
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Economics of pharmacogenetic guided treatments

Hughes, Dyfrig

Clinical Pharmacology and Therapeutics

DOI:
10.1002/cpt.1030

Published: 01/05/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Hughes, D. (2018). Economics of pharmacogenetic guided treatments: Underwhelming or
overstated? Clinical Pharmacology and Therapeutics, 103(5), 749-751.
https://doi.org/10.1002/cpt.1030

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 09. Oct. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bangor University Research Portal

https://core.ac.uk/display/186465908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/cpt.1030
https://research.bangor.ac.uk/portal/en/researchoutputs/economics-of-pharmacogenetic-guided-treatments(075546d5-99ff-4ca6-b19f-4bb130a37eb5).html
https://research.bangor.ac.uk/portal/en/researchers/dyfrig-hughes(c1dba6ff-b8bd-476a-ab98-73477196d30e).html
https://research.bangor.ac.uk/portal/en/researchoutputs/economics-of-pharmacogenetic-guided-treatments(075546d5-99ff-4ca6-b19f-4bb130a37eb5).html
https://research.bangor.ac.uk/portal/en/researchoutputs/economics-of-pharmacogenetic-guided-treatments(075546d5-99ff-4ca6-b19f-4bb130a37eb5).html
https://doi.org/10.1002/cpt.1030


Title: 

Economics of pharmacogenetic-guided treatments: Underwhelming or overstated?  

Author: 

Dyfrig A Hughes PhD 

Affiliation: 

Centre for Health Economics and Medicines Evaluation, Ardudwy, Normal Site, Bangor University, 

Holyhead Road, Bangor, Gwynedd, Wales LL57 2PZ 

Correspondence: 

Professor Dyfrig Hughes. E-mail: d.a.hughes@bangor.ac.uk Telephone: +44(0)1248 382950 

Funding: 

DAH received funding from the Medical Research Council North West Hub in Trial Methodological 

Research (NWHTMR) (MR/K025635/1), and is recipient of a Health and Care Research Wales Senior 

Research Leader award. 

Conflict of interest: 

The author has no conflicts to declare. 

  



Introduction: 

Economic evaluations have dispelled a perception that precision medicine, achieved through 

pharmacogenetic testing, reduces healthcare costs. For many tests aimed at preventing adverse 

drug reactions, cost-effectiveness analyses predict modest improvements in health benefits and 

increases in total costs. While there are many uncertainties in estimating the value of testing, factors 

which influence cost-effectiveness include the rarity of the outcome, the effectiveness of alternative 

treatments, and the scope and perspective of analysis. 

Cost-effectiveness analyses of pharmacogenetic-guided treatments estimate the value of testing by 

assessing the incremental health benefits in relation to the costs. Improvements in health – often 

considered in terms of quality-adjusted life-years (QALYs) – may arise from avoidance of adverse 

drug reactions (ADRs) and /or improvement in efficacy. Evaluations must consider costs and QALYs 

that extend beyond those related directly to testing, to also include the costs of alternative 

treatments that may be indicated by the presence of an allele, and the clinical consequences of 

prescribing alternative treatments which may be less effective, require more intensive monitoring or 

associated with different ADRs. Given the comparatively low (and decreasing) cost of genetic testing, 

however, there is often a presumption that pharmacogenetic tests reduce healthcare costs while 

improving health outcomes. An economic evaluation from the Office of Policy and Planning at the 

Food and Drug Administration, for instance, estimated that testing for variants in the CYP2C9 and 

VKORC1 genes to guide initial dosing of warfarin therapy could save the US healthcare system 

$1.1bn, and avoid 85,000 serious bleeding events and 17,000 strokes each year [1]. While this 

analysis was based on flawed assumptions, there are a number of reasons why economic 

evaluations of pharmacogenetic-guided therapy may predict modest health improvements [2] and 

marginal cost-effectiveness [3]. 

