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Abstract 29 

Efficiency benchmarking is a well-established way of measuring and improving farm 30 

performance. An increasingly popular efficiency benchmarking tool within agricultural 31 

research is Data Envelopment Analysis (DEA). However, the literature currently lacks 32 
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sufficient demonstration of how DEA could be tuned to the needs of the farm 33 

advisor/extension officer, rather than of the researcher. Also, the literature is flooded with 34 

DEA terminology that may discourage the non-academic practitioner from adopting DEA. 35 

This paper aims at making DEA more accessible to farm consultants/extension officers by 36 

explaining the method step-by-step, visually and with minimal use of specialised 37 

terminology and mathematics. Then, DEA’s potential for identifying cost-reducing and 38 

profit-making opportunities for farmers is demonstrated with a series of examples drawn 39 

from commercial UK dairy farm data. Finally, three DEA methods for studying efficiency 40 

change and trends over time are also presented. Main challenges are discussed (e.g. data 41 

availability), as well as ideas for extending DEA’s applicability in the agricultural industry, 42 

such as the use of carbon footprints and other farm sustainability indicators in DEA 43 

analyses. 44 

 45 

1. Introduction 46 

A commonly used measure of efficiency is stated in the ratio of output to input (Cooper et 47 

al., 2007), and is widely used in benchmarking procedures to identify best-practice 48 

management for a given farming system (Fraser and Cordina, 1999). Such procedures, 49 

henceforth referred to as ‘efficiency benchmarking’, are instrumental for guiding farmers on 50 

how to reduce costs and resource use, increase profitability and minimize environmental 51 

impacts of production (Fraser and Cordina, 1999). This paper demonstrates how an 52 

efficiency benchmarking tool that is well-established in agricultural research may be used to 53 

solve actual problems facing (dairy) farm managers. 54 

 55 

Limitations of conventional efficiency benchmarking 56 

 57 

In the farming industry, benchmarking is typically effected by reporting average values (e.g. 58 

of input use, production, costs and prices, input-output ratios) from a group of farms with 59 

similar characteristics, so that farmers from that group may compare these values to their 60 

own performance (AHDB Dairy, 2014; Kingshay, 2017). This type of more ‘conventional’ 61 

benchmarking is myopic and performance indicators such as simple single ratios may 62 

mislead when performance and profitability are determined by interrelated multifactorial 63 
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processes (Cooper et al., 2007). For example, good feed efficiency may be achieved at the 64 

expense of inefficient use of labour and nitrogen fertilizer, and at higher replacement rates, 65 

resulting in higher costs/lower profits and higher environmental impacts. Moreover, some 66 

of these multifactorial processes have public good dimensions, which consumers and 67 

society increasingly expect farmers to account for, and they may even reward their delivery 68 

if objective metrics can be found that prove contribution while ensuring that the farmer is 69 

not left at a disadvantage (Foresight, 2011).  Although the agricultural industry is 70 

increasingly responding to these demands with novel tools accounting for carbon foot-71 

printing data (Alltech E-CO2, 2017; SAC Consulting, 2017) or other environmental, social and 72 

economic indicators (BASF, 2012), developing holistic indicators of farm efficiency 73 

performance is mainly confined to academic research, where significant developments have 74 

been made with the efficiency benchmarking method Data Envelopment Analysis (DEA; 75 

Cooper et al., 2007)1. 76 

 77 

Efficiency benchmarking with Data Envelopment Analysis 78 

 79 

DEA  is becoming extremely popular in agricultural science (Emrouznejad and Yang, 2018), 80 

owing to its numerous virtues. DEA gives a more meaningful index of comparative 81 

performance that is likely to identify worthwhile opportunities for improvement. Indeed, 82 

DEA replaces multiple efficiency ratios by a single weighted sum of outputs over the 83 

weighted sum of inputs or by a single ‘profit function’ (i.e. the weighted sum of outputs 84 

minus the weighted sum of inputs), with the weights being calculated by the model itself, so 85 

that no subjective weighting choices or input and output pricing are necessary (Cooper et 86 

al., 2007). Therefore, DEA simplifies the analysis by reducing the need to take into account a 87 

range of performance indicators (e.g. input-output ratios) and reduces the danger of 88 

improving one performance indicator to the detriment of another (which may not even be 89 

monitored; Bowlin et al., 1984; Fraser and Cordina, 1999). 90 

Another advantage of DEA is that it obviates the need to resort to ‘average’ values 91 

that many of the aforementioned industry tools rely on for benchmarking farm 92 

performance. Instead, DEA identifies benchmark farms for each farm in the sample and 93 

                                                      

1 For an introduction to DEA, see also the excellent textbook by Bogetoft and Otto (2011). 
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indicates the adjustments that this farm should make to its inputs and outputs to become as 94 

efficient as its benchmarks (Cooper et al., 2007). 95 

 96 

Scope for using DEA as a (dairy) farm management tool 97 

 98 

Despite DEA’s attractive features and, as shown later, its relative simplicity, it is an ongoing 99 

challenge to move the method from the academic to the practitioners’ world (Paradi and 100 

Sherman, 2014). Paradi and Sherman (2014) identified key reasons why managers are 101 

reluctant to adopting DEA, including (i) excessive DEA jargon; (ii) ineffective/insufficient 102 

communication/explanation of DEA to managers so that they stop viewing it as a ‘black 103 

box’; (iii) data availability; and (iv) limited emphasis on managerial applications. 104 

Indeed, the more than 40 peer-reviewed DEA studies of the dairy sector (with which 105 

this study is concerned; see Appendix A in Emrouznejad and Yang, 2018; and Appendix I in 106 

Soteriades, 2016) mainly explore research questions that do inform policy and managerial 107 

decision-making, yet do not demonstrate how DEA could be tuned to the needs of the farm 108 

advisor/extension officer, rather than of the researcher. In our view, two major elements 109 

generally missing from DEA dairy studies are the economic (rather than e.g. technical and 110 

environmental) insights attached to the DEA models, and the analysis of efficiency over 111 

time. Temporal assessments are particularly useful for monitoring performance month-by-112 

month (Kingshay, 2017). Similarly, economic insights are indispensable for decision-making 113 

and, unless they are accounted for, a mathematical model (such as DEA) may mean little to 114 

a manager (McKinsey & Company, 2017). DEA can help farmers improve economic 115 

performance by indicating them how to make best use of their resources, on the one hand, 116 

yet, on the other hand, it can be used to guide other priorities such as the improvement of 117 

environmental performance (Soteriades et al., 2015). This makes DEA a flexible and holistic 118 

tool to suit particular objectives for the benefit of both business management and the 119 

public good. 120 

 121 

Objective 122 

 123 

In this study, we demonstrate how DEA can be used to benchmark individual (dairy) farm 124 

efficiency performance, as well as indicate the inputs and outputs in which the largest 125 
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inefficiencies occur. Then, by attaching prices to the inefficiencies, we show how DEA can 126 

help guide management actions through a variety of prioritised cost-saving and/or profit-127 

making options for each farm. This deals with point (iv) above. Points (i) and (ii) are 128 

addressed by explaining DEA step-by-step and visually, with minimal use of DEA jargon. 129 

Formal mathematical formulas describing the DEA model are placed in appendices. Point 130 

(iii) is dealt with by using an abundant dairy farm dataset by Kingshay Farming and 131 

Conservation Ltd, which also allowed us to demonstrate several temporal DEA approaches 132 

of potential interest to farm consultants. We believe that this study provides sufficient 133 

insight into how DEA can help identify areas for improvement in (dairy) farm efficiency and 134 

so add considerable value to any benchmarking service. 135 

 136 

2. Understanding DEA 137 

 138 

Numerous DEA models exist with different functions so it is important to choose one that 139 

fits the requirements of the problem at hand (Bogetoft and Otto, 2011; Cooper et al., 2007). 140 

