation scans were performed in THF and in DCM, respectively, with 0.2 M BusNPFs as
supporting electrolyte at room temperature. Scan rate is 100 mV/s. Ag/Ag" was used as the
reference electrode and the CV were calibrated with Fc/Fc' as an internal reference.

Table 2 Redox potentials of oligomers determined by cyclic voltammetry, HOMO and LUMO
energy levels and the HOMO-LUMO gaps from CV data and from DFT/B3LYP/6-31G(d)
calculations.?

Samples  Eomse®™  E12*0 Enomo™  Eromo®  Eg®Y Enomo™ ' Eromo™!  EgT

vy (V) (eV)" V)" (V) (eV) (eV) (eV)

FNF 098  -2.35 -5.78 —2.45 3.33 -5.45 —-1.69 3.76

FFNFF 0.64 —1.72 —5.44 -3.08 2.36 -5.25 —-1.77 3.48
—-1.51,

FNoF 0.81 -5.61 -3.29 232 —5.65 —2.56 3.09
—2.14¢

NSN 0.66 -1.97 -5.46 -2.83 2.63 —-6.02 -2.26 3.76

SNS 0.70 —-1.96 -5.50 -2.84 2.66 —-6.10 —2.34 3.76

aCV potentials are given vs Fc¢/Fc* couple as an internal reference (the average E, potentials for Fc/Fc* vs used Ag/Ag*
reference electrode were 0.20-0.22 V in DCM and 0.19 — 0.21 V in THF). Oxidation and reduction potentials were
measured in DCM and THF, respectively, with 0.2 M BusNPFs as supporting electrolyte at scan rate of 100 mV/s.
Eonset™ and E1p™ are onset oxidation and half-wave reduction potentials, respectively (oxidation processes are
irreversible, so the onset potentials have been estimated from the CV traces). *Enomo®Y = —(Eonset™ + 4.8), ELumo®’ =
—(E15™ + 4.8). “Half-wave oxidation, E1,°* (this value was used for estimation of HOMO of FNF). ¢Second reduction
potential, £,7%,

2.4 Computational study
To estimate the frontier energy levels and distribution of the HOMO/LUMO orbitals in the
synthesized co-oligomers, we performed DFT calculations at the B3LYP/6-31G(d) level of theory
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using Gaussian09 package of programs (Figure 6 and Figures S1 — S4 in the ESI).®' Compared to
FNF oligomer, oligomers SNS and NSN consisting electron-deficient S moiety, showed substantial
stabilization of their LUMO orbital (by 0.65 eV and 0.57 eV, respectively), which is in good
agreement with CV data (ELumo®" are decreased by 0.38 and 0.39 eV, respectively; Table 2). Yet,
the HOMO-LUMO gaps for all three co-oligomers remain almost unchanged.

For all three ¢ both HOMO and LUMO are delocalized along the whole molecules. Even for
FNF, no substantially increased localization of LUMO on electron-deficient central N moiety (or
HOMO on the end fluorene moieties) were observed, indicating on the very weak charge transfer
character in the molecule. This is in good agreement with absorption/emission measurements,
which showed only weak solvatochromic effect. In contrast to that, the HOMO in FNoF is
delocalized over the whole m-system of the trimer, whereas the LUMO is fully localized on the
central 4,5-diazafluorenone moiety assuming the strong intramolecular charge transfer in this
molecule. Indeed, its HOMO-LUMO gap is much lower than that for other oligomers and
spectroscopic studies of FNoF showed substantially distinctive absorption and especially emission
spectra for this trimer (Figures 2, 3 and Table S3 in the ESI). As expected, an elongated conjugation
in FFNFF pentamer compared to trimer FNF led to a decrease of its LUMO and an increase of its
HOMO energy levels (and as such HOMO-LUMO gap contraction), and somewhat more

pronounced localization of its LUMO on the central part of the molecule.

AT,
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Figure 6 HOMO/LUMO energy levels, HOMO-LUMO gaps and localization of the frontier orbital
coefficients for co-oligomers FNoF, FFNFF, FNF, SNS, and SNS by DFT B3LYP/6-31G(d)
calculations in a gas phase.

Modelling the solvent effect (acetonitrile) by PCM method (polarizable continuum model)
using 6-31G or 6-311G basis sets shows that the solvent polarity mainly effect on the LUMO
energy levels of the co-oligomers whereas the effect on the HOMO is less pronounced (Figure S4 in

the ESI). For 4,5-diazafluorene co-oligomers with electron-donating fluorene (FNF, FFNFF and

11
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FNoF), the solvation by a polar acetonitrile leads to some contraction of the HOMO-LUMO energy
gaps, E¢""T. These results are in line with a positive solvatochromism for these co-oligomers as
demonstrated by spectroscopic studies (Figure 3). In the case of SNS, and SNS, however, polar
acetinitrile has negligible effect on HOMO, LUMO and E¢°'T (Figure S4 in the ESI).

2.5 FNF co-oligomer as selective fluorescent sensor for mercury cations

The co-oligomer FNF has been used to study the ability of the 4,5-diazafluorene moiety to act as
chelating N*N ligand to form complexes with metal cations. FNF itself showed only weak charge-
transfer character (according to DFT calculations and its very weak solvatochromism). The
complexation of the central N moiety with positively charged cations should increase the
intramolecular charge transfer from the end fluorene group onto the central 4,5-diazafluorene
moiety.%? This is what was actually observed in the case of FNoF with the central electron-deficient
4,5-diazafluorenone moiety, in which case pronounced ICT, accompanied by drastic changes in the
emission characteristics were observed (Figures 2b,d and 3c¢).

For these studies we used a series of monovalent and divalent metal salts (LiClO4, NaClOs4,
AgClO4, Mg(ClOa4)2, Ba(ClO4)2, Cu(BF4)2, Ni(NO3)2, Pb(ClO4)2 and Hg(ClO4)2) to look at the
metal ion sensing properties of FNF by electron absorption and fluorescence spectroscopies. In
THF solution, FNF absorbs at Aabs = 365 nm and emits at Ar. = 404 nm (Figures 7a,b). Initial
experiments with ~1.4 pM FNF and 10-fold concentrations of metal salts (~14 uM) in THF
solution showed no or only weak effect of Li*, Na*, Ag®, Cu?**, Mg?" and Ba®" cations on both
absorption and emission spectra compared to the cation-free solution of FNF (Figure 7). Indeed,
only small decrease in the intensities of absorption and emission bands was observed in these cases,
with no spectral shifts or changes in the width of the spectra. In the case of Ni*" and Pb?*’, the
decrease of absorption intensity was larger, with some bathochromic shifts of the bands (to 371 and
378 nm, respectively) and an appearance of shoulders on the red edges of their absorption spectra
(Figure 7¢). However, the emission spectra did not shift or change their shape, but only a decrease
of the fluorescence intensity was observed (Figure 7d). In contrast to that, in the presence of Hg*",
the absorption spectrum was drastically changed, showing more pronounced bathochromic shift,
with two new bands at 387 and 405 nm. The blue emission of FNF was almost completely
quenched and a new greenish emission band appeared at 507 nm (Figure 7d; see also Figures S8
and S12 in the ESI for changes in the color space and the absorption/emission colors). The process
of complexation of FNF with Hg?" cations is reversible as has been proven by dilution of {FNF +

Hg(ClO4)2} with cation-free FNF solutions of the same concentration (Figure S9 in the ESI).
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Figure 7 The effect of metal cations on the absorption (a,c) and emission (b,d) spectra of co-
oligomer FNF in THF solutions. Concentration of FNF is ~1.4 uM, concentration of metal salts is
~14 uM. For PL spectra, excitations are at the wavelengths close to the absorption maxima: Aex =
365 nm (cation-free, Li*, Na*, Cu?", Mg?', Ba?"), 367 nm (Ag"), 371 nm (Ni*"), 379 nm (Pb*"), 395
nm (Hg*").

