

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y

An automatic cryptanalysis of simple substitution ciphers using
compression
Alkazaz, Noor R.; Irvine, Sean A.; Teahan, William J.

Information Security Journal: A Global Perspective

DOI:
10.1080/19393555.2018.1426799

Published: 01/01/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Alkazaz, N. R., Irvine, S. A., & Teahan, W. J. (2018). An automatic cryptanalysis of simple
substitution ciphers using compression. Information Security Journal: A Global Perspective,
27(1), 57-75. https://doi.org/10.1080/19393555.2018.1426799

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 09. Oct. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bangor University Research Portal

https://core.ac.uk/display/186466013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/19393555.2018.1426799
https://research.bangor.ac.uk/portal/en/researchoutputs/an-automatic-cryptanalysis-of-simple-substitution-ciphers-using-compression(1e6c8760-0dbc-432c-9f65-d424f93703d9).html
https://research.bangor.ac.uk/portal/en/researchers/william-teahan(b3a78ff6-b96e-41a5-8d0a-82e43090a93e).html
https://research.bangor.ac.uk/portal/en/researchoutputs/an-automatic-cryptanalysis-of-simple-substitution-ciphers-using-compression(1e6c8760-0dbc-432c-9f65-d424f93703d9).html
https://research.bangor.ac.uk/portal/en/researchoutputs/an-automatic-cryptanalysis-of-simple-substitution-ciphers-using-compression(1e6c8760-0dbc-432c-9f65-d424f93703d9).html
https://doi.org/10.1080/19393555.2018.1426799

Information Security Journal: A Global Perspective manuscript No.
(will be inserted by the editor)

An Automatic Cryptanalysis of Simple Substitution
Ciphers Using Compression

Noor R. Al-Kazaz · Sean A. Irvine ·
William J. Teahan

Received: date / Accepted: date

Abstract Automatic recognition of correct solutions as a result of a cipher-
text only attack of simple ciphers is not a trivial issue and still remains a taxing
problem. A new compression based method for the automatic cryptanalysis
of simple substitution ciphers is introduced in this paper. In particular, this
paper presents how a Prediction by Partial Matching (‘PPM’) text compres-
sion scheme, a method that shows a high level of performance when applied to
different natural language processing tasks, can also be used for the automatic
decryption of simple substitution ciphers. Experimental results showed that
approximately 92% of the cryptograms were decrypted correctly without any
errors and 100% with just three errors or less. Extensive investigations are de-
scribed in this paper, in order to determine which is the most appropriate type
of PPM scheme that can be applied to the problem of automatically breaking
substitution ciphers. This paper shows how a new character-based PPM vari-
ant significantly outperforms other schemes including the standard Gzip and
Bzip2 compression schemes. We also apply a word-based variant which when
combined with the character-based method leads to further improved results.

Keywords Cryptanalysis · substitution ciphers · plaintext recognition ·
compression · PPM.

1 Introduction

Compression can be used in several ways to enhance cryptography and crypt-
analysis. For example, many cryptosystems can be broken by exploiting statis-

School of Computer Science, Bangor University.
College of Science for Women, Baghdad University.
{n.al-kazaz@bangor.ac.uk,w.j.teahan}@bangor.ac.uk
sairvin@gmail.com
noor82.nra@gmail.com
http://www.bangor.ac.uk/cs

2 Noor R. Al-Kazaz et al.

tical properties or redundancy in the ciphertext. Clearly for this reason, com-
pression is highly recommended before the encryption process, as it removes
redundancy from the source (Irvine, 1997). However, this paper considers an-
other application of compression to tackle the plaintext identification problem
for cryptanalysis. This is an approach that has resulted in relatively few pub-
lications compared to the many other methods that have been proposed for
breaking ciphers.

This paper proposes a new compression based approach applied to the
problem of automatically decrypting simple substitution ciphers with no need
for any human intervention. In spite of the fact that simple substitution ci-
phers are relatively insecure compared to modern ciphering techniques, it still
remains a classical problem that has defied many reliable automated crypt-
analysis methods (Lucks, 1990). Our automatic cryptanalysis method uses a
new variation of the Prediction by Partial Matching (‘PPM’) text compression
scheme. This paper investigates different variants of PPM to ascertain the most
efficient type when applied to the problem of decrypting simple substitution
ciphers automatically using compression.

Text compression is about removing redundancy from a text source by re-
ducing the space required to store the text and the time required to transfer
this text as well without losing any information from the original source. In
practical terms, two main classes of adaptive techniques are commonly used:
dictionary and statistical approaches (Bell, Cleary, & Witten, 1990). The dic-
tionary approach is usually found to be faster than the statistical approach.
In contrast, statistical based approaches are usually better than dictionary
approaches in terms of compression rate. More recently, a third class based
on block-sorting using the Burrows-Wheeler algorithm (Burrows & Wheeler,
1994) has appeared which approaches the compression rates of statistical al-
gorithms but at much faster speeds, although not as fast as dictionary-based
approaches.

PPM is an adaptive statistical coding approach, which dynamically con-
structs and updates fixed order Markov-based models that help predict the
upcoming character relying on the previous symbols or characters being pro-
cessed. This class of text compression models performs well on English and
it rivals the predictive ability of humans compared to other computer mod-
els (Teahan & Cleary, 1996). The Gzip compression program is an example
of a dictionary-based method, which is based on the Lempel-Ziv algorithm
(LZ77) (Gzip, 2012). The Bzip2 compression program (Bzip2, 2016) imple-
ments the Burrows-Wheeler algorithm.

The rest of this paper is organised as follows. Simple substitution ciphers
are described in the next section. Section 3 provides a summary of the previous
research used in the solution of simple substitution ciphers. Section 4 motivates
the use of compression as an automatic cryptanalysis method and reviews the
codelength metric calculations used in our approach which is based on the
PPM, Gzip and Bzip2 methods. The pseudo-code and the full description of
our method are presented in section 5. Experimental results are discussed in
section 6. The final section provides the conclusion.

Cryptanalysis of Simple Substitution Ciphers using Compression 3

2 Simple Substitution Ciphers

A simple substitution cipher (also called a monoalphabetic cipher) replaces
each character in the plaintext with another predetermined character to form
the ciphertext (Robling Denning, 1982). Formally, let A be a plaintext alpha-
betic character of size n, where A ∈ {a0, a1, ..., an−1} and C is a ciphertext
alphabetic character of size n, C ∈ {f(a0), f(a1), ..., f(an−1)}. Each symbol
of A has a one-to-one mapping to the corresponding symbol of C, f : A → C.
Generally, C is a simple rearrangement of the lexical order of the symbols in
A, for example:

A : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
C : I R U S N V D W O X A P G T J Y B K E L M F C Z Q H
Then the message ‘CRYPTOGRAPHY DEMO’ is encoded as:

Plaintext CRYPTOGRAPHY DEMO
Ciphertext UKQYLJDKIYWQ SNGJ

The permutation selected represents the key.

For an alphabet with n characters, there are n! possible permutations; for
example, for the 26 letter English alphabet, there are 26! possible permutations
or 4.03e+26. So with this large number of possibilities, finding the correct
permutation through an exhaustive search is considered to be infeasible.

This type of cryptosystem is easy to implement and to use. However, it is
not difficult to crack, as it does nothing to conceal the statistical properties
of the language. Hence, it does not provide much security and can be easily
broken by frequency distribution analysis.

By using frequency analysis of individual letters, the cryptanalyst can read-
ily decrypt a ciphertext manually that uses this cryptosystem. This will still
happen even if the character frequencies of the ciphertext is different from
those of normal English text. With a few attempts and after trying some of
the possibilities, the cryptanalyst will be able to find the correct substitu-
tion (Irvine, 1997; Eskicioglu & Litwin, 2001). Digram and trigram distribu-
tions provide more useful information that can also be accessed by the crypt-
analyst. Many digrams could occur more frequently than some single letters
while other digrams such as ‘qj’ rarely occur in English. Typically, different
languages have different letter frequencies. So, it is possible to determine the
plaintext language before starting to decrypt the ciphertext if a long enough
ciphertext is given.

Despite the fact that simple substitution ciphers are not typically used in
real-world encoding systems nowadays, many effective and secure modern ci-
phers use substitution ciphers in combination with other ciphers, for example,
transposition ciphers, modular arithmetic, Boolean algebra and so on. This
powerful combination is an important innovation as it results in a method
that is stronger than its original components (Eskicioglu & Litwin, 2001). Al-
though monoalphabetic ciphers are not considered secure, they are frequently
used as building blocks in larger state of the art cryptographic systems. Con-

4 Noor R. Al-Kazaz et al.

sequently, it is so important to understand the vulnerability of these simple
ciphering systems, to help with building more complex ciphers (Grundlingh &
Van Vuuren, 2003).

Classical ciphers generally fall into two main categories: substitution ci-
phers and transposition ciphers. Modern encryption systems have now super-
seded the classical systems; however, the most popular cryptological applica-
tion and implementation for metaheuristic search research is the cryptanalysis
of classical ciphers. The essential concepts of substitution ciphers and trans-
position ciphers are still widely used nowadays in the Advanced Encryption
Standard (AES) and the International Data Encryption Algorithm (IDEA).
As long as the operations and the concepts of the classical cipher systems are
the basic building blocks of more secure modern ciphers, then the classical
ciphers are typically the first ciphers considered in the case of investigating
and examining new attacks (Garg & Sherry, 2005).