However, most DEA models share two strong advantages: (i) they produce standardized 141 

scores between 0 and 1, with unity indicating 100% efficiency and a score less than 1 142 

indicating inefficiency; and (ii) the score is not affected by different measurement units (e.g. 143 

milk in L, feed in kg) because DEA uses the data themselves to weight the input and output 144 

variables. This study employed a so-called ‘additive’ model (Cooper et al., 2007), which is 145 

explained later2. 146 

The concept of DEA can be more clearly understood when compared with that of 147 

linear regression. The latter measures ‘central tendency’ (expressed by the regression line) 148 

and so we can determine how ‘far’ observations (dairy farms) are from the ‘average’ 149 

(Cooper et al., 2007). Contrariwise, DEA constructs an efficient frontier (which we will refer 150 

to as the best-practice frontier) consisting of the best performers in the sample and all other 151 

farms are benchmarked against this frontier. Consider, for instance, seven farms A, B, C, D, 152 

E, F and G producing a single output (e.g. grain yield) using a single input (e.g. land; Figure 153 

                                                      

2 We have chosen not to present and discuss alternative DEA models here to avoid the danger of making our 

presentation too ‘academic’ for the ‘intelligent lay’ non-academic reader. As with any DEA model, the additive 

model has pros and cons that we believe are irrelevant to the objective of our study. 
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1). Farms A, B, C, D, E and F form the frontier, i.e. they do not have to further reduce their 154 

input and further increase their output to become relatively efficient- they are the best 155 

performers. By contrast, farm G is relatively inefficient as it could be producing more output 156 

and using less input relative to one or more efficient farms3,4. To become relatively efficient, 157 

farm G will have to reduce its input and increase its output until it reaches a point on the 158 

frontier. DEA measures the efficiency of farm G by detecting the magnitudes of the 159 

inefficiencies that this farm exhibits in its input and output. Consequently, DEA will produce 160 

an efficiency score for farm G whose magnitude indicates by ‘how much’ this farm is 161 

inefficient in its input and output. This score is farm-specific and thus differs from regression 162 

that can only indicate by how much farms deviate from the ‘average’. Also, with DEA the 163 

single-input single-output case can be easily extended to multiple inputs and outputs, 164 

contrary to regression, which, in its simplest and most widely-adopted form, cannot handle 165 

more than one dependent variable at a time (Bowlin et al., 1984, p.127). 166 

 167 

                                                      

3 Note that the input-output frontier lies on the northwest of the dataset, enveloping inefficient farms such as 

G, hence the term data ‘envelopment’ analysis. This is by contrast with a regression line, which would be 

passing between the points, leaving some above it and some below it. 

4 Also note that the frontier displayed in Figure 1 is piece-wise linear. This is because we have assumed that 

farms operate under variable returns to scale, under which inefficient farms are only compared to efficient 

farms of a similar size (Fraser and Cordina, 1999). Alternatively, the frontier can be represented by a single 

straight line. However, this would imply that an increase in a farm’s input would result in a proportional 

increase in its output (Bogetoft and Otto, 2011; Cooper et al., 2007). This assumption is known as constant 

returns to scale and was considered unreasonable in our case. See also Appendix A. 
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 168 

Figure 1: A DEA best-practice frontier ABCDEF and an inefficient farm G in the single-input 169 

single-output case 170 

 171 

Which efficient farms serve as benchmarks for farm G? 172 

 173 

The answer to this question reveals one of DEA’s key properties: it can extrapolate from the 174 

given dataset by creating ‘virtual’ or ‘synthetic’ benchmarks that lie at any point on the 175 

frontier ABCDEF (Figure 1; Bogetoft and Otto, 2011). On the one hand, farm G could be 176 

benchmarked against, say, efficient farm C or D. On the other hand, it could be 177 

benchmarked against a virtual farm represented by a point lying on, say, segment CD. In any 178 

case, the benchmark farm’s input can be represented by a linear combination of the inputs 179 

of farms C and D (see Appendix A). 180 

The above provides an explanation of the idea behind DEA, especially in relation to 181 

the construction of the best-practice frontier and the identification of benchmark farms for 182 

the farm under evaluation. The additive model is outlined below. 183 

 184 
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How does the additive model calculate efficiency? 185 

 186 

The reason why a farm such as G is inefficient is because it exhibits excess in its input and 187 

shortfall in its output relative to its benchmark(s). The excess in inputs and shortfall in 188 

outputs represent the inefficiencies that G exhibits in its inputs and outputs. These 189 

inefficiencies are called slacks in the DEA terminology (Cooper et al., 2007), but the terms 190 

input inefficiency and output inefficiency will be used in this paper. 191 

The additive model finds the optimal values for the inefficiencies maximizing the 192 

total (sum) of input and output inefficiencies and projects farm G onto point C on the 193 

frontier. See Figure 2 for a visual representation as well as the Appendices B and C for the 194 

mathematical description of the additive model. 195 

 196 

 197 

Figure 2: Visual representation of the additive model run for farm G 198 

 199 

Before turning to the application with the sample data, it might be more reasonable to 200 

consider some of the DEA inputs and outputs as fixed. In this case, the DEA model will not 201 

seek to increase/decrease them, yet these inputs and outputs still play a role in shaping the 202 
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best-practice frontier. This concerns variables that a farmer may not be looking to 203 

increase/decrease on the short-term but rather in longer time-horizons. For instance, it 204 

might be more appropriate to model cows in herd, forage area and milk yield as fixed, for 205 

the following reasons. First, a farmer would for example maintain their herd size fixed and 206 

seek to reduce the number of replacements in response to improved output efficiency, 207 

rather than reduce the number of cows in the herd. Second, in the short run, it would seem 208 

unreasonable to expect that a farmer would reduce their land area. Third, given a low milk 209 

price, a farmer would rather increase butterfat and protein rather than milk yield. To 210 

illuminate the idea of fixed variables, had the input of farm G (Figure 2) been fixed, this farm 211 

would have to move vertically towards the frontier towards a point on segment EF. 212 

Similarly, had the output of farm G been fixed, this farm would have to move horizontally 213 

towards the frontier towards a point on segment AB. See Appendix D. 214 

 215 

3. Application 216 

 217 

Data 218 

 219 

Data from 675 UK dairy farms were selected, covering the year 2014–2015. Six inputs and 220 

three outputs were considered for aggregation into a single DEA efficiency score per farm 221 

(Table 1). The six inputs were cows in herd (numbers); forage area (ha); replacements 222 

(numbers); purchased feed (kg dry matter [DM]); somatic cell count (SCC; ‘000s/mL); and 223 

bacterial count (BC; ‘000s/mL). Cows in herd and forage area were considered as fixed (see 224 

previous section). Variables SCC and BC do not represent ‘typical’ physical farm inputs. 225 

However, including them in the model allowed us to estimate the inefficiencies that these 226 

two inputs exhibited in each farm, thus offering a way of demonstrating the financial 227 

benefits (better milk price) that a farm would gain by reducing them to the levels of their 228 

benchmarks (i.e. by eliminating these inefficiencies). Other inputs of interest, such as labour 229 

and fertiliser, were absent from the dataset and thus were not included in the model. 230 

The three outputs were milk yield (L); butterfat yield (kg); and protein yield (kg). Milk 231 

yield was considered as fixed. As with SCC and BC, setting the DEA model to increase 232 
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butterfat and protein yield allowed us to estimate the milk price benefits of eliminating the 233 

inefficiencies in these two outputs. 234 

 235 

 Table 1: Statistics of the DEA variables 236 

Variables Min Mean Max SD 

Inputs     

Cows in herd (numbers) 14 186 1,257 114 

Forage area (ha) 17 99 621 58 

Replacements (numbers) 2 54 375 42 

Purchased feed (kg DM1) 13,293 558,187 6,253,623 481,680 

SCC2 (‘000s/mL) 64 165 368 48 

BC3 (‘000s/mL) 7 26 144 13 

Outputs     

Milk yield (L) 79,628 1,532,009 14,031,479 1,103,397 

Butterfat yield (kg) 3,203 60,763 531,894 42,526 

Protein yield (kg) 2,692 50,278 448,481 36,034 

1 DM: dry matter. 2Somatic cell count. 3bacterial count. 237 

 238 

In summary, by setting the DEA model to increase butterfat and protein; and to 239 

reduce SCC and BC for the given milk yield, we obtained a ‘new’ milk price for the farm 240 

under evaluation. The difference between the actual and ‘new’ prices can be seen as the 241 

reward for producing more efficiently. 242 

Finally, we have added a bound to the inefficiencies of butterfat and protein to avoid 243 

getting unreasonably large inefficiency values for these two outputs5. Specifically, we 244 

demanded that the optimal values for butterfat and protein constrain the percentages in 245 