Thus, the FNF oligomer showed good metal ion responsive properties towards Hg?>" compared
to other cations. Mercury is a highly toxic metal and the development of sensitive and selective
sensors for Hg?*, which causes environment, water pollution and living organisms intoxication is a
very challenging task.** A large number of different classes of materials (organic,
inorganic/hybrids, nanoparticles, biomolecules) and methods (colorimetric, fluorescent,
electrochemical, field-effect transistors etc) have been developed for Hg?* detection. Among them,
the detection based on changes of the fluorescence is one of the promising and widely used method
due to its high sensitivity, good selectivity (in some cases) and simplicity of the method. Both “ON
- OFF” (quenching the fluorescence)®*6>-:66:67.68.69.70.71.72.73.74.75 and “OFF = ON” (growing the
fluorescence)’®’”-’® modes of the detection have been exploited. In more rare cases, the detection
based on the changes of PL spectra, potentially allowing dual-mode detection, was used.”®*° While

visually spectral changes of the emission are obvious in this case, the problem of full separation of
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the emissions of free fluorescent ligands and their complexes with Hg?" might be an issue for
quantitative monitoring at two different wavelengths. Different approaches have been used to
decrease the detection limit of Hg?', e.g. sensors based on Hg?" mediated folding of fluorophore
labelled DNA (detection limit 3.2 nM),%! signal amplification by oligonucleotide—conjugated
polymer intercalates (detection limit 0.27 nM),** polymerase assisted fluorescence amplification
(detection limit 40 pM),** fluorescence polarization enhancement of DNA-fluorophore by gold
nanoparticles (detection limit 0.2 ppb).®* The detection limits for simple organic molecules as
chromophores/fluorophores is higher (~0.1 — 10 uM), but they have an advantage of relatively easy
and cheap synthesis of materials, and simple method of analysis/detection.

As complexation of FNF with Hg?* leads to disappearance of the oligomer emission in blue
reagion and an appearance of green emission of the complex (Figure 7d), we estimated the relative
intensities of the emissions of FNF in the presence of different cations (versus cation-free FNF
solution) by monitoring at two wavelengths, 416 and 507 nm. Figure 8a clearly demonstrates high
selectivity of FNF toward Hg?" compared to other studied cations in both “ON = OFF” (quenching
the fluorescence at 416 nm) and “OFF - ON” (growing the fluorescence at 507 nm) modes of
sensing. Absorption spectra of FNF also showed some changes on addition of metal cations. For
Li*, Na®, Mg*", Ca?>" and Ba*", only decreasing the absorption intensities are observed, whereas
Ag’, Ni** and Pb*" show some bathochromic shifts of FNF absorption and an appearance of new
long wavelength band (Figures 7a,c). This shift and an intensity of a new long-wavelength band is
much more pronounced in the case of Hg?*. Comparison of the absorption intensities of FNF in the
presence of various metal cations, monitored at two wavelengths, i.e. at 366 nm (FNF absorption)
and at 440 nm, demonstrates that Hg?* can be selectively detected by a colorimetric method as well

(Figure 8b).
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Figure 8 (a) Relative fluorescence intensities of FNF solutions in THF in the presence of metal
cations (I) versus cation-free FNF solution (Io) monitored at AL = 416 nm (blue bars) and 507 nm
(green bars). (b) Absorption intensities of FNF solutions in THF in the presence of metal cations
and for cation-free solution normalized to the absorption intensities in the presence of Hg*" cations,
monitored at Aabs = 366 nm (blue bars) and 440 nm (green bars). The values of absorption and PL
intensities have been taken from Figure 7.

Complexation of FNF with Hg*" led to bathochromic shift of its absorption (Figure 9a),
quenching the emission in the blue region and an appearance of new emission band in the green
region (Figure 9b). These changes are attributed to changes in the electronic structure of FNF on
complexation. As evidenced from the absorption/emission and DFT studies, donor-acceptor
interaction between the fluorene and 4,5-diazafluorene units in FNF is rather weak and its emission
occurs solely from the LE state. Complexation of N with Hg?*" increases the electron acceptor
character of the central moiety facilitating the ICT in the ground state and the bathochromically-

shifted emission from the ICT excited state (Figure 9).
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Figure 9 The absorption (a) and PL spectra (b) of FNF (~10 uM) in THF with an increased
concentration of Hg(ClO4)2. For PL spectra (b), the THF solutions were excited at 365 nm (solid
lines) and 415 nm (dashed lines), respectively. Inset photos show the colors of the emission under
hand-held UV lamp (365 nm)

To look at the stoichiometry of this complexation, we performed titration of FNF solution (20
uM) with Hg(ClO4)2, monitoring their absorption and emission spectra (Figure S10 in the ESI).
Job’s plots for both absorption and fluorescence intensities revealed the formation of a 2:1 complex,
2[FNF]:[Hg?*'] (Figures S11 and S12 in the ESI). Titration of 10 uM FNF solution with Hg(C104)2
also showed the maximum fluorescence at 2:1 ratio [FNF]:[Hg?*]. From the linear dependence of
FNF fluorescence intensity at 510 nm at low Hg?" concentrations, we estimated the detection limit
of Hg?" in these conditions of ~0.15 uM (Figure S13 in the ESI).

Changes in absorption/emission spectra of FNF in the presence of metal cations is based on its
complexation as N*N ligand, so the efficiency of the process depends on the equilibrium constants
and tuning the energies of the optical transition. The process is especially efficient for Hg?" cations,
while it can compete with complexation of other metal cations. To look at the interference of Hg>*
detection by other metal cations we have studied the absorption and emission spectra of {FNF [10
pM] + Hg(ClO4)2 [5 uM]} solutions in THF in the presence of other metal salts (Figures S14 and
S15 in the ESI). In the case of Na*, Cu?* and Ba**, no changes in the emission wavelengths or their
intensities have been observed even at high concentrations (20 uM) of these cations (Figure S14 in
the ESI). On the other hand, some changes in the intensities and/or wavelengths of the
absorption/emission spectra have been observed in the case of Mg, Ag" and Ni>" cations, which
might interfere at some extent in quantitative detection of Hg?" in solutions (Figure S15 in the ESI).
This can be partly minimized by a proper choice of the excitation wavelength (close to the isobestic

points of the absorption spectra) and two-wavelengths detection (in ON - OFF and OFF - ON
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modes, at shorter and longer wavelengths, respectively). We should also mention that the changes
of the emission color in the presence of Hg?" cations are pronounced and can be easily detected by
naked eyes. Qualitatively, there is no observable interference in the emission color of {FNF +
Hg(ClO4)2} solutions under hand-held UV lamp (365 nm) irradiation by other metal cations (see
movies in the ESI).

FNF is not a unique compound with this respect as a selective sensor for Hg?*. Other
oligomers also show similar bathochromic shifts in their absorption/emission spectra and changes of
the color of their emission in the presence of Hg?" cations. Thus, upon addition Hg(ClO4)2, the
emission of FFNFF solution is changed from blue to yellowish-green (ApL: 423, 443 nm - 538 nm)
and the emission of FNoF solution is changed from yellow to orange (ArL: 569 nm = 617 nm)
(Figure S16 in the ESI). Other studied cations do not change the emission colors of FFNFF and
FNoF solutions (see movies in the ESI).