Firstly, are the costs and consequences of alternative treatment pathways – less effective or more 

expensive alternatives are likely to result in tests being less cost-effective. The relationship of the 

incremental costs (ΔCost) and QALYs (ΔQALY) of single-gene tests aimed to reducing the likelihood 

of ADRs can be approximated by: 

ΔCostTesting/No testing =  CostTest + P(allele){ΔCostAlternative/index − CostADR ∗ PPV} 

ΔQALYTesting/No testing =  P(allele){ΔQALYAlternative/index + QALYADR ∗ PPV} 

Where, CostTest is the cost of testing; P(allele) is the probability of the allele (positive test result); 

ΔCostAlternative/index and ΔQALYAlternative/index are the incremental costs and QALYs, respectively, 

when comparing the alternative therapeutic option (which, for simplification, is assumed to carry no 

risk of ADR) with the index drug; CostADR and QALYADR are the costs and QALY decrement 

associated with the ADR; and PPV is the positive predictive value of genotyping. 

For treatments where the alternative (second-line) treatment is of comparable cost 

(ΔCostAlternative/index = 0) but is more effective (ΔQALYAlternative/index > 0), the incremental cost 

of pharmacogenetic testing will be low, and the benefits high (making testing cost-effective). 

However, if the alternative is associated with higher healthcare costs (ΔCostAlternative/index >

CostADR ∗ PPV), but is similarly or less effective (ΔQALYAlternative/index ≤ 0) then the incremental 

cost of testing will be high and the QALY gain low, resulting in testing being non-cost effective. Thus 



the health benefits (and hence cost-effectiveness) of pharmacogenetic testing are highly sensitive to 

the effectiveness (and cost) of alternative courses of action.  

In the case of screening for HLA-B*15:02 to avoid carbamazepine-induced Stevens-Johnson 

syndrome (SJS) and toxic-epidermal necrolysis (TEN), for instance, sodium valproate may be a valid 

alternative for patients with the allele. However, as sodium valproate is less effective than 

carbamazepine in achieving seizure remission, unnecessary changes in prescription (i.e. because of 

false-positive test results) will lead to less effective control of epilepsy in some patients. An 

economic analysis of HLA-B*15:02 testing in Malaysian populations predicted that one case of 

SJS/TEN would be avoided for every 222 patients screened; but 3 additional patients  would 

experience seizure relapse owing to the reduced effectiveness of the alternative antiepileptic drug 

[4]. The benefit-risk assessment concerns the differential impacts on health of the avoidance of 

SJS/TEN versus the seizure breakthrough; while the economic consideration is whether this can be 

justified based on the costs of screening 222 patients, at $59 each. The QALY, which allows for the 

health impacts of ADRs and seizures to be assessed on the same scale, yields a positive, but small 

incremental benefit of 9 quality-adjusted days over a lifetime.  

A second reason relates to rarity. For less common alleles, and rare ADRs in particular, the 

incremental benefit of testing becomes diminishingly small as the numbers needed to be screened 

to prevent one case is high. Consequently, many single-gene tests may not be cost-effective because 

of the magnitude of the denominator of the incremental cost-effectiveness ratio (ICER). While a very 

small number of patients will benefit (through the avoidance of a severe ADR), others will have their 

medication changed unnecessarily to an alternative which may be less effective, more costly and /or 

associated with other ADRs. 

Genotyping for HLA-B*58:01 prior to allopurinol being prescribed for patients with gout is a case in 

point. The presence of HLA-B*58:01 is associated with SJS/TEN and drug reaction with eosinophilia 

and systematic symptoms (DRESS) in patients taking allopurinol, with incidences of 2 and 11 in 

10,000, respectively. The majority of patients (99.87%) would never experience a severe ADR and 

would be prescribed allopurinol with no health benefits from testing but having incurred the extra 

cost. Based on allele prevalence in European populations, testing would require 1.1% of patients to 

switch to febuxostat as an alternative urate-lowering drug. To avoid one case of ADR, 11,286 

patients would need to be screened [5]. That one individual will avoid losses of 3.43 QALYs and a 

healthcare cost of £17,250 ($22,800). However, the other 11,285 patients, on average, will gain just 

0.0025 QALYs (about 1 additional quality-adjusted day) while incurring an additional cost of £105 

($140). These QALY gains reflect the increased benefit (0.22 QALYs) in those prescribed febuxostat, 

while the added costs result from everyone being tested, and some receiving the more expensive 

alternative. A key point here is that the ICER is based on the differences in mean costs and QALYs 

which is appropriate for decision-making, but which is not representative of the underlying 

distributions, as the benefits of testing are experienced in a few and the costs are effectively spread 

across many. 