                                                      

5 We noted the need for imposing bounds to the inefficiencies of these two outputs after running preliminary 

exercises without the bounds, where the DEA model unreasonably indicated that some farms had to increase 

their butterfat content to as much as 12% to reach the best-practice frontier. 
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butterfat and protein below the maximal percentages in these two outputs observed in the 246 

dataset6. These bounds can be set extrinsically by the manager. See Appendix E. 247 

 248 

Software 249 

 250 

We ran the exercise in programming language R (R Core Team, 2017) using the R package 251 

‘additiveDEA’ (Soteriades, 2017), that is specifically designed to run additive DEA models. 252 

Visualizations were also produced with R. 253 

 254 

Results 255 

 256 

The additive model (formulas (9a)-(9i) and (11a)-(11b) in the Appendices) indicated that the 257 

DEA best-practice frontier consisted of 82 farms out of 675, i.e. 12% of the farms in the 258 

sample were efficient. The remaining 593 farms were benchmarked against these 82 farms. 259 

In what follows, we provide five examples to demonstrate DEA’s potential as a tool 260 

that can help guide farm management. In Example 1 we demonstrate that the DEA scores 261 

can disagree with widely-used dairy farm efficiency indicators, because the latter are not 262 

comprehensive. In the same example, we compare the technical characteristics of DEA’s 263 

benchmark farms with the top 25% farms in terms of margin over purchased feed (MOPF) 264 

per L of milk7 (from now on referred to as ‘Top 25% Farms’). In Examples 2-4 we choose 265 

specific farms exhibiting high inefficiencies in their inputs and outputs and show that these 266 

farms could be earning/saving substantial amounts of money by producing more efficiently. 267 

Example 5 shows how temporal efficiency analysis can be done with DEA. 268 

 269 

                                                      

6 Although the bounds can help calculate more reasonable butterfat and protein inefficiencies, it may be 

argued that they can still be a source of concern because they allow the butterfat and protein inefficiencies of 

any dairy farming system to become as large as the bounds. This may not be a sensible expectation for e.g. a 

system based on a by-products diet that may never give high butterfat for biological reasons. This can be dealt 

with by running DEA within groups of farming systems. We did not do this here, however, for simplicity. 

7 We got the idea from the Milkbench+ Evidence Report (AHDB Dairy, 2014). The report uses net margin/L 

rather than MOPF/L to identify the top 25% farms. However, net margin was not available in the sample 

dataset, hence our choice of MOPF/L. 
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Example 1: comparison of DEA efficiency with widely-used dairy farm efficiency indicators 270 

 271 

In this example, we compare the DEA efficiency scores with four widely-used indicators of 272 

dairy farm efficiency: MOPF per cow (£8); feed efficiency (FE) defined as kg of energy-273 

corrected milk per kg DM of purchased feed; milk yield per cow (L); and concentrate use per 274 

cow defined as kg DM of purchased feed per cow. The DEA scores are plotted against each 275 

of these indicators in Figure 3. It is shown that high DEA efficiency can be achieved at 276 

varying- and sometimes low- levels of MOPF per cow, FE, milk yield per cow and 277 

concentrate use per cow. This demonstrates that, contrary to DEA, partial efficiency ratios 278 

fail to provide a measure of overall farm efficiency. 279 

 280 

 281 

Figure 3: DEA efficiency scores plotted against: margin over purchased feed per cow; feed 282 

efficiency; milk yield per cow; and concentrate use per cow 283 

 284 

The difference between the way that ratios and DEA measure efficiency can also be 285 

seen by comparing the Top 25% Farms (169 farms) with the 82 farms that served as 286 

benchmarks in the DEA exercise (Table 2). There are some notable differences between the 287 

two groups in milk yield per cow, purchased feed per cow, MOPF per cow and per litre of 288 

milk and FE. What is interesting is that DEA benchmark farms are much more inefficient, on 289 

average, than the Top 25% Farms for FE and MOPF per cow and per litre of milk. However, 290 

this seemingly superior performance of the Top 25% Farms came at the cost of lower yields 291 

per cow (Table 2) and per forage hectare (Top 25% Farms: 15,343 L/ha; DEA benchmarks: 292 

                                                      

8 In mid-June 2017 £GBP1 was approximately equivalent to €1.15 and $US1.28. £GBP1 equals 100 pence. 
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18,819 L/ha) and greater numbers, on average, of SCC (Top 25% Farms: 104,688 cells/mL; 293 

DEA benchmarks: 100,691 cells/mL) and BC (Top 25% Farms: 24,247 cells/mL; DEA 294 

benchmarks: 19,285 cells/mL) than for the DEA benchmarks. This stresses (i) that good 295 

performance in some ratios could be achieved at the cost of high inefficiencies in other farm 296 

inputs and outputs. For instance, despite the lower MOPF per cow and per litre of milk of 297 

DEA benchmarks compared to the Top 25% Farms, the milk price for the latter would be 298 

more severely influenced by the higher SCC and BC; and (ii) that DEA offers a more holistic 299 

way of measuring efficiency. Finally, it is noteworthy that with DEA the number of ‘top 300 

farms’ is defined by the model itself: ‘top farms’ are the benchmark farms. This is more 301 

subjective than arbitrarily defining the percentage of farms that should be considered as 302 

‘top farms’ (e.g. 25% as in our example). 303 

 304 

Table 2: Comparison of top 25% farms (in terms of MOPF1/L) with the 82 DEA2 benchmark 305 

farms in terms of farm characteristics (averaged) 306 

Farm characteristics Top 25% Farms8 DEA benchmarks Difference 

Cows in herd 200 212 -12 

Replacement rate (%) 28 25 3 

Milk yield/cow (L) 7,590 8,595 -1,005 

Purchased feed/cow (kg DM3) 2,320 2,955 -635 

Purchased feed/litre (kg 

DM3/L) 
0.30 0.33 -0.03 

Butterfat (%) 4.1 4.0 0.1 

Protein (%) 3.3 3.3 0 

MOPF1/cow (£) 1,908 1,878 30 

MOPF1/litre (ppL4) 25 22 3 

FE5 (kg ECM7/kg DM3) 3.69 3.54 0.15 
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1MOPF: margin over purchased feed. 2DEA: data envelopment analysis. 3DM: dry matter. 4ppL: pence per L. 307 

5FE: feed efficiency. 7ECM: energy-corrected milk. 8In terms of MOPF/L of milk. 308 

 309 

Example 2: increasing MOPF per cow by reducing inefficiency in purchased feed 310 

 311 

This example demonstrates how insights from DEA and widely-used partial performance 312 

indicators can be coupled to identify profit-making opportunities for farmers. For each farm, 313 

we first calculated MOPF per cow: 314 

𝑚𝑖𝑙𝑘 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑 𝑝𝑒𝑟 𝑘𝑔 ×  𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑. 315 

Then, we calculated the ‘optimal’ MOPF per cow that each farm would get by reducing its 316 

inefficiencies in purchased feed: 317 

𝑚𝑖𝑙𝑘 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑 𝑝𝑒𝑟 𝑘𝑔 ×318 

 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑 –  𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑛 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑). 319 