Further optimization of the conditions (concentration of 4,5-diazfluorene conjugated ligand,
solvent, two-wavelength monitoring, as well as new molecular design to separate the LE emission if
a free molecule and ICT emission in the complex) can further improve the sensitivity and the

selectivity of this type of fluorescent sensors toward mercury cations.

3 Conclusion

A series of 4,5-diazafluorene (N) co-oligomers with fluorene (F) and dibenzothiophene-S,S-dioxide
(S) have been synthesized, i.e. FNF, FFNFF, FNoF, SNS, and NSN (No is 4,5-diazafluorenone).
Electrochemical studies reveal that incorporation of electron-deficient N unit decreases the LUMO
energy levels compared to corresponding oligofluorenes. Combination of N moiety with the other
electron-deficient building block S results in the oligomers (SNS and NSN) with substantially
improved electron affinities (by 0.37 — 0.38 eV from cyclic voltammetry measurements, 0.57 — 0.65
eV from DFT calculations). FNF, FFNFF, SNS, and NSN oligomers are strongly fluorescent
materials emitting in the blue region (~400 — 450 nm) with high photoluminescence quantum yields

both in solution (®p; = 84 — 100%) and in the solid state (®rL = 24 — 32%). FNoF possesses lower

HOMO-LUMO gap compared to other oligomers due to its charge-transfer character and shows a
shift of the emission to the green region (ArL = 570 — 575 nm) and substantial quenching the
emission in solution down to ®pL = 1%. In the solid state, however, its emission is unexpectedly
increased to 10—-17%.

Studies of the ion sensing properties of FNF in solution with a series of metal cations (Li",
Na*, Ag", Cu**, Mg?*, Ba**, Ni**, Pb?" and Hg”") showed high sensitivity of its absorption and
emission spectra toward Hg?" cations. In contrast to other cations, which showed no or very small

effect on the absorption and fluorescence spectra of FNF, an addition of mercury salt strongly
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quenches the blue emission (ArL = 404 nm) of FNF and results in an appearance of the other,
bathochromically shifted emission band at Ar. = 507 nm. Thus, monitoring the fluorescence of FNF
at these two wavelengths [ON - OFF (in blue region) and OFF = ON (in green region)] allows
selectively recognize Hg?". It has been demonstrated that an interaction of FNF with Hg*" leads to
formation of 2:1 complex whose emission is bathochromically shifted due to an increased
intramolecular charge transfer character in the molecule. As such, 4,5-diazafluorene-based
conjugates represent promising class of ON = OFF // OFF - ON fluorescent sensors for selective
detection of toxic mercury cations. Our work on the design of more sensitive and selective

fluorescent sensors for Hg?>* based on 4,5-diazafluorene oligomers and polymers is in progress.
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4,5-Diazafluorene co-oligomers combine improved electron affinity with strong fluorescence and
can be used as electron transporting and light-emitting materials, as well as fluorescent sensors for

Hg*" cations in a dual ON - OFF and OFF > ON mode.
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Materials and Instrumentations

All chemicals and solvents were purchased from either Aldrich, Alfa Aesar or Fischer Scientific
and were used without further purification unless stated otherwise. Tetrahydrofuran (THF) was
refluxed over sodium benzophenone ketyl (sodium metal + benzophenone) under argon and
distilled off directly prior using the solvent for cyclic voltammetry and absorption/emission spectral
measurements. Manual purification of the products was performed by column chromatography
silica gel LC60 (40-60 uM). Some products were purified using Telydyne Isco automatic flash
chromatograph, model Combiflash Rf 200 using Biotage disposable PTFE columns, hand-filled
with silica gel LC60 (40-60 puM). For monitoring the progress of the reactions and control the
products, thin layer chromatography (TLC) on pre-coated silica gel (Merck, 20 x 20 cm, Silica gel
60 F2s4) was used.

'H NMR, *C NMR and DEPT-135 C NMR spectra were recorded either on a Bruker Avance 400
MHz or Bruker Avance 500 MHz in CDCl3 or DMSO-ds. Chemical shifts are reported in ppm,
relative to tetramethylsilane (TMS) reference (6 = 0.00 ppm). The following abbreviations were
used to assign NMR spectra: s = singlet, d = doublet, t = triplet, dd = doublet of doublet, td =
doublet of triplet. Mass spectra were recorded on GC-MS 5890 (Hewlett Packard Series II) or
microTOF LC Bruker Daltonics mass spectrometers. Microwave assisted reactions were performed
on a CEM Discover SP microwave reactor. Spin-coated films were prepared using spin coater from
Laurel Technologies, Model WS-650Mz-23NPP/LITE.

Absorption and emission spectra, and the photoluminescence quantum yields

Shimadzu UV-3600 UV-Vis-NIR spectrophotometer and Horiba Yvon Fluromax-4
spectrofluorometer were used for recording absorption and photoluminescence spectra at room
temperature. Absorption and emission spectra in solutions were measured using HPLC grade
solvents in 10 mm path length quartz cells. Solid state measurements were performed for spin-
coated films deposited on 12.5 mm circular quartz windows. The films were prepared by spin
coating from oligomer solutions (1-3 mg per 1 mL of DCM) at 3000-4000 rpm. Photoluminescence
quantum yields (PLQY, ®rL) in solutions for all oligomers were measured in HPLC grade
dichloromethane (DCM) at room temperature according to the described method.! The values of
®pL were calculated according to the following formula:

®pL = ®r x (A/Ar) x (OD/OD) x (n*/n)

where @pL is a photoluminescence quantum yield, A is an integral intensity of the emission, OD is
an optical density, and n is a refractive index of the used solvent. The subscript » refers to the
reference fluorophore of known quantum yield [9,10-diphenylanthracene (DPA), diluted solution in
cyclohexane, ®r = 90%). The solutions were deoxygenated by bubbling with argon for about 10
minutes before the measurements. Corrected emission and absorption spectrum was used to
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calculate the quantum yields. Absolute ®pL in solutions and in the solid state were measured for
spin-coated films on quartz substrates using calibrated integrating sphere Horiba F-3018 on Horiba
Jobin Yvon Fluromax-4 spectrofluorometer at room temperature, and calculated by Horiba Yvon
quantum yield calculator software. CIE 1931 color space have been calculated using OSRAM Color
Calculator v. 7.23.

Table S1 Determination of photoluminescence quantum yields (PLQY, @®pL) of oligomers in
degassed DCM.

Integral intensity

Compound of the emission Optical density  PLQY,

A (hex = 350 nm) OD (a.u.) ®rL (%)
9,10-DPA? 7.53 x 107 0.05 (90)
FNoF ° 9.75 x 10° 0.05 1
FFNFF 1.04 x 10® 0.07 84
FNF 1.13 x 108 0.07 93
SNS 1.21 x 10® 0.07 101
NSN 8.54 x 107 0.05 89

2 Diluted solution of DPA in degassed cyclohexane (®r = 90%) was used as fluorophore standards.?
® Aex =370 nm

Experimental procedure for the metal cations sensing study of FNF.

The metal salts used in these studies LiClO4, NaClO4, AgClOs, Mg(ClOs)2, Ba(ClO4)2, Cu(BFa4)2,
Ni(NO3)2, Pb(C104)2 and Hg(ClO4)2 were dried under high vacuum (1072 mbar) for at least 24 hours
prior to using them for preparation of solutions in dry THF [hygroscopic salts were preliminary
dried in an oven at 170 °C for several hours]. The stoichiometry of the coordination complex with
Hg?* was determined using Job's method.>* The absorption and photoluminescence spectra for
titration of FNF with HgClO4 are shown in Figure S10. The corresponding Job's plot using both
fluorescence and absorption intensity (Figure S11) reveal 2:1 (FNF:Hg?", mole ratio) stoichiometry
for the [FNF-Hg?"] adduct. The corresponding structure of the possible complex formation is
shown on Figure S12.