3 Previous work

Several cryptanalysis techniques have been devised for the solution of simple
substitution ciphers, starting with a number of strategies for hand analysis,
leading to automated cryptanalysis methods. In this section, we will concen-
trate on previous approaches for automated cryptanalysis.

Typically, human experts who have experience in cryptanalysis can solve
a sentence-long ciphertext in a few minutes. Many hand analysis strategies
have been described (Ball, 1960; Friedman, 1976; Gaines, 1956). These strate-
gies are generally a combination of three main classes: zero order frequency
analysis, a pattern matching approach and word recognition. However, none of
these strategies are explicit enough to be called an algorithm. Many different
solutions have been devised over the last few decades with varying degrees of
success. An attempt to automate cryptanalysis by developing an expert system
that generally tries capturing the knowledge of the experienced cryptanalyst
was presented in (Carroll & Martin, 1986). Similarly, other systems (Schatz,
1977; Anderson, 1989a, 1989b) have firstly attempted to predict the vowels in
the cryptograms.

The following summarises some of the more interesting or important auto-
matic cryptanalysis methods and their drawbacks. The purpose is to highlight
the breadth of research that has previously been applied to the problem. In
particular, most of the previous attempts for automated cryptanalysis are
based on two main approaches: a probabilistic approach (Peleg & Rosenfeld,
1979; Hunter & McKenzie, 1983; King & Bahler, 1992; King, 1994) and a
pattern matching approach (Lucks, 1990; Hart, 1994). Automatic methods for
decrypting substitution ciphers using a ‘relaxation’ algorithm were presented
in (Peleg & Rosenfeld, 1979; Hunter & McKenzie, 1983; King & Bahler, 1992).
With a 400 character long ciphertext, algorithm in (King & Bahler, 1992) was
able to correctly recover 93% of the ciphertext symbols within an average ex-
ecution time of 13 minutes. In the relaxation algorithm, breaking the cipher

Cryptanalysis of Simple Substitution Ciphers using Compression 5

is considered as a probabilistic problem. Each letter in the cipher is assigned
probabilities representing each letter in the plaintext. By using joint letter
probabilities, all ciphertext letter probabilities are generally updated in paral-
lel. After a number of iterations, hopefully there is an improvement in the esti-
mations that lastly lead to solve the ciphertext. In (Peleg & Rosenfeld, 1979),
the joint letter probabilities which are used to update the symbol probabili-
ties are generally based on the trigram frequencies. Just two examples were
examined in this paper: a 996 character long ciphertext using a paragraph
from a technical report and a 1149 character long ciphertext using Lincoln’s
Gettysburg Address.

On the other hand, pattern matching algorithms (Lucks, 1990; Hart, 1994)
work better on short ciphertexts, but can not solve ciphertexts for which there
are no words in the dictionary being used by the algorithm. They are not able
to handle trivial variations, like examples with removing spaces. According
to the pattern matching approach, each word in the ciphertext is structurally
compared with words a dictionary. The accuracy of this approach and the
time required to break the ciphertext depends on the size of the dictionary.
A dictionary size of over 19,000 entries was used in (Lucks, 1990). A success
rate of 60% was achieved; however, about 30% of the trials required further
human intervention. Algorithm in (Hart, 1994) could provide decrypted mes-
sages for short cryptograms in a matter of seconds. Both methods in (Lucks,
1990; Hart, 1994) did not produce complete or unique solutions. That is be-
cause either there were some words that did not appear in the dictionary or
multiple possibilities were deciphered. All these previous approaches (Peleg &
Rosenfeld, 1979; Hart, 1994; Lucks, 1990) deal with just twenty six alphabet
English letters and consider that the spaces between words are already identi-
fied or not ciphered. In contrast, our method deals with twenty seven English
characters (twenty six alphabetic letters and space).

An enhanced English frequency analysis technique was introduced in (K. Lee,
Teh, & Tan, 2006). It uses a combination of unigram frequencies, keyword rul-
ings and dictionary checking. Two ciphertexts were examined, one with 9006
letters and the other with 2802 letters, and the method was able to achieve
good decryption results. Dictionary-based automatic attack was demonstrated
in (Olson, 2007). Twenty one cryptograms were examined and all of them
were successfully solved. However, the algorithm also struggled on short cryp-
tograms. A genetic algorithm for the cryptanalysis of simple substitution ci-
phers was published in (Spillman, Janssen, Nelson, & Kepner, 1993). To evalu-
ate the quality of a key, a fitness function was used based on character unigram
and digram English frequencies. There was no specific description about the
test set characteristics that they used in this paper, and the exact key was not
always found. A simulated annealing approach was used in (Forsyth & Safavi-
Naini, 1993). The evaluation was based on using bigram statistics. With a very
long ciphertext (5000 characters), the algorithm performed quite well, but it
was less efficient with shorter ciphers. The use of genetic algorithms, simu-
lated annealing and tabu search for the cryptanalysis was presented in (Clark,
1994; Garg & Sherry, 2005). Character unigram and digram frequencies were

6 Noor R. Al-Kazaz et al.

adopted as the basis of the fitness function in (Clark, 1994) and trigram as well
in (Garg & Sherry, 2005). For a cryptogram of 800 characters, 25 out of 27 key
elements were recovered, and for a cryptogram of a length of 500, it was able to
recover 23 keys (Clark, 1998). For a ciphertext of 200 characters, the amount
of recovered keys was about 12 whereas with a 1000 character long ciphertext,
about 24 keys was successfully recovered out of 27 (Garg & Sherry, 2005). An-
other genetic algorithm based solution (Grundlingh & Van Vuuren, 2003) was
successfully implemented. Just one long ciphertext of 2519 characters was ex-
amined. The fitness function was based on character unigram and bigram anal-
ysis. Many previous works in this area were summarized in (Delman, 2004).
The use of genetic algorithms was specifically explored. Attempts to extend
these works were unsuccessful. This resulted in the conclusion that the genetic
algorithms approach did not merit further effort, since although the tradi-
tional cryptanalysis methods require more execution time, they were easier to
implement and much more successful

A fast automated attack using hill climbing was presented (Jakobsen,
1995). With a ciphertext of 100 characters, the algorithm achieved a success
rate of 50%, and with a ciphertext of 400 characters in length, a success rate of
98% was reached. The time needed to cryptanalyze a cipher ranged from half a
second to two seconds. HMMs (Hidden Markov Models) was used in (D.-S. Lee,
2002). It showed that the method systematically outperformed the relaxation
algorithm using character bigram models. It achieved a 95% decoding rate for
cryptograms of 500 characters, whereas just 80% was achieved by the relax-
ation approach. An attack using HMMs with multiple random restarts and
hill climbing was showed in (Vobbilisetty, Di Troia, Low, Visaggio, & Stamp,
2017). A 70% accuracy rate was achieved as a result of solving a ciphertext of
200 letters in length. With ciphertexts of 300 and 400 letters, a 95% accuracy
rate was achieved. A modified Markov Chain Monte Carlo (MCMC) algorithm
was introduced in (Chen & Rosenthal, 2012) where ciphertexts of 1000 and
2000 characters were used. Accuracy rate of 93% against a 2000 character long
ciphertext was achieved.

An attack based on using the PSO (Particle Swarm Optimization) al-
gorithm was proposed in (Uddin & Youssef, 2006). Character unigram and
bigram statistics were both used for the evaluation function. Using bigram
statistics resulted in a 45% success rate for a ciphertext of 100 characters,
and 95% for a cipher of 400 characters. Another automatic attack based on
stochastic optimization algorithms was presented in (Hilton, 2012). Character
unigram, bigram and trigram statistics were investigated. About six correct
keys were recovered out of 26 for a 100 character long ciphertext, and 20 cor-
rect keys for a cryptogram with a length of 500. An exact method for solving
letter-substitution ciphers using a generalized Viterbi algorithm was described
(Corlett & Penn, 2010). A character-level trigram model was used to rank
solutions. Texts with different sizes (1000, 3500,. . . 13500) were tested. With
a 3500 character long ciphertext, the accuracy was 96.30% with an execution
time of 38 minutes. The integration of a genetic algorithm with the meta-
heuristic algorithm was examined in (Luthra & Pal, 2011). For ciphertexts of

Cryptanalysis of Simple Substitution Ciphers using Compression 7

500 characters, they were able to recover 21 correct keys out of 27, and 22
correct key from ciphertexts of 1000 characters in length.

A cryptanalysis method using low-order n-gram models (unigram, bigram
and trigram models for English) was presented in (Ravi & Knight, 2009). Fifty
ciphers of different lengths up to 265 were examined. With ciphertexts of 64
characters, this method produced good results with 10% average errors and
average execution time of approximately 76 minutes, with a 5% error rate
for ciphertexts of 128 characters using the trigram model. This method pro-
duced better results than Knight et al.’s method (Knight, Nair, Rathod, &
Yamada, 2006), which used the expectation-maximization algorithm (EM).
A simple beam search using high order n-gram models (3-grams, 4-grams,
5-grams and 6-grams) to the problem of solving substitution ciphers was in-
troduced in (Nuhn, Schamper, & Ney, 2013). Short cryptograms (up to 256
characters) were tested. By using a 5-gram model, ciphertexts of a length 16
were decrypted with 45% average error rate, and 60% using 6-gram models.
Cryptograms of length 64 were decrypted successfully with less than 5% de-
ciphering errors with a reported decryption time of two and a half minutes
using 6-gram models.