At the final step, we calculated the difference between the actual and ‘optimal’ MOPF per 320 

cow. The largest difference occurred for a farm with actual and ‘optimal’ MOPF per cow 321 

values of £1,595 and £2,319 respectively, i.e. this farm could be improving MOPF per cow by 322 

an additional (£2,319 – £1,594) = £725 pounds per year just by using purchased feed more 323 

efficiently. 324 

 325 

Example 3: increasing milk price by reducing SCC and BC 326 

 327 

Another farm exhibited the largest inefficiency in SCC relative to its actual SCC (79%). It also 328 

exhibited a high inefficiency in BC relatively to its actual bacterial count (78%). This farm 329 

could greatly increase the price it gets for milk by reducing SCC from 339,750 cells/mL to 330 

(SCC – inefficiency in SCC) = 71,235 cells/mL and its bacterial count from 66,583 cells/mL to 331 

(BC – inefficiency in BC) = 14,619 cells/mL. In more detail, we used AHDB Dairy’s Milk Price 332 

Calculator (AHDB Dairy, 2017) so as to get milk prices for actual and efficient SCC and 333 

bacterial counts9. This farm could be earning an additional 9ppL (pence per L) as the price 334 

                                                      

9 One referee rightly commented that, in practice, milk price is dependent on SCC and BC thresholds rather 

than levels. This, however, does not affect the analysis: reducing SCC and BC to the levels of benchmark farms 
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for milk would have been improved from 20.43ppL to 29.43ppL10. It may achieve this 335 

increase in the price of milk by better managing its herd, e.g. by culling cows with the 336 

highest SCC and/or improving cow health management. Obviously, there would be costs 337 

incurred to improve SCC but the benefits of an extra 9ppL would not be lost on the farmer 338 

and would focus the mind on this most important source of inefficiency in this case. 339 

  340 

                                                                                                                                                                     

will increase the milk price only if efficient levels of SCC and BC are below the thresholds assumed in the Milk 

Price Calculator. 

10 Prices are annual prices for Arla Foods-Sainsburys. We used the calculator’s standard settings. Monthly milk 

yields for this farm were available in the sample data. 
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Example 4: increasing milk price by reducing SCC and BC and by increasing butterfat and 341 

protein 342 

 343 

The farm studied in Example 3 could be getting an even better price by also eliminating its 344 

inefficiencies in butterfat and protein. This farm’s butterfat and protein percentages were, 345 

respectively, 26,784/638,168 = 4.2% and 21,782/638,168 = 3.4%, while its efficient levels of 346 

butterfat and protein were, respectively, (26,784 + 4,995)/638,168 = 5.0% and (21,782 + 347 

4,589)/638,168 = 4.1%. This farm could be earning an additional 9.55ppL as the price for 348 

milk would have been improved from 20.43ppL to 29.55ppL. Again, DEA can help focus the 349 

mind of the farmer and farm manager on how best to deal with the greatest challenge to 350 

efficiency in a given case. The level of efficiency achievable in practice may be less 351 

important than the prioritisation of management effort that DEA highlights. 352 

 353 

Further applications 354 

 355 

Efficiency analysis over time 356 

 357 

All previous example applications were based on the rolling data reported in Table 1. Such 358 

applications are useful for monitoring farm performance based on annual data. Yet, 359 

monitoring efficiency across time is often more appropriate for decision-making, as it can 360 

help detect trends that develop slowly, potentially going unnoticed by the manager 361 

(Brockett et al., 1999). 362 

There are several methods for the analysis of efficiency change over time with DEA, 363 

each designed to fit particular purposes (interested readers may refer to Asmild et al., 2004; 364 

Bogetoft and Otto, 2011; Brockett et al., 1999; Cooper et al., 2007). We discuss three 365 

methods that may be of special interest to farm managers: (i) intertemporal analysis (Asmild 366 

et al., 2004; Brockett et al., 1999); (ii) a method by Tsutsui and Goto (2009), which we will 367 

refer to as ‘cumulative temporal analysis’; and (iii) window analysis (Asmild et al., 2004; 368 

Cooper et al., 2007). 369 

Intertemporal analysis is the simplest form of efficiency analysis over time: all data 370 

from different time periods are pooled and evaluated with a single DEA run. Thus, a farm 371 

‘FARM A’ is considered as a ‘different’ farm in each period, i.e. FARM A1, …, FARM AT, so the 372 
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single DEA run involves 𝑇 × 𝑛 farms, where 𝑇 is the number of periods and 𝑛 is the number 373 

of farms. For example, measuring efficiency trends for the period March 2014–March 2015 374 

requires pooling data for all farms from all 13 months and running a single DEA exercise, 375 

where all farms are benchmarked against a single best-practice frontier. Doing so allows the 376 

farm manager to compare efficiency progress (or deterioration) of individual or groups of 377 

farms across all 13 months. Figure 4 illustrates an inter-temporal DEA analysis for the period 378 

March 2014–March 2015, with a total of 6,030 ‘different’ farms. The median results are 379 

summarized by the six UK regions used in Kingshay’s Dairy Manager reports (Kingshay, 380 

2017). In this figure, notable fluctuations in (median) efficiency are observed for Scotland 381 

and the Southeast, with the former having the lowest scores for six out of 13 months. By 382 

contrast, the Midlands exhibit neither high nor low median efficiency, and these scores are 383 

relatively stable throughout the year (between approximately 0.55 and 0.63). Despite the 384 

simplicity of intertemporal analysis, its disadvantage is that it may be unreasonable to 385 

compare farms over long periods (e.g. years) if large technological changes have occurred 386 

meanwhile. 387 

 388 

 389 

Figure 4: Intertemporal DEA analysis summarized by UK region (median efficiency scores 390 

reported). SW: Southwest; SE: Southeast 391 

 392 

In cumulative temporal analysis, a farm in a specified period is benchmarked against 393 

a best-practice frontier consisting of farms up to that period. For example, a farm in May 394 

2014 is compared to farms in March, April and May 2014. This allows the manager to assess 395 
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efficiency in each period based on the farms’ ‘cumulative’ performance in inputs and 396 

outputs up to that period. As in Figure 4, Figure 5 demonstrates a deep fall in efficiency for 397 

Scotland and the Southeast, with Scotland performing at the lowest levels in six out of 13 398 

months. However, all groups have much higher (median) efficiencies than in Figure 4 for up 399 

to May 2014. This trend is generally observed for the whole study period, although from 400 

June 2014 scores in Figures 4 and 5 tend to get closer for each group. This is intuitive, 401 

because in later periods more farms are included in the analysis (note that the DEA run for 402 

March 2015 contains all 6,030 farms, hence the resulting scores for this month are identical 403 

to those of the inter-temporal analysis). 404 

 405 

 406 

Figure 5: Cumulative temporal DEA analysis summarized by UK region (median efficiency 407 

scores reported). SW: Southwest; SE: Southeast 408 

 409 

Window analysis resembles the well-known method of ‘moving averages’ in 410 

statistical time-series. Its advantage lies in the fact that it can be used for studying both 411 

trends over time as well as the stability of DEA scores within and between time ‘windows’ 412 

specified by the manager. For instance, for a manager interested in evaluating efficiency 413 

every four months (four-month ‘window’) for the period March 2014–March 2015, window 414 

analysis first involves a DEA run for all farms in window March 2014–June 2014. Then, 415 

March 2014 is dropped and a second DEA run involves all farms in window April 2014–July 416 

2014. The exercise is replicated up to window December 2014–March 2015. The results are 417 

reported in such a manner that allows detection of trends and stability. This is illustrated in 418 
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Table 3, where results are reported for Scotland (median scores). Looking at the results row-419 

by-row (i.e. window-by-window), we generally observe a decline in efficiency within each 420 

row up to window W4. From window W5 efficiency is gradually improving, while results are 421 

slightly more mixed within windows W9 and W10. The stability of these findings is 422 

confirmed by looking at the scores within each column. In more detail, within each column, 423 

scores are generally close, with a few exceptions (e.g. August 2014 where the minimum and 424 

maximum scores differ by 0.10), reinforcing the previously mentioned finding that 425 

performance deteriorates up to window W4 and then improves (also evident in Figures 4 426 

and 5). 427 

 428 

Table 3: DEA window analysis for Scotland (median efficiency scores), Mar 14–Mar 15  429 