Measurements of known concentraions of 2[FNF]:Hg?* complex emission intensity can be used to
determine the unknown concentration of Hg*" in a given sample by plotting calibration graph of the
emission intensity vs concentration. Photoluminescence titration of FNF with Hg?" ions showed
that an intensity of the long wavelength emission band at 507 nm of FNF-Hg?" complex gradually
increased with an increase of Hg?* ions up to certain limit that corresponds to the 2:1 ratio (Figure
S13b). Linear increase in the fluorescence intensity with an increase of Hg?>" concentration added to
the FNF solution in THF is observed in the range of ca. 0 — 2.5 uM that allowed to estimate the
detection limit to be ca. 1.5-2 x 1077 M.

Cyclic voltammetry

Cyclic voltammetry experiments were conducted in a standard three-electrode configuration, using
Metrohm Autolab PGSTAT-302N potentiostat/galvanostat, with iR drop compensation. Platinum
disk electrode (d = 1.5 or 2 mm) and platinum wire (d = 0.2 mm) were used as the working and
counter electrodes, respectively. The reference electrode was Ag/Ag" (silver wire immersed in a
mixture of 0.01 M AgNO3 and 0.1 M BusNPFs in acetonitrile, separated from the solution by a
Vycor frit). Potentials are referenced to half-wave potential (E12) of ferrocene, which was used as
an internal standard. The average potentials of Fc/Fc* vs Ag/Ag" in our conditions were E12 = 0.20—
0.22 V (in DCM) and 0.19-0.21 V (in THF). Oxidation scans were performed in DCM containing
0.2 M BuwNPFs, reduction scans were carried out in a freshly distilled THF containing 0.2 M
BusNPFs, under argon. The CV were recorded at the scan rate of 100 mV/s.
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Computational studies

All the computational studies were performed with Gaussian 09 package of programs® using the
density functional theory method (DFT). The hybrid functional B3LYP, which combines Becke's
exchange® and Lee, Yang, Paar's correlation functional’ with 6-31G or 6-311G basis sets
supplemented by (d) or (d,p) polarization functions were used for calculations. The calculations
were performed either in a gas phase or in acetonitrile (using polarizable continuum model, PCM).
The restricted Hartree-Fock formalism was used. No constraints were used and all structures were
free to optimize. The force constants and vibrational frequency for stationary points have been
calculated after optimizations to check that they are true minima. To decrease the computation time,
all the oligomers geometries were optimized with ethyl substituents at the positions 9,9- of fluorene
and 4,5-diazafluorene (instead of longer hexyl or octyl substituents in experimental work). This was
shown have no effect on the HOMO/LUMO energy levels of the co-oligomers. The visualization of
the orbital coefficients was performed with GaussView 5.0 software.

FFNFF

Figure S1. Optimized structures of conjugated oligomers calculated at DFT/B3LYP/6-31G(d) level.
For simplicity, H atoms are omitted and tube framework used with colors blue = nitrogen, red =
oxygen, and atoms using GaussView 05 software.

Table S2. Dipole moments of the optimized geometries of studied co-oligomers calculated by
DFT/B3LYP using different basis sets in a gas phase and in ACN.

Compound ~ 0316(@ ~ 6-31G(dp)  6311G(dp) 6-311G(dp)

gas phasese  ACN gas phase ACN
FNoF 0.02 0.16 0.07 0.10
FFNFF 3.50 5.43 3.47 5.38
FNF 3.44 5.06 3.43 5.01
SNS 12.54 17.44 12.76 18.23
NSN 11.51 18.88 11.51 17.08
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Figure S2. HOMO and LUMO orbital coefficients of 4,5-diazafluorene co-oligomers FNoF,
FFNFF, FNF, SNS, and NSN by DFT/B3LYP/6-31G(d) calculations in a gas phase (surface
isovalue = 0.02).
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Figure S3 Frontier orbitals energy levels of 4,5-diazafluorene co-oligomers by DFT/B3LYP/6-
31G(d) calculations in a gas phase.
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Figure S4 HOMO, LUMO (a) and HOMO-LUMO gaps, E; (b) of 4,5-diazafluorene co-oligomers

calculated by DFT/B3LYP using different basis sets and polarization functions [6-31G(d), 6-
31G(d,p) and 6-311G(d,p)] in a gas phase and in acetonitrile, ACN (by PCM model).
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Figure S5 Photoluminescence spectra of FNF in the solid state (spin-coated-films from chloroform
solution) before and after thermal annealing on an air. The measurements have been performed on
an integrating sphere (the shown spectra have not corrected on the sphere background).

Table S3 Absorption and photoluminescence maxima of FNF, FFNFF and FNoF co-oligomers in
different solvents.?

FNF FFNFF FNoF

Solvent Aqps (NM) Ap (nm) Agps (nm) | Apy (Nm) Aqps (NM) Ap (nm)
Hexane 358.5 398, 418, 445sh | 324,372 | 413.5,436 | 359,417sh |500sh, 529, 560sh
Toluene 363 404.5, 426, 450sh | 326, 377 | 420.5, 443 | 364.5, 422sh 558

DCM 366 409, 430sh 328,378 | 429, 446sh | 366, 440sh 575

THF 365 404, 426, 450sh — — — —

ACN 364 407, 424, 450sh — — 363, 427sh 606

EtOH 367 415, 430sh 327,379 446 — —

2 The data are from the spectra shown on Figures 2a,b, 3a-c and 6a,b.

25.2 - n-Hexane
o
— 25.04
g 24.8- Toluene THF
mo [ ® Acetonitrile
. 24.6- DCM ®
x
(0]
€ 24.44 ®
—
o
> 24.2 EtOH
[
24.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Af

Figure S6. Solvatochromic shifts of the emission maxima (veL™* = 1/ApL™) for FNF against the
solvent polarity parameter [Lippert-Mataga equation, Af'= (¢ — 1)/(2e + 1) — (n® — 1)/(n? + 1), where
¢ is a dielectric permittivity and n is a refractive index of a solvent].
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Figure S7 Changes in UV-Vis absorption (a) and photoluminescence (b) spectra of FNF [~10 uM]
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in THF at various concentrations of methanesulfonic acid (0.05 — 40 mM).

(c) As seen in Figure S7b, the intensity of PL (at ApL = 510 nm) of the protonated FNF is lower
than PL intensity of the neutral FNF (ApL ~ 410 nm). This is, partially, because the absorption of
FNF at the excitation wavelength (Aex = 365 nm) is decreased on protonation (see Figure S7a).
Therefore, on the graph (c) we have corrected PL spectra to their absorption intensities at 365 nm:
the intensities of PL have been multiplied by [Abs***(FNF+CH3SO3H)/Abs*®(FNF)] and

normalized to PL intensity of FNF.