Irvine (Irvine, 1997) has been the only researcher to have previously used
a text compression method to decrypt a cipher system (in this case, simple
substitution ciphers) and (Al-Kazaz, Irvine, & Teahan, 2016) used a compres-
sion method to break transposition ciphers. Irvine used a variation of PPM
modelling system (combined with simulated annealing) for the automatic so-
lution of simple substitution ciphers, with good results achieved compared to
other methods with 60% of ciphertexts solved without any errors, and 83%
with less than four errors.

In this paper, we investigate more deeply the use of PPM compression
method by proposing a new variation for tackling the problem of the auto-
matic decryption of simple substitution ciphers. However, our approach uses a
different search algorithm and a new modified version of PPM, which achieves
a high success rate achieved close to 100%. The use of other compression
schemes (Gzip and Bzip2) are also examined in this paper. Our evaluation
also analyses the decryption of different ciphertext lengths, including very
short cryptograms with just 20 characters, whereas the cryptograms used in
most of the previous research were not less than 100 characters long or usu-
ally required quite a long time to execute with a relatively high error rate. In
our paper, we will present different PPM compression variants and investigate
which variant is the most effective when applied to the problem of automati-
cally decrypting simple substitution ciphertexts.

4 Automated Cryptanalysis Using Compression

The ciphertext only cryptanalysis of simple ciphersystems heavily depends on
the statistical features of the source language, and it is not a trivial issue to
get computers performing this analysis. Several previously published crypt-

8 Noor R. Al-Kazaz et al.

analysis methods can not run without human intervention or they assume at
least known plaintext because of the difficulty of quickly recognizing a correct
decryption in a ciphertext only cryptanalysis (Irvine, 1997; Schneier, 1993;
Wiener, 1993).

Having a computer model that is able to predict and model natural lan-
guage as well as a human is critical for cryptology (Teahan, 1998). Teahan
demonstrated that the PPM modeling system has the ability to predict text
in a way that is close to achieving human performance level (Teahan & Cleary,
1996). The essential idea of our technique uses PPM for calculating the com-
pression ‘codelength’ value of each possible permutation (which is used to
measure the amount of information in each (Irvine, 1997)). Permutations with
smaller codelength values help to determine better decryptions (Al-Kazaz et
al., 2016). We present how to use this to automatically and easily recognise
the valid solution in a ciphertext only cryptanalysis against simple substitution
systems. Also, further investigations on different variants of PPM compression
method are performed in this paper. Other compression methods (Gzip and
Bzip2) as a basis method for calculating the codelength metric are also tried.
This is to ascertain the most effective method to use to automatically break
simple substitution cryptosystems.

4.1 PPM Compression Codelength Metric

Prediction by Partial Matching (PPM) has set the performance standard in
lossless compression of text throughout the past three decades (Teahan, 1998).
The initial method was first published by Cleary & Witten (Cleary & Witten,
1984). It is an adaptive statistical coding approach whose main idea is based
on using the last few characters in the input to predict the upcoming one
using a Markov-based method. Models that set their predictions on a few
prior symbols are termed finite-context models of order k, where k denotes
the number of previous symbols used. The order of the model represents the
maximum context length used to predict the next symbol.

Prediction probabilities for each model are calculated from all characters
or symbols that have followed every subsequence observed from 1 to length k,
and from the number of times that each character has occurred. From each
model, the probabilities associated with each symbol or character that has
followed the preceding k characters (in the past) are estimated to predict the
upcoming character. Prediction by Partial Matching modelling systems have
been found to be very efficient at compressing English text (Teahan & Cleary,
1996).

Usually, each character or symbol in the model will be encoded by using
arithmetic coding depending on their associated probabilities (Witten, Neal,
& Cleary, 1987). According to the PPM scheme, it begins from the highest
context order k. Where this context predicts the upcoming symbol, then each
symbol will be encoded according to the probability distribution associated
with it. In the case that a previously unseen character or symbol is observed in

Cryptanalysis of Simple Substitution Ciphers using Compression 9

this context, the context model will not be able to encode this character and an
alternative solution must be adopted. An “escape” symbol whose probability
is predicted by the PPM compression method, will be transmitted to signal
the encoder to switch to the next context model of order k− 1. The operation
will continue until it reaches the order in the compression model in which the
upcoming character is not novel. If needed, when a completely novel symbol is
encountered, the method will escape down to the k = −1 (order −1) default
model, which is the lowest order context in the model where all symbols will
be encoded with equal probability of 1

|A| , where A denotes the size of the

alphabet.
By using this escape mechanism, different order models are effectively

blended in order to ‘smooth’ the probability estimates. Many previous re-
sults have shown that typically no further improvement can be achieved in
the compression results by using increasing context lengths greater than five
for English texts (Cleary & Witten, 1984; Cleary, Teahan, & Witten, 1995;
Teahan, 1998). Further improvements can be achieved when escaping has oc-
curred by excluding all symbols already predicted by higher order contexts
since these symbols would have already been encoded using a higher order
context if they had occurred. This mechanism is called “full exclusion”.

Moffat (Moffat, 1990) devised another simple mechanism that improve re-
sults further which is called “update exclusion”. This mechanism is based on
how the symbol counts for each context model are updated. When encoding
with update exclusions, the predicted symbol count is incremented only if it
is not already predicted by any higher order context. This means that the
counts are updated only for the higher order contexts that are actually used
to predict it. Thus, the counts reflect better which symbols are likely to be
excluded by the higher-order contexts. This mechanism typically improves the
compression rate by 2% as Bell, Cleary and Witten stated (Bell et al., 1990).
On the other hand, when encoding without update exclusions, all the counts
for all orders of the model are updated. The counts are incremented even if
they are already predicted by a higher order context. The use of both of these
mechanisms are investigated in our paper: PPM without update exclusions;
and PPM with update exclusions (standard PPM).

Various variations of the PPM compression scheme have been invented,
depending on the methods that have been proposed for calculating symbol
probabilities. They differ by the escape method used for each. For example,
PPMC uses escape method C, and PPMD uses escape method D. Also, the
maximum order of the context models may be included when the variant is
described in the literature; for example, PPMD4 refers to a fixed order 4 PPM
model using escape method D.

The PPMC variant was developed by Moffat (Moffat, 1990) and has be-
come the benchmark version. The probability of this method (method C) is
based on using the number of symbols that have occurred before, called the
number of types:

e =
t

n+ t
and p(s) =

c(s)

n+ t

10 Noor R. Al-Kazaz et al.

where e represents the probability of the escape symbol, p(s) denotes the
probability for symbol s, c(s) is the number of times the context was followed
by the symbol s , n is the total number of times that the current context has
occurred and t denotes the total number of types.

PPMD is another improved variant. It was first developed by Howard (Howard,
1993). PPMD usually shows better performance than the other PPM compres-
sion variants: PPMA, PPMB and PPMC. This variant is similar to PPMC
except that the probability of the new symbol is estimated differently. The
new symbol’s treatment becomes more consistent (Howard & Vitter, 1992) by
adding 1

2 to both the symbol and escape counts:

e =
t

2n
and p(s) =

2c(s)− 1

2n
.

To illustrate the process of the PPM method, Table 1 presents the state of
the PPMC and PPMD models where k = 2, 1, 0 and −1 after the input string
‘stressless’ has been processed. For illustration purposes for this example, the
highest context order is for k = 2. If the next symbol or character is estimated
successfully by the modeling context, the probability p will be used to encode
it, while c denotes the occurrence counts. Referring to the example, if the
input string ‘stressless’ is followed by the character ‘l’, the probability of the
prediction ‘ss’→‘l’ in order 2 (which is 1

2) would be used to encode it requiring
only one bit as a result (− log2

1
2 = 1).

Assume instead that the character ‘t’ follows the string ‘stressless’. As the
order 2 model does not predict this character, the escape probability of 1

2 will
be encoded for this order, and the encoder will move from the order two model
(k = 2 in the first column) down to the order one model (k = 1 in the second
column). In this context, ‘s’→‘t’ does predict the character ‘t’, with probability
1
7 . So, the total probability needed to encode the ‘t’ character is 1

2 × 1
7 , or 3.8

bits. Actually in this context, a more accurate probability estimation is gained
by noticing that the character ‘t’ cannot be encoded using this context, as if it
did it would have been already encoded by the order two context. Therefore,
we can exclude the already predicted symbols and this is what is termed the
full exclusion mechanism, which corrects the probability for his context to be
1
6 . Finally, the total probability will be 1

2 × 1
6 with 3.6 bits required for the

compression codelength.