Window Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 

W1 0.72 0.65 0.56 0.58 
         

W2 
 

0.65 0.56 0.58 0.57 
        

W3 
  

0.57 0.58 0.58 0.55 
       

W4 
   

0.62 0.59 0.56 0.57 
      

W5 
    

0.62 0.59 0.60 0.63 
     

W6 
     

0.65 0.65 0.69 0.67 
    

W7 
      

0.62 0.65 0.65 0.68 
   

W8 
       

0.65 0.65 0.65 0.69 
  

W9 
        

0.65 0.65 0.69 0.65 
 

W10 
         

0.64 0.67 0.64 0.63 

 430 

Comparing herds managed under different growing conditions 431 

 432 

In the DEA runs of the previous examples, an implicit assumption was made that all farms 433 

operated under similar growing conditions and thus could be directly compared. The large 434 

variation in variables such as growing conditions, regional characteristics, management 435 

practices etc. may raise concerns about the direct comparison of different types of dairy 436 

farms (Soteriades et al., 2016). For instance, Kingshay’s Dairy Manager (2017) groups herds 437 

by their ‘site class’, that is, the growing conditions under which these herds are managed 438 
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(defined by altitude, soil type and rainfall), and compares farms within each group. By 439 

contrast, with DEA it also possible to compare farms from different groups with a method 440 

by Charnes et al. (1981), which is also known as ‘corrective methodology’ (Soteriades et al., 441 

2016) or the ‘meta-frontier’ approach (Fogarasi and Latruffe, 2009). 442 

 The concept of the ‘corrective methodology’ or ‘meta-frontier’ approach is based on 443 

the observation that inefficiencies may be attributed to either management or different 444 

operating conditions: when both inefficiency sources are amalgamated, there is a risk of 445 

granting some ‘bad’ managers (farmers) good efficiency scores when they are only 446 

benefiting from operating under more favourable conditions (Soteriades et al., 2016). 447 

Hence, within-group managerial inefficiencies need to be eliminated before comparing 448 

groups. This can be done as follows. First, a DEA run is effected within each group to 449 

compare ‘like with like’. The inefficiencies that inefficient farms exhibit within each group 450 

are attributed solely to management. Second, inputs and outputs are adjusted to their 451 

efficient levels by eliminating these managerial inefficiencies. For inputs, this means 452 

subtracting the inefficiency from the actual input used, for example: 453 

′𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑′ 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑 = 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑 − 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑛 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑒𝑒𝑑. 454 

For outputs, it means adding the inefficiency to the actual output produced, for example: 455 

′𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑′ 𝑚𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑛 𝑚𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛. 456 

This is done for all inputs and outputs to eliminate all managerial inefficiencies within each 457 

group. Third, farms from all groups are pooled and a single DEA run is effected. Now, all 458 

inefficiencies are attributed to differences in operating conditions between groups and so 459 

we can determine which groups are more efficient, as well as which of their inputs and 460 

outputs exhibit the largest inefficiencies in each group or individual farm. 461 

 This methodology (which was not adopted in our study for simplicity and brevity) 462 

can be applied to compare any groups of farms that the practitioner feels cannot be directly 463 

compared, because of differences in e.g. breed, accumulated T-sums, manure management 464 

technology, system (e.g. conventional versus organic or pasture-based versus housed all 465 

year round) etc. 466 

 467 

4. Discussion 468 

 469 
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DEA in agricultural consulting, extension and teaching 470 

 471 

As DEA’s numerous advantages have made it a well-established method in agricultural and 472 

dairy research (see introduction), this article is mainly intended to reach a wider agricultural 473 

audience, specifically farm consultants, extension officers, Knowledge Exchange officers and 474 

lecturers in farm management. We hope that our examples provide our target audience 475 

with sufficient evidence of DEA’s potential for farm efficiency assessments, and that they 476 

will encourage them to consider using the method. For instance, similar exercises could be 477 

used by lecturers to complement teaching based on standard farm management textbooks 478 

that focus heavily on partial indicators (Boehlje and Eidman, 1984; Castle and Watkins, 479 

1979; Jack, 2009). Similarly, extension officers and farm consultants could use DEA to get a 480 

wider picture of farm performance before discussing with farmers the managerial strategies 481 

for improving efficiency. The DEA findings of such exercises could also be presented in 482 

online newsletters and reports by farm consultancies and agricultural levy boards (AHDB 483 

Dairy, 2014; Kingshay, 2017) to indicate where cost-saving or profit-making opportunities 484 

might lie for the farmer (as this study has intended to do). Knowledge Exchange could be 485 

achieved through workshops aiming at presenting findings from novel farm management 486 

tools and methods to industry stakeholders (SIP Platform, 2017, p.5). 487 

 488 

Challenges 489 

 490 

A main question is to what extent the indicators that analysts currently use can help them 491 

access the insights provided in our examples. However, as demonstrated in our examples, 492 

an attractive feature of DEA is that potentially ‘already-known’ information is summarized 493 

into a single score allowing holistic monitoring, while nothing is lost, because the score can 494 

be disaggregated into input and output inefficiencies. Moreover, there is great mileage for 495 

extending the DEA exercise by linking the scores with other attributes which are not always 496 

so well-known, for example casein content and cheese yield. DEA scores may also be linked 497 

with data for animal health and welfare, farm management strategies, regional 498 

characteristics and other external variables influencing farm efficiency (Barnes et al., 2011; 499 

Soteriades et al., 2016), which otherwise tend to be looked at in isolation. Data on the 500 
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environmental footprints of farms can also be considered as DEA variables to add a 501 

sustainability dimension to farm benchmarking (Soteriades et al., 2016). 502 

Missing and incorrect data, as well as unbalanced panel (monthly) data was a 503 

challenge that we faced when designing the DEA exercise. We had to remove farms with 504 

missing or negative entries in any of the inputs and outputs that we fed to the DEA model. 505 

This reduced the size of the available dataset. Similarly, the monthly entries of some farms 506 

were not recorded for all months of the 13-month study period, rendering impossible the 507 

study of DEA efficiency of individual farms (rather than our regional groups) over all 13 508 

months. Fortunately, developments with precision farming increasingly offer access to 509 

precise, well-informed data (Agri-EPI Centre, 2017). Equally important are financial 510 

incentives motivating farmers to gather and share their data, such as Scottish Government’s 511 

Beef Efficiency Scheme (2017). To be sure, Kingshay Farming and Conservation Ltd. and 512 

other recording companies provide the means, yet efforts should be made to eliminate 513 

variation between farmers in their accuracy of recording- or even their definitions of a 514 

record (Jack, 2009). In any case, the analyst can benchmark the farms for which they hold 515 

data against farms from the Farm Business Survey data (FBS, 2017), a comprehensive source 516 

of information on managerial, socio-economic and physical characteristics of UK farms. The 517 

FBS data are used in this manner in a recently developed benchmarking tool for UK farms 518 

(Wilson, 2017). 519 

From a methodological viewpoint, this study makes several assumptions and 520 

simplifications, so the examples and results should be viewed with the appropriate 521 

understanding that they are for illustration purposes. First, we did not correct the data for 522 

errors. Second, we ignored outliers. The issue of outliers is debated in the DEA literature, as 523 

extreme observations can greatly alter the shape of the best-practice frontier. However, we 524 

considered extreme farms as part of what is currently observed in UK dairy farming systems, 525 

and it could be argued that ‘[such farms] reflect the first introduction of new technology 526 

into a production process or an innovation in management practice from which [other 527 

farms] would want to learn’ (Bogetoft and Otto, 2011, p.147). Third, changing the set of DEA 528 

variables and/or adding or removing farms from the data will alter the shape of the frontier, 529 

consequently changing the set of efficient farms and the efficiency scores. We therefore 530 

recommend that DEA results should be seen as a rough proxy of the efficiency gains that 531 

may be achieved for the variables of interest in a given dataset. Variable choice is therefore 532 
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up to the practitioner, and it may expand DEA’s usability. This was demonstrated in our 533 

examples, with the use of SCC, BC, and butterfat and protein yields to compare current and 534 