(d,e) The bottom photographs show changes of the color of FNF solution in THF upon addition of
a large excess of CH3SO3H: (e) under day light illumination [from colorless to light yellow] and (f)

under 366 nm UV-lamp irradiation [from deep blue to green fluorescence].
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Figure S8. CIE 1931 color space diagrams of the emission spectra of FNF [~1.4 uM] solutions in
THF in presence of various metal cations [~14 uM]. The PL spectra have been taken from Figures
7b (left diagram) and Figure 7d (right diagram). Triangle corresponds to sSRGB gamut.
For PL spectra, excitations are at the wavelengths close to the absorption maxima: Aex = 365 nm
(cation-free, Li*, Na*, Cu**, Mg?*, Ba*"), 367 nm (Ag"), 371 nm (Ni*"), 379 nm (Pb*"), 395 nm

(Hg™).
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Figure S9. Changes in the absorption (a,c) and photolumionescence (b,d) spectra of FNF [~10 uM]
solutions in THF in presence of Hg(ClO4):2 to demonstrate the reversibility of complexation.

(a,b) Concentration of Hg(ClO4)2 was increased for 0 to 6.5 uM:

(a) an absorption of FNF at 365 nm disappear on the cost of an appearance of red-shifted
absorption of the complex FNF/Hg?" at 405 nm;

(b) no emission is observed for an excitation of FNF 415 nm; and addition of Hg(ClO4)2
results in an appearance of emission at ~515 nm (OFF = ON).

(c,d) The {FNF [~10 uM] + Hg(ClO4)2 [6.5 uM]} from experiments (a,b) was diluted with a
solution of FNF [~10 uM]. This kept the concentration of FNF constand, but the concentration of
Hg(ClO4)2 was decreased from 6.5 uM to <1 puM:

(c) long-wavelength absorption of the complex FNF/Hg*" is decreased and an absorption of
free FNF is growing;

(d) on decrease of the concentration of Hg(ClOa4)2, the emission of the complex is decereased
and then disappear.
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Figure S10. (a) UV-Vis absorption and (b) emission spectra of mixtures of equal concentrations (20
uM each) of FNF and Hg(ClOa4)2 in different ratios (in THF) keeping the total volume of the

solution

VENF + VHgcl04)2 = 10 mL; Aex = 415 nm.
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Figure S11. Job's plots for the mixtures of FNF (20 uM) and Hg(ClO4)2 (20 uM) at different ratios
in THF: (a) absorption intensities at 415 nm; (b) PL intensities at 510 nm (Aex = 415 nm). The
values have been taken from the data in Figure S5a,b.
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Figure S12. (Top) The reaction scheme of 2[FNF]:Hg?* complex formation. (Bottom) The
photographs show changes of the color of FNF solution in THF upon addition of Hg(ClO4)2: (left)
under day light illumination [from colorless to light yellow] and (right) under 365 nm UV-lamp
irradiation [from deep blue to green fluorescence].
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Figure S13 (a) Changes in the photoluminescence spectra of FNF (10uM) on titration with
Hg(ClO4)2 (0 - 54.2 uM) in THF (excited at 410 nm). (b) PL intensity measured at 510 nm versus
concentration of Hg(ClOas)2 (0-54.25 uM), (PLmax is observed at [FNF]:[Hg(ClO4)2] ~2:1). (¢)
Linear dependence of the intensity of PL measured at 510 nm versus [Hg(ClO4)2] at low

concentrations of 0 - 2.54 uM.
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Figure S14 Absorption and photoluminescence spectra of THF solutions of FNF [~10 pM] and

Hg(ClO4)2 [~5 uM]} in presence of NaClO4, Cu(BF4)2 and Ba(ClO4)2 salts to show the interference
of Hg?" detection by other cations (Na*, Cu®* and Ba*").
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Figure S15 Absorption and photoluminescence spectra of THF solutions of FNF [~10 uM] and
Hg(ClO4)2 [~5 uM]} in presence of Mg(ClO4)2, AgClOs and Ni(NOs)2 salts to show the
interference of Hg?" detection by other cations (Mg?*, Ag* and Ni*").
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Figure S16 Absorption (a,b) and photoluminescence (c,d) spectra of FFNFF (a,c) FNoF (b,d) in
THF in cation-free solutions and in presence of Hg(ClO4)2.
The photographs of FFNFF (e) and FNoF (f) solutions in THF under 365 nm UV-lamp irradiation
before (left photographs) and after (right photographs) addition of Hg(ClO4)2. CIE 1931 color space
diagrams on the top of the photographs show the changes of the emission colors (calculated from
Figures S16¢,d) of FFNFF and FNoF (circles) upon addition of Hg(ClO4)2 (squares).
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Synthesis

Synthesis of intermediate compounds 1 — 8. 9.9-Dihexylfluoren-2-yl boronic acid 2,% 2,7-dibromo-
4,5-diazafluoren-9-one 3°, compounds 4,% 5,8 and 7® were obtained as described previously. Synthesis
of compound 6 and 8 was performed similar to literature procedure!® with slight modification
described below.

2,7-Dibromo-9,9-dihexyfluorene-4,5-diazafluorene (1)

N N— n-CeHyal N N
/N /X
Br — \ /~Br t-BuOK, THF  Br\_— \_/~bBr
5°C ...rt,

1a 32h CeH13 1 CeH1z

Under nitrogen, to a stirred solution of of 2,7-dibromo-4,5-diazafluorene (1a) (1.00 g, 3.06 mmol)
in dry THF (20 mL), n-iodohexane (0.95 mL, 6.44 mmol) was added at -5 °C. Afterthat, a solution
of potassium fert-butoxide (720 mg, 6.44 mmol) in dry THF (15 mL) was added over a period of 50
min keeping the temperature at -5 °C. The reaction mixture was allowed to warm up slowly to room
temperature and stirred at room temperature for 32 hours. The solvent was removed on rotary
evaporator and the residue was purified by column chromatography on silica gel (column size = 2 x
20 cm) eluting with isooctane:ethyl acetate(EA) = 10:1, v/v to afford the crude product (1.21 g) as a
yellow solid. The crude product was further purified by recrystallization from a mixture of
isopropanol:water, 5:1 (25 mL) to yield compound 1 (1.04g, 69%) as a light yellow solid.

"H NMR (400 MHz, CDCl3): & (ppm) 8.75 (2H, d, J = 2.0 Hz), 7.84 (2H, d, J = 2.0 Hz), 2.06-1.87
(4H, m, CH>CsHn), 1.22-0.97 (12H, m, C2H4(CH2)3CH3), 0.79 (6H, t, J = 7.1 Hz, CsHi10CH3),
0.73-0.60 (4H, m, CH2CH2C4Ho).

3C NMR (101 MHz, CDCl3): § (ppm) 155.93, 150.93, 146.59, 133.50, 120.79, 51.56, 39.01, 31.35,
29.45, 24.01, 22.49, 13.93.

DEPT-135 3C NMR (101 MHz, CDCl3): & (ppm) 156.04, 150.93 (CH), 146.59, 133.50 (CH),
120.79, 51.70 (C-9), 39.01 (CH:CsHii), 31.35 (C:H4CH>C3H7), 29.45(CsHeCH>C2Hs), 24.01
(CH2CH>C4Hy), 22.49 (CsHsCH:CH3), 13.93 (CsHi0CH3).