If the next character, however, has never been seen before, such as ‘m’,
the escape will be repeated down through the models to the default order −1
context (k = −1), where all symbols or characters have equal probabilities with
1
|A| where A refers to the size of the alphabet. Supposing that the alphabet

size is 256 for the English language encoded using 8-bit ASCII. Consequently,
the total probability for encoding the ‘m’ character will be 1

2 ×
3
7 ×

5
15 ×

1
256 , or

11.8 bits when encoded using arithmetic coding. The full exclusion mechanism
can be used to get a more accurate probability estimation, which will exclude
characters already appearing in higher orders. When this is applied, the new
probability for the ‘m’ character will be equal to 1

2 × 3
6 × 5

11 × 1
251 , with the

total codelength of 11.1 bits.

Cryptanalysis of Simple Substitution Ciphers using Compression 11

Table 1: PPMC and PPMD models after processing the string “stressless”
with maximum order of 2.

Order k=2 Order k=1 Order k=0 Order k=-1

Prediction c p Prediction c p Prediction c p Prediction c p
PPMC
st → r 1 1

2 s → t 1 1
7 → s 5 5

15 → A 1 1
|A|

→ Esc 1 1
2 → s 2 2

7 → t 1 1
15

→ l 1 1
7 → r 1 1

15

tr → e 1 1
2 → Esc 3 3

7 → e 2 2
15

→ Esc 1 1
2 → l 1 1

15

t → r 1 1
2 → Esc 5 5

15

re → s 1 1
2 → Esc 1 1

2

→ Esc 1 1
2

r → e 1 1
2

es → s 2 2
3 → Esc 1 1

2

→ Esc 1 1
3

e → s 2 2
3

ss → l 1 1
2 → Esc 1 1

3

→ Esc 1 1
2

l → e 1 1
2

sl → e 1 1
2 → Esc 1 1

2

→ Esc 1 1
2

le → s 1 1
2

→ Esc 1 1
2

PPMD
st → r 1 1

2 s → t 1 1
8 → s 5 9

20 → A 1 1
|A|

→ Esc 1 1
2 → s 2 3

8 → t 1 1
20

→ l 1 1
8 → r 1 1

20

tr → e 1 1
2 → Esc 3 3

8 → e 2 3
20

→ Esc 1 1
2 → l 1 1

20

t → r 1 1
2 → Esc 5 5

20

re → s 1 1
2 → Esc 1 1

2

→ Esc 1 1
2

r → e 1 1
2

es → s 2 3
4 → Esc 1 1

2

→ Esc 1 1
4

e → s 2 3
4

ss → l 1 1
2 → Esc 1 1

4

→ Esc 1 1
2

l → e 1 1
2

sl → e 1 1
2 → Esc 1 1

2

→ Esc 1 1
2

le → s 1 1
2

→ Esc 1 1
2

12 Noor R. Al-Kazaz et al.

The same procedure applies to the second part of the table (table 1) when
using the PPMD compression variant but using the modified symbol and es-
cape counts as discussed above. For example, the probability of the prediction
‘es’→‘s’ in order 2 for PPMD how now changed to 3

4 from 2
3 and the context’s

escape probability has changed to 1
4 from 1

3 because of the different way the
probabilities are now being calculated.

The PPM method can also be applied to streams of word-based symbols
as opposed to character streams. Several word-based systems have been pro-
posed (Horspool & Cormack, 1992; Bentley, Sleator, Tarjan, & Wei, 1986; Mof-
fat, 1989; Teahan, 1998). The word-based approach typically provides faster
compression compared to the character-based models as fewer symbols are
being encoded. Similar to the previously described character-based models,
word-based models use the preceding words to predict the next word using
a similar PPM encoding mechanism with escapes to lower-order models. A
number of methods for estimating the escape probability for the word-based
models have been explained in (Witten & Bell, 1991) and (Teahan, 1998).
An escape to an order −1 word context signifies that the word needs to be
encoded character by character. In this case, each symbol or character in the
word (even the space character that marks the end of each word) is separately
encoded. Once a word has been encoded once, a word symbol associated with
that word that identifies it uniquely can now be encoded instead. Essentially,
the word symbols are added to an expanding alphabet of word symbols as the
new words are encountered.

Previous experiments have shown that the performance of the word-based
scheme degrades with higher orders. The performance of the order 2 word
bigram models are slightly worse than the order 1 word unigram models. Order
3 trigram word models and higher follow the same trend. Experimental results
show that for the English language, the performance of the word-based schemes
slightly outperform the character-based ones. However, the character-based
models are more economical in terms of memory space and are more easily
applied to various applications in natural language processing which require
the correction of character sequences such as OCR, spelling correction and
cryptology (Teahan, 1998).

Table 2: Models for predicting character and word streams (Teahan, 1998).

C|C5 Model W|WModel
p(ci|ci−1ci−2ci−3ci−4ci−5) p(wi|wi−1)
↪→ p(ci|ci−1ci−2ci−3ci−4) ↪→ p(wi|)
↪→ p(ci|ci−1ci−2ci−3) ↪→ Character model
↪→ p(ci|ci−1ci−2)
↪→ p(ci|ci−1)
↪→ p(ci|)
↪→ peq(ci|)

Cryptanalysis of Simple Substitution Ciphers using Compression 13

In our work, we make use of two PPM based models, one character-based
and the other word-based, which provide effective results in terms of compres-
sion rate and lead to significant improvements both in terms of compression
rate as published in previous experiments (Teahan, Wu, & Liu, 2014) and in
terms of the reduction in the number of decryption errors as per the exper-
imental results discussed below. The first model, which is labeled C|C5 in
Table 2, represents an order 5 PPM character model (order 5 and order 4
models are used in our experiments) where the predictions are based on the
stream of character symbols. So, the probability of S (where S is a sequence
of length m characters) is given by:

p(S) =

m∏
i=1

p′(ci|ci−1ci−2ci−3ci−4ci−4ci−5)

where p′ is the probabilities estimated by the PPM model. (Note: the symbol
↪→ in the table represents an escape).

The second model, which is labeled W |W , represents an order 1 PPM word
bigram model. The predictions of this model are based on the stream of word
symbols as shown in the next formula:

p(S) =
m∏
i=1

p′(wi|wi−1)

where p is the probability of S, S is a sequence of m words and p′ is the
probabilities estimated by the word model (Teahan, 1998).

The fundamental concept of our cryptanalysis method is based on using a
PPM compression model to calculate codelength values of each possible per-
mutation. The ‘codelength’ of a permutation for a cryptogram is the length
of the compressed cryptogram, in bits, when it has been compressed using
the PPM language model. The smaller the codelength value, the more closely
the ciphertext resembles the text used to train the language model. This met-
ric has been found to be effective for measuring the quality of the different
decryptions, and therefore can be used for automatically recognising correct
solutions (Al-Kazaz et al., 2016).

One of the problems of using an adaptive compression method such as PPM
is that at the beginning the models are empty and there is not sufficient data to
effectively compress the texts resulting in the different permutations produc-
ing similar codelength values. To overcome this problem, a simple expedient
is to prime the models using representative training texts. In our experiments
described below, we use nineteen novels and the Brown corpus converted to 27
character English to train our models (by case-folding to lower case and col-
lapsing non-alphabetic sequences to a single space). We also use static models,
unlike standard PPM—that is, once the models have been primed using the
training texts, they are not further updated when processing the ciphertexts.

14 Noor R. Al-Kazaz et al.

4.2 Calculating Compression Codelengths Using Gzip and Bzip2

We have also investigated alternative compression methods for performing the
codelength calculations—Gzip and Bzip2. The essential reason for experiment-
ing with other compression schemes in our paper is to find out which is the
most efficient scheme that can be used in the automatic solution of simple
substitution cryptosystems using a compression based technique.

Gzip is one of the most important compression methods that was written by
Jean-Loup Gailly & Mark Adler, and created for the GNU project. Gzip is now
a common lossless compression scheme on the Internet and the Unix operating
system. It uses a dictionary based approach using Lempel-Ziv coding (Gzip,
2012) while PPM is a finite-context statistical approach. Bzip2 is another
well-known compression scheme that was written by Julian Seward (Bzip2,
2016). It is a lossless compression method which uses a block sorting approach
(the Burrows-Wheeler block sorting compression algorithm). The compression
performance of this method (Bzip2) is usually better than the Gzip; however,
its speed is slower. It approaches the performance of the best compression
techniques such as those produced by PPM (Bzip2, 2016).

In this paper, the calculation of the codelength metric for these two com-
pression methods (Gzip and Bzip2) will be based on using a relative entropy
calculation which allows us to use ‘off-the-shelf’ software without the need to
re-implement the methods themselves. The codelength metric can be calcu-
lated using the relative entropy technique by the following formula (Al-Kazaz
et al., 2016):

ht = hT+t − hT

where T denotes the training text (which will usually be large in size), t denotes
the testing text, and hT refers to the size of the compressed file T . Essentially,
the codelength for a particular compression scheme is calculated as being the
difference between the compressed size of some large training text with testing
text concatenated after it compared to the compressed size of just the training
text by itself.

5 Our Method

A full description of our new method for the automated solution of simple sub-
stitution ciphers will be presented in this section. As stated, the fundamental
idea of our method is based on using a compression scheme to calculate the
codelength value to use as a metric for ranking the quality of each possible
permutation (Al-Kazaz et al., 2016). PPMD, PPMC, Gzip and Bzip2 are the
compression schemes used in our experiments for the codelength calculations.
The main idea of our approach is based on trying to break a cryptogram by
essentially substituting one letter at a time throughout the text, starting with
the most frequent. Then one of the compression methods is used to compute
the codelength value used for automatically scoring the possibilities.