‘optimal’ milk prices. 535 

 536 

Towards a DEA-based decision-support tool for farm management 537 

 538 

There is currently no DEA-based decision-support tool specifically tailored to the needs of 539 

the (dairy) farming industry. Although DEA models can be easily run with standard software 540 

that the analyst may be familiar with, such as spreadsheets, all available DEA software 541 

(spreadsheet-based or not) we are aware of (Table 4) suffer from excessive use of DEA 542 

jargon. As discussed earlier, this is a main factor discouraging analysts from using DEA. 543 

Moreover, DEA software tend to be complicated in that they strive to incorporate as many 544 

DEA models and techniques as possible. This is a natural consequence, because DEA is 545 

founded on the fields of management, economics and operational research, where 546 

alternative theories and approaches are continually developed and debated, thus giving 547 

birth to alternative DEA models and methodologies to satisfy different needs (Bogetoft and 548 

Otto, 2011; Cooper et al., 2007). To be sure, this may be of little concern to the farm 549 

analyst, who would rather focus their mind on specific objectives that could be dealt with 550 

specific DEA models and methods. 551 

That said, it would be bold to assume that the farm analyst would benchmark farms 552 

using DEA themselves. As discussed earlier, we are well-aware that our study is a premature 553 

and simplified introduction to DEA for farm benchmarking and that many issues were not 554 

addressed in our examples. We envisage that this study will evolve to the development of a 555 

DEA-based decision-support tool for farm management, following the guidelines in two 556 

recent and particularly inspiring papers on the design of decision-support systems for 557 

agriculture (Rose et al., 2016, in press). 558 

 559 

Table 4: List of available DEA software 560 

Software URL 

additiveDEA https://CRAN.R-project.org/package=additiveDEA 

Benchmarking https://CRAN.R-project.org/package=Benchmarking 
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DEA-Excel http://nb.vse.cz/~jablon/dea.htm 

DEAFrontier http://www.deafrontier.net/deasoftware.html 

DEAS https://sourceforge.net/projects/deas/?source=navbar 

DEA Solver Pro http://www.saitech-inc.com/Products/Prod-DSP.asp 

DEAP http://www.uq.edu.au/economics/cepa/deap.php 

EMS http://www.holger-scheel.de/ems/ 

Frontier Analyst https://banxia.com/frontier/ 

InverseDEA http://maxdea.com/InverseDEA.htm 

MaxDEA http://maxdea.com/MaxDEA.htm 

nonparaeff https://CRAN.R-project.org/package=nonparaeff 

Open Source DEA http://opensourcedea.org/ 

PIM-DEA http://deazone.com/en/software 

 561 

 562 

5. Conclusion 563 

 564 

DEA can help identify inefficient producers as well as indicate the inputs and outputs in 565 

which the largest inefficiencies occur for each farm. That way DEA can help guide 566 

management actions through a variety of cost-saving and/or profit-making options for each 567 

farm. We showed that detection- and elimination- of input and output inefficiencies can 568 

notably increase milk price and reduce the costs of concentrate use for inefficient UK dairy 569 

farms. We also demonstrated three simple ways of studying efficiency change over time 570 

with DEA to help detect trends in the technical performance of different farms or farm 571 

groups. Our DEA exercise could be extended to include other important variables such as 572 

labour, fertilizer use, greenhouse gas emissions, nitrogen and phosphorous surpluses etc. to 573 

account for objectives relevant to both business management and the public good. This 574 

flexibility characterizing DEA increases its importance in the context of a post- ‘Brexit’ UK, 575 

where a significant challenge will be to improve competitiveness in the world market (BSAS, 576 

2017). 577 

 578 
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6. Appendices 579 

 580 

Appendix A: which efficient farms serve as benchmarks for farm G? 581 

 582 

Farm G could be benchmarked against, say, efficient farm C or D (Figure 1). On the other 583 

hand, it could be benchmarked against a virtual farm represented by a point lying on, say, 584 

segment CD. In any case, the benchmark farm’s input can be represented by a linear 585 

combination of the inputs of farms C and D. Similarly, the benchmark farm’s output can be 586 

represented by a linear combination of the outputs of farms C and D. We can express these 587 

linear combinations mathematically as follows: 588 

𝑥𝐵𝑒𝑛 = 𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷         (1a) 589 

𝑦𝐵𝑒𝑛 = 𝜆𝐶𝑦𝐶 + 𝜆𝐷𝑦𝐷,         (1b) 590 

where 𝑥𝐵𝑒𝑛, 𝑥𝐶 , 𝑥𝐷 are the inputs of the benchmark farm, farm C and farm D respectively; 591 

𝑦𝐵𝑒𝑛 , 𝑦𝐶 , 𝑦𝐷 are the outputs of the benchmark farm, farm C and farm D respectively; and 592 

𝜆𝐶 , 𝜆𝐷 are semi-positive variables whose values are calculated by the DEA model. The values 593 

of these lambda variables provide information on which farms serve as benchmarks for farm 594 

G. For example, if 𝜆𝐶 = 1 and 𝜆𝐷 = 0, then farm C is the benchmark of farm G. If 𝜆𝐶 = 0 595 

and 𝜆𝐷 = 1, then farm D is the benchmark of farm G. However, if 𝜆𝐶 = 0.1 and 𝜆𝐷 = 0.9, 596 

then the benchmark of farm G is a virtual farm with input 0.1𝑥𝐶 + 0.9𝑥𝐷 and output 597 

0.1𝑦𝐶 + 0.9𝑦𝐷. 598 

We note that farm D plays a larger role in the formation of the virtual benchmark 599 

because its lambda value is much larger than that of farm C. In other words, farm D 600 

contributes to the formation of the virtual benchmark more ‘intensively’ than farm C. 601 

Therefore, the lambdas are referred to as intensity variables in the DEA literature. In this 602 

study, the term benchmark variables will be used instead. 603 

Now note that, as mentioned above, the benchmark variables are calculated by the 604 

DEA model, hence the model does not ‘know’ a priori which facet of the frontier farm G is 605 

benchmarked against. Therefore, formulas (1a) and (1b) are more appropriately expressed 606 

as follows: 607 

𝑥𝐵𝑒𝑛 = 𝜆𝐴𝑥𝐴 + 𝜆𝐵𝑥𝐵 + 𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷 + 𝜆𝐸𝑥𝐸 + 𝜆𝐹𝑥𝐹 + 𝜆𝐺𝑥𝐺   (2a) 608 

𝑦𝐵𝑒𝑛 = 𝜆𝐴𝑦𝐴 + 𝜆𝐵𝑦𝐵 + 𝜆𝐶𝑦𝐶 + 𝜆𝐷𝑦𝐷 + 𝜆𝐸𝑦𝐸 + 𝜆𝐹𝑦𝐹 + 𝜆𝐺𝑦𝐺,   (2b) 609 
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where 𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 + 𝜆𝐷 + 𝜆𝐸 + 𝜆𝐹 = 1. In formulas (2a) and (2b), the benchmark farm is 610 

indicated by those benchmark variables that have non-zero values. Efficient farms serve as 611 

benchmarks of themselves, e.g. for farm B we have that 𝜆𝐵 = 1 and 𝜆𝐴 = 𝜆𝐶 = 𝜆𝐷 = 𝜆𝐸 =612 

𝜆𝐹 = 𝜆𝐺 = 0. Note that the condition that the sum of lambdas equals 1 safeguards that the 613 