MS (ESIY) m/z: 491.97 (IM+H]", 50%, "Br/ ”Br), 494.00 ([M+H]", 100%, "Bt/ 8!Br), 495.92
([IM+H]*, 51%, #'Br, 3!Br). Calcd. for C23H30Br2N2: 492.08.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzothiophenes-S,S-dioxide (6)

B,(pin),
Pd(dppf)Cl,)DCM, dppf, 0
\ Br KOAc, Dioxane \
O//\\ 100°C, 32h ,,\
1b

Under argon, a two-necked flask (100 mL) was charged with 3-bromodibenzothiophene-S,S-dioxide
(1b) (1.01 g, 3.39 mmol), bis(pinacolato)diboron (1.29 g, 5.08 mmol), anhydrous KOAc (1.25 g,
12.73 mmol), 1,1"-bis(diphenylphosphino)ferrocene (dppf) (70 mg, 0.13 mmol) and dry dioxane (50
mL). The mixture was degassed by bubbling with argon for 15 minutes before Pd(dppf)Cl.-DCM
(104 mg, 3 mol%) was added and the mixture was degassed for another 15 minutes. The mixture
was heated at 100 °C for 32 hours under argon atmosphere. After cooling to room temperature, the
solvent was removed under reduced pressure and the residue was diluted with water (50 mL). The
aqueous solution was then extracted with DCM (2 x 50 mL), washed with water (2 x 20 mL) and
dried over anhydrous MgSOa4. The DCM solution (dark color) was then passed through a short silica
gel bed eluting with DCM (100 mL) to give a clear solution which was concentrated to afford the
product 6 as an off white solid (1.05 g, 91%). According to '"H NMR, the purity of the sample is
>80%, with the main other component being the unreacted excess of bis(pinacolato)diboron. The
product was used in the next reaction step without further purification.
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'H NMR (400 MHz, CDCL): & (ppm) 8.28 (1 H, s), 8.05 (1 H, dd, J= 7.7, 0.7 Hz), 7.80 (3 H, m),
7.64 (1 H,td, J=7.7, 1.0 Hz), 7.54 (1H, td, J= 7.6, 0.8 Hz), 1.36 (12 H, s).

13C NMR (101 MHz, CDCL): & (ppm) 140.12, 138.10, 137.13, 133.81, 133.80, 132.03(br.), 131.54,
130.75, 128.34, 122.16, 121.93, 120.75, 84.56, 24.87.

DEPT-135 '3C NMR (101 MHz, CDCL): & (ppm) 140.12(CH), 138.10, 137.13, 133.81(CH),
131.54, 130.75(CH), 128.35(CH), 122.17(CH), 121.93(CH), 120.75(CH), 83.50, 24.87(CHs).

MS (EI') m/z: 341.99 (IM]*, 100%). Caled. for C1sHisBO4S: 342.11.

3,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzothiophene-S,S-dioxide (8)

Ba(pin)2 o
Pd(dppf)ClyDCM, dppf, 0. ,
BrBr KOAc, Dioxane B ) B
S 0 >sC 0
O O
8

>0 100°C, 32h
1c

Under nitrogen, a two-necked flask (100 mL) was charged with 3,8-dibromodibenzothiophene-S, S-
dioxide (1¢)® (1.01 g, 2.70 mmol), bis(pinacolato)diboron (1.49 g, 5.88 mmol), anhydrous KOAc
(1.57 g, 15.99 mmol), dppf (89 mg, 0.16 mmol) and dry dioxane (50 mL) and degassed with argon
for 15 min. Pd(dppf)Cl2-DCM (131 mg, 0.16 mmol) was added and the mixture was degassed for
another 15 min. The mixture was heated at 100 °C for 32 hours under argon atmosphere. After
cooling to room temperature, the solvent was removed under reduced pressure and the residue was
diluted with water (50 mL). The aqueous solution was extracted with DCM (2 x 50 mL), washed
with water (2 x 20 mL) and dried with anhydrous MgSO4. The DCM solution (dark color) was then
passed through a short silica gel bed eluting with dichloromethane (100 mL) to give a clear solution
which was concentrated to afford the product 8 as an off white solid (1.01 g, 85%).
"H NMR (400 MHz, CDCl3):5 (ppm) 8.28 (1H, s), 8.05 (1H, d, J = 8.1 Hz), 7.80 (1H, d, J = 7.7
Hz), 1.36 (12H, s).
3C NMR (101 MHz, CDCls): § (ppm) 140.05 (CH), 137.50, 133.73, 132.37 (br.), 128.33 (CH),
121.09 (CH), 84.56, 24.87 (CH3).
DEPT-135 3C NMR (101 MHz, CDCl3):8 (ppm) (101 MHz, CDCl3) 140.05 (CH), 137.49 , 133.73,
128.33 (CH), 121.09 (CH), 84.56, 24.87 (CH3).
MS (ET") m/z: 468.12 (IM]", 100%). Calcd. for C24H30B206S: 468.19.

Synthesis of the oligomers. General procedure of Pd-catalyzed C—C coupling in the synthesis of
conjugated oligomers: under inert atmosphere, flame heated three-neck flask fitted with argon (or
nitrogen inlet) was charged with aryl boronic acid (or ester), arylbromide, base and degassed
solvents. The mixture was degassed with argon for 15 minutes before adding Pd catalyst and
degassed again for another 15-20 minutes. The degassed mixture was stirred under reflux for a
required time. After cooling, the solvent was removed under reduced pressure on a rotary
evaporator. The residue was dissolved in EA/DCM, washed with water, dried over MgSO4, and
evaporated to afford the crude product, which was then purified by flash/column chromatography
on silica gel eluting with appropriate solvents.

3,7-Bis(9,9-dihexylfluoren-2-yl)-9,9-dihexyl-4,5-diazafluorene (FNF)

B<0H)2

N N C5H13 2 C6H13 CGH‘IS CGH13 / N N— C6H13 C6H13
N @ ) 3
AL e T OO0
2M K,CO3, dioxane
CeH1s™  “CgHyz reflux, 24 h Cobis _ CeHis
1 FNF
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Under nitrogen, to a mixture of 2,7-dibromo-9,9-dihexy-4,5-diazafluorene (1) (245 mg, 0.49 mmol),
9,9-dihexylfluorene-2-boronic acid (2)® (382 mg, 1.01 mmol) and Pd(PPh3)2Cl> (7 mg, 2 mol%),
degassed 2M aqueous K2COs (4 mL, 8 mmol) and 1,4-dioxane (10 mL) were added via syringe.
The mixture was stirred under nitrogen with heating at 110 °C (oil bath) for 24 hours with
protection from the sunlight. The mixture was cooled down to room temperature and the resulting
slurry was poured into 5% NaCl aqueous solution (50 mL). The precipitate was collected by
filtration, washed with water (3 x 20 mL), dried in vacuo to afford the crude product (448 mg, 88%)
as a brown solid. The crude product was purified by column chromatography on silica gel, eluting
first with PE to remove byproducts and then with PE:EA mixture, with gradual increase of EA
contents from 2% to 6%, to yield product FNF (353 mg, 70.5%) as a light yellow solid.

"H NMR (500 MHz, CDCl3): & (ppm) 9.01 (2H, d, J = 1.9 Hz), 7.93 (2H, d, J = 2.0 Hz), 7.83 (2H,
d, J=7.8 Hz),7.78-7.76 (2H, m), 7.67-7.63 (4H, m), 7.40-7.34 (6H, m), 2.16-2.12 (4H, m), 2.08—
2.03 (8H, m), 1.24-1.01 (36H, m), 0.89-0.82 (4H, m) 0.81-0.64 (26H, m).

3C NMR (100 MHz, CDCl3): & (ppm) 151.92, 151.07, 148.38 (CH), 145.72, 141.47 (x 2), 140.37
(x 2), 136.78, 128.93 (CH), 127.45 (CH), 126.91 (CH), 126.32 (CH), 123.01 (CH), 121.53 (CH),
120.26 (CH), 119.96 (CH), 55.33, 51.63, 40.29, 39.23, 31.44, 31.35, 29.62, 29.52, 24.13, 23.77,
22.52,22.45,13.97, 13.93.