Cryptanalysis of Simple Substitution Ciphers using Compression 15

The pseudo-code for our approach is presented in Algorithm 1. At the start
(see line 1 in the pseudo code), we remove all non-alphabetic characters from
the ciphertext and keep only letters and spaces (i.e. our approach processes
only 27 characters). However, the methods presented here can be adapted to
arbitrary alphabets (whether or not spaces are included). After that, all the
remaining characters in the ciphertext are examined in order to determine fre-
quencies, and arranged from the most frequent character to the least frequent
(see line 2). The search is initialised by setting each character in the ciphertext
to a special symbol (a full-stop) that is not an English alphabetic character or
space (see line 3). Then by replacing one ciphertext character cc at a time (see
line 6), it simply tries each unused character in turn as a candidate for cc (see
lines 9 to 11). The compression codelength is calculated for each possibility
using PPM, Gzip or Bzip2 (see line 12). The ciphertexts are then ranked using
a priority queue according to the codelength values (see lines 13 to 17). As we
find permutations with smaller compression codelength values, we are closer
to finding the valid decrypt. We keep at most only the 500 best results at each
stage in the priority queue. The maximum size of the priority queue provides
a means for trading off between greater speed (when the size of the queue is
reduced) and less decryption errors (when a greater size is used). Experimental
results show (see below) that a size of 500 provides a good compromise.

Our method builds up the solution incrementally, replacing one crypto
character, cc, at a time, dealing with the most frequent cc first. So starting
with a new cryptogram, it picks the most frequent symbol (say x) in the
cryptogram (most likely this corresponds to space or perhaps the letter ‘e’).
It tries substituting x with one of the English alphabetic characters ‘a’ to
‘z’ or space. (Note: At this stage, all of these will be tried since the size of
the alphabet, 27, is less than the maximum size of the priority queue i.e.
500). Then it picks the next most common crypto symbol to substitute, say
y, for each of the previous 27 possibilities, substituting y with one of the
English alphabetic characters or space (but excluding any already substituted
characters). This gives 702 (= 27× 26) possibilities, so at this stage solutions
start getting discarded if only a maximum of 500 possibilities are kept in the
priority queue. This is repeated for each remaining character from the most
frequent characters down to the least frequent character.

In order to get further improvements in our results, a word-based PPM
compression system is applied to the output produced from Algorithm 1. The
pseudo-code for this is provided in Algorithm 2. The codelength values are
re-calculated using the word-based model, then these are stored in the new
queue as they provide a potentially more accurate estimate of their quality.

Two variants of the PPM modelling system, PPMD and PPMC models
have been used in our method. Also two forms of these schemes are exam-
ined, one with update exclusions (i.e the standard PPMD or PPMC) (Teahan,
1998) and one without update exclusions. Both of these variants are further
investigated with a new variation of the PPM algorithm where a specific high
codelength value is assigned to all contexts for which an escape down to an
order −1 context has occurred when the symbol being predicted has not al-

16 Noor R. Al-Kazaz et al.

Algorithm 1: Pseudo code of our automatic cryptanalysis method.
Input : ciphertext
Output: decrypted text

1 REMOVE all non-alphabet characters -except space- from the ciphertext;
2 EXAMINE the ciphertext to create a sorted list of the zeroth order frequencies for

the alphabet;
3 REPLACE the characters in the ciphertext with the special symbol ‘.’;
4 INITIALISE Q1 (priority queue) with modified ciphertext;
5 maximum-size of Q2 (priority queue) ← 500;
6 for each crypto character ‘cc’ in the zeroth order frequent characters (starting from

the most to the least frequent characters) do
7 Q2 ← empty;
8 for each ciphertext in Q1 do
9 for each alphabetic and space characters ‘ac’ do

10 if ‘ac’ is not used before as a replacement of the previous crypto
characters then

11 REPLACE each crypto character ‘cc’ in the ciphertext with the
unused character ‘ac’ as a candidate for ‘cc’;

12 CALCULATE codelength value of the ciphertext using the PPM,
Gzip or Bzip2 compression model;

13 if the size of the priority queue Q2 < 500 then
14 ADD the ciphertext to Q2;
15 else if the codelength value of the last element in Q2 > codelength

value of the current ciphertext then
16 REMOVE the last element in Q2;
17 ADD the ciphertext to Q2;

18 end

19 end

20 end
21 REPLACE Q1 with Q2;

22 end
23 return front of priority Q1 (the ‘decrypted text’);
24 return first ten results in Q1 (the ten best results)

Algorithm 2: Pseudo code of word-based ranking algorithm.
Input : the priority queue Q1 output from Algorithm 1
Output: decrypted text

1 maximum-size of Q3 (priority queue) ← 500;
2 for each text in Q1 do
3 CALCULATE compression codelength value of the text using the PPM

word-based compression method;
4 STORE the text in the priority queue Q3;

5 end
6 return front of priority Q3 (the ‘decrypted text’);
7 return first ten results in Q3 (the ten best results)

ready occurred in any higher order context. The idea behind assigning a high
codelength value for these order −1 contexts is to penalise these cases during
the search as they provide strong evidence of being of lower predictive quality.
During the execution of Algorithm 1, these contexts occur frequently at the
start since all the characters in the ciphertexts are initialised to the special

Cryptanalysis of Simple Substitution Ciphers using Compression 17

symbol (full-stop) which is a symbol not found in the 27 character alphabet
that is used for the training text. In normal PPM coding when an order −1
context occurs, the probability can be estimated as 1

N where N is the size
of the text already processed. We are also using static PPM models which
means that the probability of previously unseen characters such as the special
full-stop character does not subsequently change as the ciphertext is being
processed. Therefore, we can simply used a fixed codelength value for all the
order −1 contexts which is equal to − log2

1
N . (The size of the training data

we use in our experiments is N = 21824832 so the specific codelength value
we assign for order −1 contexts is 24.38.)

To organize and clarify our results, our experiments are divided into dif-
ferent variants as presented in Table 3. For the PPM-based variants, both
order 4 and order 5 models are used in our experiments as discussed below.
Experiments with a full range of variations have been conducted (PPMC, or
PPMD, with and without update exclusions, with and without explicit order
−1 codelengths; Gzip; and Bzip2). However, for the purposes of this paper,
only the results for the seven variations in the table are shown in order to
illustrate either the best performing schemes or to illustrate interesting results
for comparison.

According to the first experimental variant in Table 3, Variant A, PPMD5
without update exclusions is applied to compute the codelength values. In
Variant B, a new variation of the PPM method is used which is PPMD with-
out update exclusions with specific order −1 codelength values. Both order 4
and order 5 PPMD models are examined. The standard version of the PPMD5
compression method with update exclusions is used for Variant C. The fourth
variant, Variant D, is the standard order 5 PPMD model but with specific
order −1 codelength values being used instead of the standard PPM order −1
encoding method. Another new version of PPM is used for variant E, PPMC
without update exclusion but using the order −1 codelength method. Both
order 4 and order 5 PPMC models are examined. For the last two variants,
variants F and G, we examine the effectiveness of using the other compres-
sion methods Gzip and Bzip2 for computing the codelength metric using the
relative entropy calculation as discussed above.

Table 3: Compression method variants.

Name Compression method
Variant A PPMD without update exclusions

Variant B
PPMD without update exclusions with the same specific codelength
value assigned to all order −1 context predictions

Variant C Standard PPMD (i.e with update exclusions)

Variant D
Standard PPMD with the same specific codelength value assigned
to all order −1 context predictions

Variant E
PPMC without update exclusions with the same specific codelength
value assigned to all order −1 context predictions

Variant F Bzip2
Variant G Gzip

18 Noor R. Al-Kazaz et al.

6 Experimental Results

In this section, we discuss experimental results for Variants A to G as de-
scribed in Table 3. As stated, nineteen novels and the Brown corpus were
used to train these models using 27 character English text. After this training
step and during cryptanalysis, the PPMC and PPMD models remain static.
A corpus of 110 different ciphertexts chosen at random form many different
resources (newspapers and magazines) as testing texts are used. The lengths
of these ciphers range from 20 characters to almost 300 characters. Table 4a
and table 4b present samples of decryption.

Table 4a shows the output sample showing the execution of the algorithm
for the ciphertext ‘zjyvgelyzjgqwyzjykoaakbyjgaejvb’ including inter-
mediate results. Compression codelengths with the lowest five results are listed
in bits. Table 4b presents the ten best solutions as a result of our method of
the automatic ciphertext only attack of the simple substitution cipher when
using the new version of the PPMD modelling system (labelled as Variant
B). In this case, text with the shortest codelength value (the best solution),
represents the decrypted text. According to the example (in Table 4b), the
best solution was ‘so much sound so little outcome’, which has the
shortest compression codelength value 63.884 and is the valid decrypt.

To encrypt the plaintext (original text), a random key is generated for
each run. Afterwards, the attack is performed on the cryptogram. Various ci-
phertexts with different lengths (even very short) have been examined in our
experiments. We experimented with 110 different ciphertexts. In order to mea-
sure the success and the accuracy of our automatic cryptanalysis algorithms,
alphabetic substitution errors are counted. The results of our experiments
showed that only when using the new PPM variants (Variants B and E), as a
method of calculating the codelength values, were almost all the ciphertexts
decrypted successfully. In contrast, the other PPM variants produced a signif-
icantly greater number of errors. The same was repeated when using the Gzip
and Bzip2 algorithms in the last two variants (G and F). Example output
produced by the different variants is shown in Table 5.