DEA model accounts for economies of scale. This is important when both small and large 614 

farms are present in the dataset, as was the case with the sample data. This condition is 615 

known as variable returns to scale specification. Other returns to scale specifications are 616 

available when needed, see Cooper et al. (2007). 617 

Based on the above insights, we will demonstrate how the DEA model identifies 618 

benchmark farms for each farm in the sample. It is obvious that benchmark farms use at the 619 

most the same amount of inputs as the farm under evaluation, say farm G. Similarly, they 620 

produce at least the same amount of outputs as farm G. Therefore, we demand that 621 

𝑥𝐵𝑒𝑛 = 𝜆𝐴𝑥𝐴 + 𝜆𝐵𝑥𝐵 + 𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷 + 𝜆𝐸𝑥𝐸 + 𝜆𝐹𝑥𝐹 + 𝜆𝐺𝑥𝐺 ≤ 𝑥𝐺  (3a) 622 

𝑦𝐵𝑒𝑛 = 𝜆𝐴𝑦𝐴 + 𝜆𝐵𝑦𝐵 + 𝜆𝐶𝑦𝐶 + 𝜆𝐷𝑦𝐷 + 𝜆𝐸𝑦𝐸 + 𝜆𝐹𝑦𝐹 + 𝜆𝐺𝑦𝐺 ≥ 𝑦𝐺.  (3b) 623 

Formulas (3a) and (3b) simply tell us that the benchmark farm cannot be using more input 624 

and be producing less output than G. For instance, we could have that 𝑥𝐵𝑒𝑛 = 0𝑥𝐴 + 0𝑥𝐵 +625 

1𝑥𝐶 + 0𝑥𝐷 + 0𝑥𝐸 + 0𝑥𝐹 + 0𝑥𝐺 = 𝑥𝐶 ≤ 𝑥𝐺 and similarly 𝑦𝐵𝑒𝑛 = 𝑦𝐶 ≤ 𝑦𝐺. In this case, the 626 

benchmark for farm G is C. Alternatively, we could have that 𝑥𝐵𝑒𝑛 = 0.08𝑥𝐴 + 0𝑥𝐵 +627 

0.67𝑥𝐶 + 0𝑥𝐷 + 0.25𝑥𝐸 + 0𝑥𝐹 + 0𝑥𝐺 ≤ 𝑥𝐺 and 𝑦𝐵𝑒𝑛 = 0.08𝑦𝐴 + 0𝑦𝐵 + 0.67𝑦𝐶 + 0𝑦𝐷 +628 

0.25𝑦𝐸 + 0𝑦𝐹 + 0𝑦𝐺 ≤ 𝑦𝐺. In this case, the benchmarks for farm G are farms A, C and E. 629 

  630 
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Appendix B: how does the additive model calculate efficiency? 631 

 632 

Another way to interpret formulas (3a) and (3b) is that an inefficient farm such as G exhibits 633 

excess in its input and shortfall in its output relatively to its benchmark. The excess in inputs 634 

and shortfall in outputs represent the inefficiencies that G exhibits in its inputs and outputs. 635 

We denote input and output inefficiency as 𝑠𝐺
− and 𝑠𝐺

+ respectively, with 𝑠𝐺
−, 𝑠𝐺

+ ≥ 0. These 636 

inefficiencies are central to the way that additive DEA models calculate efficiency. Before 637 

expanding on this, first note that 𝑠𝐺
− = 𝑥𝐺 − 𝑥𝐵𝑒𝑛 and 𝑠𝐺

+ = 𝑦𝐵𝑒𝑛 − 𝑦𝐺  so formulas (3a) and 638 

(3b) can be re-expressed for farm G as follows: 639 

𝑥𝐺 = (𝜆𝐴𝑥𝐴 + 𝜆𝐵𝑥𝐵 + 𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷 + 𝜆𝐸𝑥𝐸 + 𝜆𝐹𝑥𝐹 + 𝜆𝐺𝑥𝐺) + 𝑠𝐺
−  (4a) 640 

𝑦𝐺 = (𝜆𝐴𝑦𝐴 + 𝜆𝐵𝑦𝐵 + 𝜆𝐶y𝐶 + 𝜆𝐷𝑦𝐷 + 𝜆𝐸𝑦𝐸 + 𝜆𝐹𝑦𝐹 + 𝜆𝐺𝑦𝐺) − 𝑠𝑜
+.  (4b) 641 

Using formulas (4a) and (4b) as constraints of a mathematical optimization problem, the 642 

additive model seeks the maximal sum of input and output inefficiencies 𝑠𝐺
− + 𝑠𝐺

+ that farm 643 

G can exhibit (hence the term ‘additive’): 644 

Maximize (𝑠𝐺
− + 𝑠𝐺

+)         (5a) 645 

subject to 646 

𝑥𝐺 = (𝜆𝐴𝑥𝐴 + 𝜆𝐵𝑥𝐵 + 𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷 + 𝜆𝐸𝑥𝐸 + 𝜆𝐹𝑥𝐹 + 𝜆𝐺𝑥𝐺) + 𝑠𝐺
−  (5b) 647 

𝑦𝐺 = (𝜆𝐴𝑦𝐴 + 𝜆𝐵𝑦𝐵 + 𝜆𝐶𝑦𝐶 + 𝜆𝐷𝑦𝐷 + 𝜆𝐸𝑦𝐸 + 𝜆𝐹𝑦𝐹 + 𝜆𝐺𝑦𝐺) − 𝑠𝐺
+  (5c) 648 

𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 + 𝜆𝐷 + 𝜆𝐸 + 𝜆𝐹 + 𝜆𝐺 = 1      (5d) 649 

𝜆𝐴, 𝜆𝐵, 𝜆𝐶 , 𝜆𝐷, 𝜆𝐸 , 𝜆𝐹 , 𝜆𝐺 , 𝑠𝐺
−, 𝑠𝐺

+ ≥ 0.       (5e) 650 

Problem (5a)-(5e) finds the optimal values for the inefficiencies and benchmark variables 651 

maximizing 𝑠𝐺
− + 𝑠𝐺

+ and projects farm G onto point C on the frontier (i.e. 𝜆𝐶 = 1 and all 652 

other lambdas are zero). See Figure 2 for a visual representation of problem (5a)-(5e) for 653 

farm G. 654 

Now we point out some shortcomings of the additive model and propose 655 

adjustments to enhance its applicability in the context of dairy farm efficiency. Note that the 656 

optimal sum 𝑠𝐺
−∗ + 𝑠𝐺

+∗ (‘*’ denotes optimality), i.e. the score of the additive model for farm 657 

G, represents the maximal sum of inefficiencies in inputs and outputs that G exhibits. This 658 

has three drawbacks: (i) the additive model produces a score of total inefficiency rather than 659 

efficiency; (ii) the inefficiency score is not readily interpretable as it represents a sum of 660 

inefficiencies in inputs and outputs potentially measured in different units. For instance, the 661 

sum of inefficiency in milk production plus inefficiency in fertilizer use is clearly not intuitive; 662 
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consequently, (iii) the optimal solution is affected by the different measurement units in 663 

which inputs and outputs are measured. 664 

Problems (ii)-(iii) can be easily overcome by replacing the sum in (5a) with 665 

𝑠𝐺
−

𝑥𝐺
+

𝑠𝐺
+

𝑦𝐺
 .           (6) 666 

In (6) the different measurement units cancel because the inefficiencies are scaled by the 667 

actual input and output. In other words, the sum in (6) is units invariant and thus deals with 668 

problem (iii). The sum in (6) is interpreted as the proportion in input excess in 𝑥𝐺 plus the 669 

proportion in output shortfall relatively to 𝑦𝐺. In more detail, a ratio of, say 
𝑠𝐺

−

𝑥𝐺
= 0.60 670 

means that the input of farm G is in excess by 60%, i.e. it could be using 𝑥𝐺 − 𝑠𝐺
− = 𝑥𝐺 −671 

0.60𝑥𝐺 = 0.40𝑥𝐺 = 40% of its input 𝑥𝐺. On the output side, a ratio of 
𝑠𝐺

+

𝑦𝐺
= 0.60 means 672 

that farm G could be producing 𝑦𝐺 + 𝑠𝐺
+ = 𝑦𝐺 + 0.60𝑦𝐺 = 1.60𝑦𝐺 = 160% of its output 673 

𝑦𝐺. 674 

However, we are still faced with problem (i), although this can also be easily dealt 675 

with. First note from (5b) that 𝑠𝐺
− cannot exceed 𝑥𝐺, i.e. 