DEPT-135 3C NMR (100MHz, CDCl3): § (ppm) 151.87, 151.05, 148.72 (CH), 145.42, 141.32,
140.42, 137.05, 136.52, 128.66 (CH), 127.40 (CH), 126.90 (CH), 126.32 (CH), 123.01 (CH),
121.48 (CH), 120.23 (CH), 119.94 (CH), 55.31 (C-9), 40.30, 39.29, 31.46, 31.39, 29.64, 29.56,
24.13,23.77, 22.54, 22.48, [14.00, 13.96 (CH3)].

MS (ESI") m/z: 1001.76 ([M + H]", 100%). Calcd. for C73H9sN2: 1000.76.

9,9-Dihexyl-2,7-bis(9,9,9',9'-tetrahexyl-9H,9'H-[2,2'-bifluoren]-7-yl)-9H-4,5-diazafluorene
(FFNFF)
CeH1s  CeH1s

N N—
/N . O O Pd(PPh3),,10% K,COs,
Br/LQ\}BV ' Q O . B(OH), Tol(uenezi)lg'(OHo ==
CH, C<H MW = 150 watt
6'113 C6H13 4 6'113 CGH13 150 °C, 4 h

FFNFF

Under nitrogen, to a 35 mL thick-wall glass microwave reaction tube, 2,7-dibromo-9,9-dihexyl-4,5-
diazafluorene (1) (10 mg, 0.02 mmol), 9,9,9°,9’-tetrahexyl-2,2’-bifluoren-7-yl-boronic acid (4) (41
mg, 0.057 mmol), Pd(PPh3)4 (3 mg, 10 mol%), 10% K2CO3 aqueous solution (0.5 mL, 0.4 mmol),
ethanol (0.5 mL) and toluene (3 mL) were added. The reaction mixture was degassed for 15 minutes
with argon and then irradiated with microwave (150 W) keeping the temperature at 150 °C in a
microwave reactor for 4 hours. The reaction mixture was cooled down to room temperature and the
solvent was evaporated. The residual slurry was poured into 5% NaCl aqueous solution, the product
was extracted with chloroform (2 x 15 mL), the combined organic layers were washed with water
until pH = 7, dried over anhydrous MgSO4 and the solvent was evaporated to afford the crude
product (45 mg) as a yellowish solid. The crude product was purified by flash chromatography on
silica gel, eluting first with PE, then with gradient increase to PE:EA, 4:1 to yield pure product
FFNFF (21 mg, 61%) as a light yellow solid.

"H NMR (400 MHz, CDCI3): & (ppm) 9.04 (2H, d, J = 1.8 Hz), 7.96 (2H, d, J = 1.8 Hz), 7.89-7.63
(20H, m), 7.39-7.29 (6H, m), 2.18-1.98 (20H, m), 1.22—-1.02 (60H, m), 0.92—0.64 (50H, m).
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13C NMR (101 MHz, CDCL3): § 157.22, 152.20, 151.84, 151.52, 151.02, 148.73, 145.55, 141.05,
141.01, 140.76, 140.45, 140.37, 139.57, 137.02, 136.55, 128.68, 127.05, 126.81, 126.44, 126.28,
126.07, 122.95, 121.61, 121.59, 121.46, 120.32, 120.20, 119.92, 119.75, 55.48, 55.19, 51.51, 40.38,
40.29, 39.32, 31.48, 31.44, 31.41, 29.70, 29.61, 29.58, 24.16, 23.85, 23.79, 22.57, 22.54, 22.50,
14.02, 13.98.

DEPT-135 '3C NMR (101 MHz, CDCL3): § 157.21, 152.20, 151.84, 151.52, 151.02, 148.73 (CH),
145.55, 141.05, 141.01, 140.76, 140.45, 140.37, 139.57, 137.02, 136.55, 128.6 8 (CH), 127.05
(CH), 126.81 (CH), 126.44 (CH), 126.27 (CH), 126.07 (CH), 122.95 (CH), 121.60 (CH), 121.59
(CH), 121.46 (CH), 120.32 (CH), 120.20 (CH), 119.92 (CH), 119.75 (CH), [55.48, 55.19 (C-9)],
51.51 (CHa) [40.38, 40.29, 39.32 (CH2)], [31.48, 31.44, 31.41 (CHz)], [29.70, 29.61, 29.58 (CH2)],[
24.16, 23.85, 23.79 (CH2)], [22.57, 22.54, 22.50 (CH2)], [14.02, 13.98 (CH3)].

MS (MALDI TOF) m/z: 1666.81 (M + H]", 100%). Calcd. for Ci23Hi60N2: 1665.26.

3,7-Bis(9,9-dihexylfluoren-2-yl)-4,5-diazafluoren-9-one (FNoF)

B(OH)z

C6H13 2 CGH13

N Ne CeHiz _CeHis N N— CeHys CeH1z
Bt Pd(PPhs),Cl, ' Bt .
Br™\= / 7Br 2MK,CO,, Dioxane O O / % O O
3 reflux, 24h 0
3 FNoF

Under nitrogen, to a three-necked flask containing 2,7-dibromo-4,5-diazafluoren-9-one (3) (201 mg,
0.581 mmol), 9,9-dihexylfluoren-2-boronic acid (2)* (453 mg, 1.20 mmol) and Pd(PPh3)2Cl2 (9 mg,
2 mol%), degassed 2M aqueous K2COs (4 mL, 8 mmol) and 1,4-dioxane (10 mL) were added via a
syringe. The reaction mixture was stirred under reflux (oil bath, 110 °C) for 24 hours under
nitrogen, with protection from the sunlight. The reaction mixture was cooled down to room
temperature and the resulting slurry was poured into 5% NaCl aqueous solution. The product was
extracted with DCM (2 x 25 mL), the combined organic layer was washed with water until pH = 7,
dried over anhydrous MgSOs, filtered off and the solvent was evaporated to afford the crude
product (405 mg, 79%) as a yellow solid. The crude product was purified by flash chromatography
on silica gel, eluting first with PE and then with PE:DCM mixture (gradient from 1:1 to 1:4 v/v
ratio) to yield pure product FNoF (252 mg, 49%) as a yellow solid.

"H NMR (400 MHz, CDCI3): & (ppm) 9.12 (2H, d, J = 2.1 Hz), 8.28 (2H, J = 2.1 Hz, s), 7.83 (2H,
d, J=17.9 Hz), 7.77-7.75 (2H, m), 7.65 (2H, dd, J = 7.8, 1.5 Hz), 7.60 (2H, d, J = 1.2 Hz), 7.40-
7.36 (6H, m), 2.06-2.02 (8H, m, CH>CsH11), 1.13-1.02 (24H, m, C2Hs(CH2)3CHz3), 0.77 (12H, t, J
= 6.8 Hz, CH3), 0.70-0.61 (8H, m, CH2CH>C4Hp).

3C NMR (100MHz, CDCI3): & (ppm) 190.18 (CO), 161.71, 153.77 (CH), 152.08, 151.07, 142.18,
140.15, 138.50, 135.23, 130.02, 129.65 (CH), 127.72 (CH), 126.98 (CH), 125.95 (CH), 123.00
(CH), 121.27 (CH), 120.48 (CH), 120.11 (CH), 55.38 (C-9), 40.39, 31.49, 29.66, 23.79, 22.56,
13.99 (CHa).

DEPT-135 3C NMR (100MHz, CDCl3): § (ppm) 161.73, 153.79 (CH), 152.09, 151.08, 142.18,
140.16, 138.51, 135.25, 130.03, 129.66 (CH), 127.72 (CH), 126.99 (CH), 125.95 (CH), 123.01
(CH), 121.28 (CH), 120.48 (CH), 120.11 (CH), 55.39 (C-9), 40.40 (CH2), 31.49 (CH2), 29.67
(CH2), 23.79 (CH2), 22.57 (CH2), 14.00 (CHa).