A third influence on the estimated health benefits of pharmacogenetic testing concerns the scope 

and perspective of economic evaluations. There may be consequences of pharmacogenetics testing, 

especially in moving from single-gene testing to panels, next generation sequencing and whole-

genomic sequencing, which extend beyond the immediate benefit to the patient. These include the 



incidental findings from test results: A test requested for one diagnostic or prognostic purpose will 

yield information for others. Genome sequencing of patients and their families for hereditary rare 

diseases or the use of a panel of multiple pharmacogenes, for instance, could reveal incidental 

findings with important clinical applications. In these cases, the health benefits of testing extend 

beyond the initial test to include all future uses of the genetic information (i.e. pre-emptive testing). 

An economic evaluation with a narrow focus will therefore underestimate the health benefits, and 

result in an ICER which is higher than if the entire range of applications were considered, each at 

zero marginal cost. A lack of consideration of the impacts of future treatment options for family 

members or intergenerational effects may also underestimate the overall health benefits and cost-

effectiveness of testing. 

A fourth reason relates to the nature of the benefits. The QALY is most often based on utilities 

derived from the EuroQol-5D, which has many limitations, not least a lack of sensitivity for some 

outcome domains. It does not, for instance, include a dimension for sensory effects, and so would 

not directly capture the ocular complications of SJS/TEN. Moreover, non-health benefits such as a 

person or family having the option for a more informed choice, or having increased certainty from 

diagnosis – regardless of whether there may be appropriate treatment options – are rarely 

considered in economic evaluations. In such situations, alternative methods of evaluation, such as 

the willingness to pay or capability approach have been proposed. Importantly, however, is that the 

outcome used to capture the benefits of genomic testing is also considered in the benefits forgone. 

Finally, most of the uncertainty in estimating the value of pharmacogenetic testing in economic 

evaluations arises not so much from the cost and health impact of ADRs or the consequences of 

treatment on disease management, but rather from a lack of definitive evidence on the clinical 

effectiveness of pharmacogenetics testing in improving treatment efficacy or preventing ADRs – 

there are only a few randomised controlled trials to support routine genotyping. A key challenge 

moving forward is to define the evidential standards for routine use of pharmacogenetic tests. Non-

genetic prognostic factors enjoy a lower evidential threshold for adoption – there is no regulatory 

requirement, for instance, to undertake clinical trials to show that dosing recommendations for 

patients with renal or hepatic impairment are equivalent in terms of clinical outcomes. Yet, the 

implementation of pharmacogenetic testing has been impeded by concerns about clinical 

effectiveness, and costs. Even where clinical trial and economic evidence supports pharmacogenetic 

testing, such as in relation to warfarin dosing, the FDA does not require or recommend genotyping 

for CYP2C9 or VKORC1.  

Within healthcare systems with limited, finite budgets, investment decisions result in opportunity 

costs in the form of forgone health gains to other patients, and economic evaluations of 

pharmacogenetic tests are increasingly necessary to inform policy recommendations for adoption in 

routine practice. Key considerations are necessary to ensure that evaluations are unbiased, 

appropriately scoped and defined to provide accurate estimates of the clinical benefit and value of 

testing. In the context of using genotyping to exclude the use of a drug, the health benefits are 

modest across populations, but significant in those who avoid serious ADRs. With increasing 

possibilities for pre-emptive testing, the cost-effectiveness of diagnostic panels will become more 

favourable. 
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