𝑠𝐺
−

𝑥𝐺
≤ 1. However, we note from (5c) 676 

that this is not the case with 𝑠𝐺
+, i.e. we may have that 

𝑠𝐺
+

𝑦𝐺
> 1. Nevertheless, in real life 677 

applications it might be unreasonable to have output slacks larger than the actual output 678 

because in such a case the farm under evaluation would have to at least double its output to 679 

become efficient- an enormous increase. Hence, we may demand that 𝑠𝐺
+ ≤ 𝑏𝐺 , where 𝑏𝐺  is 680 

an upper bound defined by the user, with 𝑏𝐺 ≤ 𝑦𝐺 (Cooper et al., 2007, ch.13). By 681 

safeguarding that 
𝑠𝐺

−

𝑥𝐺
≤ 1 and 

𝑠𝐺
+

𝑦𝐺
≤ 1, we have for the optimal solution to (5a)-(5e) that 0 ≤682 

1

2
(

𝑠𝐺
−∗

𝑥𝐺
+

𝑠𝐺
+∗

𝑦𝐺
) ≤ 1 and so 683 

0 ≤ 1 −
1

2
(

𝑠𝐺
−∗

𝑥𝐺
+

𝑠𝐺
+∗

𝑦𝐺
) ≤ 1.         (7) 684 

Thus, the inefficiency score (6) is converted to an efficiency score (7) that is bounded by 0 685 

and 1, with 1 indicating full efficiency (zero input and output inefficiencies) and a score less 686 

than 1 indicating inefficiency (non-zero input and output inefficiencies). The adjusted 687 

additive model for farm G becomes: 688 

  689 
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Minimize [1 −
1

2
(

𝑠𝐺
−

𝑥𝐺
+

𝑠𝐺
+

𝑦𝐺
)]        (8a) 690 

subject to 691 

𝑥𝐺 = (𝜆𝐴𝑥𝐴 + 𝜆𝐵𝑥𝐵 + 𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷 + 𝜆𝐸𝑥𝐸 + 𝜆𝐹𝑥𝐹 + 𝜆𝐺𝑥𝐺) + 𝑠𝐺
−  (8b) 692 

𝑦𝐺 = (𝜆𝐴𝑦𝐴 + 𝜆𝐵𝑦𝐵 + 𝜆𝐶𝑦𝐶 + 𝜆𝐷𝑦𝐷 + 𝜆𝐸𝑦𝐸 + 𝜆𝐹𝑦𝐹 + 𝜆𝐺𝑦𝐺) − 𝑠𝐺
+  (8c) 693 

𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 + 𝜆𝐷 + 𝜆𝐸 + 𝜆𝐹 + 𝜆𝐺 = 1      (8d) 694 

𝑠𝐺
+ ≤ 𝑏𝐺           (8e) 695 

𝑏𝐺 ≤ 𝑦𝐺          (8f) 696 

𝜆𝐴, 𝜆𝐵, 𝜆𝐶 , 𝜆𝐷, 𝜆𝐸 , 𝜆𝐹 , 𝜆𝐺 , 𝑠𝐺
−, 𝑠𝐺

+ ≥ 0.       (8g) 697 

 698 

Appendix C: the general case 699 

 700 

We consider the general case where there are 𝑛 dairy farms each using 𝑚 inputs to produce 701 

𝑠 outputs, denoted as 𝑥𝑖 (𝑖 = 1, … , 𝑚) and 𝑦𝑟 (𝑟 = 1, … , 𝑠) respectively. The efficiency 702 

score for the farm under evaluation, denoted as FARMO, is given by the following 703 

generalization of problem (8a)-(8g): 704 

𝜌∗ = Minimize
𝜆𝑗,𝑠𝑖𝑜,𝑠𝑟𝑜 

[1 −
1

𝑚+𝑠
(∑

𝑠𝑖𝑜

𝑥𝑖𝑜

𝑚
𝑖=1 + ∑

𝑠𝑟𝑜

𝑦𝑟𝑜

𝑠
𝑟=1 )]     (9a) 705 

subject to 706 

𝑥𝑖𝑜 = ∑ 𝑥𝑖𝑗𝜆𝑗
𝑛
𝑗=1 + 𝑠𝑖𝑜 , 𝑖 = 1, … , 𝑚       (9b) 707 

𝑦𝑟𝑜 = ∑ 𝑦𝑟𝑗𝜆𝑗
𝑛
𝑗=1 − 𝑠𝑟𝑜 , 𝑟 = 1, … , 𝑠       (9c) 708 

∑ 𝜆𝑗
𝑛
𝑗=1 = 1          (9d) 709 

𝑠𝑟𝑜 ≤ 𝑏𝑟𝑜 , 𝑟 = 1, … , 𝑠        (9e) 710 

𝑏𝑟𝑜 ≤ 𝑦𝑟𝑜 , 𝑟 = 1, … , 𝑠        (9f) 711 

𝑠𝑖𝑜 , 𝑠𝑟𝑜 , 𝜆𝑗 ≥ 0 (𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠, 𝑗 = 1, … , 𝑛),    (9g) 712 

where 𝑥𝑖𝑜 and 𝑦𝑟𝑜 are the inputs and outputs of FARMO respectively; 𝑠𝑖𝑜 and 𝑠𝑟𝑜 are the 713 

input and output inefficiencies of FARMO respectively; and 𝑏𝑟𝑜 is the user-defined upper 714 

bound of 𝑠𝑟𝑜. 715 

  716 
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Appendix D: fixed variables 717 

 718 

Fixed inputs and outputs can be included in model (9a)-(9g) by adding the following two 719 

constraints: 720 

𝑥𝑘𝑜
𝑓𝑖𝑥𝑒𝑑

≥ ∑ 𝑥𝑘𝑗
𝑓𝑖𝑥𝑒𝑑

𝜆𝑗
𝑛
𝑗=1 , 𝑘 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠   (9h) 721 

𝑦𝑙𝑜
𝑓𝑖𝑥𝑒𝑑

≤ ∑ 𝑦𝑙𝑜
𝑓𝑖𝑥𝑒𝑑

𝜆𝑗
𝑛
𝑗=1 , 𝑙 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑥𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠.   (9i) 722 

 723 

Appendix E: bounds 724 

 725 

The bounds imposed to the slacks of the additive model run in this exercise were the 726 

following: 727 

𝑦𝑜
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑎𝑡

+𝑠𝑜
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑎𝑡

𝑦𝑜
𝑚𝑖𝑙𝑘 ≤ max (

𝑦𝑗
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑎𝑡

𝑦𝑗
𝑚𝑖𝑙𝑘 )      (10a) 728 

𝑦𝑜
𝑝𝑟𝑜𝑡𝑒𝑖𝑛

+𝑠𝑜
𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑦𝑜
𝑚𝑖𝑙𝑘 ≤ max (

𝑦𝑗
𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑦𝑗
𝑚𝑖𝑙𝑘 ),       (10b) 729 

thus 730 

𝑏𝑜
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑎𝑡

= max (
𝑦𝑗

𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑎𝑡

𝑦𝑗
𝑚𝑖𝑙𝑘 ) 𝑦𝑜

𝑚𝑖𝑙𝑘 − 𝑦𝑜
𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑎𝑡

     (11a)  731 

𝑏𝑜
𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = max (

𝑦𝑗
𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑦𝑗
𝑚𝑖𝑙𝑘 ) 𝑦𝑜

𝑚𝑖𝑙𝑘 − 𝑦𝑜
𝑝𝑟𝑜𝑡𝑒𝑖𝑛      (11b) 732 
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