For variant A, Figure 1a presents the number of errors for each testing
cryptogram as a result of our automatic cryptanalysis method using PPMD
without update exclusions. Clearly, we can see that the number of errors for
most tested cryptograms are high. In this case, just one cryptogram is solved
with no errors, and only four examples are found to have ten errors or less.
The results show that over 75% of the decrypted cryptograms have more than
ten errors and 20% have greater than twenty errors.

For variant B, both order 4 and order 5 PPMD models are examined. For
the order 4 model, the results show that 81% of the ciphertexts are correctly
solved with no errors (that is, the best solution with minimum codelength value
is the correct solution). About 19% of the examples are decrypted with just
three errors or less. For the order 5 model, the results show better performance
with over 87% of the cryptograms correctly solved without any errors, also 12%
of the ciphers are decrypted with just one or two errors, and only one example

Cryptanalysis of Simple Substitution Ciphers using Compression 19

Table 4a: Example output.

Ciphertext: zjyvgelyzjgqwyzjykoaakbyjgaejvb
Processing the 1st most frequent character ’j’;
Buffer length is: 27.
Codelength = 636.168:
Codelength = 640.479: .e.......e.....e........e...e..
Codelength = 642.719: .t.......t.....t........t...t..
Codelength = 643.671: .a.......a.....a........a...a..
Codelength = 643.956: .o.......o.....o........o...o..
Processing the 2nd most frequent character ’y’;
Buffer length is: 500.
Codelength = 532.282: . t....t. ...t. t......t
Codelength = 532.948: .ee... .e e...e..
Codelength = 532.951: .tt... .t t...t..
Codelength = 534.603: .ss... .s s...s..
Codelength = 535.227: . s....s. ...s. s......s
Processing the 3rd most frequent character ’g’;
Buffer length is: 500.
Codelength = 467.465: .t .h.. .th.. .t th..t..
Codelength = 470.531: . t.a..t. a..t. t......t a.. ..
Codelength = 470.643: .t .o.. .to.. .t to..t..
Codelength = 471.204: .e .n.. .en.. .e en..e..
Codelength = 471.567: . t.i..t. i..t. t......t i.. ..
Processing the 4th most frequent character ’a’;
Buffer length is: 500.
Codelength = 404.402: .t .h.. .th.. .t ..ee.. the.t..
Codelength = 408.380: .ti.h..i.th..i.ti.. ..ith .t..
Codelength = 408.697: .ht.e..t.he..t.ht.. ..the .h..
Codelength = 408.945: .er.d..r.ed..r.er.. ..red .e..
Codelength = 409.339: .t .h.. .th.. .t ..oo.. tho.t..
. . .
Processing the 8th most frequent character ’b’;
Buffer length is: 500.
Codelength = 216.382: hetor..ther..theti. inter .eon
Codelength = 217.041: e sai..se i..se so.ttons it. an
Codelength = 217.069: so mu.. sou.. so l.ttle out.ome
Codelength = 217.460: t sai..st i..st se.nners in. ar
Codelength = 217.894: to un.. ton.. to d.eeds one.ous
Processing the 9th most frequent character ’e’;
Buffer length is: 500.
Codelength = 167.839: so muc. sou.. so l.ttle outcome
Codelength = 172.087: t shad.st a..st si.nnies and he
Codelength = 173.728: t spad.st a..st se.nners and pr
Codelength = 174.211: he san. hea.. he o.rrot earnest
Codelength = 176.220: he rat. hea.. he i.ssin eastern
Processing the 10th most frequent character ’q’;
Buffer length is: 500.
Codelength = 145.242: so muc. soun. so l.ttle outcome
Codelength = 147.082: so muc. sour. so l.ttle outcome
Codelength = 147.961: so muc. soug. so l.ttle outcome
Codelength = 150.597: so muc. soup. so l.ttle outcome
Codelength = 151.714: t shad.st al.st si.nnies and he
. . .
Processing the 13th most frequent character ’w’;
Buffer length is: 500.
Codelength = 63.884: so much sound so little outcome
Codelength = 72.105: so much sourd so little outcome
Codelength = 73.876: so much soung so little outcome
Codelength = 75.474: so muck sound so little outcome
Codelength = 75.519: so much sound so lyttle outcome

20 Noor R. Al-Kazaz et al.

Table 4b: Example output (ten best solutions).

Ten best solutions
63.884
72.105
73.876
75.474
75.519
76.426
76.677
79.165
79.350
79.896

so much sound so little outcome
so much sourd so little outcome
so much soung so little outcome
so muck sound so little outcome
so much sound so lyttle outcome
so much sound so lattle outcome
so mucy sound so little outcome
so muck sough so little outcome
so much sourg so little outcome
so much souvy so little outcome

Table 5: Sample of solved cryptograms by different variants.

Variants
Number
of errors

Decrypted message

Variant A 17
ladylamandems dejaegonzalpsteyemainerosecine scheynerosle
domickepoleontre oetonw

Variant B 0
retirement must be wonderful i mean you can suck in your
stomach for only so long

Variant C 20
nod nineosiukosqnsprean tuysdsincesbrushceskuhlsdesbru
skorichmstr sreybskrsyrex

Variant D 19
spaxsprpia roma hp cviupsloe x rpyi tvo nyi monk xi tvos
mavrynw lvs viet mv evid

Variant E 2
retirement must be wonderful i mean you can such in your
stomack for only so long

Variant F 21
myr myaywruatiruzyugvwhymotbu uaydwuxvtuedwuitenu
wuxvtmuirvadekuovmuvwbxuivubvwc

Variant G 11
detadement mrst he pongedbrl a mein for cin srck an ford
stomicy bod onlf so lonj

had three errors as shown in Figure 1b. Moreover, in almost all these examples,
the correct solution can also be found within the ten best solutions. It is clear
that the number of errors for this variant is much lower than other variants.
All the cryptograms of length longer than 100 are successfully solved without
any errors and in almost all cases it found a correct solution.

Figure 1c illustrates the number of errors for each cryptogram for variant
C. We can see that almost all the decryption errors are more than ten, with
just two examples being solved with ten errors. Over 71% of the cryptograms
are decrypted with greater than ten errors, and over 26% of the examples have
more than twenty errors. None of the examples produced no errors.

In variant D, the results show that most of the errors are greater than
10 with just four of the ciphertexts solved without errors. Over 58% of the
decrypted cryptograms have ten errors or more, and approximately 32% have
twenty errors or more with just 6% having less than ten errors.

Variant E produces slightly worse results than variant B, with 80% of ex-
amples having been successfully solved without any errors and 20% decrypted

Cryptanalysis of Simple Substitution Ciphers using Compression 21

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 e

rr
or

s

String length

(a) Errors produced from variant A.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 e

rr
or

s

String length

(b) Errors produced from variant B.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 e

rr
or

s

String length

(c) Errors produced from variant C.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 e

rr
or

s

String length

(d) Errors produced from variant D.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 e

rr
or

s

String length

(e) Errors produced from variant E.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 e

rr
or

s

String length

(f) Errors produced from variant G.

Fig. 1: Errors produced from different variants

with four errors or less when using the order 4 model. The order 5 PPMC
model produces slightly better results. When we examine only the best solu-
tion, 86% of examples are successfully decrypted without any errors, and 13%
solved with one or two errors, and one of the decrypted cryptogram having
four errors. When we examine the ten best solutions, almost all the examples
have no errors. Figure 1e presents the results of variant E using the order 5
model.

22 Noor R. Al-Kazaz et al.

Table 6a: Average errors for each different variant when examining the best
solution.

Variants A B C D E F G

Average errors 17.37 0.20 18.29 16.21 0.22 – 16.59

Table 6b: Average errors for each different variant when examining the ten
best solutions.

Variants A B C D E F G

Average errors 17.45 1.38 18.31 16.28 1.4 – 16.83

The number of errors produced form variant G is shown in Figure 1f. It is
clear that the number of errors for each decrypted ciphertext is much higher,
with most of the errors being greater than 15. Also none of the cryptograms
offered no errors and just seven cryptograms were decrypted with the number
of errors being less than 10.

Results regarding the average number of automatic cryptanalysis errors
for the 110 cryptograms we tested with each of the variants are presented in
Tables 6a and 6b. Table 6a presents the average number of errors when just
examining the best solution, and Table 6b shows the average errors for the ten
best solutions. Clearly, the best performing model overall is PPMD5 without
update exclusions using the order −1 correction model (Variant B). However,
Variant E, which used PPMC5 without update exclusions along with order
−1 correction, presents excellent results as well. On the other hand, the other
Variants A, C and D produce poor results. Interestingly, the PPM without
update exclusions method, which typically shows slightly worse performance
at the compression task, shows better performance at decryption here.