MS (ESIY) m/z: 847.55 ([M+H]", 100%). Calcd. for Cs1H70N20: 846.55.
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3,7-Bis(9,9-dioctyl-4,5-diazafluoren-2-yl)dibenzothiophene-S,S-dioxide (NSN)

RO

N N—
/ \ Pd(PPh3),Cl,
— / Br
2M K,COs,
CgH47 CgH47 dioxane-EtOH,
7 reflux, 24 h NSN

Under nitrogen, to a three-necked flask containing 2-bromo-9,9-dioctyl-4,5-diazafluorene (7) (402
mg, 0.854 mmol), 3,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzothiophene-S§,S-
dioxide (8) (200 mg, 0.427 mmol), 2M aqueous K2CO3 (4 mL, 8 mmol), 1,4-dioxane (20 mL) and
ethanol (2 mL) were added. The mixture was degassed with argon for 15 minutes before adding
Pd(PPh3)2Cl2 (10 mg, 0.014 mmol, 3 mol%) and then degassed for another 15 minutes. The mixture
was stirred under reflux (oil bath, 115 °C) for 24 hours under nitrogen atmosphere. After cooling to
room temperature, the solvent was evaporated under reduced pressure on a rotavapor. The residue
was dissolved in ethyl acetate (100 mL), washed with water (2 x 50 mL), dried over anhydrous
MgSOs, filtered off and evaporated to afford the crude product (788 mg) as a brown oil. The crude
product was purified by flash chromatography on silica gel eluting with PE:EA (gradient from 1:1
to 1:9) to afford pure oligomer NSN as a yellow solid (152 mg, 59%).

"H NMR (400 MHz, CDCl3): § (ppm) 9.00 (2H, d, J = 2.0 Hz), 8.74 (2H, dd, J = 4.8, 1.2 Hz), 8.16
(2H, d, J = 0.8), 8.05-7.99 (4H, m), 7.95 (2H, d, J = 2.0 Hz), 7.76 (2H, dd, J = 7.6, 1.2 Hz), 7.33
(2H, dd, J=7.6, 4.8 Hz), 2.10-2.06 (8H, m, CH>C7H1s), 1.25-0.98 (40H, m, C2H4(CH2)5CH3), 0.81
(12H, t, J=7.2 Hz, C7H14CH5), 0.72—-0.66 (8H, m, CH2CH>C¢H13).

3C NMR (100MHz, CDCl3): & (ppm) 159.01, 157.78, 149.88 (CH), 148.18 (CH), 145.64, 145.55,
141.17, 139.00, 133.65, 132.87 (CH), 130.79, 130.65 (CH), 128.69 (CH), 123.37 (CH), 122.52
(CH), 121.03 (CH), 51.66 (C-9), 39.31 (CH2), 31.72 (CH2), 29.90 (CH2), 29.18 (CH2), 29.14 (CH>),
24.16 (CH2), 22.58 (CH2), 14.05 (CH3).

DEPT-135 3C NMR (100 MHz, CDCl3): & (ppm) 159.01, 157.82, 149.91 (CH), 148.20 (CH),
145.61, 145.52, 141.19, 138.98, 133.63, 132.86 (CH), 130.76, 130.64 (CH), 128.66 (CH), 123.35
(CH), 122.51 (CH), 121.03 (CH), 51.66 (C-9), 39.35 (CH2), 31.72 (CHz2), 29.18 (CH2), 29.14 (CH>),
24.16 (CH2), 22.57 (CH2), 14.05 (CH3).

MS (EST") m/z: 1020.42 ([M+Na]*, 100%). Calcd. for CscHgaN1O2S: 996.63.

2,7-Bis(dibenzothiophene-S,S-dioxide-3-yl)-4,5-diazfluorene (SNS)

//\\ i
N N \//
N\ - Pd(PPh3),ClI \
LT e O
2M K,CO5

CgH47 CgHq7 dioxane-EtOH, CgH47 CgHq7

2 reflux, 32 h SNS A three-
necked flask (50 mL) was charged with 2,7-dibromo-9,9-dioctyl-4,5-diazafluorene (5) (150 mg,
0.272 mmol), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzothiophene-S,S-dioxide (6)
(373 mg, 1.090 mmol), 2M aqueous K2CO3 (4 mL, 8 mmol), dioxane (20 mL) and ethanol (4 mL)
and degassed with argon for 15 minutes. Then Pd(PPh3)2Cl2 (6 mg, 0.008 mmol) was added and the
mixture was degassed for another 15 minutes. The mixture was stirred under reflux (oil bath, 115
°C) for 32 hours under nitrogen atmosphere. After cooling to room temperature, the mixture was

diluted with water (15 mL) and then extracted with DCM (2 x 100 mL). The combined DCM layers
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were washed with water (2 x 20 mL), dried with anhydrous MgSOs, filtered off and evaporated on a
rotavapor to afford the crude product (580 mg) as a brown oil. The crude product was purified by
flash chromatography on silica gel eluting with DCM:MeOH mixture (gradient ratio of 100:1 to
100:2) to afford pure oligomer SNS as an off yellow solid (60 mg, 26%).

"H NMR (400 MHz, CDCI3): & (ppm) 9.03 (2H, d, J = 1.9 Hz), 8.15 (2H, d, J = 1.1 Hz), 8.00-7.95
(6H, m), 7.89 (4H, d, /= 8.0 Hz), 7.72 (2H, t, J= 7.5 Hz), 7.60 2H, t, J= 7.6 Hz ), 2.16-2.12 (4H,
m, CH>C7H15), 1.24-0.98 (20H, m, C2H4(CH2)sCH3), 0.79 (6H, t, J = 6.0 Hz, C1H14CH3), 0.78-0.69
(4H, m, CH2CH:CeH3).

BCNMR (100MHz, CDCI3): § (ppm) 158.14, 148.50 (CH), 146.13, 140.72, 138.92, 137.92, 134.15,
134.12 (CH), 132.66 (CH), 131.22, 131.18, 130.68 (CH), 128.78 (CH), 122.41(CH), 122.34 (CH),
121.87 (CH), 120.91 (CH), 51.94, 39.39 (CH2), 31.63 (CH2), 29.92 (CH2), 29.19 (CH2), 29.16
(CH2), 24.30 (CH2), 22.57 (CH2), 14.04 (CH3).

DEPT-135 3C NMR (100MHz, CDCI3): & (ppm) 158.14, 148.50 (CH), 146.13, 140.73, 138.92,
137.92, 134.16, 134.12 (CH), 132.70 (CH), 131.19, 130.69 (CH), 128.79 (CH), 122.42 (CH),
122.33 (CH), 121.86 (CH), 120.92 (CH), 51.94, 39.39 (CH2), 31.70 (CHz), 29.92 (CH2), 29.19
(CH2), 29.17 (CH2), 24.29 (CH2), 22.57 (CH2), 14.04 (CH3).

MS (EST") m/z: 843.39 ([M+Na]", 100%). Calcd. for CsiHs2N204S2: 820.34.
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'H NMR (400 MHz, CDCl5) of FNF
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DEPTQ NMR (100MHz, CDCls) of ENF
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"H NMR (400 MHz, CDCls) of FENFF
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DEPTQ NMR (100MHz, CDCl;) of FENFF
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'H NMR (400 MHz. CDCls) of SNS
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