We also experimented with using our relative entropy calculation method
using Bzip2 for Variant F. But due to the block-sorting nature of the Burrows-
Wheeler algorithm, the calculation of some of the relative entropy codelengths
ended up being negative. Thus these results could not provide us with a com-
plete picture with regards to the average number of errors. However, none of
the positive results did show any success, with a quite high number of er-
rors. The average number of errors produced for Variant G (using Gzip2) is
presented at the last column in the table. The results show that the Gzip
compression scheme is not an effective way of recognising the valid decryp-
tions as it also results in a high number of errors. In addition, the time that is
needed to break the ciphers (by using Gzip and Bzip2) using the relative en-
tropy calculation is considerably longer (as it involves repeatedly compressing
the training text), and thus also makes the use of these methods completely
impractical.

Like other cryptanalysis approaches, very short cryptograms can often not
always be solved correctly, even with a better model of English as Irvine
claimed in his thesis (Irvine, 1997). This is because these cryptograms are

Cryptanalysis of Simple Substitution Ciphers using Compression 23

inherently ambiguous as a simple substitution unicity distance is about 26,
according to this equation:

U =
H(k)

R
=

log 27!

log 27− 1.2
= 26.2

where U represents the unicity distance, H(k) denotes the entropy of the key
space and R is the plaintext redundancy in bits per character (Irvine, 1997).
For an order 4 model, the unicity distance is equal to 33.2 and for an order 5
model is equal to 31.8. So we can not expect to correctly decrypt cryptograms
shorter than this number of symbols. However, in our approach (Variant B),
many different ciphertexts with short lengths (ranging from 20 to 40) have
been tried, and in almost all cases the right solution (without any errors) was
found either with the best solution or within the ten best solutions. Table 7 lists
some examples of different cryptograms with short lengths and the successfully
decrypted text.

Table 7: Examples of decryption of short cryptograms (length from 20 to 40
characters; the compression codelength is shown in the first column).

Ciphertext Successfully decrypted text
30.77 fvwdwradbsdfvwdobija the end of the world
37.76 yniseiyre sgosynisbrvy the return of the suit
64.71 fbapipuymswykpdbpubjypvumttyt how i learned to love glasses
68.50 cgjgulg flrmuglfv clomxli clwhyf never eat more than you can lift
74.84 vlmvhhvwwnlemtnwqljqmrlmekl mjrlasrw an appalling silence on gun control
77.12 larrpmvcrnjil jm txm mc sspmtaw mpa r merry christmas and a happy new year
72.72 igecq crgirwqcrkbcnfrnbfrwhr wq xcbinfgwq silence is one great art of conversation

The average execution time that is needed to determine the correct solu-
tions of the different ciphertexts that were experimented with is presented in
Table 8. The time which is required to automatically break each ciphertext is
based on the execution of the PPMD model without update executions and
with specific order −1 codelength value (Variant B). The average elapsed time
in seconds for each cryptogram is computed by running the program ten times
on a Dell Inc.-Inspiron 5537 laptop computer (Intel(R) Core(TM) i7-4500U
CPU @ 1.80GHz) and then calculating the average. The results show that our
method only requires a few seconds on average to decrypt the ciphertexts, and
usually the solution is found in less than six seconds of CPU time.

Table 8: Average time needed to automatically cryptanalyse different cipher-
texts.

Cipher Length 20 50 150 300
Time (Sec) 2.22 2.61 3.26 5.57

24 Noor R. Al-Kazaz et al.

6.1 Experiments with different buffer sizes

Our search method requires maintaining a current list of the best solutions
in a buffer of fixed size. In order to determine which is the best or the most
appropriate buffer size in order to obtain the best results, we performed four
further experiments using different buffer sizes: 100, 200, 500 and 1000. Ta-
ble 9a and 9b present results regarding the average number of errors for the
110 ciphertexts when using the different buffer sizes.

Table 9a: Average number of errors when using different buffer sizes when
examining just the best solution.

Array size 100 200 500 1000
Average errors 1.35 0.70 0.20 0.20

According to these tables, it is clear that buffer sizes of 500 and 1000
produced the smallest average number of errors. In contrast, using a buffer
size of 100 resulted in a greater number of errors (1.35 compared to 0.20).
However, a trade-off in favour of a smaller buffer size is that it uses up less
memory and execution speed is faster. The program has not been optimised
for memory usage and execution speed; however, we have noticed that the
execution time doubled with the size of the buffer.

6.2 Improving results using a word-based PPM compression method

This section discusses the experimental results obtained when using a further
word-based model for the automatic cryptanalysis. As word-based schemes
(W |W as described in Table 2) for English text outperform character-based
ones in terms of compression rate, the order 1 word-based model is used here
to examine the effect of applying this model in a secondary post-processing
stage (Algorithm 2 as above) on the output from Algorithm 1 to see if this
results in better cryptanalysis. This model re-orders an entry in the priority
queue of solutions produced from Algorithm 1 if the word-based codelength is
less than the character-based codelength.

Some sample output is shown in Table 10 for the ciphertext ‘cgjgulg flr-
muglfv clomxli clwhyf’ which compares the ten best character-based solutions
found by Algorithm 1 with the ten best word-based solutions found by Algo-
rithm 2. The sample shows that the correct solution was found by the word-

Table 9b: Average number of errors when using different buffer sizes when
examining the ten best solutions.

Array size 100 200 500 1000
Average errors 2.33 1.70 1.38 1.38

Cryptanalysis of Simple Substitution Ciphers using Compression 25

Table 10: The ten best character-based solutions compared to the ten best word
solutions for the ciphertext ‘cgjgulg flrmuglfv clomxli clwhyf’.

Ten best character solutions: Ten best word solutions:
65.994 never eat more than you can dist 64.041 never eat more than you can lift

66.439 never eat more than you can spit 68.016 never eat more than god pan just

68.030 never eat more than you can sixt 68.219 never eat more than you can list

68.388 never eat more than you can lift 69.054 never eat more than you can gift

68.453 never eat more than you can gift 69.441 never eat more than god can just

68.528 never eat bore than you can dist 69.804 never eat more than you can fist

68.745 never eat more than you can list 70.263 never eat more than you can spit

68.974 never eat bore than you can spit 70.456 never eat more than you can wilt

70.333 never eat wore than you can dist 70.678 never eat more than you can jist

70.565 never eat bore than you can sixt 70.804 never eat more than you can gilt

based method (with the semantically correct last word ‘lift’), but in comparison
this was ranked in fourth place using the character-based method. Interest-
ingly, both methods have found similar solutions except for the third and last
words which in most cases are correctly spelt although semantically incorrect.

This technique was tried only for variants found to be the best performing,
Variants B and E. For variant B, five examples out of fourteen (which had
been found by the character-based method to have three errors or less), were
successfully solved with no errors when this secondary word-based method
was applied. For variant E, six examples out of fifteen (which had been found
to have three errors or less), are also solved with no errors using the same
method.

After applying this word-based method, 92% of cryptograms were now
solved without any errors, with an improvement of 5% and 6% for both variants
B and E over when just using the order 5 character-based model. Table 11
shows how the word-based approach improves the average number of errors
for the best solutions.

Table 11: Average number of errors when examining the best solution.

Variants
Order 4
character
model

Order 5
character
model

Word-based
(W |W) model

Variant B 0.29 0.20 0.13
Variant E 0.31 0.22 0.13

Table 12 presents the summary of results when using our new method
Variant B (the best performing method) on the ciphertexts that we used in
our experiments. Overall, the results show that we are able to attain a very
high success rate, with about 92% of cryptograms being correctly solved with
no errors and 100% being decrypted with just three errors or less.

26 Noor R. Al-Kazaz et al.

Table 12: Summary of results for Variant B.

Errors
Order 4 character model Order 5 character model Order 4 or 5 character

model & Word-based model
No. of
ciphertexts

Cumulative
percentage

No. of
ciphertexts

Cumulative
percentage

No. of
ciphertexts

Cumulative
percentage

0 89 80.91% 96 87.27% 101 91.82%

≤ 1 101 91.82% 105 95.45% 106 96.36%

≤ 2 108 98.18% 109 99.09% 109 99.09%

≤ 3 110 100% 110 100% 110 100%

7 Conclusions

In this paper, a new approach to cryptanalysis has been introduced. A new
method for the plaintext recognition and automated cryptanalysis of substitu-
tion ciphers in a ciphertext only attack has been described. An efficient use of
the compression-based approach for cryptanalysis has been demonstrated. The
fundamental idea behind our approach relies on using a compression method
as an accurate way of measuring information in the text. Results on 110 cryp-
tograms ranging from 20 to 300 characters have shown a high success rate
at automatically recognising valid solutions for a range of distinct ciphertexts
with different lengths with approximately 92% of the cryptograms correctly
decrypted without any errors and 100% with just three errors or less. This
efficient method works well on even very short ciphertexts and eliminates any
need for human intervention.

For our paper, three main compression methods have been investigated:
Prediction by Partial Matching (or PPM), Gzip and Bzip2. Various character-
based PPM variants were investigated as well, in order to ascertain the most
efficient scheme when applied to the problem of automatically breaking sim-
ple substitution ciphers. The following variants of PPM were used: PPMD and
PPMC, with further variations such as the use or not of update exclusions,
a technique found to improve compression but which we have found leads to
better decryption if it is removed. Both of these variants were further investi-
gated with a new variation of the PPM algorithm where a specific codelength
value is assigned when encoding all order −1 contexts. The experimental re-
sults showed that this new combination, PPM without update exclusions using
specific order −1 codelength values, noticeably outperforms other compression
schemes including Gzip and Bzip2. We have also applied a word-based PPM
model as a post-processing stage which led to further improved results.

Acknowledgments.

The authors would like to thank the Iraqi Ministry of Higher Education and
Scientific Research (MOHESR)- Baghdad University- College of science for
women for supporting (sponsoring) this work.

Cryptanalysis of Simple Substitution Ciphers using Compression 27

References

Al-Kazaz, N. R., Irvine, S. A., & Teahan, W. J. (2016). An automatic crypt-
analysis of transposition ciphers using compression. In International
Conference on Cryptology and Network Security (pp. 36–52). Springer
International Publishing.

Anderson, R. (1989a). Finding vowels in simple substitutions ciphers by
computer. In Cryptology: Machines, History & Methods. Artech House.

Anderson, R. (1989b). Improving the machine recognition of vowels in sim-
ple substitution ciphers. In Cryptology: Machines, History & Methods.
Artech House.

Ball, W. W. R. (1960). Mathematical recreations and essays. Macmillan, NY.
Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text compression. Prentice-

Hall, Inc.
Bentley, J. L., Sleator, D. D., Tarjan, R. E., & Wei, V. K. (1986). A locally

adaptive data compression scheme. Communications of the ACM , 29 (4),
320–330.

Burrows, M., & Wheeler, D. (1994). A block-sorting lossless data compression
algorithm. Technical report, Digital Equipment Corporation, Palo Alto,
California.

Bzip2. (2016). The bzip2 home page. Retrieved from http://www.bzip
.org

Carroll, J. M., & Martin, S. (1986). The automated cryptanalysis of substi-
tution ciphers. Cryptologia, 10 (4), 193–209.

Chen, J., & Rosenthal, J. S. (2012). Decrypting classical cipher text using
Markov Chain Monte Carlo. Statistics and Computing , 22 (2), 397–413.

Clark, A. (1994). Modern optimisation algorithms for cryptanalysis. In Intel-
ligent Information Systems. Proceedings of the 1994 second Australian
and New Zealand Conference on (pp. 258–262). IEEE.

Clark, A. (1998). Optimisation heuristics for cryptology. Ph.D. thesis, Queens-
land University of Technology.

Cleary, J., Teahan, W., & Witten, I. (1995). Unbounded length contexts
for PPM. In Data Compression Conference. DCC’95. Proceedings (pp.
52–61). IEEE Computer Society Press.

Cleary, J., & Witten, I. (1984). Data compression using adaptive coding and
partial string matching. IEEE transactions on Communications, 32 (4),
396–402.

Corlett, E., & Penn, G. (2010). An exact A* method for deciphering letter-
substitution ciphers. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (pp. 1040–1047).

Delman, B. (2004). Genetic algorithms in cryptography. Master’s thesis, De-
partment of Computer Engineering, Rochester Institute of Technology.

Eskicioglu, A., & Litwin, L. (2001). Cryptography. IEEE Potentials, 20 (1),
36–38.

Forsyth, W. S., & Safavi-Naini, R. (1993). Automated cryptanalysis of sub-
stitution ciphers. Cryptologia, 17 (4), 407–418.

28 Noor R. Al-Kazaz et al.

Friedman, W. F. (1976). Elements of cryptanalysis (Vol. 3). Aegean Park
Press, Laguna Hills, CA.

Gaines, H. F. (1956). Cryptanalysis: A Study of ciphers and their solution.
Dover Publications.

Garg, P., & Sherry, A. (2005). Genetic algorithm & Tabu search attack on
the mono-aiphanetic substitution cipher. Paradigm, 9 (1), 106–109.

Grundlingh, W., & Van Vuuren, J. H. (2003). Using genetic algorithms to
break a simple cryptographic cipher. Retrieved March, 31 .

Gzip. (2012). The gzip home page. Retrieved from http://www.gzip.org
Hart, G. W. (1994). To decode short cryptograms. Communications of the

ACM , 37 (9), 102–108.

Hilton, R. (2012). Automated cryptanalysis of monoalphabetic substitution ci-
phers using stochastic optimization algorithms. Ph.D. thesis, Department
of Computer Science and Engineering, University of Colorado, Denver.

Horspool, R. N., & Cormack, G. V. (1992). Constructing Word-Based text
compression algorithms. In Data Compression Conference (pp. 62–71).
Snowbird, Utah: IEEE Computer Society Press.

Howard, P. G. (1993). The design and analysis of efficient lossless data
compression systems. Ph.D. thesis, Brown University, Providence, Rhode
Island.

Howard, P. G., & Vitter, J. S. (1992). Practical implementations of arithmetic
coding. Image and text compression, 85–112.

Hunter, D., & McKenzie, A. (1983). Experiments with relaxation algorithms
for breaking simple substitution ciphers. The Computer Journal , 26 (1),
68–71.

Irvine, S. A. (1997). Compression and cryptology. Ph.D. thesis, University of
Waikato, New Zealand.

Jakobsen, T. (1995). A fast method for cryptanalysis of substitution ciphers.
Cryptologia, 19 (3), 265–274.

King, J. C. (1994). An algorithm for the complete automated cryptanalysis
of periodic polyalphabetic substitution ciphers. Cryptologia, 18 (4), 332–
355.

King, J. C., & Bahler, D. R. (1992). An implementation of probabilistic re-
laxation in the cryptanalysis of simple substitution ciphers. Cryptologia,
16 (3), 215–225.

Knight, K., Nair, A., Rathod, N., & Yamada, K. (2006). Unsupervised analy-
sis for decipherment problems. In Proceedings of the COLING/ACL on
Main conference poster sessions (pp. 499–506). Association for Compu-
tational Linguistics.

Lee, D.-S. (2002). Substitution deciphering based on HMMs with applica-
tions to compressed document processing. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24 (12), 1661–1666.

Lee, K., Teh, C., & Tan, Y. (2006). Decrypting english text using enhanced
frequency analysis. In National Seminar on Science, Technology and
Social Sciences (pp. 1–7).

Cryptanalysis of Simple Substitution Ciphers using Compression 29

Lucks, M. (1990). A constraint satisfaction algorithm for the automated
decryption of simple substitution ciphers. In Advances in Cryptology-
CRYPTO’88 (pp. 132–144). Springer.

Luthra, J., & Pal, S. K. (2011). A hybrid firefly algorithm using genetic
operators for the cryptanalysis of a monoalphabetic substitution cipher.
In Information and Communication Technologies (WICT), 2011 World
Congress on (pp. 202–206). IEEE.

Moffat, A. (1989). Word-based text compression. Software: Practice and
Experience, 19 (2), 185–198.

Moffat, A. (1990). Implementing the PPM data compression scheme. IEEE
Transactions on communications, 38 (11), 1917–1921.

Nuhn, M., Schamper, J., & Ney, H. (2013). Beam search for solving substitu-
tion ciphers. In Acl (1) (pp. 1568–1576).

Olson, E. (2007). Robust dictionary attack of short simple substitution ciphers.
Cryptologia, 31 (4), 332–342.

Peleg, S., & Rosenfeld, A. (1979). Breaking substitution ciphers using a
relaxation algorithm. Communications of the ACM , 22 (11), 598–605.

Ravi, S., & Knight, K. (2009). Attacking letter substitution ciphers with
integer programming. Cryptologia, 33 (4), 321–334.

Robling Denning, D. E. (1982). Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc.

Schatz, B. R. (1977). Automated analysis of cryptograms. Cryptologia, 1 (2),
116–142.

Schneier, B. (1993). Applied cryptography. John Wiley & Sons, New York .
Spillman, R., Janssen, M., Nelson, B., & Kepner, M. (1993). Use of a genetic

algorithm in the cryptanalysis of simple substitution ciphers. Cryptolo-
gia, 17 (1), 31–44.

Teahan, W. J. (1998). Modelling English text. Ph.D. thesis, University of
Waikato, New Zealand.

Teahan, W. J., & Cleary, J. G. (1996). The entropy of english using PPM-based
models. In Data Compression Conference, 1996. DCC’96. Proceedings
(pp. 53–62).

Teahan, W. J., Wu, P., & Liu, W. (2014). Adaptive compression-based models
of Chinese text. In Audio, Language and Image Processing (ICALIP),
2014 International Conference on (pp. 874–881).

Uddin, M. F., & Youssef, A. M. (2006). Cryptanalysis of simple substitution
ciphers using particle swarm optimization. In Evolutionary Computation,
2006. CEC 2006. IEEE Congress on (pp. 677–680). IEEE.

Vobbilisetty, R., Di Troia, F., Low, R. M., Visaggio, C. A., & Stamp, M.
(2017). Classic cryptanalysis using hidden Markov models. Cryptologia,
41 (1), 1–28.

Wiener, M. J. (1993). Efficient DES key search. In Advances in Cryptology:
CRYPTO’93, volume 773 of Lecture Notes in Computer Science, Berlin.
Springer-Verlag.

Witten, I. H., & Bell, T. C. (1991). The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression. IEEE

30 Noor R. Al-Kazaz et al.

transactions on information theory , 37 (4), 1085–1094.
Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data

compression. Communications of the ACM , 30 (6), 520–540.

